1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- G N A T . P E R F E C T _ H A S H . G E N E R A T O R S --
-- --
-- S p e c --
-- --
-- Copyright (C) 2002 Ada Core Technologies, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- This package provides a single generator of static minimal perfect
-- hash functions. No collisions occur and each item can be retrieved
-- from the table in one probe (perfect property). The hash table
-- size corresponds to the exact size of W and *no larger* (minimal
-- property). The key set has to be know in advance (static
-- property). The hash functions are also order preservering. If w2
-- is inserted after w1 in the generator, then f (w1) < f (w2). These
-- hashing functions are convenient for use with realtime applications.
package GNAT.Perfect_Hash.Generators is
Default_K_To_V : constant Float := 2.05;
-- Default ratio for the algorithm. When K is the number of keys,
-- V = (K_To_V) * K is the size of the main table of the hash function.
Default_Pkg_Name : constant String := "Perfect_Hash";
-- Default package name in which the hash function is defined.
Default_Position : constant String := "";
-- The generator allows selection of the character positions used
-- in the hash function. By default, all positions are selected.
type Optimization is (Memory_Space, CPU_Time);
Default_Optimization : constant Optimization := CPU_Time;
-- Optimize either the memory space or the execution time.
Verbose : Boolean := False;
procedure Initialize
(Seed : Natural;
K_To_V : Float := Default_K_To_V;
Optim : Optimization := CPU_Time);
-- Initialize the generator and its internal structures. Set the
-- ratio of vertices over keys in the random graphs. This value
-- has to be greater than 2.0 in order for the algorithm to succeed.
procedure Finalize;
-- Deallocate the internal structures.
procedure Insert (Value : String);
-- Insert a new key in the table.
procedure Compute (Position : String := Default_Position);
-- Compute the hash function. Position allows to define a
-- selection of character positions used in the keywords hash
-- function. Positions can be separated by commas and range like
-- x-y may be used. Character '$' represents the final character
-- of a key. With an empty position, the generator automatically
-- produces positions to reduce the memory usage.
procedure Produce (Pkg_Name : String := Default_Pkg_Name);
-- Generate the hash function package Pkg_Name. This package
-- includes the minimal perfect Hash function.
-- The routines and structures defined below allow producing the
-- hash function using a different way from the procedure above.
-- The procedure Define returns the lengths of an internal table
-- and its item type size. The function Value returns the value of
-- each item in the table.
-- The hash function has the following form:
-- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
-- G is a function based on a graph table [0,n-1] -> [0,m-1]. m is
-- the number of keys. n is an internally computed value and it
-- can be obtained as the length of vector G.
-- F1 and F2 are two functions based on two function tables T1 and
-- T2. Their definition depends on the chosen optimization mode.
-- Only some character positions are used in the keys because they
-- are significant. They are listed in a character position table
-- (P in the pseudo-code below). For instance, in {"jan", "feb",
-- "mar", "apr", "jun", "jul", "aug", "sep", "oct", "nov", "dec"},
-- only positions 2 and 3 are significant (the first character can
-- be ignored). In this example, P = {2, 3}
-- When Optimization is CPU_Time, the first dimension of T1 and T2
-- corresponds to the character position in the key and the second
-- to the character set. As all the character set is not used, we
-- define a used character table which associates a distinct index
-- to each used character (unused characters are mapped to
-- zero). In this case, the second dimension of T1 and T2 is
-- reduced to the used character set (C in the pseudo-code
-- below). Therefore, the hash function has the following:
-- function Hash (S : String) return Natural is
-- F : constant Natural := S'First - 1;
-- L : constant Natural := S'Length;
-- F1, F2 : Natural := 0;
-- J : <t>;
-- begin
-- for K in P'Range loop
-- exit when L < P (K);
-- J := C (S (P (K) + F));
-- F1 := (F1 + Natural (T1 (K, J))) mod <n>;
-- F2 := (F2 + Natural (T2 (K, J))) mod <n>;
-- end loop;
-- return (Natural (G (F1)) + Natural (G (F2))) mod <m>;
-- end Hash;
-- When Optimization is Memory_Space, the first dimension of T1
-- and T2 corresponds to the character position in the key and the
-- second dimension is ignored. T1 and T2 are no longer matrices
-- but vectors. Therefore, the used character table is not
-- available. The hash function has the following form:
-- function Hash (S : String) return Natural is
-- F : constant Natural := S'First - 1;
-- L : constant Natural := S'Length;
-- F1, F2 : Natural := 0;
-- J : <t>;
-- begin
-- for K in P'Range loop
-- exit when L < P (K);
-- J := Character'Pos (S (P (K) + F));
-- F1 := (F1 + Natural (T1 (K) * J)) mod <n>;
-- F2 := (F2 + Natural (T2 (K) * J)) mod <n>;
-- end loop;
-- return (Natural (G (F1)) + Natural (G (F2))) mod <m>;
-- end Hash;
type Table_Name is
(Character_Position,
Used_Character_Set,
Function_Table_1,
Function_Table_2,
Graph_Table);
procedure Define
(Name : Table_Name;
Item_Size : out Natural;
Length_1 : out Natural;
Length_2 : out Natural);
-- Return the definition of the table Name. This includes the
-- length of dimensions 1 and 2 and the size of an unsigned
-- integer item. When Length_2 is zero, the table has only one
-- dimension. All the ranges start from zero.
function Value
(Name : Table_Name;
J : Natural;
K : Natural := 0)
return Natural;
-- Return the value of the component (I, J) of the table
-- Name. When the table has only one dimension, J is ignored.
end GNAT.Perfect_Hash.Generators;
|