1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Inline; use Inline;
with Itypes; use Itypes;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Urealp; use Urealp;
with Validsw; use Validsw;
package body Exp_Util is
-----------------------
-- Local Subprograms --
-----------------------
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is an array
-- component, concatenating the images of each index. To avoid storage
-- leaks, the string is built with successive slice assignments. The flag
-- Dyn indicates whether this is called for the initialization procedure of
-- an array of tasks, or for the name of a dynamically created task that is
-- assigned to an indexed component.
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id;
-- Common processing for Task_Array_Image and Task_Record_Image. Build
-- function body that computes image.
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id);
-- Common processing for Task_Array_Image and Task_Record_Image. Create
-- local variables and assign prefix of name to result string.
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is a record
-- component. Concatenate name of variable with that of selector. The flag
-- Dyn indicates whether this is called for the initialization procedure of
-- record with task components, or for a dynamically created task that is
-- assigned to a selected component.
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id;
-- T is a class-wide type entity, E is the initial expression node that
-- constrains T in case such as: " X: T := E" or "new T'(E)". This function
-- returns the entity of the Equivalent type and inserts on the fly the
-- necessary declaration such as:
--
-- type anon is record
-- _parent : Root_Type (T); constrained with E discriminants (if any)
-- Extension : String (1 .. expr to match size of E);
-- end record;
--
-- This record is compatible with any object of the class of T thanks to
-- the first field and has the same size as E thanks to the second.
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id;
-- Produce a Range node whose bounds are:
-- Low_Bound (Literal_Type) ..
-- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
-- this is used for expanding declarations like X : String := "sdfgdfg";
--
-- If the index type of the target array is not integer, we generate:
-- Low_Bound (Literal_Type) ..
-- Literal_Type'Val
-- (Literal_Type'Pos (Low_Bound (Literal_Type))
-- + (Length (Literal_Typ) -1))
function Make_Non_Empty_Check
(Loc : Source_Ptr;
N : Node_Id) return Node_Id;
-- Produce a boolean expression checking that the unidimensional array
-- node N is not empty.
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id;
-- Create an implicit subtype of CW_Typ attached to node N
function Requires_Cleanup_Actions
(L : List_Id;
For_Package : Boolean;
Nested_Constructs : Boolean) return Boolean;
-- Given a list L, determine whether it contains one of the following:
--
-- 1) controlled objects
-- 2) library-level tagged types
--
-- Flag For_Package should be set when the list comes from a package spec
-- or body. Flag Nested_Constructs should be set when any nested packages
-- declared in L must be processed.
----------------------
-- Adjust_Condition --
----------------------
procedure Adjust_Condition (N : Node_Id) is
begin
if No (N) then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
T : constant Entity_Id := Etype (N);
Ti : Entity_Id;
begin
-- Defend against a call where the argument has no type, or has a
-- type that is not Boolean. This can occur because of prior errors.
if No (T) or else not Is_Boolean_Type (T) then
return;
end if;
-- Apply validity checking if needed
if Validity_Checks_On and Validity_Check_Tests then
Ensure_Valid (N);
end if;
-- Immediate return if standard boolean, the most common case,
-- where nothing needs to be done.
if Base_Type (T) = Standard_Boolean then
return;
end if;
-- Case of zero/non-zero semantics or non-standard enumeration
-- representation. In each case, we rewrite the node as:
-- ityp!(N) /= False'Enum_Rep
-- where ityp is an integer type with large enough size to hold any
-- value of type T.
if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
if Esize (T) <= Esize (Standard_Integer) then
Ti := Standard_Integer;
else
Ti := Standard_Long_Long_Integer;
end if;
Rewrite (N,
Make_Op_Ne (Loc,
Left_Opnd => Unchecked_Convert_To (Ti, N),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Enum_Rep,
Prefix =>
New_Occurrence_Of (First_Literal (T), Loc))));
Analyze_And_Resolve (N, Standard_Boolean);
else
Rewrite (N, Convert_To (Standard_Boolean, N));
Analyze_And_Resolve (N, Standard_Boolean);
end if;
end;
end Adjust_Condition;
------------------------
-- Adjust_Result_Type --
------------------------
procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
begin
-- Ignore call if current type is not Standard.Boolean
if Etype (N) /= Standard_Boolean then
return;
end if;
-- If result is already of correct type, nothing to do. Note that
-- this will get the most common case where everything has a type
-- of Standard.Boolean.
if Base_Type (T) = Standard_Boolean then
return;
else
declare
KP : constant Node_Kind := Nkind (Parent (N));
begin
-- If result is to be used as a Condition in the syntax, no need
-- to convert it back, since if it was changed to Standard.Boolean
-- using Adjust_Condition, that is just fine for this usage.
if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
return;
-- If result is an operand of another logical operation, no need
-- to reset its type, since Standard.Boolean is just fine, and
-- such operations always do Adjust_Condition on their operands.
elsif KP in N_Op_Boolean
or else KP in N_Short_Circuit
or else KP = N_Op_Not
then
return;
-- Otherwise we perform a conversion from the current type, which
-- must be Standard.Boolean, to the desired type.
else
Set_Analyzed (N);
Rewrite (N, Convert_To (T, N));
Analyze_And_Resolve (N, T);
end if;
end;
end if;
end Adjust_Result_Type;
--------------------------
-- Append_Freeze_Action --
--------------------------
procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
Fnode : Node_Id;
begin
Ensure_Freeze_Node (T);
Fnode := Freeze_Node (T);
if No (Actions (Fnode)) then
Set_Actions (Fnode, New_List);
end if;
Append (N, Actions (Fnode));
end Append_Freeze_Action;
---------------------------
-- Append_Freeze_Actions --
---------------------------
procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
Fnode : constant Node_Id := Freeze_Node (T);
begin
if No (L) then
return;
else
if No (Actions (Fnode)) then
Set_Actions (Fnode, L);
else
Append_List (L, Actions (Fnode));
end if;
end if;
end Append_Freeze_Actions;
------------------------------------
-- Build_Allocate_Deallocate_Proc --
------------------------------------
procedure Build_Allocate_Deallocate_Proc
(N : Node_Id;
Is_Allocate : Boolean)
is
Desig_Typ : Entity_Id;
Expr : Node_Id;
Pool_Id : Entity_Id;
Proc_To_Call : Node_Id := Empty;
Ptr_Typ : Entity_Id;
function Find_Finalize_Address (Typ : Entity_Id) return Entity_Id;
-- Locate TSS primitive Finalize_Address in type Typ
function Find_Object (E : Node_Id) return Node_Id;
-- Given an arbitrary expression of an allocator, try to find an object
-- reference in it, otherwise return the original expression.
function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
-- Determine whether subprogram Subp denotes a custom allocate or
-- deallocate.
---------------------------
-- Find_Finalize_Address --
---------------------------
function Find_Finalize_Address (Typ : Entity_Id) return Entity_Id is
Utyp : Entity_Id := Typ;
begin
-- Handle protected class-wide or task class-wide types
if Is_Class_Wide_Type (Utyp) then
if Is_Concurrent_Type (Root_Type (Utyp)) then
Utyp := Root_Type (Utyp);
elsif Is_Private_Type (Root_Type (Utyp))
and then Present (Full_View (Root_Type (Utyp)))
and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
then
Utyp := Full_View (Root_Type (Utyp));
end if;
end if;
-- Handle private types
if Is_Private_Type (Utyp)
and then Present (Full_View (Utyp))
then
Utyp := Full_View (Utyp);
end if;
-- Handle protected and task types
if Is_Concurrent_Type (Utyp)
and then Present (Corresponding_Record_Type (Utyp))
then
Utyp := Corresponding_Record_Type (Utyp);
end if;
Utyp := Underlying_Type (Base_Type (Utyp));
-- Deal with non-tagged derivation of private views. If the parent is
-- now known to be protected, the finalization routine is the one
-- defined on the corresponding record of the ancestor (corresponding
-- records do not automatically inherit operations, but maybe they
-- should???)
if Is_Untagged_Derivation (Typ) then
if Is_Protected_Type (Typ) then
Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
else
Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
if Is_Protected_Type (Utyp) then
Utyp := Corresponding_Record_Type (Utyp);
end if;
end if;
end if;
-- If the underlying_type is a subtype, we are dealing with the
-- completion of a private type. We need to access the base type and
-- generate a conversion to it.
if Utyp /= Base_Type (Utyp) then
pragma Assert (Is_Private_Type (Typ));
Utyp := Base_Type (Utyp);
end if;
return TSS (Utyp, TSS_Finalize_Address);
end Find_Finalize_Address;
-----------------
-- Find_Object --
-----------------
function Find_Object (E : Node_Id) return Node_Id is
Expr : Node_Id;
begin
pragma Assert (Is_Allocate);
Expr := E;
loop
if Nkind_In (Expr, N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Expr := Expression (Expr);
elsif Nkind (Expr) = N_Explicit_Dereference then
Expr := Prefix (Expr);
else
exit;
end if;
end loop;
return Expr;
end Find_Object;
---------------------------------
-- Is_Allocate_Deallocate_Proc --
---------------------------------
function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
begin
-- Look for a subprogram body with only one statement which is a
-- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
if Ekind (Subp) = E_Procedure
and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
then
declare
HSS : constant Node_Id :=
Handled_Statement_Sequence (Parent (Parent (Subp)));
Proc : Entity_Id;
begin
if Present (Statements (HSS))
and then Nkind (First (Statements (HSS))) =
N_Procedure_Call_Statement
then
Proc := Entity (Name (First (Statements (HSS))));
return
Is_RTE (Proc, RE_Allocate_Any_Controlled)
or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
end if;
end;
end if;
return False;
end Is_Allocate_Deallocate_Proc;
-- Start of processing for Build_Allocate_Deallocate_Proc
begin
-- Obtain the attributes of the allocation / deallocation
if Nkind (N) = N_Free_Statement then
Expr := Expression (N);
Ptr_Typ := Base_Type (Etype (Expr));
Proc_To_Call := Procedure_To_Call (N);
else
if Nkind (N) = N_Object_Declaration then
Expr := Expression (N);
else
Expr := N;
end if;
Ptr_Typ := Base_Type (Etype (Expr));
-- The allocator may have been rewritten into something else
if Nkind (Expr) = N_Allocator then
Proc_To_Call := Procedure_To_Call (Expr);
end if;
end if;
Pool_Id := Associated_Storage_Pool (Ptr_Typ);
Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
-- Handle concurrent types
if Is_Concurrent_Type (Desig_Typ)
and then Present (Corresponding_Record_Type (Desig_Typ))
then
Desig_Typ := Corresponding_Record_Type (Desig_Typ);
end if;
-- Do not process allocations / deallocations without a pool
if No (Pool_Id) then
return;
-- Do not process allocations on / deallocations from the secondary
-- stack.
elsif Is_RTE (Pool_Id, RE_SS_Pool) then
return;
-- Do not replicate the machinery if the allocator / free has already
-- been expanded and has a custom Allocate / Deallocate.
elsif Present (Proc_To_Call)
and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
then
return;
end if;
if Needs_Finalization (Desig_Typ) then
-- Certain run-time configurations and targets do not provide support
-- for controlled types.
if Restriction_Active (No_Finalization) then
return;
-- Do nothing if the access type may never allocate / deallocate
-- objects.
elsif No_Pool_Assigned (Ptr_Typ) then
return;
-- Access-to-controlled types are not supported on .NET/JVM since
-- these targets cannot support pools and address arithmetic.
elsif VM_Target /= No_VM then
return;
end if;
-- The allocation / deallocation of a controlled object must be
-- chained on / detached from a finalization master.
pragma Assert (Present (Finalization_Master (Ptr_Typ)));
-- The only other kind of allocation / deallocation supported by this
-- routine is on / from a subpool.
elsif Nkind (Expr) = N_Allocator
and then No (Subpool_Handle_Name (Expr))
then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
Actuals : List_Id;
Fin_Addr_Id : Entity_Id;
Fin_Mas_Act : Node_Id;
Fin_Mas_Id : Entity_Id;
Proc_To_Call : Entity_Id;
Subpool : Node_Id := Empty;
begin
-- Step 1: Construct all the actuals for the call to library routine
-- Allocate_Any_Controlled / Deallocate_Any_Controlled.
-- a) Storage pool
Actuals := New_List (New_Reference_To (Pool_Id, Loc));
if Is_Allocate then
-- b) Subpool
if Nkind (Expr) = N_Allocator then
Subpool := Subpool_Handle_Name (Expr);
end if;
if Present (Subpool) then
Append_To (Actuals, New_Reference_To (Entity (Subpool), Loc));
else
Append_To (Actuals, Make_Null (Loc));
end if;
-- c) Finalization master
if Needs_Finalization (Desig_Typ) then
Fin_Mas_Id := Finalization_Master (Ptr_Typ);
Fin_Mas_Act := New_Reference_To (Fin_Mas_Id, Loc);
-- Handle the case where the master is actually a pointer to a
-- master. This case arises in build-in-place functions.
if Is_Access_Type (Etype (Fin_Mas_Id)) then
Append_To (Actuals, Fin_Mas_Act);
else
Append_To (Actuals,
Make_Attribute_Reference (Loc,
Prefix => Fin_Mas_Act,
Attribute_Name => Name_Unrestricted_Access));
end if;
else
Append_To (Actuals, Make_Null (Loc));
end if;
-- d) Finalize_Address
-- Primitive Finalize_Address is never generated in CodePeer mode
-- since it contains an Unchecked_Conversion.
if Needs_Finalization (Desig_Typ)
and then not CodePeer_Mode
then
Fin_Addr_Id := Find_Finalize_Address (Desig_Typ);
pragma Assert (Present (Fin_Addr_Id));
Append_To (Actuals,
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Fin_Addr_Id, Loc),
Attribute_Name => Name_Unrestricted_Access));
else
Append_To (Actuals, Make_Null (Loc));
end if;
end if;
-- e) Address
-- f) Storage_Size
-- g) Alignment
Append_To (Actuals, New_Reference_To (Addr_Id, Loc));
Append_To (Actuals, New_Reference_To (Size_Id, Loc));
Append_To (Actuals, New_Reference_To (Alig_Id, Loc));
-- h) Is_Controlled
-- Generate a run-time check to determine whether a class-wide object
-- is truly controlled.
if Needs_Finalization (Desig_Typ) then
if Is_Class_Wide_Type (Desig_Typ)
or else Is_Generic_Actual_Type (Desig_Typ)
then
declare
Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
Flag_Expr : Node_Id;
Param : Node_Id;
Temp : Node_Id;
begin
if Is_Allocate then
Temp := Find_Object (Expression (Expr));
else
Temp := Expr;
end if;
-- Processing for generic actuals
if Is_Generic_Actual_Type (Desig_Typ) then
Flag_Expr :=
New_Reference_To (Boolean_Literals
(Needs_Finalization (Base_Type (Desig_Typ))), Loc);
-- Processing for subtype indications
elsif Nkind (Temp) in N_Has_Entity
and then Is_Type (Entity (Temp))
then
Flag_Expr :=
New_Reference_To (Boolean_Literals
(Needs_Finalization (Entity (Temp))), Loc);
-- Generate a runtime check to test the controlled state of
-- an object for the purposes of allocation / deallocation.
else
-- The following case arises when allocating through an
-- interface class-wide type, generate:
--
-- Temp.all
if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
Param :=
Make_Explicit_Dereference (Loc,
Prefix =>
Relocate_Node (Temp));
-- Generate:
-- Temp'Tag
else
Param :=
Make_Attribute_Reference (Loc,
Prefix =>
Relocate_Node (Temp),
Attribute_Name => Name_Tag);
end if;
-- Generate:
-- Needs_Finalization (<Param>)
Flag_Expr :=
Make_Function_Call (Loc,
Name =>
New_Reference_To (RTE (RE_Needs_Finalization), Loc),
Parameter_Associations => New_List (Param));
end if;
-- Create the temporary which represents the finalization
-- state of the expression. Generate:
--
-- F : constant Boolean := <Flag_Expr>;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Flag_Id,
Constant_Present => True,
Object_Definition =>
New_Reference_To (Standard_Boolean, Loc),
Expression => Flag_Expr));
-- The flag acts as the last actual
Append_To (Actuals, New_Reference_To (Flag_Id, Loc));
end;
-- The object is statically known to be controlled
else
Append_To (Actuals, New_Reference_To (Standard_True, Loc));
end if;
else
Append_To (Actuals, New_Reference_To (Standard_False, Loc));
end if;
-- i) On_Subpool
if Is_Allocate then
Append_To (Actuals,
New_Reference_To (Boolean_Literals (Present (Subpool)), Loc));
end if;
-- Step 2: Build a wrapper Allocate / Deallocate which internally
-- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
-- Select the proper routine to call
if Is_Allocate then
Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
else
Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
end if;
-- Create a custom Allocate / Deallocate routine which has identical
-- profile to that of System.Storage_Pools.
Insert_Action (N,
Make_Subprogram_Body (Loc,
Specification =>
-- procedure Pnn
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => New_List (
-- P : Root_Storage_Pool
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Temporary (Loc, 'P'),
Parameter_Type =>
New_Reference_To (RTE (RE_Root_Storage_Pool), Loc)),
-- A : [out] Address
Make_Parameter_Specification (Loc,
Defining_Identifier => Addr_Id,
Out_Present => Is_Allocate,
Parameter_Type =>
New_Reference_To (RTE (RE_Address), Loc)),
-- S : Storage_Count
Make_Parameter_Specification (Loc,
Defining_Identifier => Size_Id,
Parameter_Type =>
New_Reference_To (RTE (RE_Storage_Count), Loc)),
-- L : Storage_Count
Make_Parameter_Specification (Loc,
Defining_Identifier => Alig_Id,
Parameter_Type =>
New_Reference_To (RTE (RE_Storage_Count), Loc)))),
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To (Proc_To_Call, Loc),
Parameter_Associations => Actuals)))));
-- The newly generated Allocate / Deallocate becomes the default
-- procedure to call when the back end processes the allocation /
-- deallocation.
if Is_Allocate then
Set_Procedure_To_Call (Expr, Proc_Id);
else
Set_Procedure_To_Call (N, Proc_Id);
end if;
end;
end Build_Allocate_Deallocate_Proc;
------------------------
-- Build_Runtime_Call --
------------------------
function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
begin
-- If entity is not available, we can skip making the call (this avoids
-- junk duplicated error messages in a number of cases).
if not RTE_Available (RE) then
return Make_Null_Statement (Loc);
else
return
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To (RTE (RE), Loc));
end if;
end Build_Runtime_Call;
----------------------------
-- Build_Task_Array_Image --
----------------------------
-- This function generates the body for a function that constructs the
-- image string for a task that is an array component. The function is
-- local to the init proc for the array type, and is called for each one
-- of the components. The constructed image has the form of an indexed
-- component, whose prefix is the outer variable of the array type.
-- The n-dimensional array type has known indexes Index, Index2...
-- Id_Ref is an indexed component form created by the enclosing init proc.
-- Its successive indexes are Val1, Val2, ... which are the loop variables
-- in the loops that call the individual task init proc on each component.
-- The generated function has the following structure:
-- function F return String is
-- Pref : string renames Task_Name;
-- T1 : String := Index1'Image (Val1);
-- ...
-- Tn : String := indexn'image (Valn);
-- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
-- -- Len includes commas and the end parentheses.
-- Res : String (1..Len);
-- Pos : Integer := Pref'Length;
--
-- begin
-- Res (1 .. Pos) := Pref;
-- Pos := Pos + 1;
-- Res (Pos) := '(';
-- Pos := Pos + 1;
-- Res (Pos .. Pos + T1'Length - 1) := T1;
-- Pos := Pos + T1'Length;
-- Res (Pos) := '.';
-- Pos := Pos + 1;
-- ...
-- Res (Pos .. Pos + Tn'Length - 1) := Tn;
-- Res (Len) := ')';
--
-- return Res;
-- end F;
--
-- Needless to say, multidimensional arrays of tasks are rare enough that
-- the bulkiness of this code is not really a concern.
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id
is
Dims : constant Nat := Number_Dimensions (A_Type);
-- Number of dimensions for array of tasks
Temps : array (1 .. Dims) of Entity_Id;
-- Array of temporaries to hold string for each index
Indx : Node_Id;
-- Index expression
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Running index for substring assignments
Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
-- Name of enclosing variable, prefix of resulting name
Res : Entity_Id;
-- String to hold result
Val : Node_Id;
-- Value of successive indexes
Sum : Node_Id;
-- Expression to compute total size of string
T : Entity_Id;
-- Entity for name at one index position
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
-- For a dynamic task, the name comes from the target variable. For a
-- static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Indx := First_Index (A_Type);
Val := First (Expressions (Id_Ref));
for J in 1 .. Dims loop
T := Make_Temporary (Loc, 'T');
Temps (J) := T;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => T,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Image,
Prefix => New_Occurrence_Of (Etype (Indx), Loc),
Expressions => New_List (New_Copy_Tree (Val)))));
Next_Index (Indx);
Next (Val);
end loop;
Sum := Make_Integer_Literal (Loc, Dims + 1);
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
end loop;
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos ('(')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound => Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1)))),
Right_Opnd => Make_Integer_Literal (Loc, 1)))),
Expression => New_Occurrence_Of (Temps (J), Loc)));
if J < Dims then
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1))))));
Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos (',')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end if;
end loop;
Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Len, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos (')')))));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Array_Image;
----------------------------
-- Build_Task_Image_Decls --
----------------------------
function Build_Task_Image_Decls
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
In_Init_Proc : Boolean := False) return List_Id
is
Decls : constant List_Id := New_List;
T_Id : Entity_Id := Empty;
Decl : Node_Id;
Expr : Node_Id := Empty;
Fun : Node_Id := Empty;
Is_Dyn : constant Boolean :=
Nkind (Parent (Id_Ref)) = N_Assignment_Statement
and then
Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
begin
-- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
-- generate a dummy declaration only.
if Restriction_Active (No_Implicit_Heap_Allocations)
or else Global_Discard_Names
then
T_Id := Make_Temporary (Loc, 'J');
Name_Len := 0;
return
New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
if Nkind (Id_Ref) = N_Identifier
or else Nkind (Id_Ref) = N_Defining_Identifier
then
-- For a simple variable, the image of the task is built from
-- the name of the variable. To avoid possible conflict with the
-- anonymous type created for a single protected object, add a
-- numeric suffix.
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Id_Ref), 'T', 1));
Get_Name_String (Chars (Id_Ref));
Expr :=
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer);
elsif Nkind (Id_Ref) = N_Selected_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
elsif Nkind (Id_Ref) = N_Indexed_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (A_Type), 'N'));
Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
end if;
end if;
if Present (Fun) then
Append (Fun, Decls);
Expr := Make_Function_Call (Loc,
Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
if not In_Init_Proc and then VM_Target = No_VM then
Set_Uses_Sec_Stack (Defining_Entity (Fun));
end if;
end if;
Decl := Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Constant_Present => True,
Expression => Expr);
Append (Decl, Decls);
return Decls;
end Build_Task_Image_Decls;
-------------------------------
-- Build_Task_Image_Function --
-------------------------------
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id
is
Spec : Node_Id;
begin
Append_To (Stats,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Res, Loc)));
Spec := Make_Function_Specification (Loc,
Defining_Unit_Name => Make_Temporary (Loc, 'F'),
Result_Definition => New_Occurrence_Of (Standard_String, Loc));
-- Calls to 'Image use the secondary stack, which must be cleaned up
-- after the task name is built.
return Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
end Build_Task_Image_Function;
-----------------------------
-- Build_Task_Image_Prefix --
-----------------------------
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id)
is
begin
Len := Make_Temporary (Loc, 'L', Sum);
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Len,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
Expression => Sum));
Res := Make_Temporary (Loc, 'R');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Res,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Len, Loc)))))));
Pos := Make_Temporary (Loc, 'P');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pos,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
-- Pos := Prefix'Length;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Prefix, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
-- Res (1 .. Pos) := Prefix;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Pos, Loc))),
Expression => New_Occurrence_Of (Prefix, Loc)));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end Build_Task_Image_Prefix;
-----------------------------
-- Build_Task_Record_Image --
-----------------------------
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id
is
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Index into result
Res : Entity_Id;
-- String to hold result
Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
-- Name of enclosing variable, prefix of resulting name
Sum : Node_Id;
-- Expression to compute total size of string
Sel : Entity_Id;
-- Entity for selector name
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
-- For a dynamic task, the name comes from the target variable. For a
-- static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Sel := Make_Temporary (Loc, 'S');
Get_Name_String (Chars (Selector_Name (Id_Ref)));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Sel,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
-- Res (Pos) := '.';
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos ('.')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
-- Res (Pos .. Len) := Selector;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound => New_Occurrence_Of (Len, Loc))),
Expression => New_Occurrence_Of (Sel, Loc)));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Record_Image;
----------------------------------
-- Component_May_Be_Bit_Aligned --
----------------------------------
function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
UT : Entity_Id;
begin
-- If no component clause, then everything is fine, since the back end
-- never bit-misaligns by default, even if there is a pragma Packed for
-- the record.
if No (Comp) or else No (Component_Clause (Comp)) then
return False;
end if;
UT := Underlying_Type (Etype (Comp));
-- It is only array and record types that cause trouble
if not Is_Record_Type (UT)
and then not Is_Array_Type (UT)
then
return False;
-- If we know that we have a small (64 bits or less) record or small
-- bit-packed array, then everything is fine, since the back end can
-- handle these cases correctly.
elsif Esize (Comp) <= 64
and then (Is_Record_Type (UT)
or else Is_Bit_Packed_Array (UT))
then
return False;
-- Otherwise if the component is not byte aligned, we know we have the
-- nasty unaligned case.
elsif Normalized_First_Bit (Comp) /= Uint_0
or else Esize (Comp) mod System_Storage_Unit /= Uint_0
then
return True;
-- If we are large and byte aligned, then OK at this level
else
return False;
end if;
end Component_May_Be_Bit_Aligned;
-----------------------------------
-- Corresponding_Runtime_Package --
-----------------------------------
function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
Pkg_Id : RTU_Id := RTU_Null;
begin
pragma Assert (Is_Concurrent_Type (Typ));
if Ekind (Typ) in Protected_Kind then
if Has_Entries (Typ)
or else Has_Interrupt_Handler (Typ)
or else (Has_Attach_Handler (Typ)
and then not Restricted_Profile)
-- A protected type without entries that covers an interface and
-- overrides the abstract routines with protected procedures is
-- considered equivalent to a protected type with entries in the
-- context of dispatching select statements. It is sufficient to
-- check for the presence of an interface list in the declaration
-- node to recognize this case.
or else Present (Interface_List (Parent (Typ)))
then
if Abort_Allowed
or else Restriction_Active (No_Entry_Queue) = False
or else Number_Entries (Typ) > 1
or else (Has_Attach_Handler (Typ)
and then not Restricted_Profile)
then
Pkg_Id := System_Tasking_Protected_Objects_Entries;
else
Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
end if;
else
Pkg_Id := System_Tasking_Protected_Objects;
end if;
end if;
return Pkg_Id;
end Corresponding_Runtime_Package;
-------------------------------
-- Convert_To_Actual_Subtype --
-------------------------------
procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
Act_ST : Entity_Id;
begin
Act_ST := Get_Actual_Subtype (Exp);
if Act_ST = Etype (Exp) then
return;
else
Rewrite (Exp,
Convert_To (Act_ST, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Act_ST);
end if;
end Convert_To_Actual_Subtype;
-----------------------------------
-- Current_Sem_Unit_Declarations --
-----------------------------------
function Current_Sem_Unit_Declarations return List_Id is
U : Node_Id := Unit (Cunit (Current_Sem_Unit));
Decls : List_Id;
begin
-- If the current unit is a package body, locate the visible
-- declarations of the package spec.
if Nkind (U) = N_Package_Body then
U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
end if;
if Nkind (U) = N_Package_Declaration then
U := Specification (U);
Decls := Visible_Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Visible_Declarations (U, Decls);
end if;
else
Decls := Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Declarations (U, Decls);
end if;
end if;
return Decls;
end Current_Sem_Unit_Declarations;
-----------------------
-- Duplicate_Subexpr --
-----------------------
function Duplicate_Subexpr
(Exp : Node_Id;
Name_Req : Boolean := False) return Node_Id
is
begin
Remove_Side_Effects (Exp, Name_Req);
return New_Copy_Tree (Exp);
end Duplicate_Subexpr;
---------------------------------
-- Duplicate_Subexpr_No_Checks --
---------------------------------
function Duplicate_Subexpr_No_Checks
(Exp : Node_Id;
Name_Req : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects (Exp, Name_Req);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (New_Exp);
return New_Exp;
end Duplicate_Subexpr_No_Checks;
-----------------------------------
-- Duplicate_Subexpr_Move_Checks --
-----------------------------------
function Duplicate_Subexpr_Move_Checks
(Exp : Node_Id;
Name_Req : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects (Exp, Name_Req);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (Exp);
return New_Exp;
end Duplicate_Subexpr_Move_Checks;
--------------------
-- Ensure_Defined --
--------------------
procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
IR : Node_Id;
begin
-- An itype reference must only be created if this is a local itype, so
-- that gigi can elaborate it on the proper objstack.
if Is_Itype (Typ)
and then Scope (Typ) = Current_Scope
then
IR := Make_Itype_Reference (Sloc (N));
Set_Itype (IR, Typ);
Insert_Action (N, IR);
end if;
end Ensure_Defined;
--------------------
-- Entry_Names_OK --
--------------------
function Entry_Names_OK return Boolean is
begin
return
not Restricted_Profile
and then not Global_Discard_Names
and then not Restriction_Active (No_Implicit_Heap_Allocations)
and then not Restriction_Active (No_Local_Allocators);
end Entry_Names_OK;
---------------------
-- Evolve_And_Then --
---------------------
procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_And_Then (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_And_Then;
--------------------
-- Evolve_Or_Else --
--------------------
procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_Or_Else (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_Or_Else;
------------------------------
-- Expand_Subtype_From_Expr --
------------------------------
-- This function is applicable for both static and dynamic allocation of
-- objects which are constrained by an initial expression. Basically it
-- transforms an unconstrained subtype indication into a constrained one.
-- The expression may also be transformed in certain cases in order to
-- avoid multiple evaluation. In the static allocation case, the general
-- scheme is:
-- Val : T := Expr;
-- is transformed into
-- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
--
-- Here are the main cases :
--
-- <if Expr is a Slice>
-- Val : T ([Index_Subtype (Expr)]) := Expr;
--
-- <elsif Expr is a String Literal>
-- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
--
-- <elsif Expr is Constrained>
-- subtype T is Type_Of_Expr
-- Val : T := Expr;
--
-- <elsif Expr is an entity_name>
-- Val : T (constraints taken from Expr) := Expr;
--
-- <else>
-- type Axxx is access all T;
-- Rval : Axxx := Expr'ref;
-- Val : T (constraints taken from Rval) := Rval.all;
-- ??? note: when the Expression is allocated in the secondary stack
-- we could use it directly instead of copying it by declaring
-- Val : T (...) renames Rval.all
procedure Expand_Subtype_From_Expr
(N : Node_Id;
Unc_Type : Entity_Id;
Subtype_Indic : Node_Id;
Exp : Node_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Exp_Typ : constant Entity_Id := Etype (Exp);
T : Entity_Id;
begin
-- In general we cannot build the subtype if expansion is disabled,
-- because internal entities may not have been defined. However, to
-- avoid some cascaded errors, we try to continue when the expression is
-- an array (or string), because it is safe to compute the bounds. It is
-- in fact required to do so even in a generic context, because there
-- may be constants that depend on the bounds of a string literal, both
-- standard string types and more generally arrays of characters.
if not Expander_Active
and then (No (Etype (Exp))
or else not Is_String_Type (Etype (Exp)))
then
return;
end if;
if Nkind (Exp) = N_Slice then
declare
Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
begin
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List
(New_Reference_To (Slice_Type, Loc)))));
-- This subtype indication may be used later for constraint checks
-- we better make sure that if a variable was used as a bound of
-- of the original slice, its value is frozen.
Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
end;
elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Literal_Range (Loc,
Literal_Typ => Exp_Typ)))));
elsif Is_Constrained (Exp_Typ)
and then not Is_Class_Wide_Type (Unc_Type)
then
if Is_Itype (Exp_Typ) then
-- Within an initialization procedure, a selected component
-- denotes a component of the enclosing record, and it appears as
-- an actual in a call to its own initialization procedure. If
-- this component depends on the outer discriminant, we must
-- generate the proper actual subtype for it.
if Nkind (Exp) = N_Selected_Component
and then Within_Init_Proc
then
declare
Decl : constant Node_Id :=
Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
begin
if Present (Decl) then
Insert_Action (N, Decl);
T := Defining_Identifier (Decl);
else
T := Exp_Typ;
end if;
end;
-- No need to generate a new one (new what???)
else
T := Exp_Typ;
end if;
else
T := Make_Temporary (Loc, 'T');
Insert_Action (N,
Make_Subtype_Declaration (Loc,
Defining_Identifier => T,
Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
-- This type is marked as an itype even though it has an explicit
-- declaration since otherwise Is_Generic_Actual_Type can get
-- set, resulting in the generation of spurious errors. (See
-- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
Set_Is_Itype (T);
Set_Associated_Node_For_Itype (T, Exp);
end if;
Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
-- Nothing needs to be done for private types with unknown discriminants
-- if the underlying type is not an unconstrained composite type or it
-- is an unchecked union.
elsif Is_Private_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
or else Is_Constrained (Underlying_Type (Unc_Type))
or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
then
null;
-- Case of derived type with unknown discriminants where the parent type
-- also has unknown discriminants.
elsif Is_Record_Type (Unc_Type)
and then not Is_Class_Wide_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
then
-- Nothing to be done if no underlying record view available
if No (Underlying_Record_View (Unc_Type)) then
null;
-- Otherwise use the Underlying_Record_View to create the proper
-- constrained subtype for an object of a derived type with unknown
-- discriminants.
else
Remove_Side_Effects (Exp);
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
end if;
-- Renamings of class-wide interface types require no equivalent
-- constrained type declarations because we only need to reference
-- the tag component associated with the interface. The same is
-- presumably true for class-wide types in general, so this test
-- is broadened to include all class-wide renamings, which also
-- avoids cases of unbounded recursion in Remove_Side_Effects.
-- (Is this really correct, or are there some cases of class-wide
-- renamings that require action in this procedure???)
elsif Present (N)
and then Nkind (N) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Unc_Type)
then
null;
-- In Ada95 nothing to be done if the type of the expression is limited,
-- because in this case the expression cannot be copied, and its use can
-- only be by reference.
-- In Ada2005, the context can be an object declaration whose expression
-- is a function that returns in place. If the nominal subtype has
-- unknown discriminants, the call still provides constraints on the
-- object, and we have to create an actual subtype from it.
-- If the type is class-wide, the expression is dynamically tagged and
-- we do not create an actual subtype either. Ditto for an interface.
-- For now this applies only if the type is immutably limited, and the
-- function being called is build-in-place. This will have to be revised
-- when build-in-place functions are generalized to other types.
elsif Is_Immutably_Limited_Type (Exp_Typ)
and then
(Is_Class_Wide_Type (Exp_Typ)
or else Is_Interface (Exp_Typ)
or else not Has_Unknown_Discriminants (Exp_Typ)
or else not Is_Composite_Type (Unc_Type))
then
null;
-- For limited objects initialized with build in place function calls,
-- nothing to be done; otherwise we prematurely introduce an N_Reference
-- node in the expression initializing the object, which breaks the
-- circuitry that detects and adds the additional arguments to the
-- called function.
elsif Is_Build_In_Place_Function_Call (Exp) then
null;
else
Remove_Side_Effects (Exp);
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Unc_Type));
end if;
end Expand_Subtype_From_Expr;
--------------------
-- Find_Init_Call --
--------------------
function Find_Init_Call
(Var : Entity_Id;
Rep_Clause : Node_Id) return Node_Id
is
Typ : constant Entity_Id := Etype (Var);
Init_Proc : Entity_Id;
-- Initialization procedure for Typ
function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
-- Look for init call for Var starting at From and scanning the
-- enclosing list until Rep_Clause or the end of the list is reached.
----------------------------
-- Find_Init_Call_In_List --
----------------------------
function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
Init_Call : Node_Id;
begin
Init_Call := From;
while Present (Init_Call) and then Init_Call /= Rep_Clause loop
if Nkind (Init_Call) = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (Init_Call))
and then Entity (Name (Init_Call)) = Init_Proc
then
return Init_Call;
end if;
Next (Init_Call);
end loop;
return Empty;
end Find_Init_Call_In_List;
Init_Call : Node_Id;
-- Start of processing for Find_Init_Call
begin
if not Has_Non_Null_Base_Init_Proc (Typ) then
-- No init proc for the type, so obviously no call to be found
return Empty;
end if;
Init_Proc := Base_Init_Proc (Typ);
-- First scan the list containing the declaration of Var
Init_Call := Find_Init_Call_In_List (From => Next (Parent (Var)));
-- If not found, also look on Var's freeze actions list, if any, since
-- the init call may have been moved there (case of an address clause
-- applying to Var).
if No (Init_Call) and then Present (Freeze_Node (Var)) then
Init_Call :=
Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
end if;
return Init_Call;
end Find_Init_Call;
------------------------
-- Find_Interface_ADT --
------------------------
function Find_Interface_ADT
(T : Entity_Id;
Iface : Entity_Id) return Elmt_Id
is
ADT : Elmt_Id;
Typ : Entity_Id := T;
begin
pragma Assert (Is_Interface (Iface));
-- Handle private types
if Has_Private_Declaration (Typ)
and then Present (Full_View (Typ))
then
Typ := Full_View (Typ);
end if;
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
pragma Assert
(not Is_Class_Wide_Type (Typ)
and then Ekind (Typ) /= E_Incomplete_Type);
if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
return First_Elmt (Access_Disp_Table (Typ));
else
ADT :=
Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
while Present (ADT)
and then Present (Related_Type (Node (ADT)))
and then Related_Type (Node (ADT)) /= Iface
and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
Use_Full_View => True)
loop
Next_Elmt (ADT);
end loop;
pragma Assert (Present (Related_Type (Node (ADT))));
return ADT;
end if;
end Find_Interface_ADT;
------------------------
-- Find_Interface_Tag --
------------------------
function Find_Interface_Tag
(T : Entity_Id;
Iface : Entity_Id) return Entity_Id
is
AI_Tag : Entity_Id;
Found : Boolean := False;
Typ : Entity_Id := T;
procedure Find_Tag (Typ : Entity_Id);
-- Internal subprogram used to recursively climb to the ancestors
--------------
-- Find_Tag --
--------------
procedure Find_Tag (Typ : Entity_Id) is
AI_Elmt : Elmt_Id;
AI : Node_Id;
begin
-- This routine does not handle the case in which the interface is an
-- ancestor of Typ. That case is handled by the enclosing subprogram.
pragma Assert (Typ /= Iface);
-- Climb to the root type handling private types
if Present (Full_View (Etype (Typ))) then
if Full_View (Etype (Typ)) /= Typ then
Find_Tag (Full_View (Etype (Typ)));
end if;
elsif Etype (Typ) /= Typ then
Find_Tag (Etype (Typ));
end if;
-- Traverse the list of interfaces implemented by the type
if not Found
and then Present (Interfaces (Typ))
and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
then
-- Skip the tag associated with the primary table
pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
pragma Assert (Present (AI_Tag));
AI_Elmt := First_Elmt (Interfaces (Typ));
while Present (AI_Elmt) loop
AI := Node (AI_Elmt);
if AI = Iface
or else Is_Ancestor (Iface, AI, Use_Full_View => True)
then
Found := True;
return;
end if;
AI_Tag := Next_Tag_Component (AI_Tag);
Next_Elmt (AI_Elmt);
end loop;
end if;
end Find_Tag;
-- Start of processing for Find_Interface_Tag
begin
pragma Assert (Is_Interface (Iface));
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Handle class-wide types
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
-- Handle private types
if Has_Private_Declaration (Typ)
and then Present (Full_View (Typ))
then
Typ := Full_View (Typ);
end if;
-- Handle entities from the limited view
if Ekind (Typ) = E_Incomplete_Type then
pragma Assert (Present (Non_Limited_View (Typ)));
Typ := Non_Limited_View (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
-- If the interface is an ancestor of the type, then it shared the
-- primary dispatch table.
if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
return First_Tag_Component (Typ);
-- Otherwise we need to search for its associated tag component
else
Find_Tag (Typ);
pragma Assert (Found);
return AI_Tag;
end if;
end Find_Interface_Tag;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
Prim : Elmt_Id;
Typ : Entity_Id := T;
Op : Entity_Id;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- Loop through primitive operations
Prim := First_Elmt (Primitive_Operations (Typ));
while Present (Prim) loop
Op := Node (Prim);
-- We can retrieve primitive operations by name if it is an internal
-- name. For equality we must check that both of its operands have
-- the same type, to avoid confusion with user-defined equalities
-- than may have a non-symmetric signature.
exit when Chars (Op) = Name
and then
(Name /= Name_Op_Eq
or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
Next_Elmt (Prim);
-- Raise Program_Error if no primitive found
if No (Prim) then
raise Program_Error;
end if;
end loop;
return Node (Prim);
end Find_Prim_Op;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op
(T : Entity_Id;
Name : TSS_Name_Type) return Entity_Id
is
Inher_Op : Entity_Id := Empty;
Own_Op : Entity_Id := Empty;
Prim_Elmt : Elmt_Id;
Prim_Id : Entity_Id;
Typ : Entity_Id := T;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- This search is based on the assertion that the dispatching version
-- of the TSS routine always precedes the real primitive.
Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Prim_Elmt) loop
Prim_Id := Node (Prim_Elmt);
if Is_TSS (Prim_Id, Name) then
if Present (Alias (Prim_Id)) then
Inher_Op := Prim_Id;
else
Own_Op := Prim_Id;
end if;
end if;
Next_Elmt (Prim_Elmt);
end loop;
if Present (Own_Op) then
return Own_Op;
elsif Present (Inher_Op) then
return Inher_Op;
else
raise Program_Error;
end if;
end Find_Prim_Op;
----------------------------
-- Find_Protection_Object --
----------------------------
function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
S := Scop;
while Present (S) loop
if (Ekind (S) = E_Entry
or else Ekind (S) = E_Entry_Family
or else Ekind (S) = E_Function
or else Ekind (S) = E_Procedure)
and then Present (Protection_Object (S))
then
return Protection_Object (S);
end if;
S := Scope (S);
end loop;
-- If we do not find a Protection object in the scope chain, then
-- something has gone wrong, most likely the object was never created.
raise Program_Error;
end Find_Protection_Object;
--------------------------
-- Find_Protection_Type --
--------------------------
function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
Comp : Entity_Id;
Typ : Entity_Id := Conc_Typ;
begin
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
Comp := First_Component (Typ);
while Present (Comp) loop
if Chars (Comp) = Name_uObject then
return Base_Type (Etype (Comp));
end if;
Next_Component (Comp);
end loop;
-- The corresponding record of a protected type should always have an
-- _object field.
raise Program_Error;
end Find_Protection_Type;
----------------------
-- Force_Evaluation --
----------------------
procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
begin
Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
end Force_Evaluation;
---------------------------------
-- Fully_Qualified_Name_String --
---------------------------------
function Fully_Qualified_Name_String (E : Entity_Id) return String_Id is
procedure Internal_Full_Qualified_Name (E : Entity_Id);
-- Compute recursively the qualified name without NUL at the end, adding
-- it to the currently started string being generated
----------------------------------
-- Internal_Full_Qualified_Name --
----------------------------------
procedure Internal_Full_Qualified_Name (E : Entity_Id) is
Ent : Entity_Id;
begin
-- Deal properly with child units
if Nkind (E) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (E);
else
Ent := E;
end if;
-- Compute qualification recursively (only "Standard" has no scope)
if Present (Scope (Scope (Ent))) then
Internal_Full_Qualified_Name (Scope (Ent));
Store_String_Char (Get_Char_Code ('.'));
end if;
-- Every entity should have a name except some expanded blocks
-- don't bother about those.
if Chars (Ent) = No_Name then
return;
end if;
-- Generates the entity name in upper case
Get_Decoded_Name_String (Chars (Ent));
Set_All_Upper_Case;
Store_String_Chars (Name_Buffer (1 .. Name_Len));
return;
end Internal_Full_Qualified_Name;
-- Start of processing for Full_Qualified_Name
begin
Start_String;
Internal_Full_Qualified_Name (E);
Store_String_Char (Get_Char_Code (ASCII.NUL));
return End_String;
end Fully_Qualified_Name_String;
------------------------
-- Generate_Poll_Call --
------------------------
procedure Generate_Poll_Call (N : Node_Id) is
begin
-- No poll call if polling not active
if not Polling_Required then
return;
-- Otherwise generate require poll call
else
Insert_Before_And_Analyze (N,
Make_Procedure_Call_Statement (Sloc (N),
Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
end if;
end Generate_Poll_Call;
---------------------------------
-- Get_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Set_Current_Value_Condition. In the Get procedure, we
-- interpret Current_Value fields set by the Set procedure, so the two
-- procedures need to be closely coordinated.
procedure Get_Current_Value_Condition
(Var : Node_Id;
Op : out Node_Kind;
Val : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (Var);
Ent : constant Entity_Id := Entity (Var);
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean);
-- N is an expression which holds either True (S = True) or False (S =
-- False) in the condition. This procedure digs out the expression and
-- if it refers to Ent, sets Op and Val appropriately.
-------------------------------------
-- Process_Current_Value_Condition --
-------------------------------------
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean)
is
Cond : Node_Id;
Sens : Boolean;
begin
Cond := N;
Sens := S;
-- Deal with NOT operators, inverting sense
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
Sens := not Sens;
end loop;
-- Deal with AND THEN and AND cases
if Nkind (Cond) = N_And_Then
or else Nkind (Cond) = N_Op_And
then
-- Don't ever try to invert a condition that is of the form of an
-- AND or AND THEN (since we are not doing sufficiently general
-- processing to allow this).
if Sens = False then
Op := N_Empty;
Val := Empty;
return;
end if;
-- Recursively process AND and AND THEN branches
Process_Current_Value_Condition (Left_Opnd (Cond), True);
if Op /= N_Empty then
return;
end if;
Process_Current_Value_Condition (Right_Opnd (Cond), True);
return;
-- Case of relational operator
elsif Nkind (Cond) in N_Op_Compare then
Op := Nkind (Cond);
-- Invert sense of test if inverted test
if Sens = False then
case Op is
when N_Op_Eq => Op := N_Op_Ne;
when N_Op_Ne => Op := N_Op_Eq;
when N_Op_Lt => Op := N_Op_Ge;
when N_Op_Gt => Op := N_Op_Le;
when N_Op_Le => Op := N_Op_Gt;
when N_Op_Ge => Op := N_Op_Lt;
when others => raise Program_Error;
end case;
end if;
-- Case of entity op value
if Is_Entity_Name (Left_Opnd (Cond))
and then Ent = Entity (Left_Opnd (Cond))
and then Compile_Time_Known_Value (Right_Opnd (Cond))
then
Val := Right_Opnd (Cond);
-- Case of value op entity
elsif Is_Entity_Name (Right_Opnd (Cond))
and then Ent = Entity (Right_Opnd (Cond))
and then Compile_Time_Known_Value (Left_Opnd (Cond))
then
Val := Left_Opnd (Cond);
-- We are effectively swapping operands
case Op is
when N_Op_Eq => null;
when N_Op_Ne => null;
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Le => Op := N_Op_Ge;
when N_Op_Ge => Op := N_Op_Le;
when others => raise Program_Error;
end case;
else
Op := N_Empty;
end if;
return;
-- Case of Boolean variable reference, return as though the
-- reference had said var = True.
else
if Is_Entity_Name (Cond)
and then Ent = Entity (Cond)
then
Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
if Sens = False then
Op := N_Op_Ne;
else
Op := N_Op_Eq;
end if;
end if;
end if;
end Process_Current_Value_Condition;
-- Start of processing for Get_Current_Value_Condition
begin
Op := N_Empty;
Val := Empty;
-- Immediate return, nothing doing, if this is not an object
if Ekind (Ent) not in Object_Kind then
return;
end if;
-- Otherwise examine current value
declare
CV : constant Node_Id := Current_Value (Ent);
Sens : Boolean;
Stm : Node_Id;
begin
-- If statement. Condition is known true in THEN section, known False
-- in any ELSIF or ELSE part, and unknown outside the IF statement.
if Nkind (CV) = N_If_Statement then
-- Before start of IF statement
if Loc < Sloc (CV) then
return;
-- After end of IF statement
elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
return;
end if;
-- At this stage we know that we are within the IF statement, but
-- unfortunately, the tree does not record the SLOC of the ELSE so
-- we cannot use a simple SLOC comparison to distinguish between
-- the then/else statements, so we have to climb the tree.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= CV loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so now we can tell if we are within
-- the THEN statements.
if Is_List_Member (N)
and then List_Containing (N) = Then_Statements (CV)
then
Sens := True;
-- If the variable reference does not come from source, we
-- cannot reliably tell whether it appears in the else part.
-- In particular, if it appears in generated code for a node
-- that requires finalization, it may be attached to a list
-- that has not been yet inserted into the code. For now,
-- treat it as unknown.
elsif not Comes_From_Source (N) then
return;
-- Otherwise we must be in ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- ELSIF part. Condition is known true within the referenced
-- ELSIF, known False in any subsequent ELSIF or ELSE part,
-- and unknown before the ELSE part or after the IF statement.
elsif Nkind (CV) = N_Elsif_Part then
-- if the Elsif_Part had condition_actions, the elsif has been
-- rewritten as a nested if, and the original elsif_part is
-- detached from the tree, so there is no way to obtain useful
-- information on the current value of the variable.
-- Can this be improved ???
if No (Parent (CV)) then
return;
end if;
Stm := Parent (CV);
-- Before start of ELSIF part
if Loc < Sloc (CV) then
return;
-- After end of IF statement
elsif Loc >= Sloc (Stm) +
Text_Ptr (UI_To_Int (End_Span (Stm)))
then
return;
end if;
-- Again we lack the SLOC of the ELSE, so we need to climb the
-- tree to see if we are within the ELSIF part in question.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= Stm loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so see if is the ELSIF part we want.
-- the THEN statements.
if N = CV then
Sens := True;
-- Otherwise we must be in subsequent ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- Iteration scheme of while loop. The condition is known to be
-- true within the body of the loop.
elsif Nkind (CV) = N_Iteration_Scheme then
declare
Loop_Stmt : constant Node_Id := Parent (CV);
begin
-- Before start of body of loop
if Loc < Sloc (Loop_Stmt) then
return;
-- After end of LOOP statement
elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
return;
-- We are within the body of the loop
else
Sens := True;
end if;
end;
-- All other cases of Current_Value settings
else
return;
end if;
-- If we fall through here, then we have a reportable condition, Sens
-- is True if the condition is true and False if it needs inverting.
Process_Current_Value_Condition (Condition (CV), Sens);
end;
end Get_Current_Value_Condition;
---------------------
-- Get_Stream_Size --
---------------------
function Get_Stream_Size (E : Entity_Id) return Uint is
begin
-- If we have a Stream_Size clause for this type use it
if Has_Stream_Size_Clause (E) then
return Static_Integer (Expression (Stream_Size_Clause (E)));
-- Otherwise the Stream_Size if the size of the type
else
return Esize (E);
end if;
end Get_Stream_Size;
---------------------------
-- Has_Access_Constraint --
---------------------------
function Has_Access_Constraint (E : Entity_Id) return Boolean is
Disc : Entity_Id;
T : constant Entity_Id := Etype (E);
begin
if Has_Per_Object_Constraint (E)
and then Has_Discriminants (T)
then
Disc := First_Discriminant (T);
while Present (Disc) loop
if Is_Access_Type (Etype (Disc)) then
return True;
end if;
Next_Discriminant (Disc);
end loop;
return False;
else
return False;
end if;
end Has_Access_Constraint;
----------------------------------
-- Has_Following_Address_Clause --
----------------------------------
-- Should this function check the private part in a package ???
function Has_Following_Address_Clause (D : Node_Id) return Boolean is
Id : constant Entity_Id := Defining_Identifier (D);
Decl : Node_Id;
begin
Decl := Next (D);
while Present (Decl) loop
if Nkind (Decl) = N_At_Clause
and then Chars (Identifier (Decl)) = Chars (Id)
then
return True;
elsif Nkind (Decl) = N_Attribute_Definition_Clause
and then Chars (Decl) = Name_Address
and then Chars (Name (Decl)) = Chars (Id)
then
return True;
end if;
Next (Decl);
end loop;
return False;
end Has_Following_Address_Clause;
--------------------
-- Homonym_Number --
--------------------
function Homonym_Number (Subp : Entity_Id) return Nat is
Count : Nat;
Hom : Entity_Id;
begin
Count := 1;
Hom := Homonym (Subp);
while Present (Hom) loop
if Scope (Hom) = Scope (Subp) then
Count := Count + 1;
end if;
Hom := Homonym (Hom);
end loop;
return Count;
end Homonym_Number;
-----------------------------------
-- In_Library_Level_Package_Body --
-----------------------------------
function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
begin
-- First determine whether the entity appears at the library level, then
-- look at the containing unit.
if Is_Library_Level_Entity (Id) then
declare
Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
begin
return Nkind (Unit (Container)) = N_Package_Body;
end;
end if;
return False;
end In_Library_Level_Package_Body;
------------------------------
-- In_Unconditional_Context --
------------------------------
function In_Unconditional_Context (Node : Node_Id) return Boolean is
P : Node_Id;
begin
P := Node;
while Present (P) loop
case Nkind (P) is
when N_Subprogram_Body =>
return True;
when N_If_Statement =>
return False;
when N_Loop_Statement =>
return False;
when N_Case_Statement =>
return False;
when others =>
P := Parent (P);
end case;
end loop;
return False;
end In_Unconditional_Context;
-------------------
-- Insert_Action --
-------------------
procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
begin
if Present (Ins_Action) then
Insert_Actions (Assoc_Node, New_List (Ins_Action));
end if;
end Insert_Action;
-- Version with check(s) suppressed
procedure Insert_Action
(Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
is
begin
Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
end Insert_Action;
-------------------------
-- Insert_Action_After --
-------------------------
procedure Insert_Action_After
(Assoc_Node : Node_Id;
Ins_Action : Node_Id)
is
begin
Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
end Insert_Action_After;
--------------------
-- Insert_Actions --
--------------------
procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
N : Node_Id;
P : Node_Id;
Wrapped_Node : Node_Id := Empty;
begin
if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
return;
end if;
-- Ignore insert of actions from inside default expression (or other
-- similar "spec expression") in the special spec-expression analyze
-- mode. Any insertions at this point have no relevance, since we are
-- only doing the analyze to freeze the types of any static expressions.
-- See section "Handling of Default Expressions" in the spec of package
-- Sem for further details.
if In_Spec_Expression then
return;
end if;
-- If the action derives from stuff inside a record, then the actions
-- are attached to the current scope, to be inserted and analyzed on
-- exit from the scope. The reason for this is that we may also be
-- generating freeze actions at the same time, and they must eventually
-- be elaborated in the correct order.
if Is_Record_Type (Current_Scope)
and then not Is_Frozen (Current_Scope)
then
if No (Scope_Stack.Table
(Scope_Stack.Last).Pending_Freeze_Actions)
then
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
Ins_Actions;
else
Append_List
(Ins_Actions,
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
end if;
return;
end if;
-- We now intend to climb up the tree to find the right point to
-- insert the actions. We start at Assoc_Node, unless this node is a
-- subexpression in which case we start with its parent. We do this for
-- two reasons. First it speeds things up. Second, if Assoc_Node is
-- itself one of the special nodes like N_And_Then, then we assume that
-- an initial request to insert actions for such a node does not expect
-- the actions to get deposited in the node for later handling when the
-- node is expanded, since clearly the node is being dealt with by the
-- caller. Note that in the subexpression case, N is always the child we
-- came from.
-- N_Raise_xxx_Error is an annoying special case, it is a statement if
-- it has type Standard_Void_Type, and a subexpression otherwise.
-- otherwise. Procedure attribute references are also statements.
if Nkind (Assoc_Node) in N_Subexpr
and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
or else Etype (Assoc_Node) /= Standard_Void_Type)
and then (Nkind (Assoc_Node) /= N_Attribute_Reference
or else
not Is_Procedure_Attribute_Name
(Attribute_Name (Assoc_Node)))
then
P := Assoc_Node; -- ??? does not agree with above!
N := Parent (Assoc_Node);
-- Non-subexpression case. Note that N is initially Empty in this case
-- (N is only guaranteed Non-Empty in the subexpr case).
else
P := Assoc_Node;
N := Empty;
end if;
-- Capture root of the transient scope
if Scope_Is_Transient then
Wrapped_Node := Node_To_Be_Wrapped;
end if;
loop
pragma Assert (Present (P));
case Nkind (P) is
-- Case of right operand of AND THEN or OR ELSE. Put the actions
-- in the Actions field of the right operand. They will be moved
-- out further when the AND THEN or OR ELSE operator is expanded.
-- Nothing special needs to be done for the left operand since
-- in that case the actions are executed unconditionally.
when N_Short_Circuit =>
if N = Right_Opnd (P) then
-- We are now going to either append the actions to the
-- actions field of the short-circuit operation. We will
-- also analyze the actions now.
-- This analysis is really too early, the proper thing would
-- be to just park them there now, and only analyze them if
-- we find we really need them, and to it at the proper
-- final insertion point. However attempting to this proved
-- tricky, so for now we just kill current values before and
-- after the analyze call to make sure we avoid peculiar
-- optimizations from this out of order insertion.
Kill_Current_Values;
if Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
Kill_Current_Values;
return;
end if;
-- Then or Else operand of conditional expression. Add actions to
-- Then_Actions or Else_Actions field as appropriate. The actions
-- will be moved further out when the conditional is expanded.
when N_Conditional_Expression =>
declare
ThenX : constant Node_Id := Next (First (Expressions (P)));
ElseX : constant Node_Id := Next (ThenX);
begin
-- If the enclosing expression is already analyzed, as
-- is the case for nested elaboration checks, insert the
-- conditional further out.
if Analyzed (P) then
null;
-- Actions belong to the then expression, temporarily place
-- them as Then_Actions of the conditional expr. They will
-- be moved to the proper place later when the conditional
-- expression is expanded.
elsif N = ThenX then
if Present (Then_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Then_Actions (P)), Ins_Actions);
else
Set_Then_Actions (P, Ins_Actions);
Analyze_List (Then_Actions (P));
end if;
return;
-- Actions belong to the else expression, temporarily
-- place them as Else_Actions of the conditional expr.
-- They will be moved to the proper place later when
-- the conditional expression is expanded.
elsif N = ElseX then
if Present (Else_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Else_Actions (P)), Ins_Actions);
else
Set_Else_Actions (P, Ins_Actions);
Analyze_List (Else_Actions (P));
end if;
return;
-- Actions belong to the condition. In this case they are
-- unconditionally executed, and so we can continue the
-- search for the proper insert point.
else
null;
end if;
end;
-- Alternative of case expression, we place the action in the
-- Actions field of the case expression alternative, this will
-- be handled when the case expression is expanded.
when N_Case_Expression_Alternative =>
if Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
return;
-- Case of appearing within an Expressions_With_Actions node. We
-- prepend the actions to the list of actions already there, if
-- the node has not been analyzed yet. Otherwise find insertion
-- location further up the tree.
when N_Expression_With_Actions =>
if not Analyzed (P) then
Prepend_List (Ins_Actions, Actions (P));
return;
end if;
-- Case of appearing in the condition of a while expression or
-- elsif. We insert the actions into the Condition_Actions field.
-- They will be moved further out when the while loop or elsif
-- is analyzed.
when N_Iteration_Scheme |
N_Elsif_Part
=>
if N = Condition (P) then
if Present (Condition_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Condition_Actions (P)), Ins_Actions);
else
Set_Condition_Actions (P, Ins_Actions);
-- Set the parent of the insert actions explicitly. This
-- is not a syntactic field, but we need the parent field
-- set, in particular so that freeze can understand that
-- it is dealing with condition actions, and properly
-- insert the freezing actions.
Set_Parent (Ins_Actions, P);
Analyze_List (Condition_Actions (P));
end if;
return;
end if;
-- Statements, declarations, pragmas, representation clauses
when
-- Statements
N_Procedure_Call_Statement |
N_Statement_Other_Than_Procedure_Call |
-- Pragmas
N_Pragma |
-- Representation_Clause
N_At_Clause |
N_Attribute_Definition_Clause |
N_Enumeration_Representation_Clause |
N_Record_Representation_Clause |
-- Declarations
N_Abstract_Subprogram_Declaration |
N_Entry_Body |
N_Exception_Declaration |
N_Exception_Renaming_Declaration |
N_Expression_Function |
N_Formal_Abstract_Subprogram_Declaration |
N_Formal_Concrete_Subprogram_Declaration |
N_Formal_Object_Declaration |
N_Formal_Type_Declaration |
N_Full_Type_Declaration |
N_Function_Instantiation |
N_Generic_Function_Renaming_Declaration |
N_Generic_Package_Declaration |
N_Generic_Package_Renaming_Declaration |
N_Generic_Procedure_Renaming_Declaration |
N_Generic_Subprogram_Declaration |
N_Implicit_Label_Declaration |
N_Incomplete_Type_Declaration |
N_Number_Declaration |
N_Object_Declaration |
N_Object_Renaming_Declaration |
N_Package_Body |
N_Package_Body_Stub |
N_Package_Declaration |
N_Package_Instantiation |
N_Package_Renaming_Declaration |
N_Private_Extension_Declaration |
N_Private_Type_Declaration |
N_Procedure_Instantiation |
N_Protected_Body |
N_Protected_Body_Stub |
N_Protected_Type_Declaration |
N_Single_Task_Declaration |
N_Subprogram_Body |
N_Subprogram_Body_Stub |
N_Subprogram_Declaration |
N_Subprogram_Renaming_Declaration |
N_Subtype_Declaration |
N_Task_Body |
N_Task_Body_Stub |
N_Task_Type_Declaration |
-- Use clauses can appear in lists of declarations
N_Use_Package_Clause |
N_Use_Type_Clause |
-- Freeze entity behaves like a declaration or statement
N_Freeze_Entity
=>
-- Do not insert here if the item is not a list member (this
-- happens for example with a triggering statement, and the
-- proper approach is to insert before the entire select).
if not Is_List_Member (P) then
null;
-- Do not insert if parent of P is an N_Component_Association
-- node (i.e. we are in the context of an N_Aggregate or
-- N_Extension_Aggregate node. In this case we want to insert
-- before the entire aggregate.
elsif Nkind (Parent (P)) = N_Component_Association then
null;
-- Do not insert if the parent of P is either an N_Variant node
-- or an N_Record_Definition node, meaning in either case that
-- P is a member of a component list, and that therefore the
-- actions should be inserted outside the complete record
-- declaration.
elsif Nkind (Parent (P)) = N_Variant
or else Nkind (Parent (P)) = N_Record_Definition
then
null;
-- Do not insert freeze nodes within the loop generated for
-- an aggregate, because they may be elaborated too late for
-- subsequent use in the back end: within a package spec the
-- loop is part of the elaboration procedure and is only
-- elaborated during the second pass.
-- If the loop comes from source, or the entity is local to the
-- loop itself it must remain within.
elsif Nkind (Parent (P)) = N_Loop_Statement
and then not Comes_From_Source (Parent (P))
and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
and then
Scope (Entity (First (Ins_Actions))) /= Current_Scope
then
null;
-- Otherwise we can go ahead and do the insertion
elsif P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
return;
end if;
-- A special case, N_Raise_xxx_Error can act either as a statement
-- or a subexpression. We tell the difference by looking at the
-- Etype. It is set to Standard_Void_Type in the statement case.
when
N_Raise_xxx_Error =>
if Etype (P) = Standard_Void_Type then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- If a component association appears within a loop created for
-- an array aggregate, attach the actions to the association so
-- they can be subsequently inserted within the loop. For other
-- component associations insert outside of the aggregate. For
-- an association that will generate a loop, its Loop_Actions
-- attribute is already initialized (see exp_aggr.adb).
-- The list of loop_actions can in turn generate additional ones,
-- that are inserted before the associated node. If the associated
-- node is outside the aggregate, the new actions are collected
-- at the end of the loop actions, to respect the order in which
-- they are to be elaborated.
when
N_Component_Association =>
if Nkind (Parent (P)) = N_Aggregate
and then Present (Loop_Actions (P))
then
if Is_Empty_List (Loop_Actions (P)) then
Set_Loop_Actions (P, Ins_Actions);
Analyze_List (Ins_Actions);
else
declare
Decl : Node_Id;
begin
-- Check whether these actions were generated by a
-- declaration that is part of the loop_ actions
-- for the component_association.
Decl := Assoc_Node;
while Present (Decl) loop
exit when Parent (Decl) = P
and then Is_List_Member (Decl)
and then
List_Containing (Decl) = Loop_Actions (P);
Decl := Parent (Decl);
end loop;
if Present (Decl) then
Insert_List_Before_And_Analyze
(Decl, Ins_Actions);
else
Insert_List_After_And_Analyze
(Last (Loop_Actions (P)), Ins_Actions);
end if;
end;
end if;
return;
else
null;
end if;
-- Another special case, an attribute denoting a procedure call
when
N_Attribute_Reference =>
if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- A contract node should not belong to the tree
when N_Contract =>
raise Program_Error;
-- For all other node types, keep climbing tree
when
N_Abortable_Part |
N_Accept_Alternative |
N_Access_Definition |
N_Access_Function_Definition |
N_Access_Procedure_Definition |
N_Access_To_Object_Definition |
N_Aggregate |
N_Allocator |
N_Aspect_Specification |
N_Case_Expression |
N_Case_Statement_Alternative |
N_Character_Literal |
N_Compilation_Unit |
N_Compilation_Unit_Aux |
N_Component_Clause |
N_Component_Declaration |
N_Component_Definition |
N_Component_List |
N_Constrained_Array_Definition |
N_Decimal_Fixed_Point_Definition |
N_Defining_Character_Literal |
N_Defining_Identifier |
N_Defining_Operator_Symbol |
N_Defining_Program_Unit_Name |
N_Delay_Alternative |
N_Delta_Constraint |
N_Derived_Type_Definition |
N_Designator |
N_Digits_Constraint |
N_Discriminant_Association |
N_Discriminant_Specification |
N_Empty |
N_Entry_Body_Formal_Part |
N_Entry_Call_Alternative |
N_Entry_Declaration |
N_Entry_Index_Specification |
N_Enumeration_Type_Definition |
N_Error |
N_Exception_Handler |
N_Expanded_Name |
N_Explicit_Dereference |
N_Extension_Aggregate |
N_Floating_Point_Definition |
N_Formal_Decimal_Fixed_Point_Definition |
N_Formal_Derived_Type_Definition |
N_Formal_Discrete_Type_Definition |
N_Formal_Floating_Point_Definition |
N_Formal_Modular_Type_Definition |
N_Formal_Ordinary_Fixed_Point_Definition |
N_Formal_Package_Declaration |
N_Formal_Private_Type_Definition |
N_Formal_Incomplete_Type_Definition |
N_Formal_Signed_Integer_Type_Definition |
N_Function_Call |
N_Function_Specification |
N_Generic_Association |
N_Handled_Sequence_Of_Statements |
N_Identifier |
N_In |
N_Index_Or_Discriminant_Constraint |
N_Indexed_Component |
N_Integer_Literal |
N_Iterator_Specification |
N_Itype_Reference |
N_Label |
N_Loop_Parameter_Specification |
N_Mod_Clause |
N_Modular_Type_Definition |
N_Not_In |
N_Null |
N_Op_Abs |
N_Op_Add |
N_Op_And |
N_Op_Concat |
N_Op_Divide |
N_Op_Eq |
N_Op_Expon |
N_Op_Ge |
N_Op_Gt |
N_Op_Le |
N_Op_Lt |
N_Op_Minus |
N_Op_Mod |
N_Op_Multiply |
N_Op_Ne |
N_Op_Not |
N_Op_Or |
N_Op_Plus |
N_Op_Rem |
N_Op_Rotate_Left |
N_Op_Rotate_Right |
N_Op_Shift_Left |
N_Op_Shift_Right |
N_Op_Shift_Right_Arithmetic |
N_Op_Subtract |
N_Op_Xor |
N_Operator_Symbol |
N_Ordinary_Fixed_Point_Definition |
N_Others_Choice |
N_Package_Specification |
N_Parameter_Association |
N_Parameter_Specification |
N_Pop_Constraint_Error_Label |
N_Pop_Program_Error_Label |
N_Pop_Storage_Error_Label |
N_Pragma_Argument_Association |
N_Procedure_Specification |
N_Protected_Definition |
N_Push_Constraint_Error_Label |
N_Push_Program_Error_Label |
N_Push_Storage_Error_Label |
N_Qualified_Expression |
N_Quantified_Expression |
N_Range |
N_Range_Constraint |
N_Real_Literal |
N_Real_Range_Specification |
N_Record_Definition |
N_Reference |
N_SCIL_Dispatch_Table_Tag_Init |
N_SCIL_Dispatching_Call |
N_SCIL_Membership_Test |
N_Selected_Component |
N_Signed_Integer_Type_Definition |
N_Single_Protected_Declaration |
N_Slice |
N_String_Literal |
N_Subprogram_Info |
N_Subtype_Indication |
N_Subunit |
N_Task_Definition |
N_Terminate_Alternative |
N_Triggering_Alternative |
N_Type_Conversion |
N_Unchecked_Expression |
N_Unchecked_Type_Conversion |
N_Unconstrained_Array_Definition |
N_Unused_At_End |
N_Unused_At_Start |
N_Variant |
N_Variant_Part |
N_Validate_Unchecked_Conversion |
N_With_Clause
=>
null;
end case;
-- Make sure that inserted actions stay in the transient scope
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
end if;
-- If we fall through above tests, keep climbing tree
N := P;
if Nkind (Parent (N)) = N_Subunit then
-- This is the proper body corresponding to a stub. Insertion must
-- be done at the point of the stub, which is in the declarative
-- part of the parent unit.
P := Corresponding_Stub (Parent (N));
else
P := Parent (N);
end if;
end loop;
end Insert_Actions;
-- Version with check(s) suppressed
procedure Insert_Actions
(Assoc_Node : Node_Id;
Ins_Actions : List_Id;
Suppress : Check_Id)
is
begin
if Suppress = All_Checks then
declare
Svg : constant Suppress_Array := Scope_Suppress;
begin
Scope_Suppress := (others => True);
Insert_Actions (Assoc_Node, Ins_Actions);
Scope_Suppress := Svg;
end;
else
declare
Svg : constant Boolean := Scope_Suppress (Suppress);
begin
Scope_Suppress (Suppress) := True;
Insert_Actions (Assoc_Node, Ins_Actions);
Scope_Suppress (Suppress) := Svg;
end;
end if;
end Insert_Actions;
--------------------------
-- Insert_Actions_After --
--------------------------
procedure Insert_Actions_After
(Assoc_Node : Node_Id;
Ins_Actions : List_Id)
is
begin
if Scope_Is_Transient
and then Assoc_Node = Node_To_Be_Wrapped
then
Store_After_Actions_In_Scope (Ins_Actions);
else
Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
end if;
end Insert_Actions_After;
---------------------------------
-- Insert_Library_Level_Action --
---------------------------------
procedure Insert_Library_Level_Action (N : Node_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
Push_Scope (Cunit_Entity (Main_Unit));
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
if No (Actions (Aux)) then
Set_Actions (Aux, New_List (N));
else
Append (N, Actions (Aux));
end if;
Analyze (N);
Pop_Scope;
end Insert_Library_Level_Action;
----------------------------------
-- Insert_Library_Level_Actions --
----------------------------------
procedure Insert_Library_Level_Actions (L : List_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
if Is_Non_Empty_List (L) then
Push_Scope (Cunit_Entity (Main_Unit));
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
if No (Actions (Aux)) then
Set_Actions (Aux, L);
Analyze_List (L);
else
Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
end if;
Pop_Scope;
end if;
end Insert_Library_Level_Actions;
----------------------
-- Inside_Init_Proc --
----------------------
function Inside_Init_Proc return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S)
and then S /= Standard_Standard
loop
if Is_Init_Proc (S) then
return True;
else
S := Scope (S);
end if;
end loop;
return False;
end Inside_Init_Proc;
----------------------------
-- Is_All_Null_Statements --
----------------------------
function Is_All_Null_Statements (L : List_Id) return Boolean is
Stm : Node_Id;
begin
Stm := First (L);
while Present (Stm) loop
if Nkind (Stm) /= N_Null_Statement then
return False;
end if;
Next (Stm);
end loop;
return True;
end Is_All_Null_Statements;
------------------------------
-- Is_Finalizable_Transient --
------------------------------
function Is_Finalizable_Transient
(Decl : Node_Id;
Rel_Node : Node_Id) return Boolean
is
Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
Desig : Entity_Id := Obj_Typ;
Has_Rens : Boolean := True;
Ren_Obj : Entity_Id;
function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is initialized either
-- by a function call which returns an access type or simply renames
-- another pointer.
function Initialized_By_Aliased_BIP_Func_Call
(Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is initialized by a
-- build-in-place function call where the BIPalloc parameter is of
-- value 1 and BIPaccess is not null. This case creates an aliasing
-- between the returned value and the value denoted by BIPaccess.
function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is allocated on the heap
function Is_Renamed
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean;
-- Determine whether transient object Trans_Id has been renamed in the
-- statement list starting from First_Stmt.
---------------------------
-- Initialized_By_Access --
---------------------------
function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Trans_Id));
begin
return
Present (Expr)
and then Nkind (Expr) /= N_Reference
and then Is_Access_Type (Etype (Expr));
end Initialized_By_Access;
------------------------------------------
-- Initialized_By_Aliased_BIP_Func_Call --
------------------------------------------
function Initialized_By_Aliased_BIP_Func_Call
(Trans_Id : Entity_Id) return Boolean
is
Call : Node_Id := Expression (Parent (Trans_Id));
begin
-- Build-in-place calls usually appear in 'reference format
if Nkind (Call) = N_Reference then
Call := Prefix (Call);
end if;
if Is_Build_In_Place_Function_Call (Call) then
declare
Access_Nam : Name_Id := No_Name;
Access_OK : Boolean := False;
Actual : Node_Id;
Alloc_Nam : Name_Id := No_Name;
Alloc_OK : Boolean := False;
Formal : Node_Id;
Func_Id : Entity_Id;
Param : Node_Id;
begin
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association
and then Nkind (Selector_Name (Param)) = N_Identifier
then
Actual := Explicit_Actual_Parameter (Param);
Formal := Selector_Name (Param);
-- Construct the names of formals BIPaccess and BIPalloc
-- using the function name retrieved from an arbitrary
-- formal.
if Access_Nam = No_Name
and then Alloc_Nam = No_Name
and then Present (Entity (Formal))
then
Func_Id := Scope (Entity (Formal));
Access_Nam :=
New_External_Name (Chars (Func_Id),
BIP_Formal_Suffix (BIP_Object_Access));
Alloc_Nam :=
New_External_Name (Chars (Func_Id),
BIP_Formal_Suffix (BIP_Alloc_Form));
end if;
-- A match for BIPaccess => Temp has been found
if Chars (Formal) = Access_Nam
and then Nkind (Actual) /= N_Null
then
Access_OK := True;
end if;
-- A match for BIPalloc => 1 has been found
if Chars (Formal) = Alloc_Nam
and then Nkind (Actual) = N_Integer_Literal
and then Intval (Actual) = Uint_1
then
Alloc_OK := True;
end if;
end if;
Next (Param);
end loop;
return Access_OK and then Alloc_OK;
end;
end if;
return False;
end Initialized_By_Aliased_BIP_Func_Call;
------------------
-- Is_Allocated --
------------------
function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Trans_Id));
begin
return
Is_Access_Type (Etype (Trans_Id))
and then Present (Expr)
and then Nkind (Expr) = N_Allocator;
end Is_Allocated;
----------------
-- Is_Renamed --
----------------
function Is_Renamed
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean
is
Stmt : Node_Id;
function Extract_Renamed_Object
(Ren_Decl : Node_Id) return Entity_Id;
-- Given an object renaming declaration, retrieve the entity of the
-- renamed name. Return Empty if the renamed name is anything other
-- than a variable or a constant.
----------------------------
-- Extract_Renamed_Object --
----------------------------
function Extract_Renamed_Object
(Ren_Decl : Node_Id) return Entity_Id
is
Change : Boolean;
Ren_Obj : Node_Id;
begin
Change := True;
Ren_Obj := Renamed_Object (Defining_Identifier (Ren_Decl));
while Change loop
Change := False;
if Nkind_In (Ren_Obj, N_Explicit_Dereference,
N_Indexed_Component,
N_Selected_Component)
then
Ren_Obj := Prefix (Ren_Obj);
Change := True;
elsif Nkind_In (Ren_Obj, N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Ren_Obj := Expression (Ren_Obj);
Change := True;
end if;
end loop;
if Nkind (Ren_Obj) in N_Has_Entity then
return Entity (Ren_Obj);
end if;
return Empty;
end Extract_Renamed_Object;
-- Start of processing for Is_Renamed
begin
-- If a previous invocation of this routine has determined that a
-- list has no renamings, then no point in repeating the same scan.
if not Has_Rens then
return False;
end if;
-- Assume that the statement list does not have a renaming. This is a
-- minor optimization.
Has_Rens := False;
Stmt := First_Stmt;
while Present (Stmt) loop
if Nkind (Stmt) = N_Object_Renaming_Declaration then
Has_Rens := True;
Ren_Obj := Extract_Renamed_Object (Stmt);
if Present (Ren_Obj)
and then Ren_Obj = Trans_Id
then
return True;
end if;
end if;
Next (Stmt);
end loop;
return False;
end Is_Renamed;
-- Start of processing for Is_Finalizable_Transient
begin
-- Handle access types
if Is_Access_Type (Desig) then
Desig := Available_View (Designated_Type (Desig));
end if;
return
Ekind_In (Obj_Id, E_Constant, E_Variable)
and then Needs_Finalization (Desig)
and then Requires_Transient_Scope (Desig)
and then Nkind (Rel_Node) /= N_Simple_Return_Statement
-- Do not consider transient objects allocated on the heap since they
-- are attached to a finalization master.
and then not Is_Allocated (Obj_Id)
-- If the transient object is a pointer, check that it is not
-- initialized by a function which returns a pointer or acts as a
-- renaming of another pointer.
and then
(not Is_Access_Type (Obj_Typ)
or else not Initialized_By_Access (Obj_Id))
-- Do not consider transient objects which act as indirect aliases of
-- build-in-place function results.
and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
-- Do not consider renamed transient objects because the act of
-- renaming extends the object's lifetime.
and then not Is_Renamed (Obj_Id, Decl)
-- Do not consider conversions of tags to class-wide types
and then not Is_Tag_To_CW_Conversion (Obj_Id);
end Is_Finalizable_Transient;
---------------------------------
-- Is_Fully_Repped_Tagged_Type --
---------------------------------
function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
U : constant Entity_Id := Underlying_Type (T);
Comp : Entity_Id;
begin
if No (U) or else not Is_Tagged_Type (U) then
return False;
elsif Has_Discriminants (U) then
return False;
elsif not Has_Specified_Layout (U) then
return False;
end if;
-- Here we have a tagged type, see if it has any unlayed out fields
-- other than a possible tag and parent fields. If so, we return False.
Comp := First_Component (U);
while Present (Comp) loop
if not Is_Tag (Comp)
and then Chars (Comp) /= Name_uParent
and then No (Component_Clause (Comp))
then
return False;
else
Next_Component (Comp);
end if;
end loop;
-- All components are layed out
return True;
end Is_Fully_Repped_Tagged_Type;
----------------------------------
-- Is_Library_Level_Tagged_Type --
----------------------------------
function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
begin
return Is_Tagged_Type (Typ)
and then Is_Library_Level_Entity (Typ);
end Is_Library_Level_Tagged_Type;
----------------------------------
-- Is_Null_Access_BIP_Func_Call --
----------------------------------
function Is_Null_Access_BIP_Func_Call (Expr : Node_Id) return Boolean is
Call : Node_Id := Expr;
begin
-- Build-in-place calls usually appear in 'reference format
if Nkind (Call) = N_Reference then
Call := Prefix (Call);
end if;
if Nkind_In (Call, N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Call := Expression (Call);
end if;
if Is_Build_In_Place_Function_Call (Call) then
declare
Access_Nam : Name_Id := No_Name;
Actual : Node_Id;
Param : Node_Id;
Formal : Node_Id;
begin
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association
and then Nkind (Selector_Name (Param)) = N_Identifier
then
Formal := Selector_Name (Param);
Actual := Explicit_Actual_Parameter (Param);
-- Construct the name of formal BIPaccess. It is much easier
-- to extract the name of the function using an arbitrary
-- formal's scope rather than the Name field of Call.
if Access_Nam = No_Name
and then Present (Entity (Formal))
then
Access_Nam :=
New_External_Name
(Chars (Scope (Entity (Formal))),
BIP_Formal_Suffix (BIP_Object_Access));
end if;
-- A match for BIPaccess => null has been found
if Chars (Formal) = Access_Nam
and then Nkind (Actual) = N_Null
then
return True;
end if;
end if;
Next (Param);
end loop;
end;
end if;
return False;
end Is_Null_Access_BIP_Func_Call;
--------------------------
-- Is_Non_BIP_Func_Call --
--------------------------
function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
begin
-- The expected call is of the format
--
-- Func_Call'reference
return
Nkind (Expr) = N_Reference
and then Nkind (Prefix (Expr)) = N_Function_Call
and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
end Is_Non_BIP_Func_Call;
----------------------------------
-- Is_Possibly_Unaligned_Object --
----------------------------------
function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
T : constant Entity_Id := Etype (N);
begin
-- If renamed object, apply test to underlying object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
end if;
-- Tagged and controlled types and aliased types are always aligned, as
-- are concurrent types.
if Is_Aliased (T)
or else Has_Controlled_Component (T)
or else Is_Concurrent_Type (T)
or else Is_Tagged_Type (T)
or else Is_Controlled (T)
then
return False;
end if;
-- If this is an element of a packed array, may be unaligned
if Is_Ref_To_Bit_Packed_Array (N) then
return True;
end if;
-- Case of component reference
if Nkind (N) = N_Selected_Component then
declare
P : constant Node_Id := Prefix (N);
C : constant Entity_Id := Entity (Selector_Name (N));
M : Nat;
S : Nat;
begin
-- If component reference is for an array with non-static bounds,
-- then it is always aligned: we can only process unaligned arrays
-- with static bounds (more accurately bounds known at compile
-- time).
if Is_Array_Type (T)
and then not Compile_Time_Known_Bounds (T)
then
return False;
end if;
-- If component is aliased, it is definitely properly aligned
if Is_Aliased (C) then
return False;
end if;
-- If component is for a type implemented as a scalar, and the
-- record is packed, and the component is other than the first
-- component of the record, then the component may be unaligned.
if Is_Packed (Etype (P))
and then Represented_As_Scalar (Etype (C))
and then First_Entity (Scope (C)) /= C
then
return True;
end if;
-- Compute maximum possible alignment for T
-- If alignment is known, then that settles things
if Known_Alignment (T) then
M := UI_To_Int (Alignment (T));
-- If alignment is not known, tentatively set max alignment
else
M := Ttypes.Maximum_Alignment;
-- We can reduce this if the Esize is known since the default
-- alignment will never be more than the smallest power of 2
-- that does not exceed this Esize value.
if Known_Esize (T) then
S := UI_To_Int (Esize (T));
while (M / 2) >= S loop
M := M / 2;
end loop;
end if;
end if;
-- The following code is historical, it used to be present but it
-- is too cautious, because the front-end does not know the proper
-- default alignments for the target. Also, if the alignment is
-- not known, the front end can't know in any case! If a copy is
-- needed, the back-end will take care of it. This whole section
-- including this comment can be removed later ???
-- If the component reference is for a record that has a specified
-- alignment, and we either know it is too small, or cannot tell,
-- then the component may be unaligned.
-- if Known_Alignment (Etype (P))
-- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
-- and then M > Alignment (Etype (P))
-- then
-- return True;
-- end if;
-- Case of component clause present which may specify an
-- unaligned position.
if Present (Component_Clause (C)) then
-- Otherwise we can do a test to make sure that the actual
-- start position in the record, and the length, are both
-- consistent with the required alignment. If not, we know
-- that we are unaligned.
declare
Align_In_Bits : constant Nat := M * System_Storage_Unit;
begin
if Component_Bit_Offset (C) mod Align_In_Bits /= 0
or else Esize (C) mod Align_In_Bits /= 0
then
return True;
end if;
end;
end if;
-- Otherwise, for a component reference, test prefix
return Is_Possibly_Unaligned_Object (P);
end;
-- If not a component reference, must be aligned
else
return False;
end if;
end Is_Possibly_Unaligned_Object;
---------------------------------
-- Is_Possibly_Unaligned_Slice --
---------------------------------
function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
begin
-- Go to renamed object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
end if;
-- The reference must be a slice
if Nkind (N) /= N_Slice then
return False;
end if;
-- Always assume the worst for a nested record component with a
-- component clause, which gigi/gcc does not appear to handle well.
-- It is not clear why this special test is needed at all ???
if Nkind (Prefix (N)) = N_Selected_Component
and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
and then
Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
then
return True;
end if;
-- We only need to worry if the target has strict alignment
if not Target_Strict_Alignment then
return False;
end if;
-- If it is a slice, then look at the array type being sliced
declare
Sarr : constant Node_Id := Prefix (N);
-- Prefix of the slice, i.e. the array being sliced
Styp : constant Entity_Id := Etype (Prefix (N));
-- Type of the array being sliced
Pref : Node_Id;
Ptyp : Entity_Id;
begin
-- The problems arise if the array object that is being sliced
-- is a component of a record or array, and we cannot guarantee
-- the alignment of the array within its containing object.
-- To investigate this, we look at successive prefixes to see
-- if we have a worrisome indexed or selected component.
Pref := Sarr;
loop
-- Case of array is part of an indexed component reference
if Nkind (Pref) = N_Indexed_Component then
Ptyp := Etype (Prefix (Pref));
-- The only problematic case is when the array is packed, in
-- which case we really know nothing about the alignment of
-- individual components.
if Is_Bit_Packed_Array (Ptyp) then
return True;
end if;
-- Case of array is part of a selected component reference
elsif Nkind (Pref) = N_Selected_Component then
Ptyp := Etype (Prefix (Pref));
-- We are definitely in trouble if the record in question
-- has an alignment, and either we know this alignment is
-- inconsistent with the alignment of the slice, or we don't
-- know what the alignment of the slice should be.
if Known_Alignment (Ptyp)
and then (Unknown_Alignment (Styp)
or else Alignment (Styp) > Alignment (Ptyp))
then
return True;
end if;
-- We are in potential trouble if the record type is packed.
-- We could special case when we know that the array is the
-- first component, but that's not such a simple case ???
if Is_Packed (Ptyp) then
return True;
end if;
-- We are in trouble if there is a component clause, and
-- either we do not know the alignment of the slice, or
-- the alignment of the slice is inconsistent with the
-- bit position specified by the component clause.
declare
Field : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (Field))
and then
(Unknown_Alignment (Styp)
or else
(Component_Bit_Offset (Field) mod
(System_Storage_Unit * Alignment (Styp))) /= 0)
then
return True;
end if;
end;
-- For cases other than selected or indexed components we know we
-- are OK, since no issues arise over alignment.
else
return False;
end if;
-- We processed an indexed component or selected component
-- reference that looked safe, so keep checking prefixes.
Pref := Prefix (Pref);
end loop;
end;
end Is_Possibly_Unaligned_Slice;
-------------------------------
-- Is_Related_To_Func_Return --
-------------------------------
function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Related_Expression (Id);
begin
return
Present (Expr)
and then Nkind (Expr) = N_Explicit_Dereference
and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
end Is_Related_To_Func_Return;
--------------------------------
-- Is_Ref_To_Bit_Packed_Array --
--------------------------------
function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
Result : Boolean;
Expr : Node_Id;
begin
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
end if;
if Nkind (N) = N_Indexed_Component
or else
Nkind (N) = N_Selected_Component
then
if Is_Bit_Packed_Array (Etype (Prefix (N))) then
Result := True;
else
Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
end if;
if Result and then Nkind (N) = N_Indexed_Component then
Expr := First (Expressions (N));
while Present (Expr) loop
Force_Evaluation (Expr);
Next (Expr);
end loop;
end if;
return Result;
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Array;
--------------------------------
-- Is_Ref_To_Bit_Packed_Slice --
--------------------------------
function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Type_Conversion then
return Is_Ref_To_Bit_Packed_Slice (Expression (N));
elsif Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
elsif Nkind (N) = N_Slice
and then Is_Bit_Packed_Array (Etype (Prefix (N)))
then
return True;
elsif Nkind (N) = N_Indexed_Component
or else
Nkind (N) = N_Selected_Component
then
return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Slice;
-----------------------
-- Is_Renamed_Object --
-----------------------
function Is_Renamed_Object (N : Node_Id) return Boolean is
Pnod : constant Node_Id := Parent (N);
Kind : constant Node_Kind := Nkind (Pnod);
begin
if Kind = N_Object_Renaming_Declaration then
return True;
elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
return Is_Renamed_Object (Pnod);
else
return False;
end if;
end Is_Renamed_Object;
-----------------------------
-- Is_Tag_To_CW_Conversion --
-----------------------------
function Is_Tag_To_CW_Conversion (Obj_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Obj_Id));
begin
return
Is_Class_Wide_Type (Etype (Obj_Id))
and then Present (Expr)
and then Nkind (Expr) = N_Unchecked_Type_Conversion
and then Etype (Expression (Expr)) = RTE (RE_Tag);
end Is_Tag_To_CW_Conversion;
----------------------------
-- Is_Untagged_Derivation --
----------------------------
function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
begin
return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
or else
(Is_Private_Type (T) and then Present (Full_View (T))
and then not Is_Tagged_Type (Full_View (T))
and then Is_Derived_Type (Full_View (T))
and then Etype (Full_View (T)) /= T);
end Is_Untagged_Derivation;
---------------------------
-- Is_Volatile_Reference --
---------------------------
function Is_Volatile_Reference (N : Node_Id) return Boolean is
begin
if Nkind (N) in N_Has_Etype
and then Present (Etype (N))
and then Treat_As_Volatile (Etype (N))
then
return True;
elsif Is_Entity_Name (N) then
return Treat_As_Volatile (Entity (N));
elsif Nkind (N) = N_Slice then
return Is_Volatile_Reference (Prefix (N));
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
if (Is_Entity_Name (Prefix (N))
and then Has_Volatile_Components (Entity (Prefix (N))))
or else (Present (Etype (Prefix (N)))
and then Has_Volatile_Components (Etype (Prefix (N))))
then
return True;
else
return Is_Volatile_Reference (Prefix (N));
end if;
else
return False;
end if;
end Is_Volatile_Reference;
--------------------------
-- Is_VM_By_Copy_Actual --
--------------------------
function Is_VM_By_Copy_Actual (N : Node_Id) return Boolean is
begin
return VM_Target /= No_VM
and then (Nkind (N) = N_Slice
or else
(Nkind (N) = N_Identifier
and then Present (Renamed_Object (Entity (N)))
and then Nkind (Renamed_Object (Entity (N)))
= N_Slice));
end Is_VM_By_Copy_Actual;
--------------------
-- Kill_Dead_Code --
--------------------
procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
W : Boolean := Warn;
-- Set False if warnings suppressed
begin
if Present (N) then
Remove_Warning_Messages (N);
-- Generate warning if appropriate
if W then
-- We suppress the warning if this code is under control of an
-- if statement, whose condition is a simple identifier, and
-- either we are in an instance, or warnings off is set for this
-- identifier. The reason for killing it in the instance case is
-- that it is common and reasonable for code to be deleted in
-- instances for various reasons.
if Nkind (Parent (N)) = N_If_Statement then
declare
C : constant Node_Id := Condition (Parent (N));
begin
if Nkind (C) = N_Identifier
and then
(In_Instance
or else (Present (Entity (C))
and then Has_Warnings_Off (Entity (C))))
then
W := False;
end if;
end;
end if;
-- Generate warning if not suppressed
if W then
Error_Msg_F
("?this code can never be executed and has been deleted!", N);
end if;
end if;
-- Recurse into block statements and bodies to process declarations
-- and statements.
if Nkind (N) = N_Block_Statement
or else Nkind (N) = N_Subprogram_Body
or else Nkind (N) = N_Package_Body
then
Kill_Dead_Code (Declarations (N), False);
Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
if Nkind (N) = N_Subprogram_Body then
Set_Is_Eliminated (Defining_Entity (N));
end if;
elsif Nkind (N) = N_Package_Declaration then
Kill_Dead_Code (Visible_Declarations (Specification (N)));
Kill_Dead_Code (Private_Declarations (Specification (N)));
-- ??? After this point, Delete_Tree has been called on all
-- declarations in Specification (N), so references to entities
-- therein look suspicious.
declare
E : Entity_Id := First_Entity (Defining_Entity (N));
begin
while Present (E) loop
if Ekind (E) = E_Operator then
Set_Is_Eliminated (E);
end if;
Next_Entity (E);
end loop;
end;
-- Recurse into composite statement to kill individual statements in
-- particular instantiations.
elsif Nkind (N) = N_If_Statement then
Kill_Dead_Code (Then_Statements (N));
Kill_Dead_Code (Elsif_Parts (N));
Kill_Dead_Code (Else_Statements (N));
elsif Nkind (N) = N_Loop_Statement then
Kill_Dead_Code (Statements (N));
elsif Nkind (N) = N_Case_Statement then
declare
Alt : Node_Id;
begin
Alt := First (Alternatives (N));
while Present (Alt) loop
Kill_Dead_Code (Statements (Alt));
Next (Alt);
end loop;
end;
elsif Nkind (N) = N_Case_Statement_Alternative then
Kill_Dead_Code (Statements (N));
-- Deal with dead instances caused by deleting instantiations
elsif Nkind (N) in N_Generic_Instantiation then
Remove_Dead_Instance (N);
end if;
end if;
end Kill_Dead_Code;
-- Case where argument is a list of nodes to be killed
procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
N : Node_Id;
W : Boolean;
begin
W := Warn;
if Is_Non_Empty_List (L) then
N := First (L);
while Present (N) loop
Kill_Dead_Code (N, W);
W := False;
Next (N);
end loop;
end if;
end Kill_Dead_Code;
------------------------
-- Known_Non_Negative --
------------------------
function Known_Non_Negative (Opnd : Node_Id) return Boolean is
begin
if Is_OK_Static_Expression (Opnd)
and then Expr_Value (Opnd) >= 0
then
return True;
else
declare
Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
begin
return
Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
end;
end if;
end Known_Non_Negative;
--------------------
-- Known_Non_Null --
--------------------
function Known_Non_Null (N : Node_Id) return Boolean is
begin
-- Checks for case where N is an entity reference
if Is_Entity_Name (N) and then Present (Entity (N)) then
declare
E : constant Entity_Id := Entity (N);
Op : Node_Kind;
Val : Node_Id;
begin
-- First check if we are in decisive conditional
Get_Current_Value_Condition (N, Op, Val);
if Known_Null (Val) then
if Op = N_Op_Eq then
return False;
elsif Op = N_Op_Ne then
return True;
end if;
end if;
-- If OK to do replacement, test Is_Known_Non_Null flag
if OK_To_Do_Constant_Replacement (E) then
return Is_Known_Non_Null (E);
-- Otherwise if not safe to do replacement, then say so
else
return False;
end if;
end;
-- True if access attribute
elsif Nkind (N) = N_Attribute_Reference
and then (Attribute_Name (N) = Name_Access
or else
Attribute_Name (N) = Name_Unchecked_Access
or else
Attribute_Name (N) = Name_Unrestricted_Access)
then
return True;
-- True if allocator
elsif Nkind (N) = N_Allocator then
return True;
-- For a conversion, true if expression is known non-null
elsif Nkind (N) = N_Type_Conversion then
return Known_Non_Null (Expression (N));
-- Above are all cases where the value could be determined to be
-- non-null. In all other cases, we don't know, so return False.
else
return False;
end if;
end Known_Non_Null;
----------------
-- Known_Null --
----------------
function Known_Null (N : Node_Id) return Boolean is
begin
-- Checks for case where N is an entity reference
if Is_Entity_Name (N) and then Present (Entity (N)) then
declare
E : constant Entity_Id := Entity (N);
Op : Node_Kind;
Val : Node_Id;
begin
-- Constant null value is for sure null
if Ekind (E) = E_Constant
and then Known_Null (Constant_Value (E))
then
return True;
end if;
-- First check if we are in decisive conditional
Get_Current_Value_Condition (N, Op, Val);
if Known_Null (Val) then
if Op = N_Op_Eq then
return True;
elsif Op = N_Op_Ne then
return False;
end if;
end if;
-- If OK to do replacement, test Is_Known_Null flag
if OK_To_Do_Constant_Replacement (E) then
return Is_Known_Null (E);
-- Otherwise if not safe to do replacement, then say so
else
return False;
end if;
end;
-- True if explicit reference to null
elsif Nkind (N) = N_Null then
return True;
-- For a conversion, true if expression is known null
elsif Nkind (N) = N_Type_Conversion then
return Known_Null (Expression (N));
-- Above are all cases where the value could be determined to be null.
-- In all other cases, we don't know, so return False.
else
return False;
end if;
end Known_Null;
-----------------------------
-- Make_CW_Equivalent_Type --
-----------------------------
-- Create a record type used as an equivalent of any member of the class
-- which takes its size from exp.
-- Generate the following code:
-- type Equiv_T is record
-- _parent : T (List of discriminant constraints taken from Exp);
-- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
-- end Equiv_T;
--
-- ??? Note that this type does not guarantee same alignment as all
-- derived types
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (E);
Root_Typ : constant Entity_Id := Root_Type (T);
List_Def : constant List_Id := Empty_List;
Comp_List : constant List_Id := New_List;
Equiv_Type : Entity_Id;
Range_Type : Entity_Id;
Str_Type : Entity_Id;
Constr_Root : Entity_Id;
Sizexpr : Node_Id;
begin
-- If the root type is already constrained, there are no discriminants
-- in the expression.
if not Has_Discriminants (Root_Typ)
or else Is_Constrained (Root_Typ)
then
Constr_Root := Root_Typ;
else
Constr_Root := Make_Temporary (Loc, 'R');
-- subtype cstr__n is T (List of discr constraints taken from Exp)
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Constr_Root,
Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
end if;
-- Generate the range subtype declaration
Range_Type := Make_Temporary (Loc, 'G');
if not Is_Interface (Root_Typ) then
-- subtype rg__xx is
-- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
Sizexpr :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Constr_Root, Loc),
Attribute_Name => Name_Object_Size));
else
-- subtype rg__xx is
-- Storage_Offset range 1 .. Expr'size / Storage_Unit
Sizexpr :=
Make_Attribute_Reference (Loc,
Prefix =>
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size);
end if;
Set_Paren_Count (Sizexpr, 1);
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Range_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
Constraint => Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound =>
Make_Op_Divide (Loc,
Left_Opnd => Sizexpr,
Right_Opnd => Make_Integer_Literal (Loc,
Intval => System_Storage_Unit)))))));
-- subtype str__nn is Storage_Array (rg__x);
Str_Type := Make_Temporary (Loc, 'S');
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Str_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (New_Reference_To (Range_Type, Loc))))));
-- type Equiv_T is record
-- [ _parent : Tnn; ]
-- E : Str_Type;
-- end Equiv_T;
Equiv_Type := Make_Temporary (Loc, 'T');
Set_Ekind (Equiv_Type, E_Record_Type);
Set_Parent_Subtype (Equiv_Type, Constr_Root);
-- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
-- treatment for this type. In particular, even though _parent's type
-- is a controlled type or contains controlled components, we do not
-- want to set Has_Controlled_Component on it to avoid making it gain
-- an unwanted _controller component.
Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
if not Is_Interface (Root_Typ) then
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uParent),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Reference_To (Constr_Root, Loc))));
end if;
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'C'),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Reference_To (Str_Type, Loc))));
Append_To (List_Def,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Equiv_Type,
Type_Definition =>
Make_Record_Definition (Loc,
Component_List =>
Make_Component_List (Loc,
Component_Items => Comp_List,
Variant_Part => Empty))));
-- Suppress all checks during the analysis of the expanded code to avoid
-- the generation of spurious warnings under ZFP run-time.
Insert_Actions (E, List_Def, Suppress => All_Checks);
return Equiv_Type;
end Make_CW_Equivalent_Type;
-------------------------
-- Make_Invariant_Call --
-------------------------
function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Expr);
Typ : constant Entity_Id := Etype (Expr);
begin
pragma Assert
(Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)));
if Check_Enabled (Name_Invariant)
or else
Check_Enabled (Name_Assertion)
then
return
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Invariant_Procedure (Typ), Loc),
Parameter_Associations => New_List (Relocate_Node (Expr)));
else
return
Make_Null_Statement (Loc);
end if;
end Make_Invariant_Call;
------------------------
-- Make_Literal_Range --
------------------------
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id
is
Lo : constant Node_Id :=
New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
Index : constant Entity_Id := Etype (Lo);
Hi : Node_Id;
Length_Expr : constant Node_Id :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Intval => String_Literal_Length (Literal_Typ)),
Right_Opnd =>
Make_Integer_Literal (Loc, 1));
begin
Set_Analyzed (Lo, False);
if Is_Integer_Type (Index) then
Hi :=
Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (Lo),
Right_Opnd => Length_Expr);
else
Hi :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Val,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (New_Copy_Tree (Lo))),
Right_Opnd => Length_Expr)));
end if;
return
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi);
end Make_Literal_Range;
--------------------------
-- Make_Non_Empty_Check --
--------------------------
function Make_Non_Empty_Check
(Loc : Source_Ptr;
N : Node_Id) return Node_Id
is
begin
return
Make_Op_Ne (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
Right_Opnd =>
Make_Integer_Literal (Loc, 0));
end Make_Non_Empty_Check;
-------------------------
-- Make_Predicate_Call --
-------------------------
function Make_Predicate_Call
(Typ : Entity_Id;
Expr : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Expr);
begin
pragma Assert (Present (Predicate_Function (Typ)));
return
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Predicate_Function (Typ), Loc),
Parameter_Associations => New_List (Relocate_Node (Expr)));
end Make_Predicate_Call;
--------------------------
-- Make_Predicate_Check --
--------------------------
function Make_Predicate_Check
(Typ : Entity_Id;
Expr : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Expr);
begin
return
Make_Pragma (Loc,
Pragma_Identifier => Make_Identifier (Loc, Name_Check),
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Name_Predicate)),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Predicate_Call (Typ, Expr))));
end Make_Predicate_Check;
----------------------------
-- Make_Subtype_From_Expr --
----------------------------
-- 1. If Expr is an unconstrained array expression, creates
-- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
-- 2. If Expr is a unconstrained discriminated type expression, creates
-- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
-- 3. If Expr is class-wide, creates an implicit class wide subtype
function Make_Subtype_From_Expr
(E : Node_Id;
Unc_Typ : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (E);
List_Constr : constant List_Id := New_List;
D : Entity_Id;
Full_Subtyp : Entity_Id;
Priv_Subtyp : Entity_Id;
Utyp : Entity_Id;
Full_Exp : Node_Id;
begin
if Is_Private_Type (Unc_Typ)
and then Has_Unknown_Discriminants (Unc_Typ)
then
-- Prepare the subtype completion, Go to base type to
-- find underlying type, because the type may be a generic
-- actual or an explicit subtype.
Utyp := Underlying_Type (Base_Type (Unc_Typ));
Full_Subtyp := Make_Temporary (Loc, 'C');
Full_Exp :=
Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
Set_Parent (Full_Exp, Parent (E));
Priv_Subtyp := Make_Temporary (Loc, 'P');
Insert_Action (E,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Full_Subtyp,
Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
-- Define the dummy private subtype
Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
Set_Scope (Priv_Subtyp, Full_Subtyp);
Set_Is_Constrained (Priv_Subtyp);
Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
Set_Is_Itype (Priv_Subtyp);
Set_Associated_Node_For_Itype (Priv_Subtyp, E);
if Is_Tagged_Type (Priv_Subtyp) then
Set_Class_Wide_Type
(Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
Set_Direct_Primitive_Operations (Priv_Subtyp,
Direct_Primitive_Operations (Unc_Typ));
end if;
Set_Full_View (Priv_Subtyp, Full_Subtyp);
return New_Reference_To (Priv_Subtyp, Loc);
elsif Is_Array_Type (Unc_Typ) then
for J in 1 .. Number_Dimensions (Unc_Typ) loop
Append_To (List_Constr,
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J))),
High_Bound =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))));
end loop;
elsif Is_Class_Wide_Type (Unc_Typ) then
declare
CW_Subtype : Entity_Id;
EQ_Typ : Entity_Id := Empty;
begin
-- A class-wide equivalent type is not needed when VM_Target
-- because the VM back-ends handle the class-wide object
-- initialization itself (and doesn't need or want the
-- additional intermediate type to handle the assignment).
if Expander_Active and then Tagged_Type_Expansion then
-- If this is the class_wide type of a completion that is a
-- record subtype, set the type of the class_wide type to be
-- the full base type, for use in the expanded code for the
-- equivalent type. Should this be done earlier when the
-- completion is analyzed ???
if Is_Private_Type (Etype (Unc_Typ))
and then
Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
then
Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
end if;
EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
end if;
CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
Set_Equivalent_Type (CW_Subtype, EQ_Typ);
Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
return New_Occurrence_Of (CW_Subtype, Loc);
end;
-- Indefinite record type with discriminants
else
D := First_Discriminant (Unc_Typ);
while Present (D) loop
Append_To (List_Constr,
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Selector_Name => New_Reference_To (D, Loc)));
Next_Discriminant (D);
end loop;
end if;
return
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => List_Constr));
end Make_Subtype_From_Expr;
-----------------------------
-- May_Generate_Large_Temp --
-----------------------------
-- At the current time, the only types that we return False for (i.e. where
-- we decide we know they cannot generate large temps) are ones where we
-- know the size is 256 bits or less at compile time, and we are still not
-- doing a thorough job on arrays and records ???
function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
begin
if not Size_Known_At_Compile_Time (Typ) then
return False;
elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
return False;
elsif Is_Array_Type (Typ)
and then Present (Packed_Array_Type (Typ))
then
return May_Generate_Large_Temp (Packed_Array_Type (Typ));
-- We could do more here to find other small types ???
else
return True;
end if;
end May_Generate_Large_Temp;
------------------------
-- Needs_Finalization --
------------------------
function Needs_Finalization (T : Entity_Id) return Boolean is
function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
-- If type is not frozen yet, check explicitly among its components,
-- because the Has_Controlled_Component flag is not necessarily set.
-----------------------------------
-- Has_Some_Controlled_Component --
-----------------------------------
function Has_Some_Controlled_Component
(Rec : Entity_Id) return Boolean
is
Comp : Entity_Id;
begin
if Has_Controlled_Component (Rec) then
return True;
elsif not Is_Frozen (Rec) then
if Is_Record_Type (Rec) then
Comp := First_Entity (Rec);
while Present (Comp) loop
if not Is_Type (Comp)
and then Needs_Finalization (Etype (Comp))
then
return True;
end if;
Next_Entity (Comp);
end loop;
return False;
elsif Is_Array_Type (Rec) then
return Needs_Finalization (Component_Type (Rec));
else
return Has_Controlled_Component (Rec);
end if;
else
return False;
end if;
end Has_Some_Controlled_Component;
-- Start of processing for Needs_Finalization
begin
-- Certain run-time configurations and targets do not provide support
-- for controlled types.
if Restriction_Active (No_Finalization) then
return False;
-- C, C++, CIL and Java types are not considered controlled. It is
-- assumed that the non-Ada side will handle their clean up.
elsif Convention (T) = Convention_C
or else Convention (T) = Convention_CIL
or else Convention (T) = Convention_CPP
or else Convention (T) = Convention_Java
then
return False;
else
-- Class-wide types are treated as controlled because derivations
-- from the root type can introduce controlled components.
return
Is_Class_Wide_Type (T)
or else Is_Controlled (T)
or else Has_Controlled_Component (T)
or else Has_Some_Controlled_Component (T)
or else
(Is_Concurrent_Type (T)
and then Present (Corresponding_Record_Type (T))
and then Needs_Finalization (Corresponding_Record_Type (T)));
end if;
end Needs_Finalization;
----------------------------
-- Needs_Constant_Address --
----------------------------
function Needs_Constant_Address
(Decl : Node_Id;
Typ : Entity_Id) return Boolean
is
begin
-- If we have no initialization of any kind, then we don't need to place
-- any restrictions on the address clause, because the object will be
-- elaborated after the address clause is evaluated. This happens if the
-- declaration has no initial expression, or the type has no implicit
-- initialization, or the object is imported.
-- The same holds for all initialized scalar types and all access types.
-- Packed bit arrays of size up to 64 are represented using a modular
-- type with an initialization (to zero) and can be processed like other
-- initialized scalar types.
-- If the type is controlled, code to attach the object to a
-- finalization chain is generated at the point of declaration, and
-- therefore the elaboration of the object cannot be delayed: the
-- address expression must be a constant.
if No (Expression (Decl))
and then not Needs_Finalization (Typ)
and then
(not Has_Non_Null_Base_Init_Proc (Typ)
or else Is_Imported (Defining_Identifier (Decl)))
then
return False;
elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
or else Is_Access_Type (Typ)
or else
(Is_Bit_Packed_Array (Typ)
and then Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
then
return False;
else
-- Otherwise, we require the address clause to be constant because
-- the call to the initialization procedure (or the attach code) has
-- to happen at the point of the declaration.
-- Actually the IP call has been moved to the freeze actions anyway,
-- so maybe we can relax this restriction???
return True;
end if;
end Needs_Constant_Address;
----------------------------
-- New_Class_Wide_Subtype --
----------------------------
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id
is
Res : constant Entity_Id := Create_Itype (E_Void, N);
Res_Name : constant Name_Id := Chars (Res);
Res_Scope : constant Entity_Id := Scope (Res);
begin
Copy_Node (CW_Typ, Res);
Set_Comes_From_Source (Res, False);
Set_Sloc (Res, Sloc (N));
Set_Is_Itype (Res);
Set_Associated_Node_For_Itype (Res, N);
Set_Is_Public (Res, False); -- By default, may be changed below.
Set_Public_Status (Res);
Set_Chars (Res, Res_Name);
Set_Scope (Res, Res_Scope);
Set_Ekind (Res, E_Class_Wide_Subtype);
Set_Next_Entity (Res, Empty);
Set_Etype (Res, Base_Type (CW_Typ));
Set_Is_Frozen (Res, False);
Set_Freeze_Node (Res, Empty);
return (Res);
end New_Class_Wide_Subtype;
--------------------------------
-- Non_Limited_Designated_Type --
---------------------------------
function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
Desig : constant Entity_Id := Designated_Type (T);
begin
if Ekind (Desig) = E_Incomplete_Type
and then Present (Non_Limited_View (Desig))
then
return Non_Limited_View (Desig);
else
return Desig;
end if;
end Non_Limited_Designated_Type;
-----------------------------------
-- OK_To_Do_Constant_Replacement --
-----------------------------------
function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
ES : constant Entity_Id := Scope (E);
CS : Entity_Id;
begin
-- Do not replace statically allocated objects, because they may be
-- modified outside the current scope.
if Is_Statically_Allocated (E) then
return False;
-- Do not replace aliased or volatile objects, since we don't know what
-- else might change the value.
elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
return False;
-- Debug flag -gnatdM disconnects this optimization
elsif Debug_Flag_MM then
return False;
-- Otherwise check scopes
else
CS := Current_Scope;
loop
-- If we are in right scope, replacement is safe
if CS = ES then
return True;
-- Packages do not affect the determination of safety
elsif Ekind (CS) = E_Package then
exit when CS = Standard_Standard;
CS := Scope (CS);
-- Blocks do not affect the determination of safety
elsif Ekind (CS) = E_Block then
CS := Scope (CS);
-- Loops do not affect the determination of safety. Note that we
-- kill all current values on entry to a loop, so we are just
-- talking about processing within a loop here.
elsif Ekind (CS) = E_Loop then
CS := Scope (CS);
-- Otherwise, the reference is dubious, and we cannot be sure that
-- it is safe to do the replacement.
else
exit;
end if;
end loop;
return False;
end if;
end OK_To_Do_Constant_Replacement;
------------------------------------
-- Possible_Bit_Aligned_Component --
------------------------------------
function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
begin
case Nkind (N) is
-- Case of indexed component
when N_Indexed_Component =>
declare
P : constant Node_Id := Prefix (N);
Ptyp : constant Entity_Id := Etype (P);
begin
-- If we know the component size and it is less than 64, then
-- we are definitely OK. The back end always does assignment of
-- misaligned small objects correctly.
if Known_Static_Component_Size (Ptyp)
and then Component_Size (Ptyp) <= 64
then
return False;
-- Otherwise, we need to test the prefix, to see if we are
-- indexing from a possibly unaligned component.
else
return Possible_Bit_Aligned_Component (P);
end if;
end;
-- Case of selected component
when N_Selected_Component =>
declare
P : constant Node_Id := Prefix (N);
Comp : constant Entity_Id := Entity (Selector_Name (N));
begin
-- If there is no component clause, then we are in the clear
-- since the back end will never misalign a large component
-- unless it is forced to do so. In the clear means we need
-- only the recursive test on the prefix.
if Component_May_Be_Bit_Aligned (Comp) then
return True;
else
return Possible_Bit_Aligned_Component (P);
end if;
end;
-- For a slice, test the prefix, if that is possibly misaligned,
-- then for sure the slice is!
when N_Slice =>
return Possible_Bit_Aligned_Component (Prefix (N));
-- If we have none of the above, it means that we have fallen off the
-- top testing prefixes recursively, and we now have a stand alone
-- object, where we don't have a problem.
when others =>
return False;
end case;
end Possible_Bit_Aligned_Component;
-----------------------------------------------
-- Process_Statements_For_Controlled_Objects --
-----------------------------------------------
procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
function Are_Wrapped (L : List_Id) return Boolean;
-- Determine whether list L contains only one statement which is a block
function Wrap_Statements_In_Block (L : List_Id) return Node_Id;
-- Given a list of statements L, wrap it in a block statement and return
-- the generated node.
-----------------
-- Are_Wrapped --
-----------------
function Are_Wrapped (L : List_Id) return Boolean is
Stmt : constant Node_Id := First (L);
begin
return
Present (Stmt)
and then No (Next (Stmt))
and then Nkind (Stmt) = N_Block_Statement;
end Are_Wrapped;
------------------------------
-- Wrap_Statements_In_Block --
------------------------------
function Wrap_Statements_In_Block (L : List_Id) return Node_Id is
begin
return
Make_Block_Statement (Loc,
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => L));
end Wrap_Statements_In_Block;
-- Local variables
Block : Node_Id;
-- Start of processing for Process_Statements_For_Controlled_Objects
begin
-- Whenever a non-handled statement list is wrapped in a block, the
-- block must be explicitly analyzed to redecorate all entities in the
-- list and ensure that a finalizer is properly built.
case Nkind (N) is
when N_Elsif_Part |
N_If_Statement |
N_Conditional_Entry_Call |
N_Selective_Accept =>
-- Check the "then statements" for elsif parts and if statements
if Nkind_In (N, N_Elsif_Part, N_If_Statement)
and then not Is_Empty_List (Then_Statements (N))
and then not Are_Wrapped (Then_Statements (N))
and then Requires_Cleanup_Actions
(Then_Statements (N), False, False)
then
Block := Wrap_Statements_In_Block (Then_Statements (N));
Set_Then_Statements (N, New_List (Block));
Analyze (Block);
end if;
-- Check the "else statements" for conditional entry calls, if
-- statements and selective accepts.
if Nkind_In (N, N_Conditional_Entry_Call,
N_If_Statement,
N_Selective_Accept)
and then not Is_Empty_List (Else_Statements (N))
and then not Are_Wrapped (Else_Statements (N))
and then Requires_Cleanup_Actions
(Else_Statements (N), False, False)
then
Block := Wrap_Statements_In_Block (Else_Statements (N));
Set_Else_Statements (N, New_List (Block));
Analyze (Block);
end if;
when N_Abortable_Part |
N_Accept_Alternative |
N_Case_Statement_Alternative |
N_Delay_Alternative |
N_Entry_Call_Alternative |
N_Exception_Handler |
N_Loop_Statement |
N_Triggering_Alternative =>
if not Is_Empty_List (Statements (N))
and then not Are_Wrapped (Statements (N))
and then Requires_Cleanup_Actions (Statements (N), False, False)
then
Block := Wrap_Statements_In_Block (Statements (N));
Set_Statements (N, New_List (Block));
Analyze (Block);
end if;
when others =>
null;
end case;
end Process_Statements_For_Controlled_Objects;
-------------------------
-- Remove_Side_Effects --
-------------------------
procedure Remove_Side_Effects
(Exp : Node_Id;
Name_Req : Boolean := False;
Variable_Ref : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (Exp);
Exp_Type : constant Entity_Id := Etype (Exp);
Svg_Suppress : constant Suppress_Array := Scope_Suppress;
Def_Id : Entity_Id;
Ref_Type : Entity_Id;
Res : Node_Id;
Ptr_Typ_Decl : Node_Id;
New_Exp : Node_Id;
E : Node_Id;
function Side_Effect_Free (N : Node_Id) return Boolean;
-- Determines if the tree N represents an expression that is known not
-- to have side effects, and for which no processing is required.
function Side_Effect_Free (L : List_Id) return Boolean;
-- Determines if all elements of the list L are side effect free
function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
-- The argument N is a construct where the Prefix is dereferenced if it
-- is an access type and the result is a variable. The call returns True
-- if the construct is side effect free (not considering side effects in
-- other than the prefix which are to be tested by the caller).
function Within_In_Parameter (N : Node_Id) return Boolean;
-- Determines if N is a subcomponent of a composite in-parameter. If so,
-- N is not side-effect free when the actual is global and modifiable
-- indirectly from within a subprogram, because it may be passed by
-- reference. The front-end must be conservative here and assume that
-- this may happen with any array or record type. On the other hand, we
-- cannot create temporaries for all expressions for which this
-- condition is true, for various reasons that might require clearing up
-- ??? For example, discriminant references that appear out of place, or
-- spurious type errors with class-wide expressions. As a result, we
-- limit the transformation to loop bounds, which is so far the only
-- case that requires it.
-----------------------------
-- Safe_Prefixed_Reference --
-----------------------------
function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
begin
-- If prefix is not side effect free, definitely not safe
if not Side_Effect_Free (Prefix (N)) then
return False;
-- If the prefix is of an access type that is not access-to-constant,
-- then this construct is a variable reference, which means it is to
-- be considered to have side effects if Variable_Ref is set True.
elsif Is_Access_Type (Etype (Prefix (N)))
and then not Is_Access_Constant (Etype (Prefix (N)))
and then Variable_Ref
then
-- Exception is a prefix that is the result of a previous removal
-- of side-effects.
return Is_Entity_Name (Prefix (N))
and then not Comes_From_Source (Prefix (N))
and then Ekind (Entity (Prefix (N))) = E_Constant
and then Is_Internal_Name (Chars (Entity (Prefix (N))));
-- If the prefix is an explicit dereference then this construct is a
-- variable reference, which means it is to be considered to have
-- side effects if Variable_Ref is True.
-- We do NOT exclude dereferences of access-to-constant types because
-- we handle them as constant view of variables.
-- Exception is an access to an entity that is a constant or an
-- in-parameter.
elsif Nkind (Prefix (N)) = N_Explicit_Dereference
and then Variable_Ref
then
declare
DDT : constant Entity_Id :=
Designated_Type (Etype (Prefix (Prefix (N))));
begin
return Ekind_In (DDT, E_Constant, E_In_Parameter);
end;
-- The following test is the simplest way of solving a complex
-- problem uncovered by BB08-010: Side effect on loop bound that
-- is a subcomponent of a global variable:
-- If a loop bound is a subcomponent of a global variable, a
-- modification of that variable within the loop may incorrectly
-- affect the execution of the loop.
elsif not
(Nkind (Parent (Parent (N))) /= N_Loop_Parameter_Specification
or else not Within_In_Parameter (Prefix (N)))
then
return False;
-- All other cases are side effect free
else
return True;
end if;
end Safe_Prefixed_Reference;
----------------------
-- Side_Effect_Free --
----------------------
function Side_Effect_Free (N : Node_Id) return Boolean is
begin
-- Note on checks that could raise Constraint_Error. Strictly, if we
-- take advantage of 11.6, these checks do not count as side effects.
-- However, we would prefer to consider that they are side effects,
-- since the backend CSE does not work very well on expressions which
-- can raise Constraint_Error. On the other hand if we don't consider
-- them to be side effect free, then we get some awkward expansions
-- in -gnato mode, resulting in code insertions at a point where we
-- do not have a clear model for performing the insertions.
-- Special handling for entity names
if Is_Entity_Name (N) then
-- Variables are considered to be a side effect if Variable_Ref
-- is set or if we have a volatile reference and Name_Req is off.
-- If Name_Req is True then we can't help returning a name which
-- effectively allows multiple references in any case.
if Is_Variable (N, Use_Original_Node => False) then
return not Variable_Ref
and then (not Is_Volatile_Reference (N) or else Name_Req);
-- Any other entity (e.g. a subtype name) is definitely side
-- effect free.
else
return True;
end if;
-- A value known at compile time is always side effect free
elsif Compile_Time_Known_Value (N) then
return True;
-- A variable renaming is not side-effect free, because the renaming
-- will function like a macro in the front-end in some cases, and an
-- assignment can modify the component designated by N, so we need to
-- create a temporary for it.
-- The guard testing for Entity being present is needed at least in
-- the case of rewritten predicate expressions, and may well also be
-- appropriate elsewhere. Obviously we can't go testing the entity
-- field if it does not exist, so it's reasonable to say that this is
-- not the renaming case if it does not exist.
elsif Is_Entity_Name (Original_Node (N))
and then Present (Entity (Original_Node (N)))
and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
and then Ekind (Entity (Original_Node (N))) /= E_Constant
then
return False;
-- Remove_Side_Effects generates an object renaming declaration to
-- capture the expression of a class-wide expression. In VM targets
-- the frontend performs no expansion for dispatching calls to
-- class- wide types since they are handled by the VM. Hence, we must
-- locate here if this node corresponds to a previous invocation of
-- Remove_Side_Effects to avoid a never ending loop in the frontend.
elsif VM_Target /= No_VM
and then not Comes_From_Source (N)
and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Etype (N))
then
return True;
end if;
-- For other than entity names and compile time known values,
-- check the node kind for special processing.
case Nkind (N) is
-- An attribute reference is side effect free if its expressions
-- are side effect free and its prefix is side effect free or
-- is an entity reference.
-- Is this right? what about x'first where x is a variable???
when N_Attribute_Reference =>
return Side_Effect_Free (Expressions (N))
and then Attribute_Name (N) /= Name_Input
and then (Is_Entity_Name (Prefix (N))
or else Side_Effect_Free (Prefix (N)));
-- A binary operator is side effect free if and both operands are
-- side effect free. For this purpose binary operators include
-- membership tests and short circuit forms
when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
return Side_Effect_Free (Left_Opnd (N))
and then
Side_Effect_Free (Right_Opnd (N));
-- An explicit dereference is side effect free only if it is
-- a side effect free prefixed reference.
when N_Explicit_Dereference =>
return Safe_Prefixed_Reference (N);
-- A call to _rep_to_pos is side effect free, since we generate
-- this pure function call ourselves. Moreover it is critically
-- important to make this exception, since otherwise we can have
-- discriminants in array components which don't look side effect
-- free in the case of an array whose index type is an enumeration
-- type with an enumeration rep clause.
-- All other function calls are not side effect free
when N_Function_Call =>
return Nkind (Name (N)) = N_Identifier
and then Is_TSS (Name (N), TSS_Rep_To_Pos)
and then
Side_Effect_Free (First (Parameter_Associations (N)));
-- An indexed component is side effect free if it is a side
-- effect free prefixed reference and all the indexing
-- expressions are side effect free.
when N_Indexed_Component =>
return Side_Effect_Free (Expressions (N))
and then Safe_Prefixed_Reference (N);
-- A type qualification is side effect free if the expression
-- is side effect free.
when N_Qualified_Expression =>
return Side_Effect_Free (Expression (N));
-- A selected component is side effect free only if it is a side
-- effect free prefixed reference. If it designates a component
-- with a rep. clause it must be treated has having a potential
-- side effect, because it may be modified through a renaming, and
-- a subsequent use of the renaming as a macro will yield the
-- wrong value. This complex interaction between renaming and
-- removing side effects is a reminder that the latter has become
-- a headache to maintain, and that it should be removed in favor
-- of the gcc mechanism to capture values ???
when N_Selected_Component =>
if Nkind (Parent (N)) = N_Explicit_Dereference
and then Has_Non_Standard_Rep (Designated_Type (Etype (N)))
then
return False;
else
return Safe_Prefixed_Reference (N);
end if;
-- A range is side effect free if the bounds are side effect free
when N_Range =>
return Side_Effect_Free (Low_Bound (N))
and then Side_Effect_Free (High_Bound (N));
-- A slice is side effect free if it is a side effect free
-- prefixed reference and the bounds are side effect free.
when N_Slice =>
return Side_Effect_Free (Discrete_Range (N))
and then Safe_Prefixed_Reference (N);
-- A type conversion is side effect free if the expression to be
-- converted is side effect free.
when N_Type_Conversion =>
return Side_Effect_Free (Expression (N));
-- A unary operator is side effect free if the operand
-- is side effect free.
when N_Unary_Op =>
return Side_Effect_Free (Right_Opnd (N));
-- An unchecked type conversion is side effect free only if it
-- is safe and its argument is side effect free.
when N_Unchecked_Type_Conversion =>
return Safe_Unchecked_Type_Conversion (N)
and then Side_Effect_Free (Expression (N));
-- An unchecked expression is side effect free if its expression
-- is side effect free.
when N_Unchecked_Expression =>
return Side_Effect_Free (Expression (N));
-- A literal is side effect free
when N_Character_Literal |
N_Integer_Literal |
N_Real_Literal |
N_String_Literal =>
return True;
-- We consider that anything else has side effects. This is a bit
-- crude, but we are pretty close for most common cases, and we
-- are certainly correct (i.e. we never return True when the
-- answer should be False).
when others =>
return False;
end case;
end Side_Effect_Free;
-- A list is side effect free if all elements of the list are side
-- effect free.
function Side_Effect_Free (L : List_Id) return Boolean is
N : Node_Id;
begin
if L = No_List or else L = Error_List then
return True;
else
N := First (L);
while Present (N) loop
if not Side_Effect_Free (N) then
return False;
else
Next (N);
end if;
end loop;
return True;
end if;
end Side_Effect_Free;
-------------------------
-- Within_In_Parameter --
-------------------------
function Within_In_Parameter (N : Node_Id) return Boolean is
begin
if not Comes_From_Source (N) then
return False;
elsif Is_Entity_Name (N) then
return Ekind (Entity (N)) = E_In_Parameter;
elsif Nkind (N) = N_Indexed_Component
or else Nkind (N) = N_Selected_Component
then
return Within_In_Parameter (Prefix (N));
else
return False;
end if;
end Within_In_Parameter;
-- Start of processing for Remove_Side_Effects
begin
-- Handle cases in which there is nothing to do
if not Expander_Active then
return;
-- Cannot generate temporaries if the invocation to remove side effects
-- was issued too early and the type of the expression is not resolved
-- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
-- Remove_Side_Effects).
elsif No (Exp_Type)
or else Ekind (Exp_Type) = E_Access_Attribute_Type
then
return;
-- No action needed for side-effect free expressions
elsif Side_Effect_Free (Exp) then
return;
end if;
-- All this must not have any checks
Scope_Suppress := (others => True);
-- If it is a scalar type and we need to capture the value, just make
-- a copy. Likewise for a function call, an attribute reference, an
-- allocator, or an operator. And if we have a volatile reference and
-- Name_Req is not set (see comments above for Side_Effect_Free).
if Is_Elementary_Type (Exp_Type)
and then (Variable_Ref
or else Nkind (Exp) = N_Function_Call
or else Nkind (Exp) = N_Attribute_Reference
or else Nkind (Exp) = N_Allocator
or else Nkind (Exp) in N_Op
or else (not Name_Req and then Is_Volatile_Reference (Exp)))
then
Def_Id := Make_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Reference_To (Def_Id, Loc);
-- If the expression is a packed reference, it must be reanalyzed and
-- expanded, depending on context. This is the case for actuals where
-- a constraint check may capture the actual before expansion of the
-- call is complete.
if Nkind (Exp) = N_Indexed_Component
and then Is_Packed (Etype (Prefix (Exp)))
then
Set_Analyzed (Exp, False);
Set_Analyzed (Prefix (Exp), False);
end if;
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Reference_To (Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
Insert_Action (Exp, E);
-- If the expression has the form v.all then we can just capture the
-- pointer, and then do an explicit dereference on the result.
elsif Nkind (Exp) = N_Explicit_Dereference then
Def_Id := Make_Temporary (Loc, 'R', Exp);
Res :=
Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition =>
New_Reference_To (Etype (Prefix (Exp)), Loc),
Constant_Present => True,
Expression => Relocate_Node (Prefix (Exp))));
-- Similar processing for an unchecked conversion of an expression of
-- the form v.all, where we want the same kind of treatment.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then Nkind (Expression (Exp)) = N_Explicit_Dereference
then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
Scope_Suppress := Svg_Suppress;
return;
-- If this is a type conversion, leave the type conversion and remove
-- the side effects in the expression. This is important in several
-- circumstances: for change of representations, and also when this is a
-- view conversion to a smaller object, where gigi can end up creating
-- its own temporary of the wrong size.
elsif Nkind (Exp) = N_Type_Conversion then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
Scope_Suppress := Svg_Suppress;
return;
-- If this is an unchecked conversion that Gigi can't handle, make
-- a copy or a use a renaming to capture the value.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then not Safe_Unchecked_Type_Conversion (Exp)
then
if CW_Or_Has_Controlled_Part (Exp_Type) then
-- Use a renaming to capture the expression, rather than create
-- a controlled temporary.
Def_Id := Make_Temporary (Loc, 'R', Exp);
Res := New_Reference_To (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Reference_To (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
else
Def_Id := Make_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Reference_To (Def_Id, Loc);
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Reference_To (Exp_Type, Loc),
Constant_Present => not Is_Variable (Exp),
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
Insert_Action (Exp, E);
end if;
-- For expressions that denote objects, we can use a renaming scheme.
-- This is needed for correctness in the case of a volatile object of a
-- non-volatile type because the Make_Reference call of the "default"
-- approach would generate an illegal access value (an access value
-- cannot designate such an object - see Analyze_Reference). We skip
-- using this scheme if we have an object of a volatile type and we do
-- not have Name_Req set true (see comments above for Side_Effect_Free).
elsif Is_Object_Reference (Exp)
and then Nkind (Exp) /= N_Function_Call
and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
then
Def_Id := Make_Temporary (Loc, 'R', Exp);
if Nkind (Exp) = N_Selected_Component
and then Nkind (Prefix (Exp)) = N_Function_Call
and then Is_Array_Type (Exp_Type)
then
-- Avoid generating a variable-sized temporary, by generating
-- the renaming declaration just for the function call. The
-- transformation could be refined to apply only when the array
-- component is constrained by a discriminant???
Res :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Def_Id, Loc),
Selector_Name => Selector_Name (Exp));
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark =>
New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
Name => Relocate_Node (Prefix (Exp))));
else
Res := New_Reference_To (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Reference_To (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
end if;
-- If this is a packed reference, or a selected component with
-- a non-standard representation, a reference to the temporary
-- will be replaced by a copy of the original expression (see
-- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
-- elaborated by gigi, and is of course not to be replaced in-line
-- by the expression it renames, which would defeat the purpose of
-- removing the side-effect.
if (Nkind (Exp) = N_Selected_Component
or else Nkind (Exp) = N_Indexed_Component)
and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
then
null;
else
Set_Is_Renaming_Of_Object (Def_Id, False);
end if;
-- Otherwise we generate a reference to the value
else
-- Special processing for function calls that return a limited type.
-- We need to build a declaration that will enable build-in-place
-- expansion of the call. This is not done if the context is already
-- an object declaration, to prevent infinite recursion.
-- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
-- to accommodate functions returning limited objects by reference.
if Nkind (Exp) = N_Function_Call
and then Is_Immutably_Limited_Type (Etype (Exp))
and then Nkind (Parent (Exp)) /= N_Object_Declaration
and then Ada_Version >= Ada_2005
then
declare
Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Obj,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Expression => Relocate_Node (Exp));
Insert_Action (Exp, Decl);
Set_Etype (Obj, Exp_Type);
Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
return;
end;
end if;
Ref_Type := Make_Temporary (Loc, 'A');
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ref_Type,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Reference_To (Exp_Type, Loc)));
E := Exp;
Insert_Action (Exp, Ptr_Typ_Decl);
Def_Id := Make_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res :=
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (Def_Id, Loc));
if Nkind (E) = N_Explicit_Dereference then
New_Exp := Relocate_Node (Prefix (E));
else
E := Relocate_Node (E);
New_Exp := Make_Reference (Loc, E);
end if;
if Is_Delayed_Aggregate (E) then
-- The expansion of nested aggregates is delayed until the
-- enclosing aggregate is expanded. As aggregates are often
-- qualified, the predicate applies to qualified expressions as
-- well, indicating that the enclosing aggregate has not been
-- expanded yet. At this point the aggregate is part of a
-- stand-alone declaration, and must be fully expanded.
if Nkind (E) = N_Qualified_Expression then
Set_Expansion_Delayed (Expression (E), False);
Set_Analyzed (Expression (E), False);
else
Set_Expansion_Delayed (E, False);
end if;
Set_Analyzed (E, False);
end if;
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Reference_To (Ref_Type, Loc),
Constant_Present => True,
Expression => New_Exp));
end if;
-- Preserve the Assignment_OK flag in all copies, since at least one
-- copy may be used in a context where this flag must be set (otherwise
-- why would the flag be set in the first place).
Set_Assignment_OK (Res, Assignment_OK (Exp));
-- Finally rewrite the original expression and we are done
Rewrite (Exp, Res);
Analyze_And_Resolve (Exp, Exp_Type);
Scope_Suppress := Svg_Suppress;
end Remove_Side_Effects;
---------------------------
-- Represented_As_Scalar --
---------------------------
function Represented_As_Scalar (T : Entity_Id) return Boolean is
UT : constant Entity_Id := Underlying_Type (T);
begin
return Is_Scalar_Type (UT)
or else (Is_Bit_Packed_Array (UT)
and then Is_Scalar_Type (Packed_Array_Type (UT)));
end Represented_As_Scalar;
------------------------------
-- Requires_Cleanup_Actions --
------------------------------
function Requires_Cleanup_Actions (N : Node_Id) return Boolean is
For_Pkg : constant Boolean :=
Nkind_In (N, N_Package_Body, N_Package_Specification);
begin
case Nkind (N) is
when N_Accept_Statement |
N_Block_Statement |
N_Entry_Body |
N_Package_Body |
N_Protected_Body |
N_Subprogram_Body |
N_Task_Body =>
return
Requires_Cleanup_Actions (Declarations (N), For_Pkg, True)
or else
(Present (Handled_Statement_Sequence (N))
and then
Requires_Cleanup_Actions (Statements
(Handled_Statement_Sequence (N)), For_Pkg, True));
when N_Package_Specification =>
return
Requires_Cleanup_Actions
(Visible_Declarations (N), For_Pkg, True)
or else
Requires_Cleanup_Actions
(Private_Declarations (N), For_Pkg, True);
when others =>
return False;
end case;
end Requires_Cleanup_Actions;
------------------------------
-- Requires_Cleanup_Actions --
------------------------------
function Requires_Cleanup_Actions
(L : List_Id;
For_Package : Boolean;
Nested_Constructs : Boolean) return Boolean
is
Decl : Node_Id;
Expr : Node_Id;
Obj_Id : Entity_Id;
Obj_Typ : Entity_Id;
Pack_Id : Entity_Id;
Typ : Entity_Id;
begin
if No (L)
or else Is_Empty_List (L)
then
return False;
end if;
Decl := First (L);
while Present (Decl) loop
-- Library-level tagged types
if Nkind (Decl) = N_Full_Type_Declaration then
Typ := Defining_Identifier (Decl);
if Is_Tagged_Type (Typ)
and then Is_Library_Level_Entity (Typ)
and then Convention (Typ) = Convention_Ada
and then Present (Access_Disp_Table (Typ))
and then RTE_Available (RE_Unregister_Tag)
and then not No_Run_Time_Mode
and then not Is_Abstract_Type (Typ)
then
return True;
end if;
-- Regular object declarations
elsif Nkind (Decl) = N_Object_Declaration then
Obj_Id := Defining_Identifier (Decl);
Obj_Typ := Base_Type (Etype (Obj_Id));
Expr := Expression (Decl);
-- Bypass any form of processing for objects which have their
-- finalization disabled. This applies only to objects at the
-- library level.
if For_Package
and then Finalize_Storage_Only (Obj_Typ)
then
null;
-- Transient variables are treated separately in order to minimize
-- the size of the generated code. See Exp_Ch7.Process_Transient_
-- Objects.
elsif Is_Processed_Transient (Obj_Id) then
null;
-- The object is of the form:
-- Obj : Typ [:= Expr];
--
-- Do not process the incomplete view of a deferred constant. Do
-- not consider tag-to-class-wide conversions.
elsif not Is_Imported (Obj_Id)
and then Needs_Finalization (Obj_Typ)
and then not (Ekind (Obj_Id) = E_Constant
and then not Has_Completion (Obj_Id))
and then not Is_Tag_To_CW_Conversion (Obj_Id)
then
return True;
-- The object is of the form:
-- Obj : Access_Typ := Non_BIP_Function_Call'reference;
--
-- Obj : Access_Typ :=
-- BIP_Function_Call
-- (..., BIPaccess => null, ...)'reference;
elsif Is_Access_Type (Obj_Typ)
and then Needs_Finalization
(Available_View (Designated_Type (Obj_Typ)))
and then Present (Expr)
and then
(Is_Null_Access_BIP_Func_Call (Expr)
or else
(Is_Non_BIP_Func_Call (Expr)
and then not Is_Related_To_Func_Return (Obj_Id)))
then
return True;
-- Processing for "hook" objects generated for controlled
-- transients declared inside an Expression_With_Actions.
elsif Is_Access_Type (Obj_Typ)
and then Present (Return_Flag_Or_Transient_Decl (Obj_Id))
and then Nkind (Return_Flag_Or_Transient_Decl (Obj_Id)) =
N_Object_Declaration
and then Is_Finalizable_Transient
(Return_Flag_Or_Transient_Decl (Obj_Id), Decl)
then
return True;
-- Simple protected objects which use type System.Tasking.
-- Protected_Objects.Protection to manage their locks should be
-- treated as controlled since they require manual cleanup.
elsif Ekind (Obj_Id) = E_Variable
and then
(Is_Simple_Protected_Type (Obj_Typ)
or else Has_Simple_Protected_Object (Obj_Typ))
then
return True;
end if;
-- Specific cases of object renamings
elsif Nkind (Decl) = N_Object_Renaming_Declaration
and then Nkind (Name (Decl)) = N_Explicit_Dereference
and then Nkind (Prefix (Name (Decl))) = N_Identifier
then
Obj_Id := Defining_Identifier (Decl);
Obj_Typ := Base_Type (Etype (Obj_Id));
-- Bypass any form of processing for objects which have their
-- finalization disabled. This applies only to objects at the
-- library level.
if For_Package
and then Finalize_Storage_Only (Obj_Typ)
then
null;
-- Return object of a build-in-place function. This case is
-- recognized and marked by the expansion of an extended return
-- statement (see Expand_N_Extended_Return_Statement).
elsif Needs_Finalization (Obj_Typ)
and then Is_Return_Object (Obj_Id)
and then Present (Return_Flag_Or_Transient_Decl (Obj_Id))
then
return True;
end if;
-- Inspect the freeze node of an access-to-controlled type and look
-- for a delayed finalization master. This case arises when the
-- freeze actions are inserted at a later time than the expansion of
-- the context. Since Build_Finalizer is never called on a single
-- construct twice, the master will be ultimately left out and never
-- finalized. This is also needed for freeze actions of designated
-- types themselves, since in some cases the finalization master is
-- associated with a designated type's freeze node rather than that
-- of the access type (see handling for freeze actions in
-- Build_Finalization_Master).
elsif Nkind (Decl) = N_Freeze_Entity
and then Present (Actions (Decl))
then
Typ := Entity (Decl);
if ((Is_Access_Type (Typ)
and then not Is_Access_Subprogram_Type (Typ)
and then Needs_Finalization
(Available_View (Designated_Type (Typ))))
or else
(Is_Type (Typ)
and then Needs_Finalization (Typ)))
and then Requires_Cleanup_Actions
(Actions (Decl), For_Package, Nested_Constructs)
then
return True;
end if;
-- Nested package declarations
elsif Nested_Constructs
and then Nkind (Decl) = N_Package_Declaration
then
Pack_Id := Defining_Unit_Name (Specification (Decl));
if Nkind (Pack_Id) = N_Defining_Program_Unit_Name then
Pack_Id := Defining_Identifier (Pack_Id);
end if;
if Ekind (Pack_Id) /= E_Generic_Package
and then Requires_Cleanup_Actions (Specification (Decl))
then
return True;
end if;
-- Nested package bodies
elsif Nested_Constructs
and then Nkind (Decl) = N_Package_Body
then
Pack_Id := Corresponding_Spec (Decl);
if Ekind (Pack_Id) /= E_Generic_Package
and then Requires_Cleanup_Actions (Decl)
then
return True;
end if;
end if;
Next (Decl);
end loop;
return False;
end Requires_Cleanup_Actions;
------------------------------------
-- Safe_Unchecked_Type_Conversion --
------------------------------------
-- Note: this function knows quite a bit about the exact requirements of
-- Gigi with respect to unchecked type conversions, and its code must be
-- coordinated with any changes in Gigi in this area.
-- The above requirements should be documented in Sinfo ???
function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
Otyp : Entity_Id;
Ityp : Entity_Id;
Oalign : Uint;
Ialign : Uint;
Pexp : constant Node_Id := Parent (Exp);
begin
-- If the expression is the RHS of an assignment or object declaration
-- we are always OK because there will always be a target.
-- Object renaming declarations, (generated for view conversions of
-- actuals in inlined calls), like object declarations, provide an
-- explicit type, and are safe as well.
if (Nkind (Pexp) = N_Assignment_Statement
and then Expression (Pexp) = Exp)
or else Nkind (Pexp) = N_Object_Declaration
or else Nkind (Pexp) = N_Object_Renaming_Declaration
then
return True;
-- If the expression is the prefix of an N_Selected_Component we should
-- also be OK because GCC knows to look inside the conversion except if
-- the type is discriminated. We assume that we are OK anyway if the
-- type is not set yet or if it is controlled since we can't afford to
-- introduce a temporary in this case.
elsif Nkind (Pexp) = N_Selected_Component
and then Prefix (Pexp) = Exp
then
if No (Etype (Pexp)) then
return True;
else
return
not Has_Discriminants (Etype (Pexp))
or else Is_Constrained (Etype (Pexp));
end if;
end if;
-- Set the output type, this comes from Etype if it is set, otherwise we
-- take it from the subtype mark, which we assume was already fully
-- analyzed.
if Present (Etype (Exp)) then
Otyp := Etype (Exp);
else
Otyp := Entity (Subtype_Mark (Exp));
end if;
-- The input type always comes from the expression, and we assume
-- this is indeed always analyzed, so we can simply get the Etype.
Ityp := Etype (Expression (Exp));
-- Initialize alignments to unknown so far
Oalign := No_Uint;
Ialign := No_Uint;
-- Replace a concurrent type by its corresponding record type and each
-- type by its underlying type and do the tests on those. The original
-- type may be a private type whose completion is a concurrent type, so
-- find the underlying type first.
if Present (Underlying_Type (Otyp)) then
Otyp := Underlying_Type (Otyp);
end if;
if Present (Underlying_Type (Ityp)) then
Ityp := Underlying_Type (Ityp);
end if;
if Is_Concurrent_Type (Otyp) then
Otyp := Corresponding_Record_Type (Otyp);
end if;
if Is_Concurrent_Type (Ityp) then
Ityp := Corresponding_Record_Type (Ityp);
end if;
-- If the base types are the same, we know there is no problem since
-- this conversion will be a noop.
if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
return True;
-- Same if this is an upwards conversion of an untagged type, and there
-- are no constraints involved (could be more general???)
elsif Etype (Ityp) = Otyp
and then not Is_Tagged_Type (Ityp)
and then not Has_Discriminants (Ityp)
and then No (First_Rep_Item (Base_Type (Ityp)))
then
return True;
-- If the expression has an access type (object or subprogram) we assume
-- that the conversion is safe, because the size of the target is safe,
-- even if it is a record (which might be treated as having unknown size
-- at this point).
elsif Is_Access_Type (Ityp) then
return True;
-- If the size of output type is known at compile time, there is never
-- a problem. Note that unconstrained records are considered to be of
-- known size, but we can't consider them that way here, because we are
-- talking about the actual size of the object.
-- We also make sure that in addition to the size being known, we do not
-- have a case which might generate an embarrassingly large temp in
-- stack checking mode.
elsif Size_Known_At_Compile_Time (Otyp)
and then
(not Stack_Checking_Enabled
or else not May_Generate_Large_Temp (Otyp))
and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
then
return True;
-- If either type is tagged, then we know the alignment is OK so
-- Gigi will be able to use pointer punning.
elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
return True;
-- If either type is a limited record type, we cannot do a copy, so say
-- safe since there's nothing else we can do.
elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
return True;
-- Conversions to and from packed array types are always ignored and
-- hence are safe.
elsif Is_Packed_Array_Type (Otyp)
or else Is_Packed_Array_Type (Ityp)
then
return True;
end if;
-- The only other cases known to be safe is if the input type's
-- alignment is known to be at least the maximum alignment for the
-- target or if both alignments are known and the output type's
-- alignment is no stricter than the input's. We can use the component
-- type alignement for an array if a type is an unpacked array type.
if Present (Alignment_Clause (Otyp)) then
Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
elsif Is_Array_Type (Otyp)
and then Present (Alignment_Clause (Component_Type (Otyp)))
then
Oalign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Otyp))));
end if;
if Present (Alignment_Clause (Ityp)) then
Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
elsif Is_Array_Type (Ityp)
and then Present (Alignment_Clause (Component_Type (Ityp)))
then
Ialign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Ityp))));
end if;
if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
return True;
elsif Ialign /= No_Uint and then Oalign /= No_Uint
and then Ialign <= Oalign
then
return True;
-- Otherwise, Gigi cannot handle this and we must make a temporary
else
return False;
end if;
end Safe_Unchecked_Type_Conversion;
---------------------------------
-- Set_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Get_Current_Value_Condition. Here we set required
-- Current_Value fields, and in Get_Current_Value_Condition, we interpret
-- them, so they must have a consistent view.
procedure Set_Current_Value_Condition (Cnode : Node_Id) is
procedure Set_Entity_Current_Value (N : Node_Id);
-- If N is an entity reference, where the entity is of an appropriate
-- kind, then set the current value of this entity to Cnode, unless
-- there is already a definite value set there.
procedure Set_Expression_Current_Value (N : Node_Id);
-- If N is of an appropriate form, sets an appropriate entry in current
-- value fields of relevant entities. Multiple entities can be affected
-- in the case of an AND or AND THEN.
------------------------------
-- Set_Entity_Current_Value --
------------------------------
procedure Set_Entity_Current_Value (N : Node_Id) is
begin
if Is_Entity_Name (N) then
declare
Ent : constant Entity_Id := Entity (N);
begin
-- Don't capture if not safe to do so
if not Safe_To_Capture_Value (N, Ent, Cond => True) then
return;
end if;
-- Here we have a case where the Current_Value field may need
-- to be set. We set it if it is not already set to a compile
-- time expression value.
-- Note that this represents a decision that one condition
-- blots out another previous one. That's certainly right if
-- they occur at the same level. If the second one is nested,
-- then the decision is neither right nor wrong (it would be
-- equally OK to leave the outer one in place, or take the new
-- inner one. Really we should record both, but our data
-- structures are not that elaborate.
if Nkind (Current_Value (Ent)) not in N_Subexpr then
Set_Current_Value (Ent, Cnode);
end if;
end;
end if;
end Set_Entity_Current_Value;
----------------------------------
-- Set_Expression_Current_Value --
----------------------------------
procedure Set_Expression_Current_Value (N : Node_Id) is
Cond : Node_Id;
begin
Cond := N;
-- Loop to deal with (ignore for now) any NOT operators present. The
-- presence of NOT operators will be handled properly when we call
-- Get_Current_Value_Condition.
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
end loop;
-- For an AND or AND THEN, recursively process operands
if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
Set_Expression_Current_Value (Left_Opnd (Cond));
Set_Expression_Current_Value (Right_Opnd (Cond));
return;
end if;
-- Check possible relational operator
if Nkind (Cond) in N_Op_Compare then
if Compile_Time_Known_Value (Right_Opnd (Cond)) then
Set_Entity_Current_Value (Left_Opnd (Cond));
elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
Set_Entity_Current_Value (Right_Opnd (Cond));
end if;
-- Check possible boolean variable reference
else
Set_Entity_Current_Value (Cond);
end if;
end Set_Expression_Current_Value;
-- Start of processing for Set_Current_Value_Condition
begin
Set_Expression_Current_Value (Condition (Cnode));
end Set_Current_Value_Condition;
--------------------------
-- Set_Elaboration_Flag --
--------------------------
procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
Asn : Node_Id;
begin
if Present (Ent) then
-- Nothing to do if at the compilation unit level, because in this
-- case the flag is set by the binder generated elaboration routine.
if Nkind (Parent (N)) = N_Compilation_Unit then
null;
-- Here we do need to generate an assignment statement
else
Check_Restriction (No_Elaboration_Code, N);
Asn :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Expression => Make_Integer_Literal (Loc, Uint_1));
if Nkind (Parent (N)) = N_Subunit then
Insert_After (Corresponding_Stub (Parent (N)), Asn);
else
Insert_After (N, Asn);
end if;
Analyze (Asn);
-- Kill current value indication. This is necessary because the
-- tests of this flag are inserted out of sequence and must not
-- pick up bogus indications of the wrong constant value.
Set_Current_Value (Ent, Empty);
end if;
end if;
end Set_Elaboration_Flag;
----------------------------
-- Set_Renamed_Subprogram --
----------------------------
procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
begin
-- If input node is an identifier, we can just reset it
if Nkind (N) = N_Identifier then
Set_Chars (N, Chars (E));
Set_Entity (N, E);
-- Otherwise we have to do a rewrite, preserving Comes_From_Source
else
declare
CS : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
Set_Entity (N, E);
Set_Comes_From_Source (N, CS);
Set_Analyzed (N, True);
end;
end if;
end Set_Renamed_Subprogram;
----------------------------------
-- Silly_Boolean_Array_Not_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the case where the 'First of the component type is equal to the
-- 'Last of this component type, and if this is the case, we make sure
-- that constraint error is raised. The reason is that the NOT is bound
-- to cause CE in this case, and we will not otherwise catch it.
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True. For the XOR case,
-- see Silly_Boolean_Array_Xor_Test.
-- Believe it or not, this was reported as a bug. Note that nearly always,
-- the test will evaluate statically to False, so the code will be
-- statically removed, and no extra overhead caused.
procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
-- The check we install is
-- constraint_error when
-- component_type'first = component_type'last
-- and then array_type'Length /= 0)
-- We need the last guard because we don't want to raise CE for empty
-- arrays since no out of range values result. (Empty arrays with a
-- component type of True .. True -- very useful -- even the ACATS
-- does not test that marginal case!)
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last)),
Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Not_Test;
----------------------------------
-- Silly_Boolean_Array_Xor_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the XOR case where the component type is True .. True, since this
-- will raise constraint error. A special check is required since CE
-- will not be generated otherwise (cf Expand_Packed_Not).
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True, and no check is
-- required for the case of False .. False, since False xor False = False.
-- See also Silly_Boolean_Array_Not_Test
procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
-- The check we install is
-- constraint_error when
-- Boolean (component_type'First)
-- and then Boolean (component_type'Last)
-- and then array_type'Length /= 0)
-- We need the last guard because we don't want to raise CE for empty
-- arrays since no out of range values result (Empty arrays with a
-- component type of True .. True -- very useful -- even the ACATS
-- does not test that marginal case!).
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_And_Then (Loc,
Left_Opnd =>
Convert_To (Standard_Boolean,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First)),
Right_Opnd =>
Convert_To (Standard_Boolean,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last))),
Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Xor_Test;
--------------------------
-- Target_Has_Fixed_Ops --
--------------------------
Integer_Sized_Small : Ureal;
-- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
-- called (we don't want to compute it more than once!)
Long_Integer_Sized_Small : Ureal;
-- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
-- is called (we don't want to compute it more than once)
First_Time_For_THFO : Boolean := True;
-- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
function Target_Has_Fixed_Ops
(Left_Typ : Entity_Id;
Right_Typ : Entity_Id;
Result_Typ : Entity_Id) return Boolean
is
function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
-- Return True if the given type is a fixed-point type with a small
-- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
-- an absolute value less than 1.0. This is currently limited to
-- fixed-point types that map to Integer or Long_Integer.
------------------------
-- Is_Fractional_Type --
------------------------
function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
begin
if Esize (Typ) = Standard_Integer_Size then
return Small_Value (Typ) = Integer_Sized_Small;
elsif Esize (Typ) = Standard_Long_Integer_Size then
return Small_Value (Typ) = Long_Integer_Sized_Small;
else
return False;
end if;
end Is_Fractional_Type;
-- Start of processing for Target_Has_Fixed_Ops
begin
-- Return False if Fractional_Fixed_Ops_On_Target is false
if not Fractional_Fixed_Ops_On_Target then
return False;
end if;
-- Here the target has Fractional_Fixed_Ops, if first time, compute
-- standard constants used by Is_Fractional_Type.
if First_Time_For_THFO then
First_Time_For_THFO := False;
Integer_Sized_Small :=
UR_From_Components
(Num => Uint_1,
Den => UI_From_Int (Standard_Integer_Size - 1),
Rbase => 2);
Long_Integer_Sized_Small :=
UR_From_Components
(Num => Uint_1,
Den => UI_From_Int (Standard_Long_Integer_Size - 1),
Rbase => 2);
end if;
-- Return True if target supports fixed-by-fixed multiply/divide for
-- fractional fixed-point types (see Is_Fractional_Type) and the operand
-- and result types are equivalent fractional types.
return Is_Fractional_Type (Base_Type (Left_Typ))
and then Is_Fractional_Type (Base_Type (Right_Typ))
and then Is_Fractional_Type (Base_Type (Result_Typ))
and then Esize (Left_Typ) = Esize (Right_Typ)
and then Esize (Left_Typ) = Esize (Result_Typ);
end Target_Has_Fixed_Ops;
------------------------------------------
-- Type_May_Have_Bit_Aligned_Components --
------------------------------------------
function Type_May_Have_Bit_Aligned_Components
(Typ : Entity_Id) return Boolean
is
begin
-- Array type, check component type
if Is_Array_Type (Typ) then
return
Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
-- Record type, check components
elsif Is_Record_Type (Typ) then
declare
E : Entity_Id;
begin
E := First_Component_Or_Discriminant (Typ);
while Present (E) loop
if Component_May_Be_Bit_Aligned (E)
or else Type_May_Have_Bit_Aligned_Components (Etype (E))
then
return True;
end if;
Next_Component_Or_Discriminant (E);
end loop;
return False;
end;
-- Type other than array or record is always OK
else
return False;
end if;
end Type_May_Have_Bit_Aligned_Components;
----------------------------
-- Wrap_Cleanup_Procedure --
----------------------------
procedure Wrap_Cleanup_Procedure (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Stseq : constant Node_Id := Handled_Statement_Sequence (N);
Stmts : constant List_Id := Statements (Stseq);
begin
if Abort_Allowed then
Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
end if;
end Wrap_Cleanup_Procedure;
end Exp_Util;
|