1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ S T R M --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Elists; use Elists;
with Exp_Util; use Exp_Util;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Rtsfind; use Rtsfind;
with Sem_Aux; use Sem_Aux;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
package body Exp_Strm is
-----------------------
-- Local Subprograms --
-----------------------
procedure Build_Array_Read_Write_Procedure
(Nod : Node_Id;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Nam : Name_Id);
-- Common routine shared to build either an array Read procedure or an
-- array Write procedure, Nam is Name_Read or Name_Write to select which.
-- Pnam is the defining identifier for the constructed procedure. The
-- other parameters are as for Build_Array_Read_Procedure except that
-- the first parameter Nod supplies the Sloc to be used to generate code.
procedure Build_Record_Read_Write_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Nam : Name_Id);
-- Common routine shared to build a record Read Write procedure, Nam
-- is Name_Read or Name_Write to select which. Pnam is the defining
-- identifier for the constructed procedure. The other parameters are
-- as for Build_Record_Read_Procedure.
procedure Build_Stream_Function
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Fnam : Entity_Id;
Decls : List_Id;
Stms : List_Id);
-- Called to build an array or record stream function. The first three
-- arguments are the same as Build_Record_Or_Elementary_Input_Function.
-- Decls and Stms are the declarations and statements for the body and
-- The parameter Fnam is the name of the constructed function.
function Has_Stream_Standard_Rep (U_Type : Entity_Id) return Boolean;
-- This function is used to test the type U_Type, to determine if it has
-- a standard representation from a streaming point of view. Standard means
-- that it has a standard representation (e.g. no enumeration rep clause),
-- and the size of the root type is the same as the streaming size (which
-- is defined as value specified by a Stream_Size clause if present, or
-- the Esize of U_Type if not).
function Make_Stream_Subprogram_Name
(Loc : Source_Ptr;
Typ : Entity_Id;
Nam : TSS_Name_Type) return Entity_Id;
-- Return the entity that identifies the stream subprogram for type Typ
-- that is identified by the given Nam. This procedure deals with the
-- difference between tagged types (where a single subprogram associated
-- with the type is generated) and all other cases (where a subprogram
-- is generated at the point of the stream attribute reference). The
-- Loc parameter is used as the Sloc of the created entity.
function Stream_Base_Type (E : Entity_Id) return Entity_Id;
-- Stream attributes work on the basis of the base type except for the
-- array case. For the array case, we do not go to the base type, but
-- to the first subtype if it is constrained. This avoids problems with
-- incorrect conversions in the packed array case. Stream_Base_Type is
-- exactly this function (returns the base type, unless we have an array
-- type whose first subtype is constrained, in which case it returns the
-- first subtype).
--------------------------------
-- Build_Array_Input_Function --
--------------------------------
-- The function we build looks like
-- function typSI[_nnn] (S : access RST) return Typ is
-- L1 : constant Index_Type_1 := Index_Type_1'Input (S);
-- H1 : constant Index_Type_1 := Index_Type_1'Input (S);
-- L2 : constant Index_Type_2 := Index_Type_2'Input (S);
-- H2 : constant Index_Type_2 := Index_Type_2'Input (S);
-- ..
-- Ln : constant Index_Type_n := Index_Type_n'Input (S);
-- Hn : constant Index_Type_n := Index_Type_n'Input (S);
--
-- V : Typ'Base (L1 .. H1, L2 .. H2, ... Ln .. Hn)
-- begin
-- Typ'Read (S, V);
-- return V;
-- end typSI[_nnn]
-- Note: the suffix [_nnn] is present for untagged types, where we generate
-- a local subprogram at the point of the occurrence of the attribute
-- reference, so the name must be unique.
procedure Build_Array_Input_Function
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Fnam : out Entity_Id)
is
Dim : constant Pos := Number_Dimensions (Typ);
Lnam : Name_Id;
Hnam : Name_Id;
Decls : List_Id;
Ranges : List_Id;
Stms : List_Id;
Rstmt : Node_Id;
Indx : Node_Id;
Odecl : Node_Id;
begin
Decls := New_List;
Ranges := New_List;
Indx := First_Index (Typ);
for J in 1 .. Dim loop
Lnam := New_External_Name ('L', J);
Hnam := New_External_Name ('H', J);
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Lnam),
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Etype (Indx), Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Attribute_Name => Name_Input,
Expressions => New_List (Make_Identifier (Loc, Name_S)))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Hnam),
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Attribute_Name => Name_Input,
Expressions => New_List (Make_Identifier (Loc, Name_S)))));
Append_To (Ranges,
Make_Range (Loc,
Low_Bound => Make_Identifier (Loc, Lnam),
High_Bound => Make_Identifier (Loc, Hnam)));
Next_Index (Indx);
end loop;
-- If the type is constrained, use it directly. Otherwise build a
-- subtype indication with the proper bounds.
if Is_Constrained (Typ) then
Odecl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Object_Definition => New_Occurrence_Of (Typ, Loc));
else
Odecl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Stream_Base_Type (Typ), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc, Ranges)));
end if;
Rstmt :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Read,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Name_V)));
Stms := New_List (
Make_Extended_Return_Statement (Loc,
Return_Object_Declarations => New_List (Odecl),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, New_List (Rstmt))));
Fnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Input));
Build_Stream_Function (Loc, Typ, Decl, Fnam, Decls, Stms);
end Build_Array_Input_Function;
----------------------------------
-- Build_Array_Output_Procedure --
----------------------------------
procedure Build_Array_Output_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Stms : List_Id;
Indx : Node_Id;
begin
-- Build series of statements to output bounds
Indx := First_Index (Typ);
Stms := New_List;
for J in 1 .. Number_Dimensions (Typ) loop
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J))))));
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J))))));
Next_Index (Indx);
end loop;
-- Append Write attribute to write array elements
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Name_V))));
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Output));
Build_Stream_Procedure (Loc, Typ, Decl, Pnam, Stms, False);
end Build_Array_Output_Procedure;
--------------------------------
-- Build_Array_Read_Procedure --
--------------------------------
procedure Build_Array_Read_Procedure
(Nod : Node_Id;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Nod);
begin
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Read));
Build_Array_Read_Write_Procedure (Nod, Typ, Decl, Pnam, Name_Read);
end Build_Array_Read_Procedure;
--------------------------------------
-- Build_Array_Read_Write_Procedure --
--------------------------------------
-- The form of the array read/write procedure is as follows:
-- procedure pnam (S : access RST, V : [out] Typ) is
-- begin
-- for L1 in V'Range (1) loop
-- for L2 in V'Range (2) loop
-- ...
-- for Ln in V'Range (n) loop
-- Component_Type'Read/Write (S, V (L1, L2, .. Ln));
-- end loop;
-- ..
-- end loop;
-- end loop
-- end pnam;
-- The out keyword for V is supplied in the Read case
procedure Build_Array_Read_Write_Procedure
(Nod : Node_Id;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Nam : Name_Id)
is
Loc : constant Source_Ptr := Sloc (Nod);
Ndim : constant Pos := Number_Dimensions (Typ);
Ctyp : constant Entity_Id := Component_Type (Typ);
Stm : Node_Id;
Exl : List_Id;
RW : Entity_Id;
begin
-- First build the inner attribute call
Exl := New_List;
for J in 1 .. Ndim loop
Append_To (Exl, Make_Identifier (Loc, New_External_Name ('L', J)));
end loop;
Stm :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Stream_Base_Type (Ctyp), Loc),
Attribute_Name => Nam,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Expressions => Exl)));
-- The corresponding stream attribute for the component type of the
-- array may be user-defined, and be frozen after the type for which
-- we are generating the stream subprogram. In that case, freeze the
-- stream attribute of the component type, whose declaration could not
-- generate any additional freezing actions in any case.
if Nam = Name_Read then
RW := TSS (Base_Type (Ctyp), TSS_Stream_Read);
else
RW := TSS (Base_Type (Ctyp), TSS_Stream_Write);
end if;
if Present (RW)
and then not Is_Frozen (RW)
then
Set_Is_Frozen (RW);
end if;
-- Now this is the big loop to wrap that statement up in a sequence
-- of loops. The first time around, Stm is the attribute call. The
-- second and subsequent times, Stm is an inner loop.
for J in 1 .. Ndim loop
Stm :=
Make_Implicit_Loop_Statement (Nod,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
Chars => New_External_Name ('L', Ndim - J + 1)),
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, Ndim - J + 1))))),
Statements => New_List (Stm));
end loop;
Build_Stream_Procedure
(Loc, Typ, Decl, Pnam, New_List (Stm), Nam = Name_Read);
end Build_Array_Read_Write_Procedure;
---------------------------------
-- Build_Array_Write_Procedure --
---------------------------------
procedure Build_Array_Write_Procedure
(Nod : Node_Id;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Nod);
begin
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Write));
Build_Array_Read_Write_Procedure (Nod, Typ, Decl, Pnam, Name_Write);
end Build_Array_Write_Procedure;
---------------------------------
-- Build_Elementary_Input_Call --
---------------------------------
function Build_Elementary_Input_Call (N : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
P_Type : constant Entity_Id := Entity (Prefix (N));
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Rt_Type : constant Entity_Id := Root_Type (U_Type);
FST : constant Entity_Id := First_Subtype (U_Type);
Strm : constant Node_Id := First (Expressions (N));
Targ : constant Node_Id := Next (Strm);
P_Size : constant Uint := Get_Stream_Size (FST);
Res : Node_Id;
Lib_RE : RE_Id;
begin
-- Check first for Boolean and Character. These are enumeration types,
-- but we treat them specially, since they may require special handling
-- in the transfer protocol. However, this special handling only applies
-- if they have standard representation, otherwise they are treated like
-- any other enumeration type.
if Rt_Type = Standard_Boolean
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_I_B;
elsif Rt_Type = Standard_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_I_C;
elsif Rt_Type = Standard_Wide_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_I_WC;
elsif Rt_Type = Standard_Wide_Wide_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_I_WWC;
-- Floating point types
elsif Is_Floating_Point_Type (U_Type) then
-- Question: should we use P_Size or Rt_Type to distinguish between
-- possible floating point types? If a non-standard size or a stream
-- size is specified, then we should certainly use the size. But if
-- we have two types the same (notably Short_Float_Size = Float_Size
-- which is close to universally true, and Long_Long_Float_Size =
-- Long_Float_Size, true on most targets except the x86), then we
-- would really rather use the root type, so that if people want to
-- fiddle with System.Stream_Attributes to get inter-target portable
-- streams, they get the size they expect. Consider in particular the
-- case of a stream written on an x86, with 96-bit Long_Long_Float
-- being read into a non-x86 target with 64 bit Long_Long_Float. A
-- special version of System.Stream_Attributes can deal with this
-- provided the proper type is always used.
-- To deal with these two requirements we add the special checks
-- on equal sizes and use the root type to distinguish.
if P_Size <= Standard_Short_Float_Size
and then (Standard_Short_Float_Size /= Standard_Float_Size
or else Rt_Type = Standard_Short_Float)
then
Lib_RE := RE_I_SF;
elsif P_Size <= Standard_Float_Size then
Lib_RE := RE_I_F;
elsif P_Size <= Standard_Long_Float_Size
and then (Standard_Long_Float_Size /= Standard_Long_Long_Float_Size
or else Rt_Type = Standard_Long_Float)
then
Lib_RE := RE_I_LF;
else
Lib_RE := RE_I_LLF;
end if;
-- Signed integer types. Also includes signed fixed-point types and
-- enumeration types with a signed representation.
-- Note on signed integer types. We do not consider types as signed for
-- this purpose if they have no negative numbers, or if they have biased
-- representation. The reason is that the value in either case basically
-- represents an unsigned value.
-- For example, consider:
-- type W is range 0 .. 2**32 - 1;
-- for W'Size use 32;
-- This is a signed type, but the representation is unsigned, and may
-- be outside the range of a 32-bit signed integer, so this must be
-- treated as 32-bit unsigned.
-- Similarly, if we have
-- type W is range -1 .. +254;
-- for W'Size use 8;
-- then the representation is unsigned
elsif not Is_Unsigned_Type (FST)
-- The following set of tests gets repeated many times, we should
-- have an abstraction defined ???
and then
(Is_Fixed_Point_Type (U_Type)
or else
Is_Enumeration_Type (U_Type)
or else
(Is_Signed_Integer_Type (U_Type)
and then not Has_Biased_Representation (FST)))
then
if P_Size <= Standard_Short_Short_Integer_Size then
Lib_RE := RE_I_SSI;
elsif P_Size <= Standard_Short_Integer_Size then
Lib_RE := RE_I_SI;
elsif P_Size <= Standard_Integer_Size then
Lib_RE := RE_I_I;
elsif P_Size <= Standard_Long_Integer_Size then
Lib_RE := RE_I_LI;
else
Lib_RE := RE_I_LLI;
end if;
-- Unsigned integer types, also includes unsigned fixed-point types
-- and enumeration types with an unsigned representation (note that
-- we know they are unsigned because we already tested for signed).
-- Also includes signed integer types that are unsigned in the sense
-- that they do not include negative numbers. See above for details.
elsif Is_Modular_Integer_Type (U_Type)
or else Is_Fixed_Point_Type (U_Type)
or else Is_Enumeration_Type (U_Type)
or else Is_Signed_Integer_Type (U_Type)
then
if P_Size <= Standard_Short_Short_Integer_Size then
Lib_RE := RE_I_SSU;
elsif P_Size <= Standard_Short_Integer_Size then
Lib_RE := RE_I_SU;
elsif P_Size <= Standard_Integer_Size then
Lib_RE := RE_I_U;
elsif P_Size <= Standard_Long_Integer_Size then
Lib_RE := RE_I_LU;
else
Lib_RE := RE_I_LLU;
end if;
else pragma Assert (Is_Access_Type (U_Type));
if P_Size > System_Address_Size then
Lib_RE := RE_I_AD;
else
Lib_RE := RE_I_AS;
end if;
end if;
-- Call the function, and do an unchecked conversion of the result
-- to the actual type of the prefix. If the target is a discriminant,
-- and we are in the body of the default implementation of a 'Read
-- attribute, set target type to force a constraint check (13.13.2(35)).
-- If the type of the discriminant is currently private, add another
-- unchecked conversion from the full view.
if Nkind (Targ) = N_Identifier
and then Is_Internal_Name (Chars (Targ))
and then Is_TSS (Scope (Entity (Targ)), TSS_Stream_Read)
then
Res :=
Unchecked_Convert_To (Base_Type (U_Type),
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Lib_RE), Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm))));
Set_Do_Range_Check (Res);
if Base_Type (P_Type) /= Base_Type (U_Type) then
Res := Unchecked_Convert_To (Base_Type (P_Type), Res);
end if;
return Res;
else
Res :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Lib_RE), Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm)));
-- Now convert to the base type if we do not have a biased type. Note
-- that we did not do this in some older versions, and the result was
-- losing a required range check in the case where 'Input is being
-- called from 'Read.
if not Has_Biased_Representation (P_Type) then
return Unchecked_Convert_To (Base_Type (P_Type), Res);
-- For the biased case, the conversion to the base type loses the
-- biasing, so just convert to Ptype. This is not quite right, and
-- for example may lose a corner case CE test, but it is such a
-- rare case that for now we ignore it ???
else
return Unchecked_Convert_To (P_Type, Res);
end if;
end if;
end Build_Elementary_Input_Call;
---------------------------------
-- Build_Elementary_Write_Call --
---------------------------------
function Build_Elementary_Write_Call (N : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
P_Type : constant Entity_Id := Entity (Prefix (N));
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Rt_Type : constant Entity_Id := Root_Type (U_Type);
FST : constant Entity_Id := First_Subtype (U_Type);
Strm : constant Node_Id := First (Expressions (N));
Item : constant Node_Id := Next (Strm);
P_Size : Uint;
Lib_RE : RE_Id;
Libent : Entity_Id;
begin
-- Compute the size of the stream element. This is either the size of
-- the first subtype or if given the size of the Stream_Size attribute.
if Has_Stream_Size_Clause (FST) then
P_Size := Static_Integer (Expression (Stream_Size_Clause (FST)));
else
P_Size := Esize (FST);
end if;
-- Find the routine to be called
-- Check for First Boolean and Character. These are enumeration types,
-- but we treat them specially, since they may require special handling
-- in the transfer protocol. However, this special handling only applies
-- if they have standard representation, otherwise they are treated like
-- any other enumeration type.
if Rt_Type = Standard_Boolean
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_W_B;
elsif Rt_Type = Standard_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_W_C;
elsif Rt_Type = Standard_Wide_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_W_WC;
elsif Rt_Type = Standard_Wide_Wide_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_W_WWC;
-- Floating point types
elsif Is_Floating_Point_Type (U_Type) then
-- Question: should we use P_Size or Rt_Type to distinguish between
-- possible floating point types? If a non-standard size or a stream
-- size is specified, then we should certainly use the size. But if
-- we have two types the same (notably Short_Float_Size = Float_Size
-- which is close to universally true, and Long_Long_Float_Size =
-- Long_Float_Size, true on most targets except the x86), then we
-- would really rather use the root type, so that if people want to
-- fiddle with System.Stream_Attributes to get inter-target portable
-- streams, they get the size they expect. Consider in particular the
-- case of a stream written on an x86, with 96-bit Long_Long_Float
-- being read into a non-x86 target with 64 bit Long_Long_Float. A
-- special version of System.Stream_Attributes can deal with this
-- provided the proper type is always used.
-- To deal with these two requirements we add the special checks
-- on equal sizes and use the root type to distinguish.
if P_Size <= Standard_Short_Float_Size
and then (Standard_Short_Float_Size /= Standard_Float_Size
or else Rt_Type = Standard_Short_Float)
then
Lib_RE := RE_W_SF;
elsif P_Size <= Standard_Float_Size then
Lib_RE := RE_W_F;
elsif P_Size <= Standard_Long_Float_Size
and then (Standard_Long_Float_Size /= Standard_Long_Long_Float_Size
or else Rt_Type = Standard_Long_Float)
then
Lib_RE := RE_W_LF;
else
Lib_RE := RE_W_LLF;
end if;
-- Signed integer types. Also includes signed fixed-point types and
-- signed enumeration types share this circuitry.
-- Note on signed integer types. We do not consider types as signed for
-- this purpose if they have no negative numbers, or if they have biased
-- representation. The reason is that the value in either case basically
-- represents an unsigned value.
-- For example, consider:
-- type W is range 0 .. 2**32 - 1;
-- for W'Size use 32;
-- This is a signed type, but the representation is unsigned, and may
-- be outside the range of a 32-bit signed integer, so this must be
-- treated as 32-bit unsigned.
-- Similarly, the representation is also unsigned if we have:
-- type W is range -1 .. +254;
-- for W'Size use 8;
-- forcing a biased and unsigned representation
elsif not Is_Unsigned_Type (FST)
and then
(Is_Fixed_Point_Type (U_Type)
or else
Is_Enumeration_Type (U_Type)
or else
(Is_Signed_Integer_Type (U_Type)
and then not Has_Biased_Representation (FST)))
then
if P_Size <= Standard_Short_Short_Integer_Size then
Lib_RE := RE_W_SSI;
elsif P_Size <= Standard_Short_Integer_Size then
Lib_RE := RE_W_SI;
elsif P_Size <= Standard_Integer_Size then
Lib_RE := RE_W_I;
elsif P_Size <= Standard_Long_Integer_Size then
Lib_RE := RE_W_LI;
else
Lib_RE := RE_W_LLI;
end if;
-- Unsigned integer types, also includes unsigned fixed-point types
-- and unsigned enumeration types (note we know they are unsigned
-- because we already tested for signed above).
-- Also includes signed integer types that are unsigned in the sense
-- that they do not include negative numbers. See above for details.
elsif Is_Modular_Integer_Type (U_Type)
or else Is_Fixed_Point_Type (U_Type)
or else Is_Enumeration_Type (U_Type)
or else Is_Signed_Integer_Type (U_Type)
then
if P_Size <= Standard_Short_Short_Integer_Size then
Lib_RE := RE_W_SSU;
elsif P_Size <= Standard_Short_Integer_Size then
Lib_RE := RE_W_SU;
elsif P_Size <= Standard_Integer_Size then
Lib_RE := RE_W_U;
elsif P_Size <= Standard_Long_Integer_Size then
Lib_RE := RE_W_LU;
else
Lib_RE := RE_W_LLU;
end if;
else pragma Assert (Is_Access_Type (U_Type));
if P_Size > System_Address_Size then
Lib_RE := RE_W_AD;
else
Lib_RE := RE_W_AS;
end if;
end if;
-- Unchecked-convert parameter to the required type (i.e. the type of
-- the corresponding parameter, and call the appropriate routine.
Libent := RTE (Lib_RE);
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Libent, Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm),
Unchecked_Convert_To (Etype (Next_Formal (First_Formal (Libent))),
Relocate_Node (Item))));
end Build_Elementary_Write_Call;
-----------------------------------------
-- Build_Mutable_Record_Read_Procedure --
-----------------------------------------
procedure Build_Mutable_Record_Read_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Out_Formal : Node_Id;
-- Expression denoting the out formal parameter
Dcls : constant List_Id := New_List;
-- Declarations for the 'Read body
Stms : constant List_Id := New_List;
-- Statements for the 'Read body
Disc : Entity_Id;
-- Entity of the discriminant being processed
Tmp_For_Disc : Entity_Id;
-- Temporary object used to read the value of Disc
Tmps_For_Discs : constant List_Id := New_List;
-- List of object declarations for temporaries holding the read values
-- for the discriminants.
Cstr : constant List_Id := New_List;
-- List of constraints to be applied on temporary record
Discriminant_Checks : constant List_Id := New_List;
-- List of discriminant checks to be performed if the actual object
-- is constrained.
Tmp : constant Entity_Id := Make_Defining_Identifier (Loc, Name_V);
-- Temporary record must hide formal (assignments to components of the
-- record are always generated with V as the identifier for the record).
Constrained_Stms : List_Id := New_List;
-- Statements within the block where we have the constrained temporary
begin
-- A mutable type cannot be a tagged type, so we generate a new name
-- for the stream procedure.
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Read));
if Is_Unchecked_Union (Typ) then
-- If this is an unchecked union, the stream procedure is erroneous,
-- because there are no discriminants to read.
-- This should generate a warning ???
Append_To (Stms,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
Build_Stream_Procedure (Loc, Typ, Decl, Pnam, Stms, Outp => True);
return;
end if;
Disc := First_Discriminant (Typ);
Out_Formal :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Pnam, Loc),
Selector_Name => Make_Identifier (Loc, Name_V));
-- Generate Reads for the discriminants of the type. The discriminants
-- need to be read before the rest of the components, so that variants
-- are initialized correctly. The discriminants must be read into temp
-- variables so an incomplete Read (interrupted by an exception, for
-- example) does not alter the passed object.
while Present (Disc) loop
Tmp_For_Disc := Make_Defining_Identifier (Loc,
New_External_Name (Chars (Disc), "D"));
Append_To (Tmps_For_Discs,
Make_Object_Declaration (Loc,
Defining_Identifier => Tmp_For_Disc,
Object_Definition => New_Occurrence_Of (Etype (Disc), Loc)));
Set_No_Initialization (Last (Tmps_For_Discs));
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Disc), Loc),
Attribute_Name => Name_Read,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
New_Occurrence_Of (Tmp_For_Disc, Loc))));
Append_To (Cstr,
Make_Discriminant_Association (Loc,
Selector_Names => New_List (New_Occurrence_Of (Disc, Loc)),
Expression => New_Occurrence_Of (Tmp_For_Disc, Loc)));
Append_To (Discriminant_Checks,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Tmp_For_Disc, Loc),
Right_Opnd =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Out_Formal),
Selector_Name => New_Occurrence_Of (Disc, Loc))),
Reason => CE_Discriminant_Check_Failed));
Next_Discriminant (Disc);
end loop;
-- Generate reads for the components of the record (including those
-- that depend on discriminants).
Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Read);
-- Save original statement sequence for component assignments, and
-- replace it with Stms.
Constrained_Stms := Statements (Handled_Statement_Sequence (Decl));
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stms));
-- If Typ has controlled components (i.e. if it is classwide or
-- Has_Controlled), or components constrained using the discriminants
-- of Typ, then we need to ensure that all component assignments are
-- performed on an object that has been appropriately constrained
-- prior to being initialized. To this effect, we wrap the component
-- assignments in a block where V is a constrained temporary.
Append_To (Dcls,
Make_Object_Declaration (Loc,
Defining_Identifier => Tmp,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Base_Type (Typ), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Cstr))));
-- AI05-023-1: Insert discriminant check prior to initialization of the
-- constrained temporary.
Append_To (Stms,
Make_Implicit_If_Statement (Pnam,
Condition =>
Make_Attribute_Reference (Loc,
Prefix => New_Copy_Tree (Out_Formal),
Attribute_Name => Name_Constrained),
Then_Statements => Discriminant_Checks));
-- Now insert back original component assignments, wrapped in a block
-- in which V is the constrained temporary.
Append_To (Stms,
Make_Block_Statement (Loc,
Declarations => Dcls,
Handled_Statement_Sequence => Parent (Constrained_Stms)));
Append_To (Constrained_Stms,
Make_Assignment_Statement (Loc,
Name => Out_Formal,
Expression => Make_Identifier (Loc, Name_V)));
Set_Declarations (Decl, Tmps_For_Discs);
end Build_Mutable_Record_Read_Procedure;
------------------------------------------
-- Build_Mutable_Record_Write_Procedure --
------------------------------------------
procedure Build_Mutable_Record_Write_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Stms : List_Id;
Disc : Entity_Id;
D_Ref : Node_Id;
begin
Stms := New_List;
Disc := First_Discriminant (Typ);
-- Generate Writes for the discriminants of the type
-- If the type is an unchecked union, use the default values of
-- the discriminants, because they are not stored.
while Present (Disc) loop
if Is_Unchecked_Union (Typ) then
D_Ref :=
New_Copy_Tree (Discriminant_Default_Value (Disc));
else
D_Ref :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Selector_Name => New_Occurrence_Of (Disc, Loc));
end if;
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Disc), Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
D_Ref)));
Next_Discriminant (Disc);
end loop;
-- A mutable type cannot be a tagged type, so we generate a new name
-- for the stream procedure.
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Write));
Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Write);
-- Write the discriminants before the rest of the components, so
-- that discriminant values are properly set of variants, etc.
if Is_Non_Empty_List (
Statements (Handled_Statement_Sequence (Decl)))
then
Insert_List_Before
(First (Statements (Handled_Statement_Sequence (Decl))), Stms);
else
Set_Statements (Handled_Statement_Sequence (Decl), Stms);
end if;
end Build_Mutable_Record_Write_Procedure;
-----------------------------------------------
-- Build_Record_Or_Elementary_Input_Function --
-----------------------------------------------
-- The function we build looks like
-- function InputN (S : access RST) return Typ is
-- C1 : constant Disc_Type_1;
-- Discr_Type_1'Read (S, C1);
-- C2 : constant Disc_Type_2;
-- Discr_Type_2'Read (S, C2);
-- ...
-- Cn : constant Disc_Type_n;
-- Discr_Type_n'Read (S, Cn);
-- V : Typ (C1, C2, .. Cn)
-- begin
-- Typ'Read (S, V);
-- return V;
-- end InputN
-- The discriminants are of course only present in the case of a record
-- with discriminants. In the case of a record with no discriminants, or
-- an elementary type, then no Cn constants are defined.
procedure Build_Record_Or_Elementary_Input_Function
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Fnam : out Entity_Id)
is
B_Typ : constant Entity_Id := Underlying_Type (Base_Type (Typ));
Cn : Name_Id;
Constr : List_Id;
Decls : List_Id;
Discr : Entity_Id;
Discr_Elmt : Elmt_Id := No_Elmt;
J : Pos;
Obj_Decl : Node_Id;
Odef : Node_Id;
Stms : List_Id;
begin
Decls := New_List;
Constr := New_List;
J := 1;
-- In the presence of multiple instantiations (as in uses of the Booch
-- components) the base type may be private, and the underlying type
-- already constrained, in which case there's no discriminant constraint
-- to construct.
if Has_Discriminants (Typ)
and then No (Discriminant_Default_Value (First_Discriminant (Typ)))
and then not Is_Constrained (Underlying_Type (B_Typ))
then
Discr := First_Discriminant (B_Typ);
-- If the prefix subtype is constrained, then retrieve the first
-- element of its constraint.
if Is_Constrained (Typ) then
Discr_Elmt := First_Elmt (Discriminant_Constraint (Typ));
end if;
while Present (Discr) loop
Cn := New_External_Name ('C', J);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Cn),
Object_Definition =>
New_Occurrence_Of (Etype (Discr), Loc));
-- If this is an access discriminant, do not perform default
-- initialization. The discriminant is about to get its value
-- from Read, and if the type is null excluding we do not want
-- spurious warnings on an initial null value.
if Is_Access_Type (Etype (Discr)) then
Set_No_Initialization (Decl);
end if;
Append_To (Decls, Decl);
Append_To (Decls,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Discr), Loc),
Attribute_Name => Name_Read,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Cn))));
Append_To (Constr, Make_Identifier (Loc, Cn));
-- If the prefix subtype imposes a discriminant constraint, then
-- check that each discriminant value equals the value read.
if Present (Discr_Elmt) then
Append_To (Decls,
Make_Raise_Constraint_Error (Loc,
Condition => Make_Op_Ne (Loc,
Left_Opnd =>
New_Occurrence_Of
(Defining_Identifier (Decl), Loc),
Right_Opnd =>
New_Copy_Tree (Node (Discr_Elmt))),
Reason => CE_Discriminant_Check_Failed));
Next_Elmt (Discr_Elmt);
end if;
Next_Discriminant (Discr);
J := J + 1;
end loop;
Odef :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (B_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constr));
-- If no discriminants, then just use the type with no constraint
else
Odef := New_Occurrence_Of (B_Typ, Loc);
end if;
-- Create an extended return statement encapsulating the result object
-- and 'Read call, which is needed in general for proper handling of
-- build-in-place results (such as when the result type is inherently
-- limited).
Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Object_Definition => Odef);
-- If the type is an access type, do not perform default initialization.
-- The object is about to get its value from Read, and if the type is
-- null excluding we do not want spurious warnings on an initial null.
if Is_Access_Type (B_Typ) then
Set_No_Initialization (Obj_Decl);
end if;
Stms := New_List (
Make_Extended_Return_Statement (Loc,
Return_Object_Declarations => New_List (Obj_Decl),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (B_Typ, Loc),
Attribute_Name => Name_Read,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Name_V)))))));
Fnam := Make_Stream_Subprogram_Name (Loc, B_Typ, TSS_Stream_Input);
Build_Stream_Function (Loc, B_Typ, Decl, Fnam, Decls, Stms);
end Build_Record_Or_Elementary_Input_Function;
-------------------------------------------------
-- Build_Record_Or_Elementary_Output_Procedure --
-------------------------------------------------
procedure Build_Record_Or_Elementary_Output_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Stms : List_Id;
Disc : Entity_Id;
Disc_Ref : Node_Id;
begin
Stms := New_List;
-- Note that of course there will be no discriminants for the elementary
-- type case, so Has_Discriminants will be False. Note that the language
-- rules do not allow writing the discriminants in the defaulted case,
-- because those are written by 'Write.
if Has_Discriminants (Typ)
and then No (Discriminant_Default_Value (First_Discriminant (Typ)))
then
Disc := First_Discriminant (Typ);
while Present (Disc) loop
-- If the type is an unchecked union, it must have default
-- discriminants (this is checked earlier), and those defaults
-- are written out to the stream.
if Is_Unchecked_Union (Typ) then
Disc_Ref := New_Copy_Tree (Discriminant_Default_Value (Disc));
else
Disc_Ref :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Selector_Name => New_Occurrence_Of (Disc, Loc));
end if;
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Disc)), Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Disc_Ref)));
Next_Discriminant (Disc);
end loop;
end if;
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Name_V))));
Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Output);
Build_Stream_Procedure (Loc, Typ, Decl, Pnam, Stms, False);
end Build_Record_Or_Elementary_Output_Procedure;
---------------------------------
-- Build_Record_Read_Procedure --
---------------------------------
procedure Build_Record_Read_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
begin
Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Read);
Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Read);
end Build_Record_Read_Procedure;
---------------------------------------
-- Build_Record_Read_Write_Procedure --
---------------------------------------
-- The form of the record read/write procedure is as shown by the
-- following example for a case with one discriminant case variant:
-- procedure pnam (S : access RST, V : [out] Typ) is
-- begin
-- Component_Type'Read/Write (S, V.component);
-- Component_Type'Read/Write (S, V.component);
-- ...
-- Component_Type'Read/Write (S, V.component);
--
-- case V.discriminant is
-- when choices =>
-- Component_Type'Read/Write (S, V.component);
-- Component_Type'Read/Write (S, V.component);
-- ...
-- Component_Type'Read/Write (S, V.component);
--
-- when choices =>
-- Component_Type'Read/Write (S, V.component);
-- Component_Type'Read/Write (S, V.component);
-- ...
-- Component_Type'Read/Write (S, V.component);
-- ...
-- end case;
-- end pnam;
-- The out keyword for V is supplied in the Read case
procedure Build_Record_Read_Write_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Nam : Name_Id)
is
Rdef : Node_Id;
Stms : List_Id;
Typt : Entity_Id;
In_Limited_Extension : Boolean := False;
-- Set to True while processing the record extension definition
-- for an extension of a limited type (for which an ancestor type
-- has an explicit Nam attribute definition).
function Make_Component_List_Attributes (CL : Node_Id) return List_Id;
-- Returns a sequence of attributes to process the components that
-- are referenced in the given component list.
function Make_Field_Attribute (C : Entity_Id) return Node_Id;
-- Given C, the entity for a discriminant or component, build
-- an attribute for the corresponding field values.
function Make_Field_Attributes (Clist : List_Id) return List_Id;
-- Given Clist, a component items list, construct series of attributes
-- for fieldwise processing of the corresponding components.
------------------------------------
-- Make_Component_List_Attributes --
------------------------------------
function Make_Component_List_Attributes (CL : Node_Id) return List_Id is
CI : constant List_Id := Component_Items (CL);
VP : constant Node_Id := Variant_Part (CL);
Result : List_Id;
Alts : List_Id;
V : Node_Id;
DC : Node_Id;
DCH : List_Id;
D_Ref : Node_Id;
begin
Result := Make_Field_Attributes (CI);
if Present (VP) then
Alts := New_List;
V := First_Non_Pragma (Variants (VP));
while Present (V) loop
DCH := New_List;
DC := First (Discrete_Choices (V));
while Present (DC) loop
Append_To (DCH, New_Copy_Tree (DC));
Next (DC);
end loop;
Append_To (Alts,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => DCH,
Statements =>
Make_Component_List_Attributes (Component_List (V))));
Next_Non_Pragma (V);
end loop;
-- Note: in the following, we make sure that we use new occurrence
-- of for the selector, since there are cases in which we make a
-- reference to a hidden discriminant that is not visible.
-- If the enclosing record is an unchecked_union, we use the
-- default expressions for the discriminant (it must exist)
-- because we cannot generate a reference to it, given that
-- it is not stored.
if Is_Unchecked_Union (Scope (Entity (Name (VP)))) then
D_Ref :=
New_Copy_Tree
(Discriminant_Default_Value (Entity (Name (VP))));
else
D_Ref :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Selector_Name =>
New_Occurrence_Of (Entity (Name (VP)), Loc));
end if;
Append_To (Result,
Make_Case_Statement (Loc,
Expression => D_Ref,
Alternatives => Alts));
end if;
return Result;
end Make_Component_List_Attributes;
--------------------------
-- Make_Field_Attribute --
--------------------------
function Make_Field_Attribute (C : Entity_Id) return Node_Id is
Field_Typ : constant Entity_Id := Stream_Base_Type (Etype (C));
TSS_Names : constant array (Name_Input .. Name_Write) of
TSS_Name_Type :=
(Name_Read => TSS_Stream_Read,
Name_Write => TSS_Stream_Write,
Name_Input => TSS_Stream_Input,
Name_Output => TSS_Stream_Output,
others => TSS_Null);
pragma Assert (TSS_Names (Nam) /= TSS_Null);
begin
if In_Limited_Extension
and then Is_Limited_Type (Field_Typ)
and then No (Find_Inherited_TSS (Field_Typ, TSS_Names (Nam)))
then
-- The declaration is illegal per 13.13.2(9/1), and this is
-- enforced in Exp_Ch3.Check_Stream_Attributes. Keep the caller
-- happy by returning a null statement.
return Make_Null_Statement (Loc);
end if;
return
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Field_Typ, Loc),
Attribute_Name => Nam,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Selector_Name => New_Occurrence_Of (C, Loc))));
end Make_Field_Attribute;
---------------------------
-- Make_Field_Attributes --
---------------------------
function Make_Field_Attributes (Clist : List_Id) return List_Id is
Item : Node_Id;
Result : List_Id;
begin
Result := New_List;
if Present (Clist) then
Item := First (Clist);
-- Loop through components, skipping all internal components,
-- which are not part of the value (e.g. _Tag), except that we
-- don't skip the _Parent, since we do want to process that
-- recursively. If _Parent is an interface type, being abstract
-- with no components there is no need to handle it.
while Present (Item) loop
if Nkind (Item) = N_Component_Declaration
and then
((Chars (Defining_Identifier (Item)) = Name_uParent
and then not Is_Interface
(Etype (Defining_Identifier (Item))))
or else
not Is_Internal_Name (Chars (Defining_Identifier (Item))))
then
Append_To
(Result,
Make_Field_Attribute (Defining_Identifier (Item)));
end if;
Next (Item);
end loop;
end if;
return Result;
end Make_Field_Attributes;
-- Start of processing for Build_Record_Read_Write_Procedure
begin
-- For the protected type case, use corresponding record
if Is_Protected_Type (Typ) then
Typt := Corresponding_Record_Type (Typ);
else
Typt := Typ;
end if;
-- Note that we do nothing with the discriminants, since Read and
-- Write do not read or write the discriminant values. All handling
-- of discriminants occurs in the Input and Output subprograms.
Rdef := Type_Definition
(Declaration_Node (Base_Type (Underlying_Type (Typt))));
Stms := Empty_List;
-- In record extension case, the fields we want, including the _Parent
-- field representing the parent type, are to be found in the extension.
-- Note that we will naturally process the _Parent field using the type
-- of the parent, and hence its stream attributes, which is appropriate.
if Nkind (Rdef) = N_Derived_Type_Definition then
Rdef := Record_Extension_Part (Rdef);
if Is_Limited_Type (Typt) then
In_Limited_Extension := True;
end if;
end if;
if Present (Component_List (Rdef)) then
Append_List_To (Stms,
Make_Component_List_Attributes (Component_List (Rdef)));
end if;
Build_Stream_Procedure
(Loc, Typ, Decl, Pnam, Stms, Nam = Name_Read);
end Build_Record_Read_Write_Procedure;
----------------------------------
-- Build_Record_Write_Procedure --
----------------------------------
procedure Build_Record_Write_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
begin
Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Write);
Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Write);
end Build_Record_Write_Procedure;
-------------------------------
-- Build_Stream_Attr_Profile --
-------------------------------
function Build_Stream_Attr_Profile
(Loc : Source_Ptr;
Typ : Entity_Id;
Nam : TSS_Name_Type) return List_Id
is
Profile : List_Id;
begin
-- (Ada 2005: AI-441): Set the null-excluding attribute because it has
-- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
Profile := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Null_Exclusion_Present => True,
Subtype_Mark => New_Occurrence_Of (
Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc))));
if Nam /= TSS_Stream_Input then
Append_To (Profile,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Out_Present => (Nam = TSS_Stream_Read),
Parameter_Type => New_Occurrence_Of (Typ, Loc)));
end if;
return Profile;
end Build_Stream_Attr_Profile;
---------------------------
-- Build_Stream_Function --
---------------------------
procedure Build_Stream_Function
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Fnam : Entity_Id;
Decls : List_Id;
Stms : List_Id)
is
Spec : Node_Id;
begin
-- Construct function specification
-- (Ada 2005: AI-441): Set the null-excluding attribute because it has
-- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Fnam,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Null_Exclusion_Present => True,
Subtype_Mark =>
New_Occurrence_Of
(Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc)))),
Result_Definition => New_Occurrence_Of (Typ, Loc));
Decl :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stms));
end Build_Stream_Function;
----------------------------
-- Build_Stream_Procedure --
----------------------------
procedure Build_Stream_Procedure
(Loc : Source_Ptr;
Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Stms : List_Id;
Outp : Boolean)
is
Spec : Node_Id;
begin
-- Construct procedure specification
-- (Ada 2005: AI-441): Set the null-excluding attribute because it has
-- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Pnam,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Null_Exclusion_Present => True,
Subtype_Mark =>
New_Occurrence_Of
(Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc))),
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Out_Present => Outp,
Parameter_Type => New_Occurrence_Of (Typ, Loc))));
Decl :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stms));
end Build_Stream_Procedure;
-----------------------------
-- Has_Stream_Standard_Rep --
-----------------------------
function Has_Stream_Standard_Rep (U_Type : Entity_Id) return Boolean is
Siz : Uint;
begin
if Has_Non_Standard_Rep (U_Type) then
return False;
end if;
if Has_Stream_Size_Clause (U_Type) then
Siz := Static_Integer (Expression (Stream_Size_Clause (U_Type)));
else
Siz := Esize (First_Subtype (U_Type));
end if;
return Siz = Esize (Root_Type (U_Type));
end Has_Stream_Standard_Rep;
---------------------------------
-- Make_Stream_Subprogram_Name --
---------------------------------
function Make_Stream_Subprogram_Name
(Loc : Source_Ptr;
Typ : Entity_Id;
Nam : TSS_Name_Type) return Entity_Id
is
Sname : Name_Id;
begin
-- For tagged types, we are dealing with a TSS associated with the
-- declaration, so we use the standard primitive function name. For
-- other types, generate a local TSS name since we are generating
-- the subprogram at the point of use.
if Is_Tagged_Type (Typ) then
Sname := Make_TSS_Name (Typ, Nam);
else
Sname := Make_TSS_Name_Local (Typ, Nam);
end if;
return Make_Defining_Identifier (Loc, Sname);
end Make_Stream_Subprogram_Name;
----------------------
-- Stream_Base_Type --
----------------------
function Stream_Base_Type (E : Entity_Id) return Entity_Id is
begin
if Is_Array_Type (E)
and then Is_First_Subtype (E)
then
return E;
else
return Base_Type (E);
end if;
end Stream_Base_Type;
end Exp_Strm;
|