summaryrefslogtreecommitdiff
path: root/gcc/ada/gcc-interface/utils.c
blob: e24a295318aff0a09725c751144b513f349a607a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
/****************************************************************************
 *                                                                          *
 *                         GNAT COMPILER COMPONENTS                         *
 *                                                                          *
 *                                U T I L S                                 *
 *                                                                          *
 *                          C Implementation File                           *
 *                                                                          *
 *          Copyright (C) 1992-2015, Free Software Foundation, Inc.         *
 *                                                                          *
 * GNAT is free software;  you can  redistribute it  and/or modify it under *
 * terms of the  GNU General Public License as published  by the Free Soft- *
 * ware  Foundation;  either version 3,  or (at your option) any later ver- *
 * sion.  GNAT is distributed in the hope that it will be useful, but WITH- *
 * OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY *
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License *
 * for  more details.  You should have received a copy of the GNU General   *
 * Public License along with GCC; see the file COPYING3.  If not see        *
 * <http://www.gnu.org/licenses/>.                                          *
 *                                                                          *
 * GNAT was originally developed  by the GNAT team at  New York University. *
 * Extensive contributions were provided by Ada Core Technologies Inc.      *
 *                                                                          *
 ****************************************************************************/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "hash-set.h"
#include "vec.h"
#include "input.h"
#include "alias.h"
#include "symtab.h"
#include "inchash.h"
#include "tree.h"
#include "fold-const.h"
#include "stringpool.h"
#include "stor-layout.h"
#include "attribs.h"
#include "varasm.h"
#include "flags.h"
#include "toplev.h"
#include "diagnostic-core.h"
#include "output.h"
#include "ggc.h"
#include "debug.h"
#include "convert.h"
#include "target.h"
#include "common/common-target.h"
#include "langhooks.h"
#include "hash-map.h"
#include "is-a.h"
#include "plugin-api.h"
#include "hard-reg-set.h"
#include "input.h"
#include "function.h"
#include "ipa-ref.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-inline.h"
#include "tree-iterator.h"

#include "ada.h"
#include "types.h"
#include "atree.h"
#include "elists.h"
#include "namet.h"
#include "nlists.h"
#include "stringt.h"
#include "uintp.h"
#include "fe.h"
#include "sinfo.h"
#include "einfo.h"
#include "ada-tree.h"
#include "gigi.h"

/* If nonzero, pretend we are allocating at global level.  */
int force_global;

/* The default alignment of "double" floating-point types, i.e. floating
   point types whose size is equal to 64 bits, or 0 if this alignment is
   not specifically capped.  */
int double_float_alignment;

/* The default alignment of "double" or larger scalar types, i.e. scalar
   types whose size is greater or equal to 64 bits, or 0 if this alignment
   is not specifically capped.  */
int double_scalar_alignment;

/* True if floating-point arithmetics may use wider intermediate results.  */
bool fp_arith_may_widen = true;

/* Tree nodes for the various types and decls we create.  */
tree gnat_std_decls[(int) ADT_LAST];

/* Functions to call for each of the possible raise reasons.  */
tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];

/* Likewise, but with extra info for each of the possible raise reasons.  */
tree gnat_raise_decls_ext[(int) LAST_REASON_CODE + 1];

/* Forward declarations for handlers of attributes.  */
static tree handle_const_attribute (tree *, tree, tree, int, bool *);
static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
static tree handle_leaf_attribute (tree *, tree, tree, int, bool *);
static tree handle_always_inline_attribute (tree *, tree, tree, int, bool *);
static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *);
static tree handle_vector_size_attribute (tree *, tree, tree, int, bool *);
static tree handle_vector_type_attribute (tree *, tree, tree, int, bool *);

/* Fake handler for attributes we don't properly support, typically because
   they'd require dragging a lot of the common-c front-end circuitry.  */
static tree fake_attribute_handler      (tree *, tree, tree, int, bool *);

/* Table of machine-independent internal attributes for Ada.  We support
   this minimal set of attributes to accommodate the needs of builtins.  */
const struct attribute_spec gnat_internal_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
       affects_type_identity } */
  { "const",        0, 0,  true,  false, false, handle_const_attribute,
    false },
  { "nothrow",      0, 0,  true,  false, false, handle_nothrow_attribute,
    false },
  { "pure",         0, 0,  true,  false, false, handle_pure_attribute,
    false },
  { "no vops",      0, 0,  true,  false, false, handle_novops_attribute,
    false },
  { "nonnull",      0, -1, false, true,  true,  handle_nonnull_attribute,
    false },
  { "sentinel",     0, 1,  false, true,  true,  handle_sentinel_attribute,
    false },
  { "noreturn",     0, 0,  true,  false, false, handle_noreturn_attribute,
    false },
  { "leaf",         0, 0,  true,  false, false, handle_leaf_attribute,
    false },
  { "always_inline",0, 0,  true,  false, false, handle_always_inline_attribute,
    false },
  { "malloc",       0, 0,  true,  false, false, handle_malloc_attribute,
    false },
  { "type generic", 0, 0,  false, true, true, handle_type_generic_attribute,
    false },

  { "vector_size",  1, 1,  false, true, false,  handle_vector_size_attribute,
    false },
  { "vector_type",  0, 0,  false, true, false,  handle_vector_type_attribute,
    false },
  { "may_alias",    0, 0, false, true, false, NULL, false },

  /* ??? format and format_arg are heavy and not supported, which actually
     prevents support for stdio builtins, which we however declare as part
     of the common builtins.def contents.  */
  { "format",     3, 3,  false, true,  true,  fake_attribute_handler, false },
  { "format_arg", 1, 1,  false, true,  true,  fake_attribute_handler, false },

  { NULL,         0, 0, false, false, false, NULL, false }
};

/* Associates a GNAT tree node to a GCC tree node. It is used in
   `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
   of `save_gnu_tree' for more info.  */
static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;

#define GET_GNU_TREE(GNAT_ENTITY)	\
  associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id]

#define SET_GNU_TREE(GNAT_ENTITY,VAL)	\
  associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL)

#define PRESENT_GNU_TREE(GNAT_ENTITY)	\
  (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)

/* Associates a GNAT entity to a GCC tree node used as a dummy, if any.  */
static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table;

#define GET_DUMMY_NODE(GNAT_ENTITY)	\
  dummy_node_table[(GNAT_ENTITY) - First_Node_Id]

#define SET_DUMMY_NODE(GNAT_ENTITY,VAL)	\
  dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL)

#define PRESENT_DUMMY_NODE(GNAT_ENTITY)	\
  (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)

/* This variable keeps a table for types for each precision so that we only
   allocate each of them once. Signed and unsigned types are kept separate.

   Note that these types are only used when fold-const requests something
   special.  Perhaps we should NOT share these types; we'll see how it
   goes later.  */
static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];

/* Likewise for float types, but record these by mode.  */
static GTY(()) tree float_types[NUM_MACHINE_MODES];

/* For each binding contour we allocate a binding_level structure to indicate
   the binding depth.  */

struct GTY((chain_next ("%h.chain"))) gnat_binding_level {
  /* The binding level containing this one (the enclosing binding level). */
  struct gnat_binding_level *chain;
  /* The BLOCK node for this level.  */
  tree block;
  /* If nonzero, the setjmp buffer that needs to be updated for any
     variable-sized definition within this context.  */
  tree jmpbuf_decl;
};

/* The binding level currently in effect.  */
static GTY(()) struct gnat_binding_level *current_binding_level;

/* A chain of gnat_binding_level structures awaiting reuse.  */
static GTY((deletable)) struct gnat_binding_level *free_binding_level;

/* The context to be used for global declarations.  */
static GTY(()) tree global_context;

/* An array of global type declarations.  */
static GTY(()) vec<tree, va_gc> *type_decls;

/* An array of builtin function declarations.  */
static GTY(()) vec<tree, va_gc> *builtin_decls;

/* A chain of unused BLOCK nodes. */
static GTY((deletable)) tree free_block_chain;

/* A hash table of padded types.  It is modelled on the generic type
   hash table in tree.c, which must thus be used as a reference.  */

struct GTY((for_user)) pad_type_hash {
  unsigned long hash;
  tree type;
};

struct pad_type_hasher : ggc_cache_hasher<pad_type_hash *>
{
  static inline hashval_t hash (pad_type_hash *t) { return t->hash; }
  static bool equal (pad_type_hash *a, pad_type_hash *b);
  static void handle_cache_entry (pad_type_hash *&);
};

static GTY ((cache))
  hash_table<pad_type_hasher> *pad_type_hash_table;

static tree merge_sizes (tree, tree, tree, bool, bool);
static tree compute_related_constant (tree, tree);
static tree split_plus (tree, tree *);
static tree float_type_for_precision (int, machine_mode);
static tree convert_to_fat_pointer (tree, tree);
static unsigned int scale_by_factor_of (tree, unsigned int);
static bool potential_alignment_gap (tree, tree, tree);

/* A linked list used as a queue to defer the initialization of the
   DECL_CONTEXT attribute of ..._DECL nodes and of the TYPE_CONTEXT attribute
   of ..._TYPE nodes.  */
struct deferred_decl_context_node
{
  tree decl;		    /* The ..._DECL node to work on.  */
  Entity_Id gnat_scope;     /* The corresponding entity's Scope attribute.  */
  int force_global;	    /* force_global value when pushing DECL. */
  vec<tree, va_heap, vl_ptr> types;	    /* A list of ..._TYPE nodes to propagate the
			       context to.  */
  struct deferred_decl_context_node *next;  /* The next queue item.  */
};

static struct deferred_decl_context_node *deferred_decl_context_queue = NULL;

/* Defer the initialization of DECL's DECL_CONTEXT attribute, scheduling to
   feed it with the elaboration of GNAT_SCOPE.  */
static struct deferred_decl_context_node *
add_deferred_decl_context (tree decl, Entity_Id gnat_scope, int force_global);

/* Defer the initialization of TYPE's TYPE_CONTEXT attribute, scheduling to
   feed it with the DECL_CONTEXT computed as part of N as soon as it is
   computed.  */
static void add_deferred_type_context (struct deferred_decl_context_node *n,
				       tree type);

/* Initialize data structures of the utils.c module.  */

void
init_gnat_utils (void)
{
  /* Initialize the association of GNAT nodes to GCC trees.  */
  associate_gnat_to_gnu = ggc_cleared_vec_alloc<tree> (max_gnat_nodes);

  /* Initialize the association of GNAT nodes to GCC trees as dummies.  */
  dummy_node_table = ggc_cleared_vec_alloc<tree> (max_gnat_nodes);

  /* Initialize the hash table of padded types.  */
  pad_type_hash_table = hash_table<pad_type_hasher>::create_ggc (512);
}

/* Destroy data structures of the utils.c module.  */

void
destroy_gnat_utils (void)
{
  /* Destroy the association of GNAT nodes to GCC trees.  */
  ggc_free (associate_gnat_to_gnu);
  associate_gnat_to_gnu = NULL;

  /* Destroy the association of GNAT nodes to GCC trees as dummies.  */
  ggc_free (dummy_node_table);
  dummy_node_table = NULL;

  /* Destroy the hash table of padded types.  */
  pad_type_hash_table->empty ();
  pad_type_hash_table = NULL;
}

/* GNAT_ENTITY is a GNAT tree node for an entity.  Associate GNU_DECL, a GCC
   tree node, with GNAT_ENTITY.  If GNU_DECL is not a ..._DECL node, abort.
   If NO_CHECK is true, the latter check is suppressed.

   If GNU_DECL is zero, reset a previous association.  */

void
save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
{
  /* Check that GNAT_ENTITY is not already defined and that it is being set
     to something which is a decl.  If that is not the case, this usually
     means GNAT_ENTITY is defined twice, but occasionally is due to some
     Gigi problem.  */
  gcc_assert (!(gnu_decl
		&& (PRESENT_GNU_TREE (gnat_entity)
		    || (!no_check && !DECL_P (gnu_decl)))));

  SET_GNU_TREE (gnat_entity, gnu_decl);
}

/* GNAT_ENTITY is a GNAT tree node for an entity.  Return the GCC tree node
   that was associated with it.  If there is no such tree node, abort.

   In some cases, such as delayed elaboration or expressions that need to
   be elaborated only once, GNAT_ENTITY is really not an entity.  */

tree
get_gnu_tree (Entity_Id gnat_entity)
{
  gcc_assert (PRESENT_GNU_TREE (gnat_entity));
  return GET_GNU_TREE (gnat_entity);
}

/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY.  */

bool
present_gnu_tree (Entity_Id gnat_entity)
{
  return PRESENT_GNU_TREE (gnat_entity);
}

/* Make a dummy type corresponding to GNAT_TYPE.  */

tree
make_dummy_type (Entity_Id gnat_type)
{
  Entity_Id gnat_equiv = Gigi_Equivalent_Type (Underlying_Type (gnat_type));
  tree gnu_type;

  /* If there was no equivalent type (can only happen when just annotating
     types) or underlying type, go back to the original type.  */
  if (No (gnat_equiv))
    gnat_equiv = gnat_type;

  /* If it there already a dummy type, use that one.  Else make one.  */
  if (PRESENT_DUMMY_NODE (gnat_equiv))
    return GET_DUMMY_NODE (gnat_equiv);

  /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make
     an ENUMERAL_TYPE.  */
  gnu_type = make_node (Is_Record_Type (gnat_equiv)
			? tree_code_for_record_type (gnat_equiv)
			: ENUMERAL_TYPE);
  TYPE_NAME (gnu_type) = get_entity_name (gnat_type);
  TYPE_DUMMY_P (gnu_type) = 1;
  TYPE_STUB_DECL (gnu_type)
    = create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type);
  if (Is_By_Reference_Type (gnat_equiv))
    TYPE_BY_REFERENCE_P (gnu_type) = 1;

  SET_DUMMY_NODE (gnat_equiv, gnu_type);

  return gnu_type;
}

/* Return the dummy type that was made for GNAT_TYPE, if any.  */

tree
get_dummy_type (Entity_Id gnat_type)
{
  return GET_DUMMY_NODE (gnat_type);
}

/* Build dummy fat and thin pointer types whose designated type is specified
   by GNAT_DESIG_TYPE/GNU_DESIG_TYPE and attach them to the latter.  */

void
build_dummy_unc_pointer_types (Entity_Id gnat_desig_type, tree gnu_desig_type)
{
  tree gnu_template_type, gnu_ptr_template, gnu_array_type, gnu_ptr_array;
  tree gnu_fat_type, fields, gnu_object_type;

  gnu_template_type = make_node (RECORD_TYPE);
  TYPE_NAME (gnu_template_type) = create_concat_name (gnat_desig_type, "XUB");
  TYPE_DUMMY_P (gnu_template_type) = 1;
  gnu_ptr_template = build_pointer_type (gnu_template_type);

  gnu_array_type = make_node (ENUMERAL_TYPE);
  TYPE_NAME (gnu_array_type) = create_concat_name (gnat_desig_type, "XUA");
  TYPE_DUMMY_P (gnu_array_type) = 1;
  gnu_ptr_array = build_pointer_type (gnu_array_type);

  gnu_fat_type = make_node (RECORD_TYPE);
  /* Build a stub DECL to trigger the special processing for fat pointer types
     in gnat_pushdecl.  */
  TYPE_NAME (gnu_fat_type)
    = create_type_stub_decl (create_concat_name (gnat_desig_type, "XUP"),
			     gnu_fat_type);
  fields = create_field_decl (get_identifier ("P_ARRAY"), gnu_ptr_array,
			      gnu_fat_type, NULL_TREE, NULL_TREE, 0, 0);
  DECL_CHAIN (fields)
    = create_field_decl (get_identifier ("P_BOUNDS"), gnu_ptr_template,
			 gnu_fat_type, NULL_TREE, NULL_TREE, 0, 0);
  finish_fat_pointer_type (gnu_fat_type, fields);
  SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_desig_type);
  /* Suppress debug info until after the type is completed.  */
  TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (gnu_fat_type)) = 1;

  gnu_object_type = make_node (RECORD_TYPE);
  TYPE_NAME (gnu_object_type) = create_concat_name (gnat_desig_type, "XUT");
  TYPE_DUMMY_P (gnu_object_type) = 1;

  TYPE_POINTER_TO (gnu_desig_type) = gnu_fat_type;
  TYPE_OBJECT_RECORD_TYPE (gnu_desig_type) = gnu_object_type;
}

/* Return true if we are in the global binding level.  */

bool
global_bindings_p (void)
{
  return force_global || current_function_decl == NULL_TREE;
}

/* Enter a new binding level.  */

void
gnat_pushlevel (void)
{
  struct gnat_binding_level *newlevel = NULL;

  /* Reuse a struct for this binding level, if there is one.  */
  if (free_binding_level)
    {
      newlevel = free_binding_level;
      free_binding_level = free_binding_level->chain;
    }
  else
    newlevel = ggc_alloc<gnat_binding_level> ();

  /* Use a free BLOCK, if any; otherwise, allocate one.  */
  if (free_block_chain)
    {
      newlevel->block = free_block_chain;
      free_block_chain = BLOCK_CHAIN (free_block_chain);
      BLOCK_CHAIN (newlevel->block) = NULL_TREE;
    }
  else
    newlevel->block = make_node (BLOCK);

  /* Point the BLOCK we just made to its parent.  */
  if (current_binding_level)
    BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;

  BLOCK_VARS (newlevel->block) = NULL_TREE;
  BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
  TREE_USED (newlevel->block) = 1;

  /* Add this level to the front of the chain (stack) of active levels.  */
  newlevel->chain = current_binding_level;
  newlevel->jmpbuf_decl = NULL_TREE;
  current_binding_level = newlevel;
}

/* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
   and point FNDECL to this BLOCK.  */

void
set_current_block_context (tree fndecl)
{
  BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
  DECL_INITIAL (fndecl) = current_binding_level->block;
  set_block_for_group (current_binding_level->block);
}

/* Set the jmpbuf_decl for the current binding level to DECL.  */

void
set_block_jmpbuf_decl (tree decl)
{
  current_binding_level->jmpbuf_decl = decl;
}

/* Get the jmpbuf_decl, if any, for the current binding level.  */

tree
get_block_jmpbuf_decl (void)
{
  return current_binding_level->jmpbuf_decl;
}

/* Exit a binding level.  Set any BLOCK into the current code group.  */

void
gnat_poplevel (void)
{
  struct gnat_binding_level *level = current_binding_level;
  tree block = level->block;

  BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
  BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));

  /* If this is a function-level BLOCK don't do anything.  Otherwise, if there
     are no variables free the block and merge its subblocks into those of its
     parent block.  Otherwise, add it to the list of its parent.  */
  if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
    ;
  else if (BLOCK_VARS (block) == NULL_TREE)
    {
      BLOCK_SUBBLOCKS (level->chain->block)
	= block_chainon (BLOCK_SUBBLOCKS (block),
			 BLOCK_SUBBLOCKS (level->chain->block));
      BLOCK_CHAIN (block) = free_block_chain;
      free_block_chain = block;
    }
  else
    {
      BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
      BLOCK_SUBBLOCKS (level->chain->block) = block;
      TREE_USED (block) = 1;
      set_block_for_group (block);
    }

  /* Free this binding structure.  */
  current_binding_level = level->chain;
  level->chain = free_binding_level;
  free_binding_level = level;
}

/* Exit a binding level and discard the associated BLOCK.  */

void
gnat_zaplevel (void)
{
  struct gnat_binding_level *level = current_binding_level;
  tree block = level->block;

  BLOCK_CHAIN (block) = free_block_chain;
  free_block_chain = block;

  /* Free this binding structure.  */
  current_binding_level = level->chain;
  level->chain = free_binding_level;
  free_binding_level = level;
}

/* Set the context of TYPE and its parallel types (if any) to CONTEXT.  */

static void
gnat_set_type_context (tree type, tree context)
{
  tree decl = TYPE_STUB_DECL (type);

  TYPE_CONTEXT (type) = context;

  while (decl && DECL_PARALLEL_TYPE (decl))
    {
      tree parallel_type = DECL_PARALLEL_TYPE (decl);

      /* Give a context to the parallel types and their stub decl, if any.
	 Some parallel types seems to be present in multiple parallel type
	 chains, so don't mess with their context if they already have one.  */
      if (TYPE_CONTEXT (parallel_type) == NULL_TREE)
	{
	  if (TYPE_STUB_DECL (parallel_type) != NULL_TREE)
	    DECL_CONTEXT (TYPE_STUB_DECL (parallel_type)) = context;
	  TYPE_CONTEXT (parallel_type) = context;
	}

      decl = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (decl));
    }
}

/* Return the innermost scope, starting at GNAT_NODE, we are be interested in
   the debug info, or Empty if there is no such scope.  If not NULL, set
   IS_SUBPROGRAM to whether the returned entity is a subprogram.  */

static Entity_Id
get_debug_scope (Node_Id gnat_node, bool *is_subprogram)
{
  Entity_Id gnat_entity;

  if (is_subprogram)
    *is_subprogram = false;

  if (Nkind (gnat_node) == N_Defining_Identifier)
    gnat_entity = Scope (gnat_node);
  else
    return Empty;

  while (Present (gnat_entity))
    {
      switch (Ekind (gnat_entity))
	{
	case E_Function:
	case E_Procedure:
	  if (Present (Protected_Body_Subprogram (gnat_entity)))
	    gnat_entity = Protected_Body_Subprogram (gnat_entity);

	  /* If the scope is a subprogram, then just rely on
	     current_function_decl, so that we don't have to defer
	     anything.  This is needed because other places rely on the
	     validity of the DECL_CONTEXT attribute of FUNCTION_DECL nodes. */
	  if (is_subprogram)
	    *is_subprogram = true;
	  return gnat_entity;

	case E_Record_Type:
	case E_Record_Subtype:
	  return gnat_entity;

	default:
	  /* By default, we are not interested in this particular scope: go to
	     the outer one.  */
	  break;
	}
      gnat_entity = Scope (gnat_entity);
    }
  return Empty;
}

/* If N is NULL, set TYPE's context to CONTEXT. Defer this to the processing of
   N otherwise.  */

static void
defer_or_set_type_context (tree type,
			   tree context,
			   struct deferred_decl_context_node *n)
{
  if (n)
    add_deferred_type_context (n, type);
  else
    gnat_set_type_context (type, context);
}

/* Return global_context.  Create it if needed, first.  */

static tree
get_global_context (void)
{
  if (!global_context)
    global_context = build_translation_unit_decl (NULL_TREE);
  return global_context;
}

/* Record DECL as belonging to the current lexical scope and use GNAT_NODE
   for location information and flag propagation.  */

void
gnat_pushdecl (tree decl, Node_Id gnat_node)
{
  tree context = NULL_TREE;
  struct deferred_decl_context_node *deferred_decl_context = NULL;

  /* If explicitely asked to make DECL global or if it's an imported nested
     object, short-circuit the regular Scope-based context computation.  */
  if (!((TREE_PUBLIC (decl) && DECL_EXTERNAL (decl)) || force_global == 1))
    {
      /* Rely on the GNAT scope, or fallback to the current_function_decl if
	 the GNAT scope reached the global scope, if it reached a subprogram
	 or the declaration is a subprogram or a variable (for them we skip
	 intermediate context types because the subprogram body elaboration
	 machinery and the inliner both expect a subprogram context).

	 Falling back to current_function_decl is necessary for implicit
	 subprograms created by gigi, such as the elaboration subprograms.  */
      bool context_is_subprogram = false;
      const Entity_Id gnat_scope
        = get_debug_scope (gnat_node, &context_is_subprogram);

      if (Present (gnat_scope)
	  && !context_is_subprogram
	  && TREE_CODE (decl) != FUNCTION_DECL
	  && TREE_CODE (decl) != VAR_DECL)
	/* Always assume the scope has not been elaborated, thus defer the
	   context propagation to the time its elaboration will be
	   available.  */
	deferred_decl_context
	  = add_deferred_decl_context (decl, gnat_scope, force_global);

      /* External declarations (when force_global > 0) may not be in a
	 local context.  */
      else if (current_function_decl != NULL_TREE && force_global == 0)
	context = current_function_decl;
    }

  /* If either we are forced to be in global mode or if both the GNAT scope and
     the current_function_decl did not help determining the context, use the
     global scope.  */
  if (!deferred_decl_context && context == NULL_TREE)
    context = get_global_context ();

  /* Functions imported in another function are not really nested.
     For really nested functions mark them initially as needing
     a static chain for uses of that flag before unnesting;
     lower_nested_functions will then recompute it.  */
  if (TREE_CODE (decl) == FUNCTION_DECL
      && !TREE_PUBLIC (decl)
      && context != NULL_TREE
      && (TREE_CODE (context) == FUNCTION_DECL
	  || decl_function_context (context) != NULL_TREE))
    DECL_STATIC_CHAIN (decl) = 1;

  if (!deferred_decl_context)
    DECL_CONTEXT (decl) = context;

  TREE_NO_WARNING (decl) = (No (gnat_node) || Warnings_Off (gnat_node));

  /* Set the location of DECL and emit a declaration for it.  */
  if (Present (gnat_node) && !renaming_from_generic_instantiation_p (gnat_node))
    Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));

  add_decl_expr (decl, gnat_node);

  /* Put the declaration on the list.  The list of declarations is in reverse
     order.  The list will be reversed later.  Put global declarations in the
     globals list and local ones in the current block.  But skip TYPE_DECLs
     for UNCONSTRAINED_ARRAY_TYPE in both cases, as they will cause trouble
     with the debugger and aren't needed anyway.  */
  if (!(TREE_CODE (decl) == TYPE_DECL
        && TREE_CODE (TREE_TYPE (decl)) == UNCONSTRAINED_ARRAY_TYPE))
    {
      if (DECL_EXTERNAL (decl))
	{
	  if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
	    vec_safe_push (builtin_decls, decl);
	}
      else if (global_bindings_p ())
	{
	  if (TREE_CODE (decl) == TYPE_DECL)
	    vec_safe_push (type_decls, decl);
	}
      else
	{
	  DECL_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
	  BLOCK_VARS (current_binding_level->block) = decl;
	}
    }

  /* For the declaration of a type, set its name either if it isn't already
     set or if the previous type name was not derived from a source name.
     We'd rather have the type named with a real name and all the pointer
     types to the same object have the same node, except when the names are
     both derived from source names.  */
  if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl))
    {
      tree t = TREE_TYPE (decl);

      /* Array and pointer types aren't tagged types in the C sense so we need
	 to generate a typedef in DWARF for them and make sure it is preserved,
	 unless the type is artificial.  */
      if (!(TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
	  && ((TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != POINTER_TYPE)
	      || DECL_ARTIFICIAL (decl)))
	;
      /* For array and pointer types, create the DECL_ORIGINAL_TYPE that will
	 generate the typedef in DWARF.  Also do that for fat pointer types
	 because, even though they are tagged types in the C sense, they are
	 still XUP types attached to the base array type at this point.  */
      else if (!DECL_ARTIFICIAL (decl)
	       && (TREE_CODE (t) == ARRAY_TYPE
		   || TREE_CODE (t) == POINTER_TYPE
		   || TYPE_IS_FAT_POINTER_P (t)))
	{
	  tree tt;
	  /* ??? Copy and original type are not supposed to be variant but we
	     really need a variant for the placeholder machinery to work.  */
	  if (TYPE_IS_FAT_POINTER_P (t))
	    tt = build_variant_type_copy (t);
	  else
	    {
	      /* TYPE_NEXT_PTR_TO is a chain of main variants.  */
	      tt = build_distinct_type_copy (TYPE_MAIN_VARIANT (t));
	      if (TREE_CODE (t) == POINTER_TYPE)
		TYPE_NEXT_PTR_TO (TYPE_MAIN_VARIANT (t)) = tt;
	      tt = build_qualified_type (tt, TYPE_QUALS (t));
	    }
	  TYPE_NAME (tt) = decl;
	  defer_or_set_type_context (tt,
				     DECL_CONTEXT (decl),
				     deferred_decl_context);
	  TREE_USED (tt) = TREE_USED (t);
	  TREE_TYPE (decl) = tt;
	  if (TYPE_NAME (t)
	      && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL
	      && DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
	    DECL_ORIGINAL_TYPE (decl) = DECL_ORIGINAL_TYPE (TYPE_NAME (t));
	  else
	    DECL_ORIGINAL_TYPE (decl) = t;
	  /* Array types need to have a name so that they can be related to
	     their GNAT encodings.  */
	  if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NAME (t))
	    TYPE_NAME (t) = DECL_NAME (decl);
	  t = NULL_TREE;
	}
      else if (TYPE_NAME (t)
	       && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL
	       && DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl))
	;
      else
	t = NULL_TREE;

      /* Propagate the name to all the variants, this is needed for the type
	 qualifiers machinery to work properly (see check_qualified_type).
	 Also propagate the context to them.  Note that it will be propagated
	 to all parallel types too thanks to gnat_set_type_context.  */
      if (t)
	for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
	  /* ??? Because of the previous kludge, we can have variants of fat
	     pointer types with different names.  */
	  if (!(TYPE_IS_FAT_POINTER_P (t)
		&& TYPE_NAME (t)
		&& TREE_CODE (TYPE_NAME (t)) == TYPE_DECL))
	    {
	      TYPE_NAME (t) = decl;
	      defer_or_set_type_context (t,
					 DECL_CONTEXT (decl),
					 deferred_decl_context);
	    }
    }
}

/* Create a record type that contains a SIZE bytes long field of TYPE with a
   starting bit position so that it is aligned to ALIGN bits, and leaving at
   least ROOM bytes free before the field.  BASE_ALIGN is the alignment the
   record is guaranteed to get.  GNAT_NODE is used for the position of the
   associated TYPE_DECL.  */

tree
make_aligning_type (tree type, unsigned int align, tree size,
		    unsigned int base_align, int room, Node_Id gnat_node)
{
  /* We will be crafting a record type with one field at a position set to be
     the next multiple of ALIGN past record'address + room bytes.  We use a
     record placeholder to express record'address.  */
  tree record_type = make_node (RECORD_TYPE);
  tree record = build0 (PLACEHOLDER_EXPR, record_type);

  tree record_addr_st
    = convert (sizetype, build_unary_op (ADDR_EXPR, NULL_TREE, record));

  /* The diagram below summarizes the shape of what we manipulate:

                    <--------- pos ---------->
                {  +------------+-------------+-----------------+
      record  =>{  |############|     ...     | field (type)    |
                {  +------------+-------------+-----------------+
		   |<-- room -->|<- voffset ->|<---- size ----->|
		   o            o
		   |            |
		   record_addr  vblock_addr

     Every length is in sizetype bytes there, except "pos" which has to be
     set as a bit position in the GCC tree for the record.  */
  tree room_st = size_int (room);
  tree vblock_addr_st = size_binop (PLUS_EXPR, record_addr_st, room_st);
  tree voffset_st, pos, field;

  tree name = TYPE_IDENTIFIER (type);

  name = concat_name (name, "ALIGN");
  TYPE_NAME (record_type) = name;

  /* Compute VOFFSET and then POS.  The next byte position multiple of some
     alignment after some address is obtained by "and"ing the alignment minus
     1 with the two's complement of the address.   */
  voffset_st = size_binop (BIT_AND_EXPR,
			   fold_build1 (NEGATE_EXPR, sizetype, vblock_addr_st),
			   size_int ((align / BITS_PER_UNIT) - 1));

  /* POS = (ROOM + VOFFSET) * BIT_PER_UNIT, in bitsizetype.  */
  pos = size_binop (MULT_EXPR,
		    convert (bitsizetype,
			     size_binop (PLUS_EXPR, room_st, voffset_st)),
                    bitsize_unit_node);

  /* Craft the GCC record representation.  We exceptionally do everything
     manually here because 1) our generic circuitry is not quite ready to
     handle the complex position/size expressions we are setting up, 2) we
     have a strong simplifying factor at hand: we know the maximum possible
     value of voffset, and 3) we have to set/reset at least the sizes in
     accordance with this maximum value anyway, as we need them to convey
     what should be "alloc"ated for this type.

     Use -1 as the 'addressable' indication for the field to prevent the
     creation of a bitfield.  We don't need one, it would have damaging
     consequences on the alignment computation, and create_field_decl would
     make one without this special argument, for instance because of the
     complex position expression.  */
  field = create_field_decl (get_identifier ("F"), type, record_type, size,
			     pos, 1, -1);
  TYPE_FIELDS (record_type) = field;

  TYPE_ALIGN (record_type) = base_align;
  TYPE_USER_ALIGN (record_type) = 1;

  TYPE_SIZE (record_type)
    = size_binop (PLUS_EXPR,
                  size_binop (MULT_EXPR, convert (bitsizetype, size),
                              bitsize_unit_node),
		  bitsize_int (align + room * BITS_PER_UNIT));
  TYPE_SIZE_UNIT (record_type)
    = size_binop (PLUS_EXPR, size,
		  size_int (room + align / BITS_PER_UNIT));

  SET_TYPE_MODE (record_type, BLKmode);
  relate_alias_sets (record_type, type, ALIAS_SET_COPY);

  /* Declare it now since it will never be declared otherwise.  This is
     necessary to ensure that its subtrees are properly marked.  */
  create_type_decl (name, record_type, true, false, gnat_node);

  return record_type;
}

/* TYPE is a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE that is being used
   as the field type of a packed record if IN_RECORD is true, or as the
   component type of a packed array if IN_RECORD is false.  See if we can
   rewrite it either as a type that has a non-BLKmode, which we can pack
   tighter in the packed record case, or as a smaller type.  If so, return
   the new type.  If not, return the original type.  */

tree
make_packable_type (tree type, bool in_record)
{
  unsigned HOST_WIDE_INT size = tree_to_uhwi (TYPE_SIZE (type));
  unsigned HOST_WIDE_INT new_size;
  tree new_type, old_field, field_list = NULL_TREE;
  unsigned int align;

  /* No point in doing anything if the size is zero.  */
  if (size == 0)
    return type;

  new_type = make_node (TREE_CODE (type));

  /* Copy the name and flags from the old type to that of the new.
     Note that we rely on the pointer equality created here for
     TYPE_NAME to look through conversions in various places.  */
  TYPE_NAME (new_type) = TYPE_NAME (type);
  TYPE_JUSTIFIED_MODULAR_P (new_type) = TYPE_JUSTIFIED_MODULAR_P (type);
  TYPE_CONTAINS_TEMPLATE_P (new_type) = TYPE_CONTAINS_TEMPLATE_P (type);
  if (TREE_CODE (type) == RECORD_TYPE)
    TYPE_PADDING_P (new_type) = TYPE_PADDING_P (type);

  /* If we are in a record and have a small size, set the alignment to
     try for an integral mode.  Otherwise set it to try for a smaller
     type with BLKmode.  */
  if (in_record && size <= MAX_FIXED_MODE_SIZE)
    {
      align = ceil_pow2 (size);
      TYPE_ALIGN (new_type) = align;
      new_size = (size + align - 1) & -align;
    }
  else
    {
      unsigned HOST_WIDE_INT align;

      /* Do not try to shrink the size if the RM size is not constant.  */
      if (TYPE_CONTAINS_TEMPLATE_P (type)
	  || !tree_fits_uhwi_p (TYPE_ADA_SIZE (type)))
	return type;

      /* Round the RM size up to a unit boundary to get the minimal size
	 for a BLKmode record.  Give up if it's already the size.  */
      new_size = tree_to_uhwi (TYPE_ADA_SIZE (type));
      new_size = (new_size + BITS_PER_UNIT - 1) & -BITS_PER_UNIT;
      if (new_size == size)
	return type;

      align = new_size & -new_size;
      TYPE_ALIGN (new_type) = MIN (TYPE_ALIGN (type), align);
    }

  TYPE_USER_ALIGN (new_type) = 1;

  /* Now copy the fields, keeping the position and size as we don't want
     to change the layout by propagating the packedness downwards.  */
  for (old_field = TYPE_FIELDS (type); old_field;
       old_field = DECL_CHAIN (old_field))
    {
      tree new_field_type = TREE_TYPE (old_field);
      tree new_field, new_size;

      if (RECORD_OR_UNION_TYPE_P (new_field_type)
	  && !TYPE_FAT_POINTER_P (new_field_type)
	  && tree_fits_uhwi_p (TYPE_SIZE (new_field_type)))
	new_field_type = make_packable_type (new_field_type, true);

      /* However, for the last field in a not already packed record type
	 that is of an aggregate type, we need to use the RM size in the
	 packable version of the record type, see finish_record_type.  */
      if (!DECL_CHAIN (old_field)
	  && !TYPE_PACKED (type)
	  && RECORD_OR_UNION_TYPE_P (new_field_type)
	  && !TYPE_FAT_POINTER_P (new_field_type)
	  && !TYPE_CONTAINS_TEMPLATE_P (new_field_type)
	  && TYPE_ADA_SIZE (new_field_type))
	new_size = TYPE_ADA_SIZE (new_field_type);
      else
	new_size = DECL_SIZE (old_field);

      new_field
	= create_field_decl (DECL_NAME (old_field), new_field_type, new_type,
			     new_size, bit_position (old_field),
			     TYPE_PACKED (type),
			     !DECL_NONADDRESSABLE_P (old_field));

      DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (old_field);
      SET_DECL_ORIGINAL_FIELD_TO_FIELD (new_field, old_field);
      if (TREE_CODE (new_type) == QUAL_UNION_TYPE)
	DECL_QUALIFIER (new_field) = DECL_QUALIFIER (old_field);

      DECL_CHAIN (new_field) = field_list;
      field_list = new_field;
    }

  finish_record_type (new_type, nreverse (field_list), 2, false);
  relate_alias_sets (new_type, type, ALIAS_SET_COPY);
  if (TYPE_STUB_DECL (type))
    SET_DECL_PARALLEL_TYPE (TYPE_STUB_DECL (new_type),
			    DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type)));

  /* If this is a padding record, we never want to make the size smaller
     than what was specified.  For QUAL_UNION_TYPE, also copy the size.  */
  if (TYPE_IS_PADDING_P (type) || TREE_CODE (type) == QUAL_UNION_TYPE)
    {
      TYPE_SIZE (new_type) = TYPE_SIZE (type);
      TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (type);
      new_size = size;
    }
  else
    {
      TYPE_SIZE (new_type) = bitsize_int (new_size);
      TYPE_SIZE_UNIT (new_type)
	= size_int ((new_size + BITS_PER_UNIT - 1) / BITS_PER_UNIT);
    }

  if (!TYPE_CONTAINS_TEMPLATE_P (type))
    SET_TYPE_ADA_SIZE (new_type, TYPE_ADA_SIZE (type));

  compute_record_mode (new_type);

  /* Try harder to get a packable type if necessary, for example
     in case the record itself contains a BLKmode field.  */
  if (in_record && TYPE_MODE (new_type) == BLKmode)
    SET_TYPE_MODE (new_type,
		   mode_for_size_tree (TYPE_SIZE (new_type), MODE_INT, 1));

  /* If neither the mode nor the size has shrunk, return the old type.  */
  if (TYPE_MODE (new_type) == BLKmode && new_size >= size)
    return type;

  return new_type;
}

/* Given a type TYPE, return a new type whose size is appropriate for SIZE.
   If TYPE is the best type, return it.  Otherwise, make a new type.  We
   only support new integral and pointer types.  FOR_BIASED is true if
   we are making a biased type.  */

tree
make_type_from_size (tree type, tree size_tree, bool for_biased)
{
  unsigned HOST_WIDE_INT size;
  bool biased_p;
  tree new_type;

  /* If size indicates an error, just return TYPE to avoid propagating
     the error.  Likewise if it's too large to represent.  */
  if (!size_tree || !tree_fits_uhwi_p (size_tree))
    return type;

  size = tree_to_uhwi (size_tree);

  switch (TREE_CODE (type))
    {
    case INTEGER_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
      biased_p = (TREE_CODE (type) == INTEGER_TYPE
		  && TYPE_BIASED_REPRESENTATION_P (type));

      /* Integer types with precision 0 are forbidden.  */
      if (size == 0)
	size = 1;

      /* Only do something if the type isn't a packed array type and doesn't
	 already have the proper size and the size isn't too large.  */
      if (TYPE_IS_PACKED_ARRAY_TYPE_P (type)
	  || (TYPE_PRECISION (type) == size && biased_p == for_biased)
	  || size > LONG_LONG_TYPE_SIZE)
	break;

      biased_p |= for_biased;
      if (TYPE_UNSIGNED (type) || biased_p)
	new_type = make_unsigned_type (size);
      else
	new_type = make_signed_type (size);
      TREE_TYPE (new_type) = TREE_TYPE (type) ? TREE_TYPE (type) : type;
      SET_TYPE_RM_MIN_VALUE (new_type, TYPE_MIN_VALUE (type));
      SET_TYPE_RM_MAX_VALUE (new_type, TYPE_MAX_VALUE (type));
      /* Copy the name to show that it's essentially the same type and
	 not a subrange type.  */
      TYPE_NAME (new_type) = TYPE_NAME (type);
      TYPE_BIASED_REPRESENTATION_P (new_type) = biased_p;
      SET_TYPE_RM_SIZE (new_type, bitsize_int (size));
      return new_type;

    case RECORD_TYPE:
      /* Do something if this is a fat pointer, in which case we
	 may need to return the thin pointer.  */
      if (TYPE_FAT_POINTER_P (type) && size < POINTER_SIZE * 2)
	{
	  machine_mode p_mode = mode_for_size (size, MODE_INT, 0);
	  if (!targetm.valid_pointer_mode (p_mode))
	    p_mode = ptr_mode;
	  return
	    build_pointer_type_for_mode
	      (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (type)),
	       p_mode, 0);
	}
      break;

    case POINTER_TYPE:
      /* Only do something if this is a thin pointer, in which case we
	 may need to return the fat pointer.  */
      if (TYPE_IS_THIN_POINTER_P (type) && size >= POINTER_SIZE * 2)
	return
	  build_pointer_type (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)));
      break;

    default:
      break;
    }

  return type;
}

/* See if the data pointed to by the hash table slot is marked.  */

void
pad_type_hasher::handle_cache_entry (pad_type_hash *&t)
{
  extern void gt_ggc_mx (pad_type_hash *&);
  if (t == HTAB_EMPTY_ENTRY || t == HTAB_DELETED_ENTRY)
    return;
  else if (ggc_marked_p (t->type))
    gt_ggc_mx (t);
  else
    t = static_cast<pad_type_hash *> (HTAB_DELETED_ENTRY);
}

/* Return true iff the padded types are equivalent.  */

bool
pad_type_hasher::equal (pad_type_hash *t1, pad_type_hash *t2)
{
  tree type1, type2;

  if (t1->hash != t2->hash)
    return 0;

  type1 = t1->type;
  type2 = t2->type;

  /* We consider that the padded types are equivalent if they pad the same
     type and have the same size, alignment and RM size.  Taking the mode
     into account is redundant since it is determined by the others.  */
  return
    TREE_TYPE (TYPE_FIELDS (type1)) == TREE_TYPE (TYPE_FIELDS (type2))
    && TYPE_SIZE (type1) == TYPE_SIZE (type2)
    && TYPE_ALIGN (type1) == TYPE_ALIGN (type2)
    && TYPE_ADA_SIZE (type1) == TYPE_ADA_SIZE (type2);
}

/* Look up the padded TYPE in the hash table and return its canonical version
   if it exists; otherwise, insert it into the hash table.  */

static tree
lookup_and_insert_pad_type (tree type)
{
  hashval_t hashcode;
  struct pad_type_hash in, *h;

  hashcode
    = iterative_hash_object (TYPE_HASH (TREE_TYPE (TYPE_FIELDS (type))), 0);
  hashcode = iterative_hash_expr (TYPE_SIZE (type), hashcode);
  hashcode = iterative_hash_hashval_t (TYPE_ALIGN (type), hashcode);
  hashcode = iterative_hash_expr (TYPE_ADA_SIZE (type), hashcode);

  in.hash = hashcode;
  in.type = type;
  h = pad_type_hash_table->find_with_hash (&in, hashcode);
  if (h)
    return h->type;

  h = ggc_alloc<pad_type_hash> ();
  h->hash = hashcode;
  h->type = type;
  *pad_type_hash_table->find_slot_with_hash (h, hashcode, INSERT) = h;
  return NULL_TREE;
}

/* Ensure that TYPE has SIZE and ALIGN.  Make and return a new padded type
   if needed.  We have already verified that SIZE and ALIGN are large enough.
   GNAT_ENTITY is used to name the resulting record and to issue a warning.
   IS_COMPONENT_TYPE is true if this is being done for the component type of
   an array.  IS_USER_TYPE is true if the original type needs to be completed.
   DEFINITION is true if this type is being defined.  SET_RM_SIZE is true if
   the RM size of the resulting type is to be set to SIZE too.  */

tree
maybe_pad_type (tree type, tree size, unsigned int align,
		Entity_Id gnat_entity, bool is_component_type,
		bool is_user_type, bool definition, bool set_rm_size)
{
  tree orig_size = TYPE_SIZE (type);
  unsigned int orig_align = TYPE_ALIGN (type);
  tree record, field;

  /* If TYPE is a padded type, see if it agrees with any size and alignment
     we were given.  If so, return the original type.  Otherwise, strip
     off the padding, since we will either be returning the inner type
     or repadding it.  If no size or alignment is specified, use that of
     the original padded type.  */
  if (TYPE_IS_PADDING_P (type))
    {
      if ((!size
	   || operand_equal_p (round_up (size, orig_align), orig_size, 0))
	  && (align == 0 || align == orig_align))
	return type;

      if (!size)
	size = orig_size;
      if (align == 0)
	align = orig_align;

      type = TREE_TYPE (TYPE_FIELDS (type));
      orig_size = TYPE_SIZE (type);
      orig_align = TYPE_ALIGN (type);
    }

  /* If the size is either not being changed or is being made smaller (which
     is not done here and is only valid for bitfields anyway), show the size
     isn't changing.  Likewise, clear the alignment if it isn't being
     changed.  Then return if we aren't doing anything.  */
  if (size
      && (operand_equal_p (size, orig_size, 0)
	  || (TREE_CODE (orig_size) == INTEGER_CST
	      && tree_int_cst_lt (size, orig_size))))
    size = NULL_TREE;

  if (align == orig_align)
    align = 0;

  if (align == 0 && !size)
    return type;

  /* If requested, complete the original type and give it a name.  */
  if (is_user_type)
    create_type_decl (get_entity_name (gnat_entity), type,
		      !Comes_From_Source (gnat_entity),
		      !(TYPE_NAME (type)
			&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
			&& DECL_IGNORED_P (TYPE_NAME (type))),
		      gnat_entity);

  /* We used to modify the record in place in some cases, but that could
     generate incorrect debugging information.  So make a new record
     type and name.  */
  record = make_node (RECORD_TYPE);
  TYPE_PADDING_P (record) = 1;

  if (Present (gnat_entity))
    TYPE_NAME (record) = create_concat_name (gnat_entity, "PAD");

  TYPE_ALIGN (record) = align ? align : orig_align;
  TYPE_SIZE (record) = size ? size : orig_size;
  TYPE_SIZE_UNIT (record)
    = convert (sizetype,
	       size_binop (CEIL_DIV_EXPR, TYPE_SIZE (record),
			   bitsize_unit_node));

  /* If we are changing the alignment and the input type is a record with
     BLKmode and a small constant size, try to make a form that has an
     integral mode.  This might allow the padding record to also have an
     integral mode, which will be much more efficient.  There is no point
     in doing so if a size is specified unless it is also a small constant
     size and it is incorrect to do so if we cannot guarantee that the mode
     will be naturally aligned since the field must always be addressable.

     ??? This might not always be a win when done for a stand-alone object:
     since the nominal and the effective type of the object will now have
     different modes, a VIEW_CONVERT_EXPR will be required for converting
     between them and it might be hard to overcome afterwards, including
     at the RTL level when the stand-alone object is accessed as a whole.  */
  if (align != 0
      && RECORD_OR_UNION_TYPE_P (type)
      && TYPE_MODE (type) == BLKmode
      && !TYPE_BY_REFERENCE_P (type)
      && TREE_CODE (orig_size) == INTEGER_CST
      && !TREE_OVERFLOW (orig_size)
      && compare_tree_int (orig_size, MAX_FIXED_MODE_SIZE) <= 0
      && (!size
	  || (TREE_CODE (size) == INTEGER_CST
	      && compare_tree_int (size, MAX_FIXED_MODE_SIZE) <= 0)))
    {
      tree packable_type = make_packable_type (type, true);
      if (TYPE_MODE (packable_type) != BLKmode
	  && align >= TYPE_ALIGN (packable_type))
        type = packable_type;
    }

  /* Now create the field with the original size.  */
  field = create_field_decl (get_identifier ("F"), type, record, orig_size,
			     bitsize_zero_node, 0, 1);
  DECL_INTERNAL_P (field) = 1;

  /* Do not emit debug info until after the auxiliary record is built.  */
  finish_record_type (record, field, 1, false);

  /* Set the RM size if requested.  */
  if (set_rm_size)
    {
      tree canonical_pad_type;

      SET_TYPE_ADA_SIZE (record, size ? size : orig_size);

      /* If the padded type is complete and has constant size, we canonicalize
	 it by means of the hash table.  This is consistent with the language
	 semantics and ensures that gigi and the middle-end have a common view
	 of these padded types.  */
      if (TREE_CONSTANT (TYPE_SIZE (record))
	  && (canonical_pad_type = lookup_and_insert_pad_type (record)))
	{
	  record = canonical_pad_type;
	  goto built;
	}
    }

  /* Unless debugging information isn't being written for the input type,
     write a record that shows what we are a subtype of and also make a
     variable that indicates our size, if still variable.  */
  if (TREE_CODE (orig_size) != INTEGER_CST
      && TYPE_NAME (record)
      && TYPE_NAME (type)
      && !(TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
	   && DECL_IGNORED_P (TYPE_NAME (type))))
    {
      tree marker = make_node (RECORD_TYPE);
      tree name = TYPE_IDENTIFIER (record);
      tree orig_name = TYPE_IDENTIFIER (type);

      TYPE_NAME (marker) = concat_name (name, "XVS");
      finish_record_type (marker,
			  create_field_decl (orig_name,
					     build_reference_type (type),
					     marker, NULL_TREE, NULL_TREE,
					     0, 0),
			  0, true);

      add_parallel_type (record, marker);

      if (definition && size && TREE_CODE (size) != INTEGER_CST)
	TYPE_SIZE_UNIT (marker)
	  = create_var_decl (concat_name (name, "XVZ"), NULL_TREE, sizetype,
			     TYPE_SIZE_UNIT (record), false, false, false,
			     false, NULL, gnat_entity);
    }

  rest_of_record_type_compilation (record);

built:
  /* If the size was widened explicitly, maybe give a warning.  Take the
     original size as the maximum size of the input if there was an
     unconstrained record involved and round it up to the specified alignment,
     if one was specified.  But don't do it if we are just annotating types
     and the type is tagged, since tagged types aren't fully laid out in this
     mode.  */
  if (!size
      || TREE_CODE (size) == COND_EXPR
      || TREE_CODE (size) == MAX_EXPR
      || No (gnat_entity)
      || (type_annotate_only && Is_Tagged_Type (Etype (gnat_entity))))
    return record;

  if (CONTAINS_PLACEHOLDER_P (orig_size))
    orig_size = max_size (orig_size, true);

  if (align && AGGREGATE_TYPE_P (type))
    orig_size = round_up (orig_size, align);

  if (!operand_equal_p (size, orig_size, 0)
      && !(TREE_CODE (size) == INTEGER_CST
	   && TREE_CODE (orig_size) == INTEGER_CST
	   && (TREE_OVERFLOW (size)
	       || TREE_OVERFLOW (orig_size)
	       || tree_int_cst_lt (size, orig_size))))
    {
      Node_Id gnat_error_node = Empty;

      /* For a packed array, post the message on the original array type.  */
      if (Is_Packed_Array_Impl_Type (gnat_entity))
	gnat_entity = Original_Array_Type (gnat_entity);

      if ((Ekind (gnat_entity) == E_Component
	   || Ekind (gnat_entity) == E_Discriminant)
	  && Present (Component_Clause (gnat_entity)))
	gnat_error_node = Last_Bit (Component_Clause (gnat_entity));
      else if (Present (Size_Clause (gnat_entity)))
	gnat_error_node = Expression (Size_Clause (gnat_entity));

      /* Generate message only for entities that come from source, since
	 if we have an entity created by expansion, the message will be
	 generated for some other corresponding source entity.  */
      if (Comes_From_Source (gnat_entity))
	{
	  if (Present (gnat_error_node))
	    post_error_ne_tree ("{^ }bits of & unused?",
				gnat_error_node, gnat_entity,
				size_diffop (size, orig_size));
	  else if (is_component_type)
	    post_error_ne_tree ("component of& padded{ by ^ bits}?",
				gnat_entity, gnat_entity,
				size_diffop (size, orig_size));
	}
    }

  return record;
}

/* Relate the alias sets of GNU_NEW_TYPE and GNU_OLD_TYPE according to OP.
   If this is a multi-dimensional array type, do this recursively.

   OP may be
   - ALIAS_SET_COPY:     the new set is made a copy of the old one.
   - ALIAS_SET_SUPERSET: the new set is made a superset of the old one.
   - ALIAS_SET_SUBSET:   the new set is made a subset of the old one.  */

void
relate_alias_sets (tree gnu_new_type, tree gnu_old_type, enum alias_set_op op)
{
  /* Remove any padding from GNU_OLD_TYPE.  It doesn't matter in the case
     of a one-dimensional array, since the padding has the same alias set
     as the field type, but if it's a multi-dimensional array, we need to
     see the inner types.  */
  while (TREE_CODE (gnu_old_type) == RECORD_TYPE
	 && (TYPE_JUSTIFIED_MODULAR_P (gnu_old_type)
	     || TYPE_PADDING_P (gnu_old_type)))
    gnu_old_type = TREE_TYPE (TYPE_FIELDS (gnu_old_type));

  /* Unconstrained array types are deemed incomplete and would thus be given
     alias set 0.  Retrieve the underlying array type.  */
  if (TREE_CODE (gnu_old_type) == UNCONSTRAINED_ARRAY_TYPE)
    gnu_old_type
      = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_old_type))));
  if (TREE_CODE (gnu_new_type) == UNCONSTRAINED_ARRAY_TYPE)
    gnu_new_type
      = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_new_type))));

  if (TREE_CODE (gnu_new_type) == ARRAY_TYPE
      && TREE_CODE (TREE_TYPE (gnu_new_type)) == ARRAY_TYPE
      && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_new_type)))
    relate_alias_sets (TREE_TYPE (gnu_new_type), TREE_TYPE (gnu_old_type), op);

  switch (op)
    {
    case ALIAS_SET_COPY:
      /* The alias set shouldn't be copied between array types with different
	 aliasing settings because this can break the aliasing relationship
	 between the array type and its element type.  */
#ifndef ENABLE_CHECKING
      if (flag_strict_aliasing)
#endif
	gcc_assert (!(TREE_CODE (gnu_new_type) == ARRAY_TYPE
		      && TREE_CODE (gnu_old_type) == ARRAY_TYPE
		      && TYPE_NONALIASED_COMPONENT (gnu_new_type)
			 != TYPE_NONALIASED_COMPONENT (gnu_old_type)));

      TYPE_ALIAS_SET (gnu_new_type) = get_alias_set (gnu_old_type);
      break;

    case ALIAS_SET_SUBSET:
    case ALIAS_SET_SUPERSET:
      {
	alias_set_type old_set = get_alias_set (gnu_old_type);
	alias_set_type new_set = get_alias_set (gnu_new_type);

	/* Do nothing if the alias sets conflict.  This ensures that we
	   never call record_alias_subset several times for the same pair
	   or at all for alias set 0.  */
	if (!alias_sets_conflict_p (old_set, new_set))
	  {
	    if (op == ALIAS_SET_SUBSET)
	      record_alias_subset (old_set, new_set);
	    else
	      record_alias_subset (new_set, old_set);
	  }
      }
      break;

    default:
      gcc_unreachable ();
    }

  record_component_aliases (gnu_new_type);
}

/* Record TYPE as a builtin type for Ada.  NAME is the name of the type.
   ARTIFICIAL_P is true if it's a type that was generated by the compiler.  */

void
record_builtin_type (const char *name, tree type, bool artificial_p)
{
  tree type_decl = build_decl (input_location,
			       TYPE_DECL, get_identifier (name), type);
  DECL_ARTIFICIAL (type_decl) = artificial_p;
  TYPE_ARTIFICIAL (type) = artificial_p;
  gnat_pushdecl (type_decl, Empty);

  if (debug_hooks->type_decl)
    debug_hooks->type_decl (type_decl, false);
}

/* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
   finish constructing the record type as a fat pointer type.  */

void
finish_fat_pointer_type (tree record_type, tree field_list)
{
  /* Make sure we can put it into a register.  */
  if (STRICT_ALIGNMENT)
    TYPE_ALIGN (record_type) = MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE);

  /* Show what it really is.  */
  TYPE_FAT_POINTER_P (record_type) = 1;

  /* Do not emit debug info for it since the types of its fields may still be
     incomplete at this point.  */
  finish_record_type (record_type, field_list, 0, false);

  /* Force type_contains_placeholder_p to return true on it.  Although the
     PLACEHOLDER_EXPRs are referenced only indirectly, this isn't a pointer
     type but the representation of the unconstrained array.  */
  TYPE_CONTAINS_PLACEHOLDER_INTERNAL (record_type) = 2;
}

/* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
   finish constructing the record or union type.  If REP_LEVEL is zero, this
   record has no representation clause and so will be entirely laid out here.
   If REP_LEVEL is one, this record has a representation clause and has been
   laid out already; only set the sizes and alignment.  If REP_LEVEL is two,
   this record is derived from a parent record and thus inherits its layout;
   only make a pass on the fields to finalize them.  DEBUG_INFO_P is true if
   we need to write debug information about this type.  */

void
finish_record_type (tree record_type, tree field_list, int rep_level,
		    bool debug_info_p)
{
  enum tree_code code = TREE_CODE (record_type);
  tree name = TYPE_IDENTIFIER (record_type);
  tree ada_size = bitsize_zero_node;
  tree size = bitsize_zero_node;
  bool had_size = TYPE_SIZE (record_type) != 0;
  bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0;
  bool had_align = TYPE_ALIGN (record_type) != 0;
  tree field;

  TYPE_FIELDS (record_type) = field_list;

  /* Always attach the TYPE_STUB_DECL for a record type.  It is required to
     generate debug info and have a parallel type.  */
  TYPE_STUB_DECL (record_type) = create_type_stub_decl (name, record_type);

  /* Globally initialize the record first.  If this is a rep'ed record,
     that just means some initializations; otherwise, layout the record.  */
  if (rep_level > 0)
    {
      TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type));

      if (!had_size_unit)
	TYPE_SIZE_UNIT (record_type) = size_zero_node;

      if (!had_size)
	TYPE_SIZE (record_type) = bitsize_zero_node;

      /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
	 out just like a UNION_TYPE, since the size will be fixed.  */
      else if (code == QUAL_UNION_TYPE)
	code = UNION_TYPE;
    }
  else
    {
      /* Ensure there isn't a size already set.  There can be in an error
	 case where there is a rep clause but all fields have errors and
	 no longer have a position.  */
      TYPE_SIZE (record_type) = 0;

      /* Ensure we use the traditional GCC layout for bitfields when we need
	 to pack the record type or have a representation clause.  The other
	 possible layout (Microsoft C compiler), if available, would prevent
	 efficient packing in almost all cases.  */
#ifdef TARGET_MS_BITFIELD_LAYOUT
      if (TARGET_MS_BITFIELD_LAYOUT && TYPE_PACKED (record_type))
	decl_attributes (&record_type,
			 tree_cons (get_identifier ("gcc_struct"),
				    NULL_TREE, NULL_TREE),
			 ATTR_FLAG_TYPE_IN_PLACE);
#endif

      layout_type (record_type);
    }

  /* At this point, the position and size of each field is known.  It was
     either set before entry by a rep clause, or by laying out the type above.

     We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
     to compute the Ada size; the GCC size and alignment (for rep'ed records
     that are not padding types); and the mode (for rep'ed records).  We also
     clear the DECL_BIT_FIELD indication for the cases we know have not been
     handled yet, and adjust DECL_NONADDRESSABLE_P accordingly.  */

  if (code == QUAL_UNION_TYPE)
    field_list = nreverse (field_list);

  for (field = field_list; field; field = DECL_CHAIN (field))
    {
      tree type = TREE_TYPE (field);
      tree pos = bit_position (field);
      tree this_size = DECL_SIZE (field);
      tree this_ada_size;

      if (RECORD_OR_UNION_TYPE_P (type)
	  && !TYPE_FAT_POINTER_P (type)
	  && !TYPE_CONTAINS_TEMPLATE_P (type)
	  && TYPE_ADA_SIZE (type))
	this_ada_size = TYPE_ADA_SIZE (type);
      else
	this_ada_size = this_size;

      /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle.  */
      if (DECL_BIT_FIELD (field)
	  && operand_equal_p (this_size, TYPE_SIZE (type), 0))
	{
	  unsigned int align = TYPE_ALIGN (type);

	  /* In the general case, type alignment is required.  */
	  if (value_factor_p (pos, align))
	    {
	      /* The enclosing record type must be sufficiently aligned.
		 Otherwise, if no alignment was specified for it and it
		 has been laid out already, bump its alignment to the
		 desired one if this is compatible with its size.  */
	      if (TYPE_ALIGN (record_type) >= align)
		{
		  DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
		  DECL_BIT_FIELD (field) = 0;
		}
	      else if (!had_align
		       && rep_level == 0
		       && value_factor_p (TYPE_SIZE (record_type), align))
		{
		  TYPE_ALIGN (record_type) = align;
		  DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align);
		  DECL_BIT_FIELD (field) = 0;
		}
	    }

	  /* In the non-strict alignment case, only byte alignment is.  */
	  if (!STRICT_ALIGNMENT
	      && DECL_BIT_FIELD (field)
	      && value_factor_p (pos, BITS_PER_UNIT))
	    DECL_BIT_FIELD (field) = 0;
	}

      /* If we still have DECL_BIT_FIELD set at this point, we know that the
	 field is technically not addressable.  Except that it can actually
	 be addressed if it is BLKmode and happens to be properly aligned.  */
      if (DECL_BIT_FIELD (field)
	  && !(DECL_MODE (field) == BLKmode
	       && value_factor_p (pos, BITS_PER_UNIT)))
	DECL_NONADDRESSABLE_P (field) = 1;

      /* A type must be as aligned as its most aligned field that is not
	 a bit-field.  But this is already enforced by layout_type.  */
      if (rep_level > 0 && !DECL_BIT_FIELD (field))
	TYPE_ALIGN (record_type)
	  = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field));

      switch (code)
	{
	case UNION_TYPE:
	  ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
	  size = size_binop (MAX_EXPR, size, this_size);
	  break;

	case QUAL_UNION_TYPE:
	  ada_size
	    = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
			   this_ada_size, ada_size);
	  size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
			      this_size, size);
	  break;

	case RECORD_TYPE:
	  /* Since we know here that all fields are sorted in order of
	     increasing bit position, the size of the record is one
	     higher than the ending bit of the last field processed
	     unless we have a rep clause, since in that case we might
	     have a field outside a QUAL_UNION_TYPE that has a higher ending
	     position.  So use a MAX in that case.  Also, if this field is a
	     QUAL_UNION_TYPE, we need to take into account the previous size in
	     the case of empty variants.  */
	  ada_size
	    = merge_sizes (ada_size, pos, this_ada_size,
			   TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
	  size
	    = merge_sizes (size, pos, this_size,
			   TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  if (code == QUAL_UNION_TYPE)
    nreverse (field_list);

  if (rep_level < 2)
    {
      /* If this is a padding record, we never want to make the size smaller
	 than what was specified in it, if any.  */
      if (TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type))
	size = TYPE_SIZE (record_type);

      /* Now set any of the values we've just computed that apply.  */
      if (!TYPE_FAT_POINTER_P (record_type)
	  && !TYPE_CONTAINS_TEMPLATE_P (record_type))
	SET_TYPE_ADA_SIZE (record_type, ada_size);

      if (rep_level > 0)
	{
	  tree size_unit = had_size_unit
			   ? TYPE_SIZE_UNIT (record_type)
			   : convert (sizetype,
				      size_binop (CEIL_DIV_EXPR, size,
						  bitsize_unit_node));
	  unsigned int align = TYPE_ALIGN (record_type);

	  TYPE_SIZE (record_type) = variable_size (round_up (size, align));
	  TYPE_SIZE_UNIT (record_type)
	    = variable_size (round_up (size_unit, align / BITS_PER_UNIT));

	  compute_record_mode (record_type);
	}
    }

  if (debug_info_p)
    rest_of_record_type_compilation (record_type);
}

/* Append PARALLEL_TYPE on the chain of parallel types of TYPE.  If
   PARRALEL_TYPE has no context and its computation is not deferred yet, also
   propagate TYPE's context to PARALLEL_TYPE's or defer its propagation to the
   moment TYPE will get a context.  */

void
add_parallel_type (tree type, tree parallel_type)
{
  tree decl = TYPE_STUB_DECL (type);

  while (DECL_PARALLEL_TYPE (decl))
    decl = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (decl));

  SET_DECL_PARALLEL_TYPE (decl, parallel_type);

  /* If PARALLEL_TYPE already has a context, we are done.  */
  if (TYPE_CONTEXT (parallel_type) != NULL_TREE)
    return;

  /* Otherwise, try to get one from TYPE's context.  */
  if (TYPE_CONTEXT (type) != NULL_TREE)
    /* TYPE already has a context, so simply propagate it to PARALLEL_TYPE.  */
    gnat_set_type_context (parallel_type, TYPE_CONTEXT (type));

    /* ... otherwise TYPE has not context yet.  We know it will thanks to
       gnat_pushdecl, and then its context will be propagated to PARALLEL_TYPE.
       So we have nothing to do in this case.  */
}

/* Return true if TYPE has a parallel type.  */

static bool
has_parallel_type (tree type)
{
  tree decl = TYPE_STUB_DECL (type);

  return DECL_PARALLEL_TYPE (decl) != NULL_TREE;
}

/* Wrap up compilation of RECORD_TYPE, i.e. output all the debug information
   associated with it.  It need not be invoked directly in most cases since
   finish_record_type takes care of doing so, but this can be necessary if
   a parallel type is to be attached to the record type.  */

void
rest_of_record_type_compilation (tree record_type)
{
  bool var_size = false;
  tree field;

  /* If this is a padded type, the bulk of the debug info has already been
     generated for the field's type.  */
  if (TYPE_IS_PADDING_P (record_type))
    return;

  /* If the type already has a parallel type (XVS type), then we're done.  */
  if (has_parallel_type (record_type))
    return;

  for (field = TYPE_FIELDS (record_type); field; field = DECL_CHAIN (field))
    {
      /* We need to make an XVE/XVU record if any field has variable size,
	 whether or not the record does.  For example, if we have a union,
	 it may be that all fields, rounded up to the alignment, have the
	 same size, in which case we'll use that size.  But the debug
	 output routines (except Dwarf2) won't be able to output the fields,
	 so we need to make the special record.  */
      if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
	  /* If a field has a non-constant qualifier, the record will have
	     variable size too.  */
	  || (TREE_CODE (record_type) == QUAL_UNION_TYPE
	      && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST))
	{
	  var_size = true;
	  break;
	}
    }

  /* If this record type is of variable size, make a parallel record type that
     will tell the debugger how the former is laid out (see exp_dbug.ads).  */
  if (var_size)
    {
      tree new_record_type
	= make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
		     ? UNION_TYPE : TREE_CODE (record_type));
      tree orig_name = TYPE_IDENTIFIER (record_type), new_name;
      tree last_pos = bitsize_zero_node;
      tree old_field, prev_old_field = NULL_TREE;

      new_name
	= concat_name (orig_name, TREE_CODE (record_type) == QUAL_UNION_TYPE
				  ? "XVU" : "XVE");
      TYPE_NAME (new_record_type) = new_name;
      TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT;
      TYPE_STUB_DECL (new_record_type)
	= create_type_stub_decl (new_name, new_record_type);
      DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
	= DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
      TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
      TYPE_SIZE_UNIT (new_record_type)
	= size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);

      /* Now scan all the fields, replacing each field with a new field
	 corresponding to the new encoding.  */
      for (old_field = TYPE_FIELDS (record_type); old_field;
	   old_field = DECL_CHAIN (old_field))
	{
	  tree field_type = TREE_TYPE (old_field);
	  tree field_name = DECL_NAME (old_field);
	  tree curpos = bit_position (old_field);
	  tree pos, new_field;
	  bool var = false;
	  unsigned int align = 0;

	  /* We're going to do some pattern matching below so remove as many
	     conversions as possible.  */
	  curpos = remove_conversions (curpos, true);

	  /* See how the position was modified from the last position.

	     There are two basic cases we support: a value was added
	     to the last position or the last position was rounded to
	     a boundary and they something was added.  Check for the
	     first case first.  If not, see if there is any evidence
	     of rounding.  If so, round the last position and retry.

	     If this is a union, the position can be taken as zero.  */
	  if (TREE_CODE (new_record_type) == UNION_TYPE)
	    pos = bitsize_zero_node;
	  else
	    pos = compute_related_constant (curpos, last_pos);

	  if (!pos
	      && TREE_CODE (curpos) == MULT_EXPR
	      && tree_fits_uhwi_p (TREE_OPERAND (curpos, 1)))
	    {
	      tree offset = TREE_OPERAND (curpos, 0);
	      align = tree_to_uhwi (TREE_OPERAND (curpos, 1));
	      align = scale_by_factor_of (offset, align);
	      last_pos = round_up (last_pos, align);
	      pos = compute_related_constant (curpos, last_pos);
	    }
	  else if (!pos
		   && TREE_CODE (curpos) == PLUS_EXPR
		   && tree_fits_uhwi_p (TREE_OPERAND (curpos, 1))
		   && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
		   && tree_fits_uhwi_p
		      (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1)))
	    {
	      tree offset = TREE_OPERAND (TREE_OPERAND (curpos, 0), 0);
	      unsigned HOST_WIDE_INT addend
	        = tree_to_uhwi (TREE_OPERAND (curpos, 1));
	      align
		= tree_to_uhwi (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1));
	      align = scale_by_factor_of (offset, align);
	      align = MIN (align, addend & -addend);
	      last_pos = round_up (last_pos, align);
	      pos = compute_related_constant (curpos, last_pos);
	    }
	  else if (potential_alignment_gap (prev_old_field, old_field, pos))
	    {
	      align = TYPE_ALIGN (field_type);
	      last_pos = round_up (last_pos, align);
	      pos = compute_related_constant (curpos, last_pos);
	    }

	  /* If we can't compute a position, set it to zero.

	     ??? We really should abort here, but it's too much work
	     to get this correct for all cases.  */
	  if (!pos)
	    pos = bitsize_zero_node;

	  /* See if this type is variable-sized and make a pointer type
	     and indicate the indirection if so.  Beware that the debug
	     back-end may adjust the position computed above according
	     to the alignment of the field type, i.e. the pointer type
	     in this case, if we don't preventively counter that.  */
	  if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
	    {
	      field_type = build_pointer_type (field_type);
	      if (align != 0 && TYPE_ALIGN (field_type) > align)
		{
		  field_type = copy_node (field_type);
		  TYPE_ALIGN (field_type) = align;
		}
	      var = true;
	    }

	  /* Make a new field name, if necessary.  */
	  if (var || align != 0)
	    {
	      char suffix[16];

	      if (align != 0)
		sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
			 align / BITS_PER_UNIT);
	      else
		strcpy (suffix, "XVL");

	      field_name = concat_name (field_name, suffix);
	    }

	  new_field
	    = create_field_decl (field_name, field_type, new_record_type,
				 DECL_SIZE (old_field), pos, 0, 0);
	  DECL_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
	  TYPE_FIELDS (new_record_type) = new_field;

	  /* If old_field is a QUAL_UNION_TYPE, take its size as being
	     zero.  The only time it's not the last field of the record
	     is when there are other components at fixed positions after
	     it (meaning there was a rep clause for every field) and we
	     want to be able to encode them.  */
	  last_pos = size_binop (PLUS_EXPR, bit_position (old_field),
				 (TREE_CODE (TREE_TYPE (old_field))
				  == QUAL_UNION_TYPE)
				 ? bitsize_zero_node
				 : DECL_SIZE (old_field));
	  prev_old_field = old_field;
	}

      TYPE_FIELDS (new_record_type) = nreverse (TYPE_FIELDS (new_record_type));

      add_parallel_type (record_type, new_record_type);
    }
}

/* Utility function of above to merge LAST_SIZE, the previous size of a record
   with FIRST_BIT and SIZE that describe a field.  SPECIAL is true if this
   represents a QUAL_UNION_TYPE in which case we must look for COND_EXPRs and
   replace a value of zero with the old size.  If HAS_REP is true, we take the
   MAX of the end position of this field with LAST_SIZE.  In all other cases,
   we use FIRST_BIT plus SIZE.  Return an expression for the size.  */

static tree
merge_sizes (tree last_size, tree first_bit, tree size, bool special,
	     bool has_rep)
{
  tree type = TREE_TYPE (last_size);
  tree new_size;

  if (!special || TREE_CODE (size) != COND_EXPR)
    {
      new_size = size_binop (PLUS_EXPR, first_bit, size);
      if (has_rep)
	new_size = size_binop (MAX_EXPR, last_size, new_size);
    }

  else
    new_size = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
			    integer_zerop (TREE_OPERAND (size, 1))
			    ? last_size : merge_sizes (last_size, first_bit,
						       TREE_OPERAND (size, 1),
						       1, has_rep),
			    integer_zerop (TREE_OPERAND (size, 2))
			    ? last_size : merge_sizes (last_size, first_bit,
						       TREE_OPERAND (size, 2),
						       1, has_rep));

  /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
     when fed through substitute_in_expr) into thinking that a constant
     size is not constant.  */
  while (TREE_CODE (new_size) == NON_LVALUE_EXPR)
    new_size = TREE_OPERAND (new_size, 0);

  return new_size;
}

/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
   related by the addition of a constant.  Return that constant if so.  */

static tree
compute_related_constant (tree op0, tree op1)
{
  tree op0_var, op1_var;
  tree op0_con = split_plus (op0, &op0_var);
  tree op1_con = split_plus (op1, &op1_var);
  tree result = size_binop (MINUS_EXPR, op0_con, op1_con);

  if (operand_equal_p (op0_var, op1_var, 0))
    return result;
  else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0))
    return result;
  else
    return 0;
}

/* Utility function of above to split a tree OP which may be a sum, into a
   constant part, which is returned, and a variable part, which is stored
   in *PVAR.  *PVAR may be bitsize_zero_node.  All operations must be of
   bitsizetype.  */

static tree
split_plus (tree in, tree *pvar)
{
  /* Strip conversions in order to ease the tree traversal and maximize the
     potential for constant or plus/minus discovery.  We need to be careful
     to always return and set *pvar to bitsizetype trees, but it's worth
     the effort.  */
  in = remove_conversions (in, false);

  *pvar = convert (bitsizetype, in);

  if (TREE_CODE (in) == INTEGER_CST)
    {
      *pvar = bitsize_zero_node;
      return convert (bitsizetype, in);
    }
  else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
    {
      tree lhs_var, rhs_var;
      tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
      tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);

      if (lhs_var == TREE_OPERAND (in, 0)
	  && rhs_var == TREE_OPERAND (in, 1))
	return bitsize_zero_node;

      *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
      return size_binop (TREE_CODE (in), lhs_con, rhs_con);
    }
  else
    return bitsize_zero_node;
}

/* Return a FUNCTION_TYPE node.  RETURN_TYPE is the type returned by the
   subprogram.  If it is VOID_TYPE, then we are dealing with a procedure,
   otherwise we are dealing with a function.  PARAM_DECL_LIST is a list of
   PARM_DECL nodes that are the subprogram parameters.  CICO_LIST is the
   copy-in/copy-out list to be stored into the TYPE_CICO_LIST field.
   RETURN_UNCONSTRAINED_P is true if the function returns an unconstrained
   object.  RETURN_BY_DIRECT_REF_P is true if the function returns by direct
   reference.  RETURN_BY_INVISI_REF_P is true if the function returns by
   invisible reference.  */

tree
create_subprog_type (tree return_type, tree param_decl_list, tree cico_list,
		     bool return_unconstrained_p, bool return_by_direct_ref_p,
		     bool return_by_invisi_ref_p)
{
  /* A list of the data type nodes of the subprogram formal parameters.
     This list is generated by traversing the input list of PARM_DECL
     nodes.  */
  vec<tree, va_gc> *param_type_list = NULL;
  tree t, type;

  for (t = param_decl_list; t; t = DECL_CHAIN (t))
    vec_safe_push (param_type_list, TREE_TYPE (t));

  type = build_function_type_vec (return_type, param_type_list);

  /* TYPE may have been shared since GCC hashes types.  If it has a different
     CICO_LIST, make a copy.  Likewise for the various flags.  */
  if (!fntype_same_flags_p (type, cico_list, return_unconstrained_p,
			    return_by_direct_ref_p, return_by_invisi_ref_p))
    {
      type = copy_type (type);
      TYPE_CI_CO_LIST (type) = cico_list;
      TYPE_RETURN_UNCONSTRAINED_P (type) = return_unconstrained_p;
      TYPE_RETURN_BY_DIRECT_REF_P (type) = return_by_direct_ref_p;
      TREE_ADDRESSABLE (type) = return_by_invisi_ref_p;
    }

  return type;
}

/* Return a copy of TYPE but safe to modify in any way.  */

tree
copy_type (tree type)
{
  tree new_type = copy_node (type);

  /* Unshare the language-specific data.  */
  if (TYPE_LANG_SPECIFIC (type))
    {
      TYPE_LANG_SPECIFIC (new_type) = NULL;
      SET_TYPE_LANG_SPECIFIC (new_type, GET_TYPE_LANG_SPECIFIC (type));
    }

  /* And the contents of the language-specific slot if needed.  */
  if ((INTEGRAL_TYPE_P (type) || TREE_CODE (type) == REAL_TYPE)
      && TYPE_RM_VALUES (type))
    {
      TYPE_RM_VALUES (new_type) = NULL_TREE;
      SET_TYPE_RM_SIZE (new_type, TYPE_RM_SIZE (type));
      SET_TYPE_RM_MIN_VALUE (new_type, TYPE_RM_MIN_VALUE (type));
      SET_TYPE_RM_MAX_VALUE (new_type, TYPE_RM_MAX_VALUE (type));
    }

  /* copy_node clears this field instead of copying it, because it is
     aliased with TREE_CHAIN.  */
  TYPE_STUB_DECL (new_type) = TYPE_STUB_DECL (type);

  TYPE_POINTER_TO (new_type) = 0;
  TYPE_REFERENCE_TO (new_type) = 0;
  TYPE_MAIN_VARIANT (new_type) = new_type;
  TYPE_NEXT_VARIANT (new_type) = 0;
  TYPE_CANONICAL (new_type) = new_type;

  return new_type;
}

/* Return a subtype of sizetype with range MIN to MAX and whose
   TYPE_INDEX_TYPE is INDEX.  GNAT_NODE is used for the position
   of the associated TYPE_DECL.  */

tree
create_index_type (tree min, tree max, tree index, Node_Id gnat_node)
{
  /* First build a type for the desired range.  */
  tree type = build_nonshared_range_type (sizetype, min, max);

  /* Then set the index type.  */
  SET_TYPE_INDEX_TYPE (type, index);
  create_type_decl (NULL_TREE, type, true, false, gnat_node);

  return type;
}

/* Return a subtype of TYPE with range MIN to MAX.  If TYPE is NULL,
   sizetype is used.  */

tree
create_range_type (tree type, tree min, tree max)
{
  tree range_type;

  if (type == NULL_TREE)
    type = sizetype;

  /* First build a type with the base range.  */
  range_type = build_nonshared_range_type (type, TYPE_MIN_VALUE (type),
						 TYPE_MAX_VALUE (type));

  /* Then set the actual range.  */
  SET_TYPE_RM_MIN_VALUE (range_type, min);
  SET_TYPE_RM_MAX_VALUE (range_type, max);

  return range_type;
}

/* Return a TYPE_DECL node suitable for the TYPE_STUB_DECL field of a type.
   TYPE_NAME gives the name of the type and TYPE is a ..._TYPE node giving
   its data type.  */

tree
create_type_stub_decl (tree type_name, tree type)
{
  /* Using a named TYPE_DECL ensures that a type name marker is emitted in
     STABS while setting DECL_ARTIFICIAL ensures that no DW_TAG_typedef is
     emitted in DWARF.  */
  tree type_decl = build_decl (input_location, TYPE_DECL, type_name, type);
  DECL_ARTIFICIAL (type_decl) = 1;
  TYPE_ARTIFICIAL (type) = 1;
  return type_decl;
}

/* Return a TYPE_DECL node.  TYPE_NAME gives the name of the type and TYPE
   is a ..._TYPE node giving its data type.  ARTIFICIAL_P is true if this
   is a declaration that was generated by the compiler.  DEBUG_INFO_P is
   true if we need to write debug information about this type.  GNAT_NODE
   is used for the position of the decl.  */

tree
create_type_decl (tree type_name, tree type, bool artificial_p,
		  bool debug_info_p, Node_Id gnat_node)
{
  enum tree_code code = TREE_CODE (type);
  bool named = TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL;
  tree type_decl;

  /* Only the builtin TYPE_STUB_DECL should be used for dummy types.  */
  gcc_assert (!TYPE_IS_DUMMY_P (type));

  /* If the type hasn't been named yet, we're naming it; preserve an existing
     TYPE_STUB_DECL that has been attached to it for some purpose.  */
  if (!named && TYPE_STUB_DECL (type))
    {
      type_decl = TYPE_STUB_DECL (type);
      DECL_NAME (type_decl) = type_name;
    }
  else
    type_decl = build_decl (input_location, TYPE_DECL, type_name, type);

  DECL_ARTIFICIAL (type_decl) = artificial_p;
  TYPE_ARTIFICIAL (type) = artificial_p;

  /* Add this decl to the current binding level.  */
  gnat_pushdecl (type_decl, gnat_node);

  /* If we're naming the type, equate the TYPE_STUB_DECL to the name.  This
     causes the name to be also viewed as a "tag" by the debug back-end, with
     the advantage that no DW_TAG_typedef is emitted for artificial "tagged"
     types in DWARF.

     Note that if "type" is used as a DECL_ORIGINAL_TYPE, it may be referenced
     from multiple contexts, and "type_decl" references a copy of it: in such a
     case, do not mess TYPE_STUB_DECL: we do not want to re-use the TYPE_DECL
     with the mechanism above.  */
  if (!named && type != DECL_ORIGINAL_TYPE (type_decl))
    TYPE_STUB_DECL (type) = type_decl;

  /* Do not generate debug info for UNCONSTRAINED_ARRAY_TYPE that the
     back-end doesn't support, and for others if we don't need to.  */
  if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p)
    DECL_IGNORED_P (type_decl) = 1;

  return type_decl;
}

/* Return a VAR_DECL or CONST_DECL node.

   VAR_NAME gives the name of the variable.  ASM_NAME is its assembler name
   (if provided).  TYPE is its data type (a GCC ..._TYPE node).  VAR_INIT is
   the GCC tree for an optional initial expression; NULL_TREE if none.

   CONST_FLAG is true if this variable is constant, in which case we might
   return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false.

   PUBLIC_FLAG is true if this is for a reference to a public entity or for a
   definition to be made visible outside of the current compilation unit, for
   instance variable definitions in a package specification.

   EXTERN_FLAG is true when processing an external variable declaration (as
   opposed to a definition: no storage is to be allocated for the variable).

   STATIC_FLAG is only relevant when not at top level.  In that case
   it indicates whether to always allocate storage to the variable.

   GNAT_NODE is used for the position of the decl.  */

tree
create_var_decl_1 (tree var_name, tree asm_name, tree type, tree var_init,
		   bool const_flag, bool public_flag, bool extern_flag,
		   bool static_flag, bool const_decl_allowed_p,
		   struct attrib *attr_list, Node_Id gnat_node)
{
  /* Whether the object has static storage duration, either explicitly or by
     virtue of being declared at the global level.  */
  const bool static_storage = static_flag || global_bindings_p ();

  /* Whether the initializer is constant: for an external object or an object
     with static storage duration, we check that the initializer is a valid
     constant expression for initializing a static variable; otherwise, we
     only check that it is constant.  */
  const bool init_const
    = (var_init
       && gnat_types_compatible_p (type, TREE_TYPE (var_init))
       && (extern_flag || static_storage
	   ? initializer_constant_valid_p (var_init, TREE_TYPE (var_init))
	     != NULL_TREE
	   : TREE_CONSTANT (var_init)));

  /* Whether we will make TREE_CONSTANT the DECL we produce here, in which
     case the initializer may be used in lieu of the DECL node (as done in
     Identifier_to_gnu).  This is useful to prevent the need of elaboration
     code when an identifier for which such a DECL is made is in turn used
     as an initializer.  We used to rely on CONST_DECL vs VAR_DECL for this,
     but extra constraints apply to this choice (see below) and they are not
     relevant to the distinction we wish to make.  */
  const bool constant_p = const_flag && init_const;

  /* The actual DECL node.  CONST_DECL was initially intended for enumerals
     and may be used for scalars in general but not for aggregates.  */
  tree var_decl
    = build_decl (input_location,
		  (constant_p && const_decl_allowed_p
		   && !AGGREGATE_TYPE_P (type)) ? CONST_DECL : VAR_DECL,
		  var_name, type);

  /* If this is external, throw away any initializations (they will be done
     elsewhere) unless this is a constant for which we would like to remain
     able to get the initializer.  If we are defining a global here, leave a
     constant initialization and save any variable elaborations for the
     elaboration routine.  If we are just annotating types, throw away the
     initialization if it isn't a constant.  */
  if ((extern_flag && !constant_p)
      || (type_annotate_only && var_init && !TREE_CONSTANT (var_init)))
    var_init = NULL_TREE;

  /* At the global level, a non-constant initializer generates elaboration
     statements.  Check that such statements are allowed, that is to say,
     not violating a No_Elaboration_Code restriction.  */
  if (var_init && !init_const && global_bindings_p ())
    Check_Elaboration_Code_Allowed (gnat_node);

  DECL_INITIAL  (var_decl) = var_init;
  TREE_READONLY (var_decl) = const_flag;
  DECL_EXTERNAL (var_decl) = extern_flag;
  TREE_CONSTANT (var_decl) = constant_p;

  /* We need to allocate static storage for an object with static storage
     duration if it isn't external.  */
  TREE_STATIC (var_decl) = !extern_flag && static_storage;

  /* The object is public if it is external or if it is declared public
     and has static storage duration.  */
  TREE_PUBLIC (var_decl) = extern_flag || (public_flag && static_storage);

  /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
     try to fiddle with DECL_COMMON.  However, on platforms that don't
     support global BSS sections, uninitialized global variables would
     go in DATA instead, thus increasing the size of the executable.  */
  if (!flag_no_common
      && TREE_CODE (var_decl) == VAR_DECL
      && TREE_PUBLIC (var_decl)
      && !have_global_bss_p ())
    DECL_COMMON (var_decl) = 1;

  /* For an external constant whose initializer is not absolute, do not emit
     debug info.  In DWARF this would mean a global relocation in a read-only
     section which runs afoul of the PE-COFF run-time relocation mechanism.  */
  if (extern_flag
      && constant_p
      && var_init
      && initializer_constant_valid_p (var_init, TREE_TYPE (var_init))
	 != null_pointer_node)
    DECL_IGNORED_P (var_decl) = 1;

  if (TYPE_VOLATILE (type))
    TREE_SIDE_EFFECTS (var_decl) = TREE_THIS_VOLATILE (var_decl) = 1;

  if (TREE_SIDE_EFFECTS (var_decl))
    TREE_ADDRESSABLE (var_decl) = 1;

  /* ??? Some attributes cannot be applied to CONST_DECLs.  */
  if (TREE_CODE (var_decl) == VAR_DECL)
    process_attributes (&var_decl, &attr_list, true, gnat_node);

  /* Add this decl to the current binding level.  */
  gnat_pushdecl (var_decl, gnat_node);

  if (TREE_CODE (var_decl) == VAR_DECL)
    {
      if (asm_name)
	{
	  /* Let the target mangle the name if this isn't a verbatim asm.  */
	  if (*IDENTIFIER_POINTER (asm_name) != '*')
	    asm_name = targetm.mangle_decl_assembler_name (var_decl, asm_name);

	  SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
	}

      if (global_bindings_p ())
	rest_of_decl_compilation (var_decl, true, 0);
    }

  return var_decl;
}

/* Return true if TYPE, an aggregate type, contains (or is) an array.  */

static bool
aggregate_type_contains_array_p (tree type)
{
  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	tree field;
	for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
	  if (AGGREGATE_TYPE_P (TREE_TYPE (field))
	      && aggregate_type_contains_array_p (TREE_TYPE (field)))
	    return true;
	return false;
      }

    case ARRAY_TYPE:
      return true;

    default:
      gcc_unreachable ();
    }
}

/* Return a FIELD_DECL node.  FIELD_NAME is the field's name, FIELD_TYPE is
   its type and RECORD_TYPE is the type of the enclosing record.  If SIZE is
   nonzero, it is the specified size of the field.  If POS is nonzero, it is
   the bit position.  PACKED is 1 if the enclosing record is packed, -1 if it
   has Component_Alignment of Storage_Unit.  If ADDRESSABLE is nonzero, it
   means we are allowed to take the address of the field; if it is negative,
   we should not make a bitfield, which is used by make_aligning_type.  */

tree
create_field_decl (tree field_name, tree field_type, tree record_type,
                   tree size, tree pos, int packed, int addressable)
{
  tree field_decl = build_decl (input_location,
				FIELD_DECL, field_name, field_type);

  DECL_CONTEXT (field_decl) = record_type;
  TREE_READONLY (field_decl) = TYPE_READONLY (field_type);

  /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
     byte boundary since GCC cannot handle less-aligned BLKmode bitfields.
     Likewise for an aggregate without specified position that contains an
     array, because in this case slices of variable length of this array
     must be handled by GCC and variable-sized objects need to be aligned
     to at least a byte boundary.  */
  if (packed && (TYPE_MODE (field_type) == BLKmode
		 || (!pos
		     && AGGREGATE_TYPE_P (field_type)
		     && aggregate_type_contains_array_p (field_type))))
    DECL_ALIGN (field_decl) = BITS_PER_UNIT;

  /* If a size is specified, use it.  Otherwise, if the record type is packed
     compute a size to use, which may differ from the object's natural size.
     We always set a size in this case to trigger the checks for bitfield
     creation below, which is typically required when no position has been
     specified.  */
  if (size)
    size = convert (bitsizetype, size);
  else if (packed == 1)
    {
      size = rm_size (field_type);
      if (TYPE_MODE (field_type) == BLKmode)
	size = round_up (size, BITS_PER_UNIT);
    }

  /* If we may, according to ADDRESSABLE, make a bitfield if a size is
     specified for two reasons: first if the size differs from the natural
     size.  Second, if the alignment is insufficient.  There are a number of
     ways the latter can be true.

     We never make a bitfield if the type of the field has a nonconstant size,
     because no such entity requiring bitfield operations should reach here.

     We do *preventively* make a bitfield when there might be the need for it
     but we don't have all the necessary information to decide, as is the case
     of a field with no specified position in a packed record.

     We also don't look at STRICT_ALIGNMENT here, and rely on later processing
     in layout_decl or finish_record_type to clear the bit_field indication if
     it is in fact not needed.  */
  if (addressable >= 0
      && size
      && TREE_CODE (size) == INTEGER_CST
      && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST
      && (!tree_int_cst_equal (size, TYPE_SIZE (field_type))
	  || (pos && !value_factor_p (pos, TYPE_ALIGN (field_type)))
	  || packed
	  || (TYPE_ALIGN (record_type) != 0
	      && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))))
    {
      DECL_BIT_FIELD (field_decl) = 1;
      DECL_SIZE (field_decl) = size;
      if (!packed && !pos)
	{
	  if (TYPE_ALIGN (record_type) != 0
	      && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type))
	    DECL_ALIGN (field_decl) = TYPE_ALIGN (record_type);
	  else
	    DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
	}
    }

  DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;

  /* Bump the alignment if need be, either for bitfield/packing purposes or
     to satisfy the type requirements if no such consideration applies.  When
     we get the alignment from the type, indicate if this is from an explicit
     user request, which prevents stor-layout from lowering it later on.  */
  {
    unsigned int bit_align
      = (DECL_BIT_FIELD (field_decl) ? 1
	 : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT : 0);

    if (bit_align > DECL_ALIGN (field_decl))
      DECL_ALIGN (field_decl) = bit_align;
    else if (!bit_align && TYPE_ALIGN (field_type) > DECL_ALIGN (field_decl))
      {
	DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type);
	DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (field_type);
      }
  }

  if (pos)
    {
      /* We need to pass in the alignment the DECL is known to have.
	 This is the lowest-order bit set in POS, but no more than
	 the alignment of the record, if one is specified.  Note
	 that an alignment of 0 is taken as infinite.  */
      unsigned int known_align;

      if (tree_fits_uhwi_p (pos))
	known_align = tree_to_uhwi (pos) & - tree_to_uhwi (pos);
      else
	known_align = BITS_PER_UNIT;

      if (TYPE_ALIGN (record_type)
	  && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
	known_align = TYPE_ALIGN (record_type);

      layout_decl (field_decl, known_align);
      SET_DECL_OFFSET_ALIGN (field_decl,
			     tree_fits_uhwi_p (pos) ? BIGGEST_ALIGNMENT
			     : BITS_PER_UNIT);
      pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
		    &DECL_FIELD_BIT_OFFSET (field_decl),
		    DECL_OFFSET_ALIGN (field_decl), pos);
    }

  /* In addition to what our caller says, claim the field is addressable if we
     know that its type is not suitable.

     The field may also be "technically" nonaddressable, meaning that even if
     we attempt to take the field's address we will actually get the address
     of a copy.  This is the case for true bitfields, but the DECL_BIT_FIELD
     value we have at this point is not accurate enough, so we don't account
     for this here and let finish_record_type decide.  */
  if (!addressable && !type_for_nonaliased_component_p (field_type))
    addressable = 1;

  DECL_NONADDRESSABLE_P (field_decl) = !addressable;

  return field_decl;
}

/* Return a PARM_DECL node.  PARAM_NAME is the name of the parameter and
   PARAM_TYPE is its type.  READONLY is true if the parameter is readonly
   (either an In parameter or an address of a pass-by-ref parameter).  */

tree
create_param_decl (tree param_name, tree param_type, bool readonly)
{
  tree param_decl = build_decl (input_location,
				PARM_DECL, param_name, param_type);

  /* Honor TARGET_PROMOTE_PROTOTYPES like the C compiler, as not doing so
     can lead to various ABI violations.  */
  if (targetm.calls.promote_prototypes (NULL_TREE)
      && INTEGRAL_TYPE_P (param_type)
      && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
    {
      /* We have to be careful about biased types here.  Make a subtype
	 of integer_type_node with the proper biasing.  */
      if (TREE_CODE (param_type) == INTEGER_TYPE
	  && TYPE_BIASED_REPRESENTATION_P (param_type))
	{
	  tree subtype
	    = make_unsigned_type (TYPE_PRECISION (integer_type_node));
	  TREE_TYPE (subtype) = integer_type_node;
	  TYPE_BIASED_REPRESENTATION_P (subtype) = 1;
	  SET_TYPE_RM_MIN_VALUE (subtype, TYPE_MIN_VALUE (param_type));
	  SET_TYPE_RM_MAX_VALUE (subtype, TYPE_MAX_VALUE (param_type));
	  param_type = subtype;
	}
      else
	param_type = integer_type_node;
    }

  DECL_ARG_TYPE (param_decl) = param_type;
  TREE_READONLY (param_decl) = readonly;
  return param_decl;
}

/* Process the attributes in ATTR_LIST for NODE, which is either a DECL or
   a TYPE.  If IN_PLACE is true, the tree pointed to by NODE should not be
   changed.  GNAT_NODE is used for the position of error messages.  */

void
process_attributes (tree *node, struct attrib **attr_list, bool in_place,
		    Node_Id gnat_node)
{
  struct attrib *attr;

  for (attr = *attr_list; attr; attr = attr->next)
    switch (attr->type)
      {
      case ATTR_MACHINE_ATTRIBUTE:
	Sloc_to_locus (Sloc (gnat_node), &input_location);
	decl_attributes (node, tree_cons (attr->name, attr->args, NULL_TREE),
			 in_place ? ATTR_FLAG_TYPE_IN_PLACE : 0);
	break;

      case ATTR_LINK_ALIAS:
        if (!DECL_EXTERNAL (*node))
	  {
	    TREE_STATIC (*node) = 1;
	    assemble_alias (*node, attr->name);
	  }
	break;

      case ATTR_WEAK_EXTERNAL:
	if (SUPPORTS_WEAK)
	  declare_weak (*node);
	else
	  post_error ("?weak declarations not supported on this target",
		      attr->error_point);
	break;

      case ATTR_LINK_SECTION:
	if (targetm_common.have_named_sections)
	  {
	    set_decl_section_name (*node, IDENTIFIER_POINTER (attr->name));
	    DECL_COMMON (*node) = 0;
	  }
	else
	  post_error ("?section attributes are not supported for this target",
		      attr->error_point);
	break;

      case ATTR_LINK_CONSTRUCTOR:
	DECL_STATIC_CONSTRUCTOR (*node) = 1;
	TREE_USED (*node) = 1;
	break;

      case ATTR_LINK_DESTRUCTOR:
	DECL_STATIC_DESTRUCTOR (*node) = 1;
	TREE_USED (*node) = 1;
	break;

      case ATTR_THREAD_LOCAL_STORAGE:
	set_decl_tls_model (*node, decl_default_tls_model (*node));
	DECL_COMMON (*node) = 0;
	break;
      }

  *attr_list = NULL;
}

/* Return true if VALUE is a known to be a multiple of FACTOR, which must be
   a power of 2. */

bool
value_factor_p (tree value, HOST_WIDE_INT factor)
{
  if (tree_fits_uhwi_p (value))
    return tree_to_uhwi (value) % factor == 0;

  if (TREE_CODE (value) == MULT_EXPR)
    return (value_factor_p (TREE_OPERAND (value, 0), factor)
            || value_factor_p (TREE_OPERAND (value, 1), factor));

  return false;
}

/* Return whether GNAT_NODE is a defining identifier for a renaming that comes
   from the parameter association for the instantiation of a generic.  We do
   not want to emit source location for them: the code generated for their
   initialization is likely to disturb debugging.  */

bool
renaming_from_generic_instantiation_p (Node_Id gnat_node)
{
  if (Nkind (gnat_node) != N_Defining_Identifier
      || !IN (Ekind (gnat_node), Object_Kind)
      || Comes_From_Source (gnat_node)
      || !Present (Renamed_Object (gnat_node)))
    return false;

  /* Get the object declaration of the renamed object, if any and if the
     renamed object is a mere identifier.  */
  gnat_node = Renamed_Object (gnat_node);
  if (Nkind (gnat_node) != N_Identifier)
    return false;

  gnat_node = Entity (gnat_node);
  if (!Present (Parent (gnat_node)))
    return false;

  gnat_node = Parent (gnat_node);
  return
   (Present (gnat_node)
    && Nkind (gnat_node) == N_Object_Declaration
    && Present (Corresponding_Generic_Association (gnat_node)));
}

/* Defer the initialization of DECL's DECL_CONTEXT attribute, scheduling to
   feed it with the elaboration of GNAT_SCOPE.  */

static struct deferred_decl_context_node *
add_deferred_decl_context (tree decl, Entity_Id gnat_scope, int force_global)
{
  struct deferred_decl_context_node *new_node;

  new_node
    = (struct deferred_decl_context_node * ) xmalloc (sizeof (*new_node));
  new_node->decl = decl;
  new_node->gnat_scope = gnat_scope;
  new_node->force_global = force_global;
  new_node->types.create (1);
  new_node->next = deferred_decl_context_queue;
  deferred_decl_context_queue = new_node;
  return new_node;
}

/* Defer the initialization of TYPE's TYPE_CONTEXT attribute, scheduling to
   feed it with the DECL_CONTEXT computed as part of N as soon as it is
   computed.  */

static void
add_deferred_type_context (struct deferred_decl_context_node *n, tree type)
{
  n->types.safe_push (type);
}

/* Get the GENERIC node corresponding to GNAT_SCOPE, if available.  Return
   NULL_TREE if it is not available.  */

static tree
compute_deferred_decl_context (Entity_Id gnat_scope)
{
  tree context;

  if (present_gnu_tree (gnat_scope))
    context = get_gnu_tree (gnat_scope);
  else
    return NULL_TREE;

  if (TREE_CODE (context) == TYPE_DECL)
    {
      const tree context_type = TREE_TYPE (context);

      /* Skip dummy types: only the final ones can appear in the context
	 chain.  */
      if (TYPE_DUMMY_P (context_type))
	return NULL_TREE;

      /* ..._TYPE nodes are more useful than TYPE_DECL nodes in the context
	 chain.  */
      else
	context = context_type;
    }

  return context;
}

/* Try to process all deferred nodes in the queue.  Keep in the queue the ones
   that cannot be processed yet, remove the other ones.  If FORCE is true,
   force the processing for all nodes, use the global context when nodes don't
   have a GNU translation.  */

void
process_deferred_decl_context (bool force)
{
  struct deferred_decl_context_node **it = &deferred_decl_context_queue;
  struct deferred_decl_context_node *node;

  while (*it != NULL)
    {
      bool processed = false;
      tree context = NULL_TREE;
      Entity_Id gnat_scope;

      node = *it;

      /* If FORCE, get the innermost elaborated scope. Otherwise, just try to
	 get the first scope.  */
      gnat_scope = node->gnat_scope;
      while (Present (gnat_scope))
	{
	  context = compute_deferred_decl_context (gnat_scope);
	  if (!force || context != NULL_TREE)
	    break;
	  gnat_scope = get_debug_scope (gnat_scope, NULL);
	}

      /* Imported declarations must not be in a local context (i.e. not inside
	 a function).  */
      if (context != NULL_TREE && node->force_global > 0)
	{
	  tree ctx = context;

	  while (ctx != NULL_TREE)
	    {
	      gcc_assert (TREE_CODE (ctx) != FUNCTION_DECL);
	      ctx = (DECL_P (ctx))
		    ? DECL_CONTEXT (ctx)
		    : TYPE_CONTEXT (ctx);
	    }
	}

      /* If FORCE, we want to get rid of all nodes in the queue: in case there
	 was no elaborated scope, use the global context.  */
      if (force && context == NULL_TREE)
	context = get_global_context ();

      if (context != NULL_TREE)
	{
	  tree t;
	  int i;

	  DECL_CONTEXT (node->decl) = context;

	  /* Propagate it to the TYPE_CONTEXT attributes of the requested
	     ..._TYPE nodes.  */
	  FOR_EACH_VEC_ELT (node->types, i, t)
	    {
	      gnat_set_type_context (t, context);
	    }
	  processed = true;
	}

      /* If this node has been successfuly processed, remove it from the
	 queue.  Then move to the next node.  */
      if (processed)
	{
	  *it = node->next;
	  node->types.release ();
	  free (node);
	}
      else
	it = &node->next;
    }
}


/* Return VALUE scaled by the biggest power-of-2 factor of EXPR.  */

static unsigned int
scale_by_factor_of (tree expr, unsigned int value)
{
  unsigned HOST_WIDE_INT addend = 0;
  unsigned HOST_WIDE_INT factor = 1;

  /* Peel conversions around EXPR and try to extract bodies from function
     calls: it is possible to get the scale factor from size functions.  */
  expr = remove_conversions (expr, true);
  if (TREE_CODE (expr) == CALL_EXPR)
    expr = maybe_inline_call_in_expr (expr);

  /* Sometimes we get PLUS_EXPR (BIT_AND_EXPR (..., X), Y), where Y is a
     multiple of the scale factor we are looking for.  */
  if (TREE_CODE (expr) == PLUS_EXPR
      && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
      && tree_fits_uhwi_p (TREE_OPERAND (expr, 1)))
    {
      addend = TREE_INT_CST_LOW (TREE_OPERAND (expr, 1));
      expr = TREE_OPERAND (expr, 0);
    }

  /* An expression which is a bitwise AND with a mask has a power-of-2 factor
     corresponding to the number of trailing zeros of the mask.  */
  if (TREE_CODE (expr) == BIT_AND_EXPR
      && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST)
    {
      unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (TREE_OPERAND (expr, 1));
      unsigned int i = 0;

      while ((mask & 1) == 0 && i < HOST_BITS_PER_WIDE_INT)
	{
	  mask >>= 1;
	  factor *= 2;
	  i++;
	}
    }

  /* If the addend is not a multiple of the factor we found, give up.  In
     theory we could find a smaller common factor but it's useless for our
     needs.  This situation arises when dealing with a field F1 with no
     alignment requirement but that is following a field F2 with such
     requirements.  As long as we have F2's offset, we don't need alignment
     information to compute F1's.  */
  if (addend % factor != 0)
    factor = 1;

  return factor * value;
}

/* Given two consecutive field decls PREV_FIELD and CURR_FIELD, return true
   unless we can prove these 2 fields are laid out in such a way that no gap
   exist between the end of PREV_FIELD and the beginning of CURR_FIELD.  OFFSET
   is the distance in bits between the end of PREV_FIELD and the starting
   position of CURR_FIELD. It is ignored if null. */

static bool
potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
{
  /* If this is the first field of the record, there cannot be any gap */
  if (!prev_field)
    return false;

  /* If the previous field is a union type, then return false: The only
     time when such a field is not the last field of the record is when
     there are other components at fixed positions after it (meaning there
     was a rep clause for every field), in which case we don't want the
     alignment constraint to override them. */
  if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
    return false;

  /* If the distance between the end of prev_field and the beginning of
     curr_field is constant, then there is a gap if the value of this
     constant is not null. */
  if (offset && tree_fits_uhwi_p (offset))
    return !integer_zerop (offset);

  /* If the size and position of the previous field are constant,
     then check the sum of this size and position. There will be a gap
     iff it is not multiple of the current field alignment. */
  if (tree_fits_uhwi_p (DECL_SIZE (prev_field))
      && tree_fits_uhwi_p (bit_position (prev_field)))
    return ((tree_to_uhwi (bit_position (prev_field))
	     + tree_to_uhwi (DECL_SIZE (prev_field)))
	    % DECL_ALIGN (curr_field) != 0);

  /* If both the position and size of the previous field are multiples
     of the current field alignment, there cannot be any gap. */
  if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
      && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
    return false;

  /* Fallback, return that there may be a potential gap */
  return true;
}

/* Return a LABEL_DECL with LABEL_NAME.  GNAT_NODE is used for the position
   of the decl.  */

tree
create_label_decl (tree label_name, Node_Id gnat_node)
{
  tree label_decl
    = build_decl (input_location, LABEL_DECL, label_name, void_type_node);

  DECL_MODE (label_decl) = VOIDmode;

  /* Add this decl to the current binding level.  */
  gnat_pushdecl (label_decl, gnat_node);

  return label_decl;
}

/* Return a FUNCTION_DECL node.  SUBPROG_NAME is the name of the subprogram,
   ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE
   node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of
   PARM_DECL nodes chained through the DECL_CHAIN field).

   INLINE_STATUS, PUBLIC_FLAG, EXTERN_FLAG, ARTIFICIAL_FLAG and ATTR_LIST are
   used to set the appropriate fields in the FUNCTION_DECL.  GNAT_NODE is
   used for the position of the decl.  */

tree
create_subprog_decl (tree subprog_name, tree asm_name, tree subprog_type,
 		     tree param_decl_list, enum inline_status_t inline_status,
		     bool public_flag, bool extern_flag, bool artificial_flag,
		     struct attrib *attr_list, Node_Id gnat_node)
{
  tree subprog_decl = build_decl (input_location, FUNCTION_DECL, subprog_name,
				  subprog_type);
  tree result_decl = build_decl (input_location, RESULT_DECL, NULL_TREE,
				 TREE_TYPE (subprog_type));
  DECL_ARGUMENTS (subprog_decl) = param_decl_list;

  DECL_ARTIFICIAL (subprog_decl) = artificial_flag;
  DECL_EXTERNAL (subprog_decl) = extern_flag;

  switch (inline_status)
    {
    case is_suppressed:
      DECL_UNINLINABLE (subprog_decl) = 1;
      break;

    case is_disabled:
      break;

    case is_required:
      if (Back_End_Inlining)
	decl_attributes (&subprog_decl,
			 tree_cons (get_identifier ("always_inline"),
				    NULL_TREE, NULL_TREE),
			 ATTR_FLAG_TYPE_IN_PLACE);

      /* ... fall through ... */

    case is_enabled:
      DECL_DECLARED_INLINE_P (subprog_decl) = 1;
      DECL_NO_INLINE_WARNING_P (subprog_decl) = artificial_flag;
      break;

    default:
      gcc_unreachable ();
    }

  TREE_PUBLIC (subprog_decl) = public_flag;
  TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type);
  TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type);
  TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type);

  DECL_ARTIFICIAL (result_decl) = 1;
  DECL_IGNORED_P (result_decl) = 1;
  DECL_BY_REFERENCE (result_decl) = TREE_ADDRESSABLE (subprog_type);
  DECL_RESULT (subprog_decl) = result_decl;

  process_attributes (&subprog_decl, &attr_list, true, gnat_node);

  /* Add this decl to the current binding level.  */
  gnat_pushdecl (subprog_decl, gnat_node);

  if (asm_name)
    {
      /* Let the target mangle the name if this isn't a verbatim asm.  */
      if (*IDENTIFIER_POINTER (asm_name) != '*')
	asm_name = targetm.mangle_decl_assembler_name (subprog_decl, asm_name);

      SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name);

      /* The expand_main_function circuitry expects "main_identifier_node" to
	 designate the DECL_NAME of the 'main' entry point, in turn expected
	 to be declared as the "main" function literally by default.  Ada
	 program entry points are typically declared with a different name
	 within the binder generated file, exported as 'main' to satisfy the
	 system expectations.  Force main_identifier_node in this case.  */
      if (asm_name == main_identifier_node)
	DECL_NAME (subprog_decl) = main_identifier_node;
    }

  /* Output the assembler code and/or RTL for the declaration.  */
  rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);

  return subprog_decl;
}

/* Set up the framework for generating code for SUBPROG_DECL, a subprogram
   body.  This routine needs to be invoked before processing the declarations
   appearing in the subprogram.  */

void
begin_subprog_body (tree subprog_decl)
{
  tree param_decl;

  announce_function (subprog_decl);

  /* This function is being defined.  */
  TREE_STATIC (subprog_decl) = 1;

  /* The failure of this assertion will likely come from a wrong context for
     the subprogram body, e.g. another procedure for a procedure declared at
     library level.  */
  gcc_assert (current_function_decl == decl_function_context (subprog_decl));

  current_function_decl = subprog_decl;

  /* Enter a new binding level and show that all the parameters belong to
     this function.  */
  gnat_pushlevel ();

  for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
       param_decl = DECL_CHAIN (param_decl))
    DECL_CONTEXT (param_decl) = subprog_decl;

  make_decl_rtl (subprog_decl);
}

/* Finish translating the current subprogram and set its BODY.  */

void
end_subprog_body (tree body)
{
  tree fndecl = current_function_decl;

  /* Attach the BLOCK for this level to the function and pop the level.  */
  BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
  DECL_INITIAL (fndecl) = current_binding_level->block;
  gnat_poplevel ();

  /* Mark the RESULT_DECL as being in this subprogram. */
  DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;

  /* The body should be a BIND_EXPR whose BLOCK is the top-level one.  */
  if (TREE_CODE (body) == BIND_EXPR)
    {
      BLOCK_SUPERCONTEXT (BIND_EXPR_BLOCK (body)) = fndecl;
      DECL_INITIAL (fndecl) = BIND_EXPR_BLOCK (body);
    }

  DECL_SAVED_TREE (fndecl) = body;

  current_function_decl = decl_function_context (fndecl);
}

/* Wrap up compilation of SUBPROG_DECL, a subprogram body.  */

void
rest_of_subprog_body_compilation (tree subprog_decl)
{
  /* We cannot track the location of errors past this point.  */
  error_gnat_node = Empty;

  /* If we're only annotating types, don't actually compile this function.  */
  if (type_annotate_only)
    return;

  /* Dump functions before gimplification.  */
  dump_function (TDI_original, subprog_decl);

  if (!decl_function_context (subprog_decl))
    cgraph_node::finalize_function (subprog_decl, false);
  else
    /* Register this function with cgraph just far enough to get it
       added to our parent's nested function list.  */
    (void) cgraph_node::get_create (subprog_decl);
}

tree
gnat_builtin_function (tree decl)
{
  gnat_pushdecl (decl, Empty);
  return decl;
}

/* Return an integer type with the number of bits of precision given by
   PRECISION.  UNSIGNEDP is nonzero if the type is unsigned; otherwise
   it is a signed type.  */

tree
gnat_type_for_size (unsigned precision, int unsignedp)
{
  tree t;
  char type_name[20];

  if (precision <= 2 * MAX_BITS_PER_WORD
      && signed_and_unsigned_types[precision][unsignedp])
    return signed_and_unsigned_types[precision][unsignedp];

 if (unsignedp)
    t = make_unsigned_type (precision);
  else
    t = make_signed_type (precision);

  if (precision <= 2 * MAX_BITS_PER_WORD)
    signed_and_unsigned_types[precision][unsignedp] = t;

  if (!TYPE_NAME (t))
    {
      sprintf (type_name, "%sSIGNED_%u", unsignedp ? "UN" : "", precision);
      TYPE_NAME (t) = get_identifier (type_name);
    }

  return t;
}

/* Likewise for floating-point types.  */

static tree
float_type_for_precision (int precision, machine_mode mode)
{
  tree t;
  char type_name[20];

  if (float_types[(int) mode])
    return float_types[(int) mode];

  float_types[(int) mode] = t = make_node (REAL_TYPE);
  TYPE_PRECISION (t) = precision;
  layout_type (t);

  gcc_assert (TYPE_MODE (t) == mode);
  if (!TYPE_NAME (t))
    {
      sprintf (type_name, "FLOAT_%d", precision);
      TYPE_NAME (t) = get_identifier (type_name);
    }

  return t;
}

/* Return a data type that has machine mode MODE.  UNSIGNEDP selects
   an unsigned type; otherwise a signed type is returned.  */

tree
gnat_type_for_mode (machine_mode mode, int unsignedp)
{
  if (mode == BLKmode)
    return NULL_TREE;

  if (mode == VOIDmode)
    return void_type_node;

  if (COMPLEX_MODE_P (mode))
    return NULL_TREE;

  if (SCALAR_FLOAT_MODE_P (mode))
    return float_type_for_precision (GET_MODE_PRECISION (mode), mode);

  if (SCALAR_INT_MODE_P (mode))
    return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);

  if (VECTOR_MODE_P (mode))
    {
      machine_mode inner_mode = GET_MODE_INNER (mode);
      tree inner_type = gnat_type_for_mode (inner_mode, unsignedp);
      if (inner_type)
	return build_vector_type_for_mode (inner_type, mode);
    }

  return NULL_TREE;
}

/* Return the unsigned version of a TYPE_NODE, a scalar type.  */

tree
gnat_unsigned_type (tree type_node)
{
  tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1);

  if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
    {
      type = copy_node (type);
      TREE_TYPE (type) = type_node;
    }
  else if (TREE_TYPE (type_node)
	   && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
	   && TYPE_MODULAR_P (TREE_TYPE (type_node)))
    {
      type = copy_node (type);
      TREE_TYPE (type) = TREE_TYPE (type_node);
    }

  return type;
}

/* Return the signed version of a TYPE_NODE, a scalar type.  */

tree
gnat_signed_type (tree type_node)
{
  tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0);

  if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
    {
      type = copy_node (type);
      TREE_TYPE (type) = type_node;
    }
  else if (TREE_TYPE (type_node)
	   && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
	   && TYPE_MODULAR_P (TREE_TYPE (type_node)))
    {
      type = copy_node (type);
      TREE_TYPE (type) = TREE_TYPE (type_node);
    }

  return type;
}

/* Return 1 if the types T1 and T2 are compatible, i.e. if they can be
   transparently converted to each other.  */

int
gnat_types_compatible_p (tree t1, tree t2)
{
  enum tree_code code;

  /* This is the default criterion.  */
  if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
    return 1;

  /* We only check structural equivalence here.  */
  if ((code = TREE_CODE (t1)) != TREE_CODE (t2))
    return 0;

  /* Vector types are also compatible if they have the same number of subparts
     and the same form of (scalar) element type.  */
  if (code == VECTOR_TYPE
      && TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
      && TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
      && TYPE_PRECISION (TREE_TYPE (t1)) == TYPE_PRECISION (TREE_TYPE (t2)))
    return 1;

  /* Array types are also compatible if they are constrained and have the same
     domain(s) and the same component type.  */
  if (code == ARRAY_TYPE
      && (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2)
	  || (TYPE_DOMAIN (t1)
	      && TYPE_DOMAIN (t2)
	      && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)),
				     TYPE_MIN_VALUE (TYPE_DOMAIN (t2)))
	      && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)),
				     TYPE_MAX_VALUE (TYPE_DOMAIN (t2)))))
      && (TREE_TYPE (t1) == TREE_TYPE (t2)
	  || (TREE_CODE (TREE_TYPE (t1)) == ARRAY_TYPE
	      && gnat_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)))))
    return 1;

  return 0;
}

/* Return true if EXPR is a useless type conversion.  */

bool
gnat_useless_type_conversion (tree expr)
{
  if (CONVERT_EXPR_P (expr)
      || TREE_CODE (expr) == VIEW_CONVERT_EXPR
      || TREE_CODE (expr) == NON_LVALUE_EXPR)
    return gnat_types_compatible_p (TREE_TYPE (expr),
				    TREE_TYPE (TREE_OPERAND (expr, 0)));

  return false;
}

/* Return true if T, a FUNCTION_TYPE, has the specified list of flags.  */

bool
fntype_same_flags_p (const_tree t, tree cico_list, bool return_unconstrained_p,
		     bool return_by_direct_ref_p, bool return_by_invisi_ref_p)
{
  return TYPE_CI_CO_LIST (t) == cico_list
	 && TYPE_RETURN_UNCONSTRAINED_P (t) == return_unconstrained_p
	 && TYPE_RETURN_BY_DIRECT_REF_P (t) == return_by_direct_ref_p
	 && TREE_ADDRESSABLE (t) == return_by_invisi_ref_p;
}

/* EXP is an expression for the size of an object.  If this size contains
   discriminant references, replace them with the maximum (if MAX_P) or
   minimum (if !MAX_P) possible value of the discriminant.  */

tree
max_size (tree exp, bool max_p)
{
  enum tree_code code = TREE_CODE (exp);
  tree type = TREE_TYPE (exp);

  switch (TREE_CODE_CLASS (code))
    {
    case tcc_declaration:
    case tcc_constant:
      return exp;

    case tcc_vl_exp:
      if (code == CALL_EXPR)
	{
	  tree t, *argarray;
	  int n, i;

	  t = maybe_inline_call_in_expr (exp);
	  if (t)
	    return max_size (t, max_p);

	  n = call_expr_nargs (exp);
	  gcc_assert (n > 0);
	  argarray = XALLOCAVEC (tree, n);
	  for (i = 0; i < n; i++)
	    argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p);
	  return build_call_array (type, CALL_EXPR_FN (exp), n, argarray);
	}
      break;

    case tcc_reference:
      /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
	 modify.  Otherwise, we treat it like a variable.  */
      if (CONTAINS_PLACEHOLDER_P (exp))
	{
	  tree val_type = TREE_TYPE (TREE_OPERAND (exp, 1));
	  tree val = (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type));
	  return max_size (convert (get_base_type (val_type), val), true);
	}

      return exp;

    case tcc_comparison:
      return max_p ? size_one_node : size_zero_node;

    case tcc_unary:
      if (code == NON_LVALUE_EXPR)
	return max_size (TREE_OPERAND (exp, 0), max_p);

      return fold_build1 (code, type,
			  max_size (TREE_OPERAND (exp, 0),
				    code == NEGATE_EXPR ? !max_p : max_p));

    case tcc_binary:
      {
	tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
	tree rhs = max_size (TREE_OPERAND (exp, 1),
			     code == MINUS_EXPR ? !max_p : max_p);

	/* Special-case wanting the maximum value of a MIN_EXPR.
	   In that case, if one side overflows, return the other.  */
	if (max_p && code == MIN_EXPR)
	  {
	    if (TREE_CODE (rhs) == INTEGER_CST && TREE_OVERFLOW (rhs))
	      return lhs;

	    if (TREE_CODE (lhs) == INTEGER_CST && TREE_OVERFLOW (lhs))
	      return rhs;
	  }

	/* Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
	   overflowing and the RHS a variable.  */
	if ((code == MINUS_EXPR || code == PLUS_EXPR)
	    && TREE_CODE (lhs) == INTEGER_CST
	    && TREE_OVERFLOW (lhs)
	    && TREE_CODE (rhs) != INTEGER_CST)
	  return lhs;

	/* If we are going to subtract a "negative" value in an unsigned type,
	   do the operation as an addition of the negated value, in order to
	   avoid creating a spurious overflow below.  */
	if (code == MINUS_EXPR
	    && TYPE_UNSIGNED (type)
	    && TREE_CODE (rhs) == INTEGER_CST
	    && !TREE_OVERFLOW (rhs)
	    && tree_int_cst_sign_bit (rhs) != 0)
	  {
	    rhs = fold_build1 (NEGATE_EXPR, type, rhs);
	    code = PLUS_EXPR;
	  }

	/* We need to detect overflows so we call size_binop here.  */
	return size_binop (code, lhs, rhs);
      }

    case tcc_expression:
      switch (TREE_CODE_LENGTH (code))
	{
	case 1:
	  if (code == SAVE_EXPR)
	    return exp;

	  return fold_build1 (code, type,
			      max_size (TREE_OPERAND (exp, 0), max_p));

	case 2:
	  if (code == COMPOUND_EXPR)
	    return max_size (TREE_OPERAND (exp, 1), max_p);

	  return fold_build2 (code, type,
			      max_size (TREE_OPERAND (exp, 0), max_p),
			      max_size (TREE_OPERAND (exp, 1), max_p));

	case 3:
	  if (code == COND_EXPR)
	    return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
				max_size (TREE_OPERAND (exp, 1), max_p),
				max_size (TREE_OPERAND (exp, 2), max_p));

	default:
	  break;
	}

      /* Other tree classes cannot happen.  */
    default:
      break;
    }

  gcc_unreachable ();
}

/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
   EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
   Return a constructor for the template.  */

tree
build_template (tree template_type, tree array_type, tree expr)
{
  vec<constructor_elt, va_gc> *template_elts = NULL;
  tree bound_list = NULL_TREE;
  tree field;

  while (TREE_CODE (array_type) == RECORD_TYPE
	 && (TYPE_PADDING_P (array_type)
	     || TYPE_JUSTIFIED_MODULAR_P (array_type)))
    array_type = TREE_TYPE (TYPE_FIELDS (array_type));

  if (TREE_CODE (array_type) == ARRAY_TYPE
      || (TREE_CODE (array_type) == INTEGER_TYPE
	  && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
    bound_list = TYPE_ACTUAL_BOUNDS (array_type);

  /* First make the list for a CONSTRUCTOR for the template.  Go down the
     field list of the template instead of the type chain because this
     array might be an Ada array of arrays and we can't tell where the
     nested arrays stop being the underlying object.  */

  for (field = TYPE_FIELDS (template_type); field;
       (bound_list
	? (bound_list = TREE_CHAIN (bound_list))
	: (array_type = TREE_TYPE (array_type))),
       field = DECL_CHAIN (DECL_CHAIN (field)))
    {
      tree bounds, min, max;

      /* If we have a bound list, get the bounds from there.  Likewise
	 for an ARRAY_TYPE.  Otherwise, if expr is a PARM_DECL with
	 DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
	 This will give us a maximum range.  */
      if (bound_list)
	bounds = TREE_VALUE (bound_list);
      else if (TREE_CODE (array_type) == ARRAY_TYPE)
	bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
      else if (expr && TREE_CODE (expr) == PARM_DECL
	       && DECL_BY_COMPONENT_PTR_P (expr))
	bounds = TREE_TYPE (field);
      else
	gcc_unreachable ();

      min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds));
      max = convert (TREE_TYPE (DECL_CHAIN (field)), TYPE_MAX_VALUE (bounds));

      /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
	 substitute it from OBJECT.  */
      min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
      max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);

      CONSTRUCTOR_APPEND_ELT (template_elts, field, min);
      CONSTRUCTOR_APPEND_ELT (template_elts, DECL_CHAIN (field), max);
    }

  return gnat_build_constructor (template_type, template_elts);
}

/* Return true if TYPE is suitable for the element type of a vector.  */

static bool
type_for_vector_element_p (tree type)
{
  machine_mode mode;

  if (!INTEGRAL_TYPE_P (type)
      && !SCALAR_FLOAT_TYPE_P (type)
      && !FIXED_POINT_TYPE_P (type))
    return false;

  mode = TYPE_MODE (type);
  if (GET_MODE_CLASS (mode) != MODE_INT
      && !SCALAR_FLOAT_MODE_P (mode)
      && !ALL_SCALAR_FIXED_POINT_MODE_P (mode))
    return false;

  return true;
}

/* Return a vector type given the SIZE and the INNER_TYPE, or NULL_TREE if
   this is not possible.  If ATTRIBUTE is non-zero, we are processing the
   attribute declaration and want to issue error messages on failure.  */

static tree
build_vector_type_for_size (tree inner_type, tree size, tree attribute)
{
  unsigned HOST_WIDE_INT size_int, inner_size_int;
  int nunits;

  /* Silently punt on variable sizes.  We can't make vector types for them,
     need to ignore them on front-end generated subtypes of unconstrained
     base types, and this attribute is for binding implementors, not end
     users, so we should never get there from legitimate explicit uses.  */
  if (!tree_fits_uhwi_p (size))
    return NULL_TREE;
  size_int = tree_to_uhwi (size);

  if (!type_for_vector_element_p (inner_type))
    {
      if (attribute)
	error ("invalid element type for attribute %qs",
	       IDENTIFIER_POINTER (attribute));
      return NULL_TREE;
    }
  inner_size_int = tree_to_uhwi (TYPE_SIZE_UNIT (inner_type));

  if (size_int % inner_size_int)
    {
      if (attribute)
	error ("vector size not an integral multiple of component size");
      return NULL_TREE;
    }

  if (size_int == 0)
    {
      if (attribute)
	error ("zero vector size");
      return NULL_TREE;
    }

  nunits = size_int / inner_size_int;
  if (nunits & (nunits - 1))
    {
      if (attribute)
	error ("number of components of vector not a power of two");
      return NULL_TREE;
    }

  return build_vector_type (inner_type, nunits);
}

/* Return a vector type whose representative array type is ARRAY_TYPE, or
   NULL_TREE if this is not possible.  If ATTRIBUTE is non-zero, we are
   processing the attribute and want to issue error messages on failure.  */

static tree
build_vector_type_for_array (tree array_type, tree attribute)
{
  tree vector_type = build_vector_type_for_size (TREE_TYPE (array_type),
						 TYPE_SIZE_UNIT (array_type),
						 attribute);
  if (!vector_type)
    return NULL_TREE;

  TYPE_REPRESENTATIVE_ARRAY (vector_type) = array_type;
  return vector_type;
}

/* Build a type to be used to represent an aliased object whose nominal type
   is an unconstrained array.  This consists of a RECORD_TYPE containing a
   field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an ARRAY_TYPE.
   If ARRAY_TYPE is that of an unconstrained array, this is used to represent
   an arbitrary unconstrained object.  Use NAME as the name of the record.
   DEBUG_INFO_P is true if we need to write debug information for the type.  */

tree
build_unc_object_type (tree template_type, tree object_type, tree name,
		       bool debug_info_p)
{
  tree decl;
  tree type = make_node (RECORD_TYPE);
  tree template_field
    = create_field_decl (get_identifier ("BOUNDS"), template_type, type,
			 NULL_TREE, NULL_TREE, 0, 1);
  tree array_field
    = create_field_decl (get_identifier ("ARRAY"), object_type, type,
			 NULL_TREE, NULL_TREE, 0, 1);

  TYPE_NAME (type) = name;
  TYPE_CONTAINS_TEMPLATE_P (type) = 1;
  DECL_CHAIN (template_field) = array_field;
  finish_record_type (type, template_field, 0, true);

  /* Declare it now since it will never be declared otherwise.  This is
     necessary to ensure that its subtrees are properly marked.  */
  decl = create_type_decl (name, type, true, debug_info_p, Empty);

  /* template_type will not be used elsewhere than here, so to keep the debug
     info clean and in order to avoid scoping issues, make decl its
     context.  */
  gnat_set_type_context (template_type, decl);

  return type;
}

/* Same, taking a thin or fat pointer type instead of a template type. */

tree
build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type,
				tree name, bool debug_info_p)
{
  tree template_type;

  gcc_assert (TYPE_IS_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type));

  template_type
    = (TYPE_IS_FAT_POINTER_P (thin_fat_ptr_type)
       ? TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (thin_fat_ptr_type))))
       : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type))));

  return
    build_unc_object_type (template_type, object_type, name, debug_info_p);
}

/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE.
   In the normal case this is just two adjustments, but we have more to
   do if NEW_TYPE is an UNCONSTRAINED_ARRAY_TYPE.  */

void
update_pointer_to (tree old_type, tree new_type)
{
  tree ptr = TYPE_POINTER_TO (old_type);
  tree ref = TYPE_REFERENCE_TO (old_type);
  tree t;

  /* If this is the main variant, process all the other variants first.  */
  if (TYPE_MAIN_VARIANT (old_type) == old_type)
    for (t = TYPE_NEXT_VARIANT (old_type); t; t = TYPE_NEXT_VARIANT (t))
      update_pointer_to (t, new_type);

  /* If no pointers and no references, we are done.  */
  if (!ptr && !ref)
    return;

  /* Merge the old type qualifiers in the new type.

     Each old variant has qualifiers for specific reasons, and the new
     designated type as well.  Each set of qualifiers represents useful
     information grabbed at some point, and merging the two simply unifies
     these inputs into the final type description.

     Consider for instance a volatile type frozen after an access to constant
     type designating it; after the designated type's freeze, we get here with
     a volatile NEW_TYPE and a dummy OLD_TYPE with a readonly variant, created
     when the access type was processed.  We will make a volatile and readonly
     designated type, because that's what it really is.

     We might also get here for a non-dummy OLD_TYPE variant with different
     qualifiers than those of NEW_TYPE, for instance in some cases of pointers
     to private record type elaboration (see the comments around the call to
     this routine in gnat_to_gnu_entity <E_Access_Type>).  We have to merge
     the qualifiers in those cases too, to avoid accidentally discarding the
     initial set, and will often end up with OLD_TYPE == NEW_TYPE then.  */
  new_type
    = build_qualified_type (new_type,
			    TYPE_QUALS (old_type) | TYPE_QUALS (new_type));

  /* If old type and new type are identical, there is nothing to do.  */
  if (old_type == new_type)
    return;

  /* Otherwise, first handle the simple case.  */
  if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
    {
      tree new_ptr, new_ref;

      /* If pointer or reference already points to new type, nothing to do.
	 This can happen as update_pointer_to can be invoked multiple times
	 on the same couple of types because of the type variants.  */
      if ((ptr && TREE_TYPE (ptr) == new_type)
	  || (ref && TREE_TYPE (ref) == new_type))
	return;

      /* Chain PTR and its variants at the end.  */
      new_ptr = TYPE_POINTER_TO (new_type);
      if (new_ptr)
	{
	  while (TYPE_NEXT_PTR_TO (new_ptr))
	    new_ptr = TYPE_NEXT_PTR_TO (new_ptr);
	  TYPE_NEXT_PTR_TO (new_ptr) = ptr;
	}
      else
	TYPE_POINTER_TO (new_type) = ptr;

      /* Now adjust them.  */
      for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
	for (t = TYPE_MAIN_VARIANT (ptr); t; t = TYPE_NEXT_VARIANT (t))
	  {
	    TREE_TYPE (t) = new_type;
	    if (TYPE_NULL_BOUNDS (t))
	      TREE_TYPE (TREE_OPERAND (TYPE_NULL_BOUNDS (t), 0)) = new_type;
	  }

      /* Chain REF and its variants at the end.  */
      new_ref = TYPE_REFERENCE_TO (new_type);
      if (new_ref)
	{
	  while (TYPE_NEXT_REF_TO (new_ref))
	    new_ref = TYPE_NEXT_REF_TO (new_ref);
	  TYPE_NEXT_REF_TO (new_ref) = ref;
	}
      else
	TYPE_REFERENCE_TO (new_type) = ref;

      /* Now adjust them.  */
      for (; ref; ref = TYPE_NEXT_REF_TO (ref))
	for (t = TYPE_MAIN_VARIANT (ref); t; t = TYPE_NEXT_VARIANT (t))
	  TREE_TYPE (t) = new_type;

      TYPE_POINTER_TO (old_type) = NULL_TREE;
      TYPE_REFERENCE_TO (old_type) = NULL_TREE;
    }

  /* Now deal with the unconstrained array case.  In this case the pointer
     is actually a record where both fields are pointers to dummy nodes.
     Turn them into pointers to the correct types using update_pointer_to.
     Likewise for the pointer to the object record (thin pointer).  */
  else
    {
      tree new_ptr = TYPE_POINTER_TO (new_type);

      gcc_assert (TYPE_IS_FAT_POINTER_P (ptr));

      /* If PTR already points to NEW_TYPE, nothing to do.  This can happen
	 since update_pointer_to can be invoked multiple times on the same
	 couple of types because of the type variants.  */
      if (TYPE_UNCONSTRAINED_ARRAY (ptr) == new_type)
	return;

      update_pointer_to
	(TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
	 TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr))));

      update_pointer_to
	(TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (ptr)))),
	 TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (new_ptr)))));

      update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type),
			 TYPE_OBJECT_RECORD_TYPE (new_type));

      TYPE_POINTER_TO (old_type) = NULL_TREE;
    }
}

/* Convert EXPR, a pointer to a constrained array, into a pointer to an
   unconstrained one.  This involves making or finding a template.  */

static tree
convert_to_fat_pointer (tree type, tree expr)
{
  tree template_type = TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type))));
  tree p_array_type = TREE_TYPE (TYPE_FIELDS (type));
  tree etype = TREE_TYPE (expr);
  tree template_addr;
  vec<constructor_elt, va_gc> *v;
  vec_alloc (v, 2);

  /* If EXPR is null, make a fat pointer that contains a null pointer to the
     array (compare_fat_pointers ensures that this is the full discriminant)
     and a valid pointer to the bounds.  This latter property is necessary
     since the compiler can hoist the load of the bounds done through it.  */
  if (integer_zerop (expr))
    {
      tree ptr_template_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
      tree null_bounds, t;

      if (TYPE_NULL_BOUNDS (ptr_template_type))
	null_bounds = TYPE_NULL_BOUNDS (ptr_template_type);
      else
	{
	  /* The template type can still be dummy at this point so we build an
	     empty constructor.  The middle-end will fill it in with zeros.  */
	  t = build_constructor (template_type, NULL);
	  TREE_CONSTANT (t) = TREE_STATIC (t) = 1;
	  null_bounds = build_unary_op (ADDR_EXPR, NULL_TREE, t);
	  SET_TYPE_NULL_BOUNDS (ptr_template_type, null_bounds);
	}

      CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
			      fold_convert (p_array_type, null_pointer_node));
      CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), null_bounds);
      t = build_constructor (type, v);
      /* Do not set TREE_CONSTANT so as to force T to static memory.  */
      TREE_CONSTANT (t) = 0;
      TREE_STATIC (t) = 1;

      return t;
    }

  /* If EXPR is a thin pointer, make template and data from the record.  */
  if (TYPE_IS_THIN_POINTER_P (etype))
    {
      tree field = TYPE_FIELDS (TREE_TYPE (etype));

      expr = gnat_protect_expr (expr);

      /* If we have a TYPE_UNCONSTRAINED_ARRAY attached to the RECORD_TYPE,
	 the thin pointer value has been shifted so we shift it back to get
	 the template address.  */
      if (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (etype)))
	{
	  template_addr
	    = build_binary_op (POINTER_PLUS_EXPR, etype, expr,
			       fold_build1 (NEGATE_EXPR, sizetype,
					    byte_position
					    (DECL_CHAIN (field))));
	  template_addr
	    = fold_convert (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type))),
			    template_addr);
	}

      /* Otherwise we explicitly take the address of the fields.  */
      else
	{
	  expr = build_unary_op (INDIRECT_REF, NULL_TREE, expr);
	  template_addr
	    = build_unary_op (ADDR_EXPR, NULL_TREE,
			      build_component_ref (expr, NULL_TREE, field,
						   false));
	  expr = build_unary_op (ADDR_EXPR, NULL_TREE,
				 build_component_ref (expr, NULL_TREE,
						      DECL_CHAIN (field),
						      false));
	}
    }

  /* Otherwise, build the constructor for the template.  */
  else
    template_addr
      = build_unary_op (ADDR_EXPR, NULL_TREE,
			build_template (template_type, TREE_TYPE (etype),
					expr));

  /* The final result is a constructor for the fat pointer.

     If EXPR is an argument of a foreign convention subprogram, the type it
     points to is directly the component type.  In this case, the expression
     type may not match the corresponding FIELD_DECL type at this point, so we
     call "convert" here to fix that up if necessary.  This type consistency is
     required, for instance because it ensures that possible later folding of
     COMPONENT_REFs against this constructor always yields something of the
     same type as the initial reference.

     Note that the call to "build_template" above is still fine because it
     will only refer to the provided TEMPLATE_TYPE in this case.  */
  CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), convert (p_array_type, expr));
  CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), template_addr);
  return gnat_build_constructor (type, v);
}

/* Create an expression whose value is that of EXPR,
   converted to type TYPE.  The TREE_TYPE of the value
   is always TYPE.  This function implements all reasonable
   conversions; callers should filter out those that are
   not permitted by the language being compiled.  */

tree
convert (tree type, tree expr)
{
  tree etype = TREE_TYPE (expr);
  enum tree_code ecode = TREE_CODE (etype);
  enum tree_code code = TREE_CODE (type);

  /* If the expression is already of the right type, we are done.  */
  if (etype == type)
    return expr;

  /* If both input and output have padding and are of variable size, do this
     as an unchecked conversion.  Likewise if one is a mere variant of the
     other, so we avoid a pointless unpad/repad sequence.  */
  else if (code == RECORD_TYPE && ecode == RECORD_TYPE
	   && TYPE_PADDING_P (type) && TYPE_PADDING_P (etype)
	   && (!TREE_CONSTANT (TYPE_SIZE (type))
	       || !TREE_CONSTANT (TYPE_SIZE (etype))
	       || TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
	       || TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type)))
		  == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (etype)))))
    ;

  /* If the output type has padding, convert to the inner type and make a
     constructor to build the record, unless a variable size is involved.  */
  else if (code == RECORD_TYPE && TYPE_PADDING_P (type))
    {
      vec<constructor_elt, va_gc> *v;

      /* If we previously converted from another type and our type is
	 of variable size, remove the conversion to avoid the need for
	 variable-sized temporaries.  Likewise for a conversion between
	 original and packable version.  */
      if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
	  && (!TREE_CONSTANT (TYPE_SIZE (type))
	      || (ecode == RECORD_TYPE
		  && TYPE_NAME (etype)
		     == TYPE_NAME (TREE_TYPE (TREE_OPERAND (expr, 0))))))
	expr = TREE_OPERAND (expr, 0);

      /* If we are just removing the padding from expr, convert the original
	 object if we have variable size in order to avoid the need for some
	 variable-sized temporaries.  Likewise if the padding is a variant
	 of the other, so we avoid a pointless unpad/repad sequence.  */
      if (TREE_CODE (expr) == COMPONENT_REF
	  && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
	  && (!TREE_CONSTANT (TYPE_SIZE (type))
	      || TYPE_MAIN_VARIANT (type)
		 == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (expr, 0)))
	      || (ecode == RECORD_TYPE
		  && TYPE_NAME (etype)
		     == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type))))))
	return convert (type, TREE_OPERAND (expr, 0));

      /* If the inner type is of self-referential size and the expression type
	 is a record, do this as an unchecked conversion.  But first pad the
	 expression if possible to have the same size on both sides.  */
      if (ecode == RECORD_TYPE
	  && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type))))
	{
	  if (TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST)
	    expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
					    false, false, false, true),
			    expr);
	  return unchecked_convert (type, expr, false);
	}

      /* If we are converting between array types with variable size, do the
	 final conversion as an unchecked conversion, again to avoid the need
	 for some variable-sized temporaries.  If valid, this conversion is
	 very likely purely technical and without real effects.  */
      if (ecode == ARRAY_TYPE
	  && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == ARRAY_TYPE
	  && !TREE_CONSTANT (TYPE_SIZE (etype))
	  && !TREE_CONSTANT (TYPE_SIZE (type)))
	return unchecked_convert (type,
				  convert (TREE_TYPE (TYPE_FIELDS (type)),
					   expr),
				  false);

      vec_alloc (v, 1);
      CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
			      convert (TREE_TYPE (TYPE_FIELDS (type)), expr));
      return gnat_build_constructor (type, v);
    }

  /* If the input type has padding, remove it and convert to the output type.
     The conditions ordering is arranged to ensure that the output type is not
     a padding type here, as it is not clear whether the conversion would
     always be correct if this was to happen.  */
  else if (ecode == RECORD_TYPE && TYPE_PADDING_P (etype))
    {
      tree unpadded;

      /* If we have just converted to this padded type, just get the
	 inner expression.  */
      if (TREE_CODE (expr) == CONSTRUCTOR)
	unpadded = CONSTRUCTOR_ELT (expr, 0)->value;

      /* Otherwise, build an explicit component reference.  */
      else
	unpadded
	  = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false);

      return convert (type, unpadded);
    }

  /* If the input is a biased type, adjust first.  */
  if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
    return convert (type, fold_build2 (PLUS_EXPR, TREE_TYPE (etype),
				       fold_convert (TREE_TYPE (etype), expr),
				       fold_convert (TREE_TYPE (etype),
						     TYPE_MIN_VALUE (etype))));

  /* If the input is a justified modular type, we need to extract the actual
     object before converting it to any other type with the exceptions of an
     unconstrained array or of a mere type variant.  It is useful to avoid the
     extraction and conversion in the type variant case because it could end
     up replacing a VAR_DECL expr by a constructor and we might be about the
     take the address of the result.  */
  if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)
      && code != UNCONSTRAINED_ARRAY_TYPE
      && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype))
    return convert (type, build_component_ref (expr, NULL_TREE,
					       TYPE_FIELDS (etype), false));

  /* If converting to a type that contains a template, convert to the data
     type and then build the template. */
  if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
    {
      tree obj_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
      vec<constructor_elt, va_gc> *v;
      vec_alloc (v, 2);

      /* If the source already has a template, get a reference to the
	 associated array only, as we are going to rebuild a template
	 for the target type anyway.  */
      expr = maybe_unconstrained_array (expr);

      CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
			      build_template (TREE_TYPE (TYPE_FIELDS (type)),
					      obj_type, NULL_TREE));
      if (expr)
	CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)),
				convert (obj_type, expr));
      return gnat_build_constructor (type, v);
    }

  /* There are some cases of expressions that we process specially.  */
  switch (TREE_CODE (expr))
    {
    case ERROR_MARK:
      return expr;

    case NULL_EXPR:
      /* Just set its type here.  For TRANSFORM_EXPR, we will do the actual
	 conversion in gnat_expand_expr.  NULL_EXPR does not represent
	 and actual value, so no conversion is needed.  */
      expr = copy_node (expr);
      TREE_TYPE (expr) = type;
      return expr;

    case STRING_CST:
      /* If we are converting a STRING_CST to another constrained array type,
	 just make a new one in the proper type.  */
      if (code == ecode && AGGREGATE_TYPE_P (etype)
	  && !(TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
	       && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
	{
	  expr = copy_node (expr);
	  TREE_TYPE (expr) = type;
	  return expr;
	}
      break;

    case VECTOR_CST:
      /* If we are converting a VECTOR_CST to a mere type variant, just make
	 a new one in the proper type.  */
      if (code == ecode && gnat_types_compatible_p (type, etype))
	{
	  expr = copy_node (expr);
	  TREE_TYPE (expr) = type;
	  return expr;
	}

    case CONSTRUCTOR:
      /* If we are converting a CONSTRUCTOR to a mere type variant, or to
	 another padding type around the same type, just make a new one in
	 the proper type.  */
      if (code == ecode
	  && (gnat_types_compatible_p (type, etype)
	      || (code == RECORD_TYPE
		  && TYPE_PADDING_P (type) && TYPE_PADDING_P (etype)
		  && TREE_TYPE (TYPE_FIELDS (type))
		     == TREE_TYPE (TYPE_FIELDS (etype)))))
	{
	  expr = copy_node (expr);
	  TREE_TYPE (expr) = type;
	  CONSTRUCTOR_ELTS (expr) = vec_safe_copy (CONSTRUCTOR_ELTS (expr));
	  return expr;
	}

      /* Likewise for a conversion between original and packable version, or
	 conversion between types of the same size and with the same list of
	 fields, but we have to work harder to preserve type consistency.  */
      if (code == ecode
	  && code == RECORD_TYPE
	  && (TYPE_NAME (type) == TYPE_NAME (etype)
	      || tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (etype))))

	{
	  vec<constructor_elt, va_gc> *e = CONSTRUCTOR_ELTS (expr);
	  unsigned HOST_WIDE_INT len = vec_safe_length (e);
	  vec<constructor_elt, va_gc> *v;
	  vec_alloc (v, len);
	  tree efield = TYPE_FIELDS (etype), field = TYPE_FIELDS (type);
	  unsigned HOST_WIDE_INT idx;
	  tree index, value;

	  /* Whether we need to clear TREE_CONSTANT et al. on the output
	     constructor when we convert in place.  */
	  bool clear_constant = false;

	  FOR_EACH_CONSTRUCTOR_ELT(e, idx, index, value)
	    {
	      /* Skip the missing fields in the CONSTRUCTOR.  */
	      while (efield && field && !SAME_FIELD_P (efield, index))
	        {
		  efield = DECL_CHAIN (efield);
		  field = DECL_CHAIN (field);
		}
	      /* The field must be the same.  */
	      if (!(efield && field && SAME_FIELD_P (efield, field)))
		break;
	      constructor_elt elt
	        = {field, convert (TREE_TYPE (field), value)};
	      v->quick_push (elt);

	      /* If packing has made this field a bitfield and the input
		 value couldn't be emitted statically any more, we need to
		 clear TREE_CONSTANT on our output.  */
	      if (!clear_constant
		  && TREE_CONSTANT (expr)
		  && !CONSTRUCTOR_BITFIELD_P (efield)
		  && CONSTRUCTOR_BITFIELD_P (field)
		  && !initializer_constant_valid_for_bitfield_p (value))
		clear_constant = true;

	      efield = DECL_CHAIN (efield);
	      field = DECL_CHAIN (field);
	    }

	  /* If we have been able to match and convert all the input fields
	     to their output type, convert in place now.  We'll fallback to a
	     view conversion downstream otherwise.  */
	  if (idx == len)
	    {
	      expr = copy_node (expr);
	      TREE_TYPE (expr) = type;
	      CONSTRUCTOR_ELTS (expr) = v;
	      if (clear_constant)
		TREE_CONSTANT (expr) = TREE_STATIC (expr) = 0;
	      return expr;
	    }
	}

      /* Likewise for a conversion between array type and vector type with a
         compatible representative array.  */
      else if (code == VECTOR_TYPE
	       && ecode == ARRAY_TYPE
	       && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
					   etype))
	{
	  vec<constructor_elt, va_gc> *e = CONSTRUCTOR_ELTS (expr);
	  unsigned HOST_WIDE_INT len = vec_safe_length (e);
	  vec<constructor_elt, va_gc> *v;
	  unsigned HOST_WIDE_INT ix;
	  tree value;

	  /* Build a VECTOR_CST from a *constant* array constructor.  */
	  if (TREE_CONSTANT (expr))
	    {
	      bool constant_p = true;

	      /* Iterate through elements and check if all constructor
		 elements are *_CSTs.  */
	      FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value)
		if (!CONSTANT_CLASS_P (value))
		  {
		    constant_p = false;
		    break;
		  }

	      if (constant_p)
		return build_vector_from_ctor (type,
					       CONSTRUCTOR_ELTS (expr));
	    }

	  /* Otherwise, build a regular vector constructor.  */
	  vec_alloc (v, len);
	  FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value)
	    {
	      constructor_elt elt = {NULL_TREE, value};
	      v->quick_push (elt);
	    }
	  expr = copy_node (expr);
	  TREE_TYPE (expr) = type;
	  CONSTRUCTOR_ELTS (expr) = v;
	  return expr;
	}
      break;

    case UNCONSTRAINED_ARRAY_REF:
      /* First retrieve the underlying array.  */
      expr = maybe_unconstrained_array (expr);
      etype = TREE_TYPE (expr);
      ecode = TREE_CODE (etype);
      break;

    case VIEW_CONVERT_EXPR:
      {
	/* GCC 4.x is very sensitive to type consistency overall, and view
	   conversions thus are very frequent.  Even though just "convert"ing
	   the inner operand to the output type is fine in most cases, it
	   might expose unexpected input/output type mismatches in special
	   circumstances so we avoid such recursive calls when we can.  */
	tree op0 = TREE_OPERAND (expr, 0);

	/* If we are converting back to the original type, we can just
	   lift the input conversion.  This is a common occurrence with
	   switches back-and-forth amongst type variants.  */
	if (type == TREE_TYPE (op0))
	  return op0;

	/* Otherwise, if we're converting between two aggregate or vector
	   types, we might be allowed to substitute the VIEW_CONVERT_EXPR
	   target type in place or to just convert the inner expression.  */
	if ((AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype))
	    || (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (etype)))
	  {
	    /* If we are converting between mere variants, we can just
	       substitute the VIEW_CONVERT_EXPR in place.  */
	    if (gnat_types_compatible_p (type, etype))
	      return build1 (VIEW_CONVERT_EXPR, type, op0);

	    /* Otherwise, we may just bypass the input view conversion unless
	       one of the types is a fat pointer,  which is handled by
	       specialized code below which relies on exact type matching.  */
	    else if (!TYPE_IS_FAT_POINTER_P (type)
		     && !TYPE_IS_FAT_POINTER_P (etype))
	      return convert (type, op0);
	  }

	break;
      }

    default:
      break;
    }

  /* Check for converting to a pointer to an unconstrained array.  */
  if (TYPE_IS_FAT_POINTER_P (type) && !TYPE_IS_FAT_POINTER_P (etype))
    return convert_to_fat_pointer (type, expr);

  /* If we are converting between two aggregate or vector types that are mere
     variants, just make a VIEW_CONVERT_EXPR.  Likewise when we are converting
     to a vector type from its representative array type.  */
  else if ((code == ecode
	    && (AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type))
	    && gnat_types_compatible_p (type, etype))
	   || (code == VECTOR_TYPE
	       && ecode == ARRAY_TYPE
	       && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
					   etype)))
    return build1 (VIEW_CONVERT_EXPR, type, expr);

  /* If we are converting between tagged types, try to upcast properly.  */
  else if (ecode == RECORD_TYPE && code == RECORD_TYPE
	   && TYPE_ALIGN_OK (etype) && TYPE_ALIGN_OK (type))
    {
      tree child_etype = etype;
      do {
	tree field = TYPE_FIELDS (child_etype);
	if (DECL_NAME (field) == parent_name_id && TREE_TYPE (field) == type)
	  return build_component_ref (expr, NULL_TREE, field, false);
	child_etype = TREE_TYPE (field);
      } while (TREE_CODE (child_etype) == RECORD_TYPE);
    }

  /* If we are converting from a smaller form of record type back to it, just
     make a VIEW_CONVERT_EXPR.  But first pad the expression to have the same
     size on both sides.  */
  else if (ecode == RECORD_TYPE && code == RECORD_TYPE
	   && smaller_form_type_p (etype, type))
    {
      expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
				      false, false, false, true),
		      expr);
      return build1 (VIEW_CONVERT_EXPR, type, expr);
    }

  /* In all other cases of related types, make a NOP_EXPR.  */
  else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype))
    return fold_convert (type, expr);

  switch (code)
    {
    case VOID_TYPE:
      return fold_build1 (CONVERT_EXPR, type, expr);

    case INTEGER_TYPE:
      if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
	  && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
	      || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
	return unchecked_convert (type, expr, false);
      else if (TYPE_BIASED_REPRESENTATION_P (type))
	return fold_convert (type,
			     fold_build2 (MINUS_EXPR, TREE_TYPE (type),
					  convert (TREE_TYPE (type), expr),
					  convert (TREE_TYPE (type),
						   TYPE_MIN_VALUE (type))));

      /* ... fall through ... */

    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
      /* If we are converting an additive expression to an integer type
	 with lower precision, be wary of the optimization that can be
	 applied by convert_to_integer.  There are 2 problematic cases:
	   - if the first operand was originally of a biased type,
	     because we could be recursively called to convert it
	     to an intermediate type and thus rematerialize the
	     additive operator endlessly,
	   - if the expression contains a placeholder, because an
	     intermediate conversion that changes the sign could
	     be inserted and thus introduce an artificial overflow
	     at compile time when the placeholder is substituted.  */
      if (code == INTEGER_TYPE
	  && ecode == INTEGER_TYPE
	  && TYPE_PRECISION (type) < TYPE_PRECISION (etype)
	  && (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR))
	{
	  tree op0 = get_unwidened (TREE_OPERAND (expr, 0), type);

	  if ((TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
	       && TYPE_BIASED_REPRESENTATION_P (TREE_TYPE (op0)))
	      || CONTAINS_PLACEHOLDER_P (expr))
	    return build1 (NOP_EXPR, type, expr);
	}

      return fold (convert_to_integer (type, expr));

    case POINTER_TYPE:
    case REFERENCE_TYPE:
      /* If converting between two thin pointers, adjust if needed to account
	 for differing offsets from the base pointer, depending on whether
	 there is a TYPE_UNCONSTRAINED_ARRAY attached to the record type.  */
      if (TYPE_IS_THIN_POINTER_P (etype) && TYPE_IS_THIN_POINTER_P (type))
	{
	  tree etype_pos
	    = TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (etype)) != NULL_TREE
	      ? byte_position (DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (etype))))
	      : size_zero_node;
	  tree type_pos
	    = TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)) != NULL_TREE
	      ? byte_position (DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (type))))
	      : size_zero_node;
	  tree byte_diff = size_diffop (type_pos, etype_pos);

	  expr = build1 (NOP_EXPR, type, expr);
	  if (integer_zerop (byte_diff))
	    return expr;

	  return build_binary_op (POINTER_PLUS_EXPR, type, expr,
				  fold_convert (sizetype, byte_diff));
	}

      /* If converting fat pointer to normal or thin pointer, get the pointer
	 to the array and then convert it.  */
      if (TYPE_IS_FAT_POINTER_P (etype))
	expr
	  = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false);

      return fold (convert_to_pointer (type, expr));

    case REAL_TYPE:
      return fold (convert_to_real (type, expr));

    case RECORD_TYPE:
      if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype))
	{
	  vec<constructor_elt, va_gc> *v;
	  vec_alloc (v, 1);

	  CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
				  convert (TREE_TYPE (TYPE_FIELDS (type)),
					   expr));
	  return gnat_build_constructor (type, v);
	}

      /* ... fall through ... */

    case ARRAY_TYPE:
      /* In these cases, assume the front-end has validated the conversion.
	 If the conversion is valid, it will be a bit-wise conversion, so
	 it can be viewed as an unchecked conversion.  */
      return unchecked_convert (type, expr, false);

    case UNION_TYPE:
      /* This is a either a conversion between a tagged type and some
	 subtype, which we have to mark as a UNION_TYPE because of
	 overlapping fields or a conversion of an Unchecked_Union.  */
      return unchecked_convert (type, expr, false);

    case UNCONSTRAINED_ARRAY_TYPE:
      /* If the input is a VECTOR_TYPE, convert to the representative
	 array type first.  */
      if (ecode == VECTOR_TYPE)
	{
	  expr = convert (TYPE_REPRESENTATIVE_ARRAY (etype), expr);
	  etype = TREE_TYPE (expr);
	  ecode = TREE_CODE (etype);
	}

      /* If EXPR is a constrained array, take its address, convert it to a
	 fat pointer, and then dereference it.  Likewise if EXPR is a
	 record containing both a template and a constrained array.
	 Note that a record representing a justified modular type
	 always represents a packed constrained array.  */
      if (ecode == ARRAY_TYPE
	  || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
	  || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
	  || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)))
	return
	  build_unary_op
	    (INDIRECT_REF, NULL_TREE,
	     convert_to_fat_pointer (TREE_TYPE (type),
				     build_unary_op (ADDR_EXPR,
						     NULL_TREE, expr)));

      /* Do something very similar for converting one unconstrained
	 array to another.  */
      else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
	return
	  build_unary_op (INDIRECT_REF, NULL_TREE,
			  convert (TREE_TYPE (type),
				   build_unary_op (ADDR_EXPR,
						   NULL_TREE, expr)));
      else
	gcc_unreachable ();

    case COMPLEX_TYPE:
      return fold (convert_to_complex (type, expr));

    default:
      gcc_unreachable ();
    }
}

/* Create an expression whose value is that of EXPR converted to the common
   index type, which is sizetype.  EXPR is supposed to be in the base type
   of the GNAT index type.  Calling it is equivalent to doing

     convert (sizetype, expr)

   but we try to distribute the type conversion with the knowledge that EXPR
   cannot overflow in its type.  This is a best-effort approach and we fall
   back to the above expression as soon as difficulties are encountered.

   This is necessary to overcome issues that arise when the GNAT base index
   type and the GCC common index type (sizetype) don't have the same size,
   which is quite frequent on 64-bit architectures.  In this case, and if
   the GNAT base index type is signed but the iteration type of the loop has
   been forced to unsigned, the loop scalar evolution engine cannot compute
   a simple evolution for the general induction variables associated with the
   array indices, because it will preserve the wrap-around semantics in the
   unsigned type of their "inner" part.  As a result, many loop optimizations
   are blocked.

   The solution is to use a special (basic) induction variable that is at
   least as large as sizetype, and to express the aforementioned general
   induction variables in terms of this induction variable, eliminating
   the problematic intermediate truncation to the GNAT base index type.
   This is possible as long as the original expression doesn't overflow
   and if the middle-end hasn't introduced artificial overflows in the
   course of the various simplification it can make to the expression.  */

tree
convert_to_index_type (tree expr)
{
  enum tree_code code = TREE_CODE (expr);
  tree type = TREE_TYPE (expr);

  /* If the type is unsigned, overflow is allowed so we cannot be sure that
     EXPR doesn't overflow.  Keep it simple if optimization is disabled.  */
  if (TYPE_UNSIGNED (type) || !optimize)
    return convert (sizetype, expr);

  switch (code)
    {
    case VAR_DECL:
      /* The main effect of the function: replace a loop parameter with its
	 associated special induction variable.  */
      if (DECL_LOOP_PARM_P (expr) && DECL_INDUCTION_VAR (expr))
	expr = DECL_INDUCTION_VAR (expr);
      break;

    CASE_CONVERT:
      {
	tree otype = TREE_TYPE (TREE_OPERAND (expr, 0));
	/* Bail out as soon as we suspect some sort of type frobbing.  */
	if (TYPE_PRECISION (type) != TYPE_PRECISION (otype)
	    || TYPE_UNSIGNED (type) != TYPE_UNSIGNED (otype))
	  break;
      }

      /* ... fall through ... */

    case NON_LVALUE_EXPR:
      return fold_build1 (code, sizetype,
			  convert_to_index_type (TREE_OPERAND (expr, 0)));

    case PLUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
      return fold_build2 (code, sizetype,
			  convert_to_index_type (TREE_OPERAND (expr, 0)),
			  convert_to_index_type (TREE_OPERAND (expr, 1)));

    case COMPOUND_EXPR:
      return fold_build2 (code, sizetype, TREE_OPERAND (expr, 0),
			  convert_to_index_type (TREE_OPERAND (expr, 1)));

    case COND_EXPR:
      return fold_build3 (code, sizetype, TREE_OPERAND (expr, 0),
			  convert_to_index_type (TREE_OPERAND (expr, 1)),
			  convert_to_index_type (TREE_OPERAND (expr, 2)));

    default:
      break;
    }

  return convert (sizetype, expr);
}

/* Remove all conversions that are done in EXP.  This includes converting
   from a padded type or to a justified modular type.  If TRUE_ADDRESS
   is true, always return the address of the containing object even if
   the address is not bit-aligned.  */

tree
remove_conversions (tree exp, bool true_address)
{
  switch (TREE_CODE (exp))
    {
    case CONSTRUCTOR:
      if (true_address
	  && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
	  && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
	return
	  remove_conversions (CONSTRUCTOR_ELT (exp, 0)->value, true);
      break;

    case COMPONENT_REF:
      if (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
	return remove_conversions (TREE_OPERAND (exp, 0), true_address);
      break;

    CASE_CONVERT:
    case VIEW_CONVERT_EXPR:
    case NON_LVALUE_EXPR:
      return remove_conversions (TREE_OPERAND (exp, 0), true_address);

    default:
      break;
    }

  return exp;
}

/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
   refers to the underlying array.  If it has TYPE_CONTAINS_TEMPLATE_P,
   likewise return an expression pointing to the underlying array.  */

tree
maybe_unconstrained_array (tree exp)
{
  enum tree_code code = TREE_CODE (exp);
  tree type = TREE_TYPE (exp);

  switch (TREE_CODE (type))
    {
    case UNCONSTRAINED_ARRAY_TYPE:
      if (code == UNCONSTRAINED_ARRAY_REF)
	{
	  const bool read_only = TREE_READONLY (exp);
	  const bool no_trap = TREE_THIS_NOTRAP (exp);

	  exp = TREE_OPERAND (exp, 0);
	  type = TREE_TYPE (exp);

	  if (TREE_CODE (exp) == COND_EXPR)
	    {
	      tree op1
		= build_unary_op (INDIRECT_REF, NULL_TREE,
				  build_component_ref (TREE_OPERAND (exp, 1),
						       NULL_TREE,
						       TYPE_FIELDS (type),
						       false));
	      tree op2
		= build_unary_op (INDIRECT_REF, NULL_TREE,
				  build_component_ref (TREE_OPERAND (exp, 2),
						       NULL_TREE,
						       TYPE_FIELDS (type),
						       false));

	      exp = build3 (COND_EXPR,
			    TREE_TYPE (TREE_TYPE (TYPE_FIELDS (type))),
			    TREE_OPERAND (exp, 0), op1, op2);
	    }
	  else
	    {
	      exp = build_unary_op (INDIRECT_REF, NULL_TREE,
				    build_component_ref (exp, NULL_TREE,
						         TYPE_FIELDS (type),
						         false));
	      TREE_READONLY (exp) = read_only;
	      TREE_THIS_NOTRAP (exp) = no_trap;
	    }
	}

      else if (code == NULL_EXPR)
	exp = build1 (NULL_EXPR,
		      TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))),
		      TREE_OPERAND (exp, 0));
      break;

    case RECORD_TYPE:
      /* If this is a padded type and it contains a template, convert to the
	 unpadded type first.  */
      if (TYPE_PADDING_P (type)
	  && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE
	  && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type))))
	{
	  exp = convert (TREE_TYPE (TYPE_FIELDS (type)), exp);
	  type = TREE_TYPE (exp);
	}

      if (TYPE_CONTAINS_TEMPLATE_P (type))
	{
	  exp = build_simple_component_ref (exp, NULL_TREE,
					    DECL_CHAIN (TYPE_FIELDS (type)),
					    false);

	  /* If the array type is padded, convert to the unpadded type.  */
	  if (exp && TYPE_IS_PADDING_P (TREE_TYPE (exp)))
	    exp = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp);
	}
      break;

    default:
      break;
    }

  return exp;
}

/* Return true if EXPR is an expression that can be folded as an operand
   of a VIEW_CONVERT_EXPR.  See ada-tree.h for a complete rationale.  */

static bool
can_fold_for_view_convert_p (tree expr)
{
  tree t1, t2;

  /* The folder will fold NOP_EXPRs between integral types with the same
     precision (in the middle-end's sense).  We cannot allow it if the
     types don't have the same precision in the Ada sense as well.  */
  if (TREE_CODE (expr) != NOP_EXPR)
    return true;

  t1 = TREE_TYPE (expr);
  t2 = TREE_TYPE (TREE_OPERAND (expr, 0));

  /* Defer to the folder for non-integral conversions.  */
  if (!(INTEGRAL_TYPE_P (t1) && INTEGRAL_TYPE_P (t2)))
    return true;

  /* Only fold conversions that preserve both precisions.  */
  if (TYPE_PRECISION (t1) == TYPE_PRECISION (t2)
      && operand_equal_p (rm_size (t1), rm_size (t2), 0))
    return true;

  return false;
}

/* Return an expression that does an unchecked conversion of EXPR to TYPE.
   If NOTRUNC_P is true, truncation operations should be suppressed.

   Special care is required with (source or target) integral types whose
   precision is not equal to their size, to make sure we fetch or assign
   the value bits whose location might depend on the endianness, e.g.

     Rmsize : constant := 8;
     subtype Int is Integer range 0 .. 2 ** Rmsize - 1;

     type Bit_Array is array (1 .. Rmsize) of Boolean;
     pragma Pack (Bit_Array);

     function To_Bit_Array is new Unchecked_Conversion (Int, Bit_Array);

     Value : Int := 2#1000_0001#;
     Vbits : Bit_Array := To_Bit_Array (Value);

   we expect the 8 bits at Vbits'Address to always contain Value, while
   their original location depends on the endianness, at Value'Address
   on a little-endian architecture but not on a big-endian one.  */

tree
unchecked_convert (tree type, tree expr, bool notrunc_p)
{
  tree etype = TREE_TYPE (expr);
  enum tree_code ecode = TREE_CODE (etype);
  enum tree_code code = TREE_CODE (type);
  tree tem;
  int c;

  /* If the expression is already of the right type, we are done.  */
  if (etype == type)
    return expr;

  /* If both types types are integral just do a normal conversion.
     Likewise for a conversion to an unconstrained array.  */
  if (((INTEGRAL_TYPE_P (type)
	|| (POINTER_TYPE_P (type) && !TYPE_IS_THIN_POINTER_P (type))
	|| (code == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (type)))
       && (INTEGRAL_TYPE_P (etype)
	   || (POINTER_TYPE_P (etype) && !TYPE_IS_THIN_POINTER_P (etype))
	   || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype))))
      || code == UNCONSTRAINED_ARRAY_TYPE)
    {
      if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
	{
	  tree ntype = copy_type (etype);
	  TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
	  TYPE_MAIN_VARIANT (ntype) = ntype;
	  expr = build1 (NOP_EXPR, ntype, expr);
	}

      if (code == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type))
	{
	  tree rtype = copy_type (type);
	  TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
	  TYPE_MAIN_VARIANT (rtype) = rtype;
	  expr = convert (rtype, expr);
	  expr = build1 (NOP_EXPR, type, expr);
	}
      else
	expr = convert (type, expr);
    }

  /* If we are converting to an integral type whose precision is not equal
     to its size, first unchecked convert to a record type that contains an
     field of the given precision.  Then extract the field.  */
  else if (INTEGRAL_TYPE_P (type)
	   && TYPE_RM_SIZE (type)
	   && 0 != compare_tree_int (TYPE_RM_SIZE (type),
				     GET_MODE_BITSIZE (TYPE_MODE (type))))
    {
      tree rec_type = make_node (RECORD_TYPE);
      unsigned HOST_WIDE_INT prec = TREE_INT_CST_LOW (TYPE_RM_SIZE (type));
      tree field_type, field;

      if (TYPE_UNSIGNED (type))
	field_type = make_unsigned_type (prec);
      else
	field_type = make_signed_type (prec);
      SET_TYPE_RM_SIZE (field_type, TYPE_RM_SIZE (type));

      field = create_field_decl (get_identifier ("OBJ"), field_type, rec_type,
				 NULL_TREE, bitsize_zero_node, 1, 0);

      finish_record_type (rec_type, field, 1, false);

      expr = unchecked_convert (rec_type, expr, notrunc_p);
      expr = build_component_ref (expr, NULL_TREE, field, false);
      expr = fold_build1 (NOP_EXPR, type, expr);
    }

  /* Similarly if we are converting from an integral type whose precision is
     not equal to its size, first copy into a field of the given precision
     and unchecked convert the record type.  */
  else if (INTEGRAL_TYPE_P (etype)
	   && TYPE_RM_SIZE (etype)
	   && 0 != compare_tree_int (TYPE_RM_SIZE (etype),
				     GET_MODE_BITSIZE (TYPE_MODE (etype))))
    {
      tree rec_type = make_node (RECORD_TYPE);
      unsigned HOST_WIDE_INT prec = TREE_INT_CST_LOW (TYPE_RM_SIZE (etype));
      vec<constructor_elt, va_gc> *v;
      vec_alloc (v, 1);
      tree field_type, field;

      if (TYPE_UNSIGNED (etype))
	field_type = make_unsigned_type (prec);
      else
	field_type = make_signed_type (prec);
      SET_TYPE_RM_SIZE (field_type, TYPE_RM_SIZE (etype));

      field = create_field_decl (get_identifier ("OBJ"), field_type, rec_type,
				 NULL_TREE, bitsize_zero_node, 1, 0);

      finish_record_type (rec_type, field, 1, false);

      expr = fold_build1 (NOP_EXPR, field_type, expr);
      CONSTRUCTOR_APPEND_ELT (v, field, expr);
      expr = gnat_build_constructor (rec_type, v);
      expr = unchecked_convert (type, expr, notrunc_p);
    }

  /* If we are converting from a scalar type to a type with a different size,
     we need to pad to have the same size on both sides.

     ??? We cannot do it unconditionally because unchecked conversions are
     used liberally by the front-end to implement polymorphism, e.g. in:

       S191s : constant ada__tags__addr_ptr := ada__tags__addr_ptr!(S190s);
       return p___size__4 (p__object!(S191s.all));

     so we skip all expressions that are references.  */
  else if (!REFERENCE_CLASS_P (expr)
	   && !AGGREGATE_TYPE_P (etype)
	   && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
	   && (c = tree_int_cst_compare (TYPE_SIZE (etype), TYPE_SIZE (type))))
    {
      if (c < 0)
	{
	  expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
					  false, false, false, true),
			  expr);
	  expr = unchecked_convert (type, expr, notrunc_p);
	}
      else
	{
	  tree rec_type = maybe_pad_type (type, TYPE_SIZE (etype), 0, Empty,
					  false, false, false, true);
	  expr = unchecked_convert (rec_type, expr, notrunc_p);
	  expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (rec_type),
				      false);
	}
    }

  /* We have a special case when we are converting between two unconstrained
     array types.  In that case, take the address, convert the fat pointer
     types, and dereference.  */
  else if (ecode == code && code == UNCONSTRAINED_ARRAY_TYPE)
    expr = build_unary_op (INDIRECT_REF, NULL_TREE,
			   build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
				   build_unary_op (ADDR_EXPR, NULL_TREE,
						   expr)));

  /* Another special case is when we are converting to a vector type from its
     representative array type; this a regular conversion.  */
  else if (code == VECTOR_TYPE
	   && ecode == ARRAY_TYPE
	   && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
				       etype))
    expr = convert (type, expr);

  /* And, if the array type is not the representative, we try to build an
     intermediate vector type of which the array type is the representative
     and to do the unchecked conversion between the vector types, in order
     to enable further simplifications in the middle-end.  */
  else if (code == VECTOR_TYPE
	   && ecode == ARRAY_TYPE
	   && (tem = build_vector_type_for_array (etype, NULL_TREE)))
    {
      expr = convert (tem, expr);
      return unchecked_convert (type, expr, notrunc_p);
    }

  /* If we are converting a CONSTRUCTOR to a more aligned RECORD_TYPE, bump
     the alignment of the CONSTRUCTOR to speed up the copy operation.  */
  else if (TREE_CODE (expr) == CONSTRUCTOR
	   && code == RECORD_TYPE
	   && TYPE_ALIGN (etype) < TYPE_ALIGN (type))
    {
      expr = convert (maybe_pad_type (etype, NULL_TREE, TYPE_ALIGN (type),
				      Empty, false, false, false, true),
		      expr);
      return unchecked_convert (type, expr, notrunc_p);
    }

  /* Otherwise, just build a VIEW_CONVERT_EXPR of the expression.  */
  else
    {
      expr = maybe_unconstrained_array (expr);
      etype = TREE_TYPE (expr);
      ecode = TREE_CODE (etype);
      if (can_fold_for_view_convert_p (expr))
	expr = fold_build1 (VIEW_CONVERT_EXPR, type, expr);
      else
	expr = build1 (VIEW_CONVERT_EXPR, type, expr);
    }

  /* If the result is an integral type whose precision is not equal to its
     size, sign- or zero-extend the result.  We need not do this if the input
     is an integral type of the same precision and signedness or if the output
     is a biased type or if both the input and output are unsigned.  */
  if (!notrunc_p
      && INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type)
      && !(code == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type))
      && 0 != compare_tree_int (TYPE_RM_SIZE (type),
				GET_MODE_BITSIZE (TYPE_MODE (type)))
      && !(INTEGRAL_TYPE_P (etype)
	   && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype)
	   && operand_equal_p (TYPE_RM_SIZE (type),
			       (TYPE_RM_SIZE (etype) != 0
				? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)),
			       0))
      && !(TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype)))
    {
      tree base_type
	= gnat_type_for_mode (TYPE_MODE (type), TYPE_UNSIGNED (type));
      tree shift_expr
	= convert (base_type,
		   size_binop (MINUS_EXPR,
			       bitsize_int
			       (GET_MODE_BITSIZE (TYPE_MODE (type))),
			       TYPE_RM_SIZE (type)));
      expr
	= convert (type,
		   build_binary_op (RSHIFT_EXPR, base_type,
				    build_binary_op (LSHIFT_EXPR, base_type,
						     convert (base_type, expr),
						     shift_expr),
				    shift_expr));
    }

  /* An unchecked conversion should never raise Constraint_Error.  The code
     below assumes that GCC's conversion routines overflow the same way that
     the underlying hardware does.  This is probably true.  In the rare case
     when it is false, we can rely on the fact that such conversions are
     erroneous anyway.  */
  if (TREE_CODE (expr) == INTEGER_CST)
    TREE_OVERFLOW (expr) = 0;

  /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
     show no longer constant.  */
  if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
      && !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype),
			   OEP_ONLY_CONST))
    TREE_CONSTANT (expr) = 0;

  return expr;
}

/* Return the appropriate GCC tree code for the specified GNAT_TYPE,
   the latter being a record type as predicated by Is_Record_Type.  */

enum tree_code
tree_code_for_record_type (Entity_Id gnat_type)
{
  Node_Id component_list, component;

  /* Return UNION_TYPE if it's an Unchecked_Union whose non-discriminant
     fields are all in the variant part.  Otherwise, return RECORD_TYPE.  */
  if (!Is_Unchecked_Union (gnat_type))
    return RECORD_TYPE;

  gnat_type = Implementation_Base_Type (gnat_type);
  component_list
    = Component_List (Type_Definition (Declaration_Node (gnat_type)));

  for (component = First_Non_Pragma (Component_Items (component_list));
       Present (component);
       component = Next_Non_Pragma (component))
    if (Ekind (Defining_Entity (component)) == E_Component)
      return RECORD_TYPE;

  return UNION_TYPE;
}

/* Return true if GNAT_TYPE is a "double" floating-point type, i.e. whose
   size is equal to 64 bits, or an array of such a type.  Set ALIGN_CLAUSE
   according to the presence of an alignment clause on the type or, if it
   is an array, on the component type.  */

bool
is_double_float_or_array (Entity_Id gnat_type, bool *align_clause)
{
  gnat_type = Underlying_Type (gnat_type);

  *align_clause = Present (Alignment_Clause (gnat_type));

  if (Is_Array_Type (gnat_type))
    {
      gnat_type = Underlying_Type (Component_Type (gnat_type));
      if (Present (Alignment_Clause (gnat_type)))
	*align_clause = true;
    }

  if (!Is_Floating_Point_Type (gnat_type))
    return false;

  if (UI_To_Int (Esize (gnat_type)) != 64)
    return false;

  return true;
}

/* Return true if GNAT_TYPE is a "double" or larger scalar type, i.e. whose
   size is greater or equal to 64 bits, or an array of such a type.  Set
   ALIGN_CLAUSE according to the presence of an alignment clause on the
   type or, if it is an array, on the component type.  */

bool
is_double_scalar_or_array (Entity_Id gnat_type, bool *align_clause)
{
  gnat_type = Underlying_Type (gnat_type);

  *align_clause = Present (Alignment_Clause (gnat_type));

  if (Is_Array_Type (gnat_type))
    {
      gnat_type = Underlying_Type (Component_Type (gnat_type));
      if (Present (Alignment_Clause (gnat_type)))
	*align_clause = true;
    }

  if (!Is_Scalar_Type (gnat_type))
    return false;

  if (UI_To_Int (Esize (gnat_type)) < 64)
    return false;

  return true;
}

/* Return true if GNU_TYPE is suitable as the type of a non-aliased
   component of an aggregate type.  */

bool
type_for_nonaliased_component_p (tree gnu_type)
{
  /* If the type is passed by reference, we may have pointers to the
     component so it cannot be made non-aliased. */
  if (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type))
    return false;

  /* We used to say that any component of aggregate type is aliased
     because the front-end may take 'Reference of it.  The front-end
     has been enhanced in the meantime so as to use a renaming instead
     in most cases, but the back-end can probably take the address of
     such a component too so we go for the conservative stance.

     For instance, we might need the address of any array type, even
     if normally passed by copy, to construct a fat pointer if the
     component is used as an actual for an unconstrained formal.

     Likewise for record types: even if a specific record subtype is
     passed by copy, the parent type might be passed by ref (e.g. if
     it's of variable size) and we might take the address of a child
     component to pass to a parent formal.  We have no way to check
     for such conditions here.  */
  if (AGGREGATE_TYPE_P (gnu_type))
    return false;

  return true;
}

/* Return true if TYPE is a smaller form of ORIG_TYPE.  */

bool
smaller_form_type_p (tree type, tree orig_type)
{
  tree size, osize;

  /* We're not interested in variants here.  */
  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig_type))
    return false;

  /* Like a variant, a packable version keeps the original TYPE_NAME.  */
  if (TYPE_NAME (type) != TYPE_NAME (orig_type))
    return false;

  size = TYPE_SIZE (type);
  osize = TYPE_SIZE (orig_type);

  if (!(TREE_CODE (size) == INTEGER_CST && TREE_CODE (osize) == INTEGER_CST))
    return false;

  return tree_int_cst_lt (size, osize) != 0;
}

/* Keep track of types used at the global level and emit debug info
   for all global types.  */

static GTY (()) tree dummy_global;

void
note_types_used_by_globals (void)
{
  unsigned int i;
  tree iter;

  /* If we have declared types as used at the global level, insert them in
     the global hash table.  We use a dummy variable for this purpose.  */
  if (types_used_by_cur_var_decl && !types_used_by_cur_var_decl->is_empty ())
    {
      struct varpool_node *node;
      char *label;

      ASM_FORMAT_PRIVATE_NAME (label, first_global_object_name, 0);
      dummy_global
	= build_decl (BUILTINS_LOCATION, VAR_DECL, get_identifier (label),
		      void_type_node);
      DECL_HARD_REGISTER (dummy_global) = 1;
      TREE_STATIC (dummy_global) = 1;
      node = varpool_node::get_create (dummy_global);
      node->definition = 1;
      node->force_output = 1;

      while (!types_used_by_cur_var_decl->is_empty ())
	{
	  tree t = types_used_by_cur_var_decl->pop ();
	  types_used_by_var_decl_insert (t, dummy_global);
	}
    }

  /* Output debug information for all global type declarations.  This ensures
     that global types whose compilation cannot been finalized earlier, e.g.
     pointers to Taft amendment types, have their compilation finalized in
     the right context.  */
  FOR_EACH_VEC_SAFE_ELT (type_decls, i, iter)
    if (!DECL_IGNORED_P (iter))
      debug_hooks->type_decl (iter, false);
}

/* ************************************************************************
 * *                           GCC builtins support                       *
 * ************************************************************************ */

/* The general scheme is fairly simple:

   For each builtin function/type to be declared, gnat_install_builtins calls
   internal facilities which eventually get to gnat_pushdecl, which in turn
   tracks the so declared builtin function decls in the 'builtin_decls' global
   datastructure. When an Intrinsic subprogram declaration is processed, we
   search this global datastructure to retrieve the associated BUILT_IN DECL
   node.  */

/* Search the chain of currently available builtin declarations for a node
   corresponding to function NAME (an IDENTIFIER_NODE).  Return the first node
   found, if any, or NULL_TREE otherwise.  */
tree
builtin_decl_for (tree name)
{
  unsigned i;
  tree decl;

  FOR_EACH_VEC_SAFE_ELT (builtin_decls, i, decl)
    if (DECL_NAME (decl) == name)
      return decl;

  return NULL_TREE;
}

/* The code below eventually exposes gnat_install_builtins, which declares
   the builtin types and functions we might need, either internally or as
   user accessible facilities.

   ??? This is a first implementation shot, still in rough shape.  It is
   heavily inspired from the "C" family implementation, with chunks copied
   verbatim from there.

   Two obvious TODO candidates are
   o Use a more efficient name/decl mapping scheme
   o Devise a middle-end infrastructure to avoid having to copy
     pieces between front-ends.  */

/* ----------------------------------------------------------------------- *
 *                         BUILTIN ELEMENTARY TYPES                        *
 * ----------------------------------------------------------------------- */

/* Standard data types to be used in builtin argument declarations.  */

enum c_tree_index
{
    CTI_SIGNED_SIZE_TYPE, /* For format checking only.  */
    CTI_STRING_TYPE,
    CTI_CONST_STRING_TYPE,

    CTI_MAX
};

static tree c_global_trees[CTI_MAX];

#define signed_size_type_node	c_global_trees[CTI_SIGNED_SIZE_TYPE]
#define string_type_node	c_global_trees[CTI_STRING_TYPE]
#define const_string_type_node	c_global_trees[CTI_CONST_STRING_TYPE]

/* ??? In addition some attribute handlers, we currently don't support a
   (small) number of builtin-types, which in turns inhibits support for a
   number of builtin functions.  */
#define wint_type_node    void_type_node
#define intmax_type_node  void_type_node
#define uintmax_type_node void_type_node

/* Build the void_list_node (void_type_node having been created).  */

static tree
build_void_list_node (void)
{
  tree t = build_tree_list (NULL_TREE, void_type_node);
  return t;
}

/* Used to help initialize the builtin-types.def table.  When a type of
   the correct size doesn't exist, use error_mark_node instead of NULL.
   The later results in segfaults even when a decl using the type doesn't
   get invoked.  */

static tree
builtin_type_for_size (int size, bool unsignedp)
{
  tree type = gnat_type_for_size (size, unsignedp);
  return type ? type : error_mark_node;
}

/* Build/push the elementary type decls that builtin functions/types
   will need.  */

static void
install_builtin_elementary_types (void)
{
  signed_size_type_node = gnat_signed_type (size_type_node);
  pid_type_node = integer_type_node;
  void_list_node = build_void_list_node ();

  string_type_node = build_pointer_type (char_type_node);
  const_string_type_node
    = build_pointer_type (build_qualified_type
			  (char_type_node, TYPE_QUAL_CONST));
}

/* ----------------------------------------------------------------------- *
 *                          BUILTIN FUNCTION TYPES                         *
 * ----------------------------------------------------------------------- */

/* Now, builtin function types per se.  */

enum c_builtin_type
{
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6) NAME,
#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7) NAME,
#define DEF_FUNCTION_TYPE_8(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7, ARG8) NAME,
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
				NAME,
#define DEF_FUNCTION_TYPE_VAR_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
				ARG6, ARG7) NAME,
#define DEF_FUNCTION_TYPE_VAR_11(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
				 ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) NAME,
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
#include "builtin-types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_8
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_FUNCTION_TYPE_VAR_7
#undef DEF_FUNCTION_TYPE_VAR_11
#undef DEF_POINTER_TYPE
  BT_LAST
};

typedef enum c_builtin_type builtin_type;

/* A temporary array used in communication with def_fn_type.  */
static GTY(()) tree builtin_types[(int) BT_LAST + 1];

/* A helper function for install_builtin_types.  Build function type
   for DEF with return type RET and N arguments.  If VAR is true, then the
   function should be variadic after those N arguments.

   Takes special care not to ICE if any of the types involved are
   error_mark_node, which indicates that said type is not in fact available
   (see builtin_type_for_size).  In which case the function type as a whole
   should be error_mark_node.  */

static void
def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
{
  tree t;
  tree *args = XALLOCAVEC (tree, n);
  va_list list;
  int i;

  va_start (list, n);
  for (i = 0; i < n; ++i)
    {
      builtin_type a = (builtin_type) va_arg (list, int);
      t = builtin_types[a];
      if (t == error_mark_node)
	goto egress;
      args[i] = t;
    }

  t = builtin_types[ret];
  if (t == error_mark_node)
    goto egress;
  if (var)
    t = build_varargs_function_type_array (t, n, args);
  else
    t = build_function_type_array (t, n, args);

 egress:
  builtin_types[def] = t;
  va_end (list);
}

/* Build the builtin function types and install them in the builtin_types
   array for later use in builtin function decls.  */

static void
install_builtin_function_types (void)
{
  tree va_list_ref_type_node;
  tree va_list_arg_type_node;

  if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
    {
      va_list_arg_type_node = va_list_ref_type_node =
	build_pointer_type (TREE_TYPE (va_list_type_node));
    }
  else
    {
      va_list_arg_type_node = va_list_type_node;
      va_list_ref_type_node = build_reference_type (va_list_type_node);
    }

#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
  builtin_types[ENUM] = VALUE;
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
  def_fn_type (ENUM, RETURN, 0, 0);
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
  def_fn_type (ENUM, RETURN, 0, 1, ARG1);
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
  def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
  def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
  def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5)	\
  def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6)					\
  def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7)					\
  def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
#define DEF_FUNCTION_TYPE_8(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
			    ARG6, ARG7, ARG8)				\
  def_fn_type (ENUM, RETURN, 0, 8, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6,	\
	       ARG7, ARG8);
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
  def_fn_type (ENUM, RETURN, 1, 0);
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
  def_fn_type (ENUM, RETURN, 1, 1, ARG1);
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
  def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
  def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
  def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
  def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
#define DEF_FUNCTION_TYPE_VAR_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
				ARG6, ARG7)				\
  def_fn_type (ENUM, RETURN, 1, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
#define DEF_FUNCTION_TYPE_VAR_11(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
				 ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) \
  def_fn_type (ENUM, RETURN, 1, 11, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6,	\
	       ARG7, ARG8, ARG9, ARG10, ARG11);
#define DEF_POINTER_TYPE(ENUM, TYPE) \
  builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);

#include "builtin-types.def"

#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_8
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_FUNCTION_TYPE_VAR_7
#undef DEF_FUNCTION_TYPE_VAR_11
#undef DEF_POINTER_TYPE
  builtin_types[(int) BT_LAST] = NULL_TREE;
}

/* ----------------------------------------------------------------------- *
 *                            BUILTIN ATTRIBUTES                           *
 * ----------------------------------------------------------------------- */

enum built_in_attribute
{
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
#define DEF_ATTR_STRING(ENUM, VALUE) ENUM,
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_STRING
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
  ATTR_LAST
};

static GTY(()) tree built_in_attributes[(int) ATTR_LAST];

static void
install_builtin_attributes (void)
{
  /* Fill in the built_in_attributes array.  */
#define DEF_ATTR_NULL_TREE(ENUM)				\
  built_in_attributes[(int) ENUM] = NULL_TREE;
#define DEF_ATTR_INT(ENUM, VALUE)				\
  built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
#define DEF_ATTR_STRING(ENUM, VALUE)				\
  built_in_attributes[(int) ENUM] = build_string (strlen (VALUE), VALUE);
#define DEF_ATTR_IDENT(ENUM, STRING)				\
  built_in_attributes[(int) ENUM] = get_identifier (STRING);
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN)	\
  built_in_attributes[(int) ENUM]			\
    = tree_cons (built_in_attributes[(int) PURPOSE],	\
		 built_in_attributes[(int) VALUE],	\
		 built_in_attributes[(int) CHAIN]);
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_STRING
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
}

/* Handle a "const" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_const_attribute (tree *node, tree ARG_UNUSED (name),
			tree ARG_UNUSED (args), int ARG_UNUSED (flags),
			bool *no_add_attrs)
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
    TREE_READONLY (*node) = 1;
  else
    *no_add_attrs = true;

  return NULL_TREE;
}

/* Handle a "nothrow" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name),
			  tree ARG_UNUSED (args), int ARG_UNUSED (flags),
			  bool *no_add_attrs)
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
    TREE_NOTHROW (*node) = 1;
  else
    *no_add_attrs = true;

  return NULL_TREE;
}

/* Handle a "pure" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
		       int ARG_UNUSED (flags), bool *no_add_attrs)
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
    DECL_PURE_P (*node) = 1;
  /* ??? TODO: Support types.  */
  else
    {
      warning (OPT_Wattributes, "%qs attribute ignored",
	       IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle a "no vops" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
			 tree ARG_UNUSED (args), int ARG_UNUSED (flags),
			 bool *ARG_UNUSED (no_add_attrs))
{
  gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
  DECL_IS_NOVOPS (*node) = 1;
  return NULL_TREE;
}

/* Helper for nonnull attribute handling; fetch the operand number
   from the attribute argument list.  */

static bool
get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
{
  /* Verify the arg number is a constant.  */
  if (!tree_fits_uhwi_p (arg_num_expr))
    return false;

  *valp = TREE_INT_CST_LOW (arg_num_expr);
  return true;
}

/* Handle the "nonnull" attribute.  */
static tree
handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
			  tree args, int ARG_UNUSED (flags),
			  bool *no_add_attrs)
{
  tree type = *node;
  unsigned HOST_WIDE_INT attr_arg_num;

  /* If no arguments are specified, all pointer arguments should be
     non-null.  Verify a full prototype is given so that the arguments
     will have the correct types when we actually check them later.  */
  if (!args)
    {
      if (!prototype_p (type))
	{
	  error ("nonnull attribute without arguments on a non-prototype");
	  *no_add_attrs = true;
	}
      return NULL_TREE;
    }

  /* Argument list specified.  Verify that each argument number references
     a pointer argument.  */
  for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
    {
      unsigned HOST_WIDE_INT arg_num = 0, ck_num;

      if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
	{
	  error ("nonnull argument has invalid operand number (argument %lu)",
		 (unsigned long) attr_arg_num);
	  *no_add_attrs = true;
	  return NULL_TREE;
	}

      if (prototype_p (type))
	{
	  function_args_iterator iter;
	  tree argument;

	  function_args_iter_init (&iter, type);
	  for (ck_num = 1; ; ck_num++, function_args_iter_next (&iter))
	    {
	      argument = function_args_iter_cond (&iter);
	      if (!argument || ck_num == arg_num)
		break;
	    }

	  if (!argument
	      || TREE_CODE (argument) == VOID_TYPE)
	    {
	      error ("nonnull argument with out-of-range operand number "
		     "(argument %lu, operand %lu)",
		     (unsigned long) attr_arg_num, (unsigned long) arg_num);
	      *no_add_attrs = true;
	      return NULL_TREE;
	    }

	  if (TREE_CODE (argument) != POINTER_TYPE)
	    {
	      error ("nonnull argument references non-pointer operand "
		     "(argument %lu, operand %lu)",
		   (unsigned long) attr_arg_num, (unsigned long) arg_num);
	      *no_add_attrs = true;
	      return NULL_TREE;
	    }
	}
    }

  return NULL_TREE;
}

/* Handle a "sentinel" attribute.  */

static tree
handle_sentinel_attribute (tree *node, tree name, tree args,
			   int ARG_UNUSED (flags), bool *no_add_attrs)
{
  if (!prototype_p (*node))
    {
      warning (OPT_Wattributes,
	       "%qs attribute requires prototypes with named arguments",
	       IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
    }
  else
    {
      if (!stdarg_p (*node))
        {
	  warning (OPT_Wattributes,
		   "%qs attribute only applies to variadic functions",
		   IDENTIFIER_POINTER (name));
	  *no_add_attrs = true;
	}
    }

  if (args)
    {
      tree position = TREE_VALUE (args);

      if (TREE_CODE (position) != INTEGER_CST)
        {
	  warning (0, "requested position is not an integer constant");
	  *no_add_attrs = true;
	}
      else
        {
	  if (tree_int_cst_lt (position, integer_zero_node))
	    {
	      warning (0, "requested position is less than zero");
	      *no_add_attrs = true;
	    }
	}
    }

  return NULL_TREE;
}

/* Handle a "noreturn" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
			   int ARG_UNUSED (flags), bool *no_add_attrs)
{
  tree type = TREE_TYPE (*node);

  /* See FIXME comment in c_common_attribute_table.  */
  if (TREE_CODE (*node) == FUNCTION_DECL)
    TREE_THIS_VOLATILE (*node) = 1;
  else if (TREE_CODE (type) == POINTER_TYPE
	   && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
    TREE_TYPE (*node)
      = build_pointer_type
	(build_type_variant (TREE_TYPE (type),
			     TYPE_READONLY (TREE_TYPE (type)), 1));
  else
    {
      warning (OPT_Wattributes, "%qs attribute ignored",
	       IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle a "leaf" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_leaf_attribute (tree *node, tree name, tree ARG_UNUSED (args),
		       int ARG_UNUSED (flags), bool *no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
    }
  if (!TREE_PUBLIC (*node))
    {
      warning (OPT_Wattributes, "%qE attribute has no effect", name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle a "always_inline" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_always_inline_attribute (tree *node, tree name, tree ARG_UNUSED (args),
				int ARG_UNUSED (flags), bool *no_add_attrs)
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
    {
      /* Set the attribute and mark it for disregarding inline limits.  */
      DECL_DISREGARD_INLINE_LIMITS (*node) = 1;
    }
  else
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle a "malloc" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
			 int ARG_UNUSED (flags), bool *no_add_attrs)
{
  if (TREE_CODE (*node) == FUNCTION_DECL
      && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
    DECL_IS_MALLOC (*node) = 1;
  else
    {
      warning (OPT_Wattributes, "%qs attribute ignored",
	       IDENTIFIER_POINTER (name));
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Fake handler for attributes we don't properly support.  */

tree
fake_attribute_handler (tree * ARG_UNUSED (node),
			tree ARG_UNUSED (name),
			tree ARG_UNUSED (args),
			int  ARG_UNUSED (flags),
			bool * ARG_UNUSED (no_add_attrs))
{
  return NULL_TREE;
}

/* Handle a "type_generic" attribute.  */

static tree
handle_type_generic_attribute (tree *node, tree ARG_UNUSED (name),
			       tree ARG_UNUSED (args), int ARG_UNUSED (flags),
			       bool * ARG_UNUSED (no_add_attrs))
{
  /* Ensure we have a function type.  */
  gcc_assert (TREE_CODE (*node) == FUNCTION_TYPE);

  /* Ensure we have a variadic function.  */
  gcc_assert (!prototype_p (*node) || stdarg_p (*node));

  return NULL_TREE;
}

/* Handle a "vector_size" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_vector_size_attribute (tree *node, tree name, tree args,
			      int ARG_UNUSED (flags), bool *no_add_attrs)
{
  tree type = *node;
  tree vector_type;

  *no_add_attrs = true;

  /* We need to provide for vector pointers, vector arrays, and
     functions returning vectors.  For example:

       __attribute__((vector_size(16))) short *foo;

     In this case, the mode is SI, but the type being modified is
     HI, so we need to look further.  */
  while (POINTER_TYPE_P (type)
	 || TREE_CODE (type) == FUNCTION_TYPE
	 || TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);

  vector_type = build_vector_type_for_size (type, TREE_VALUE (args), name);
  if (!vector_type)
    return NULL_TREE;

  /* Build back pointers if needed.  */
  *node = reconstruct_complex_type (*node, vector_type);

  return NULL_TREE;
}

/* Handle a "vector_type" attribute; arguments as in
   struct attribute_spec.handler.  */

static tree
handle_vector_type_attribute (tree *node, tree name, tree ARG_UNUSED (args),
			      int ARG_UNUSED (flags), bool *no_add_attrs)
{
  tree type = *node;
  tree vector_type;

  *no_add_attrs = true;

  if (TREE_CODE (type) != ARRAY_TYPE)
    {
      error ("attribute %qs applies to array types only",
	     IDENTIFIER_POINTER (name));
      return NULL_TREE;
    }

  vector_type = build_vector_type_for_array (type, name);
  if (!vector_type)
    return NULL_TREE;

  TYPE_REPRESENTATIVE_ARRAY (vector_type) = type;
  *node = vector_type;

  return NULL_TREE;
}

/* ----------------------------------------------------------------------- *
 *                              BUILTIN FUNCTIONS                          *
 * ----------------------------------------------------------------------- */

/* Worker for DEF_BUILTIN.  Possibly define a builtin function with one or two
   names.  Does not declare a non-__builtin_ function if flag_no_builtin, or
   if nonansi_p and flag_no_nonansi_builtin.  */

static void
def_builtin_1 (enum built_in_function fncode,
	       const char *name,
	       enum built_in_class fnclass,
	       tree fntype, tree libtype,
	       bool both_p, bool fallback_p,
	       bool nonansi_p ATTRIBUTE_UNUSED,
	       tree fnattrs, bool implicit_p)
{
  tree decl;
  const char *libname;

  /* Preserve an already installed decl.  It most likely was setup in advance
     (e.g. as part of the internal builtins) for specific reasons.  */
  if (builtin_decl_explicit (fncode) != NULL_TREE)
    return;

  gcc_assert ((!both_p && !fallback_p)
	      || !strncmp (name, "__builtin_",
			   strlen ("__builtin_")));

  libname = name + strlen ("__builtin_");
  decl = add_builtin_function (name, fntype, fncode, fnclass,
			       (fallback_p ? libname : NULL),
			       fnattrs);
  if (both_p)
    /* ??? This is normally further controlled by command-line options
       like -fno-builtin, but we don't have them for Ada.  */
    add_builtin_function (libname, libtype, fncode, fnclass,
			  NULL, fnattrs);

  set_builtin_decl (fncode, decl, implicit_p);
}

static int flag_isoc94 = 0;
static int flag_isoc99 = 0;
static int flag_isoc11 = 0;

/* Install what the common builtins.def offers.  */

static void
install_builtin_functions (void)
{
#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
		    NONANSI_P, ATTRS, IMPLICIT, COND)			\
  if (NAME && COND)							\
    def_builtin_1 (ENUM, NAME, CLASS,                                   \
                   builtin_types[(int) TYPE],                           \
                   builtin_types[(int) LIBTYPE],                        \
                   BOTH_P, FALLBACK_P, NONANSI_P,                       \
                   built_in_attributes[(int) ATTRS], IMPLICIT);
#include "builtins.def"
#undef DEF_BUILTIN
}

/* ----------------------------------------------------------------------- *
 *                              BUILTIN FUNCTIONS                          *
 * ----------------------------------------------------------------------- */

/* Install the builtin functions we might need.  */

void
gnat_install_builtins (void)
{
  install_builtin_elementary_types ();
  install_builtin_function_types ();
  install_builtin_attributes ();

  /* Install builtins used by generic middle-end pieces first.  Some of these
     know about internal specificities and control attributes accordingly, for
     instance __builtin_alloca vs no-throw and -fstack-check.  We will ignore
     the generic definition from builtins.def.  */
  build_common_builtin_nodes ();

  /* Now, install the target specific builtins, such as the AltiVec family on
     ppc, and the common set as exposed by builtins.def.  */
  targetm.init_builtins ();
  install_builtin_functions ();
}

#include "gt-ada-utils.h"
#include "gtype-ada.h"