1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ T S S --
-- --
-- S p e c --
-- --
-- --
-- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Type Support Subprogram (TSS) handling
with Types; use Types;
package Exp_Tss is
-- A type support subprogram (TSS) is an internally generated function or
-- procedure that is associated with a particular type. Examples are the
-- implicit initialization procedure, and subprograms for the Input and
-- Output attributes.
-- A given TSS is either generated once at the point of the declaration of
-- the type, or it is generated as needed in clients, but only one copy is
-- required in any one generated object file. The choice between these two
-- possibilities is made on a TSS-by-TSS basis depending on the estimation
-- of how likely the TSS is to be used. Initialization procedures fall in
-- the first category, for example, since it is likely that any declared
-- type will be used in a context requiring initialization, but the stream
-- attributes use the second approach, since it is more likely that they
-- will not be used at all, or will only be used in one client in any case.
-- A TSS is identified by its Chars name, i.e. for a given TSS type, the
-- same name is used for all types, e.g. the initialization routine has
-- the name _init for all types.
-- The TSS's for a given type are stored in an element list associated with
-- the type, and referenced from the TSS_Elist field of the N_Freeze_Entity
-- node associated with the type (all types that need TSS's always need to
-- be explicitly frozen, so the N_Freeze_Entity node always exists).
function TSS (Typ : Entity_Id; Nam : Name_Id) return Entity_Id;
-- Finds the TSS with the given name associated with the given type. If
-- no such TSS exists, then Empty is returned.
procedure Set_TSS (Typ : Entity_Id; TSS : Entity_Id);
-- This procedure is used to install a newly created TSS. The second
-- argument is the entity for such a new TSS. This entity is placed in
-- the TSS list for the type given as the first argument, replacing an
-- old entry of the same name if one was present. The tree for the body
-- of this TSS, which is not analyzed yet, is placed in the actions field
-- of the freeze node for the type. All such bodies are inserted into the
-- main tree and analyzed at the point at which the freeze node itself is
-- is expanded.
procedure Copy_TSS (TSS : Entity_Id; Typ : Entity_Id);
-- Given an existing TSS for another type (which is already installed,
-- analyzed and expanded), install it as the corresponding TSS for Typ.
-- Note that this just copies a reference, not the tree. This can also
-- be used to initially install a TSS in the case where the subprogram
-- for the TSS has already been created and its declaration processed.
function Init_Proc (Typ : Entity_Id) return Entity_Id;
pragma Inline (Init_Proc);
-- Obtains the _init TSS entry for the given type. This function call is
-- equivalent to TSS (Typ, Name_uInit). The _init TSS is the procedure
-- used to initialize otherwise uninitialized instances of a type. If
-- there is no _init TSS, then the type requires no initialization. Note
-- that subtypes and implicit types never have an _init TSS since subtype
-- objects are always initialized using the initialization procedure for
-- the corresponding base type (see Base_Init_Proc function). A special
-- case arises for concurrent types. Such types do not themselves have an
-- _init TSR, but initialization is required. The initialization procedure
-- used is the one fot the corresponding record type (see Base_Init_Proc).
function Base_Init_Proc (Typ : Entity_Id) return Entity_Id;
-- Obtains the _Init TSS entry from the base type of the entity, and also
-- deals with going indirect through the Corresponding_Record_Type field
-- for concurrent objects (which are initialized with the initialization
-- routine for the corresponding record type). Returns Empty if there is
-- no _Init TSS entry for the base type.
procedure Set_Init_Proc (Typ : Entity_Id; Init : Entity_Id);
pragma Inline (Set_Init_Proc);
-- The second argument is the _init TSS to be established for the type
-- given as the first argument. Equivalent to Set_TSS (Typ, Init).
function Has_Non_Null_Base_Init_Proc (Typ : Entity_Id) return Boolean;
-- Returns true if the given type has a defined Base_Init_Proc and
-- this init proc is not a null init proc (null init procs occur as
-- a result of the processing for Initialize_Scalars. This function
-- is used to test for the presence of an Init_Proc in cases where
-- a null init proc is considered equivalent to no Init_Proc.
end Exp_Tss;
|