1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ F I X D --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Exp_Util; use Exp_Util;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body Exp_Fixd is
-----------------------
-- Local Subprograms --
-----------------------
-- General note; in this unit, a number of routines are driven by the
-- types (Etype) of their operands. Since we are dealing with unanalyzed
-- expressions as they are constructed, the Etypes would not normally be
-- set, but the construction routines that we use in this unit do in fact
-- set the Etype values correctly. In addition, setting the Etype ensures
-- that the analyzer does not try to redetermine the type when the node
-- is analyzed (which would be wrong, since in the case where we set the
-- Treat_Fixed_As_Integer or Conversion_OK flags, it would think it was
-- still dealing with a normal fixed-point operation and mess it up).
function Build_Conversion
(N : Node_Id;
Typ : Entity_Id;
Expr : Node_Id;
Rchk : Boolean := False)
return Node_Id;
-- Build an expression that converts the expression Expr to type Typ,
-- taking the source location from Sloc (N). If the conversions involve
-- fixed-point types, then the Conversion_OK flag will be set so that the
-- resulting conversions do not get re-expanded. On return the resulting
-- node has its Etype set. If Rchk is set, then Do_Range_Check is set
-- in the resulting conversion node.
function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Divide node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands
-- are either both Long_Long_Float, in which case Build_Divide differs
-- from Make_Op_Divide only in that the Etype of the resulting node is
-- set (to Long_Long_Float), or they can be integer types. In this case
-- the integer types need not be the same, and Build_Divide converts
-- the operand with the smaller sized type to match the type of the
-- other operand and sets this as the result type. The Rounded_Result
-- flag of the result in this case is set from the Rounded_Result flag
-- of node N. On return, the resulting node is analyzed, and has its
-- Etype set.
function Build_Double_Divide
(N : Node_Id;
X, Y, Z : Node_Id)
return Node_Id;
-- Returns a node corresponding to the value X/(Y*Z) using the source
-- location from Sloc (N). The division is rounded if the Rounded_Result
-- flag of N is set. The integer types of X, Y, Z may be different. On
-- return the resulting node is analyzed, and has its Etype set.
procedure Build_Double_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id);
-- Generates a sequence of code for determining the quotient and remainder
-- of the division X/(Y*Z), using the source location from Sloc (N).
-- Entities of appropriate types are allocated for the quotient and
-- remainder and returned in Qnn and Rnn. The result is rounded if
-- the Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn
-- are appropriately set on return.
function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Multiply node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands
-- are either both Long_Long_Float, in which case Build_Divide differs
-- from Make_Op_Multiply only in that the Etype of the resulting node is
-- set (to Long_Long_Float), or they can be integer types. In this case
-- the integer types need not be the same, and Build_Multiply chooses
-- a type long enough to hold the product (i.e. twice the size of the
-- longer of the two operand types), and both operands are converted
-- to this type. The Etype of the result is also set to this value.
-- However, the result can never overflow Integer_64, so this is the
-- largest type that is ever generated. On return, the resulting node
-- is analyzed and has its Etype set.
function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Rem node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands
-- are both integer types, which need not be the same. Build_Rem
-- converts the operand with the smaller sized type to match the type
-- of the other operand and sets this as the result type. The result
-- is never rounded (rem operations cannot be rounded in any case!)
-- On return, the resulting node is analyzed and has its Etype set.
function Build_Scaled_Divide
(N : Node_Id;
X, Y, Z : Node_Id)
return Node_Id;
-- Returns a node corresponding to the value X*Y/Z using the source
-- location from Sloc (N). The division is rounded if the Rounded_Result
-- flag of N is set. The integer types of X, Y, Z may be different. On
-- return the resulting node is analyzed and has is Etype set.
procedure Build_Scaled_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id);
-- Generates a sequence of code for determining the quotient and remainder
-- of the division X*Y/Z, using the source location from Sloc (N). Entities
-- of appropriate types are allocated for the quotient and remainder and
-- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
-- The division is rounded if the Rounded_Result flag of N is set. The
-- Etype fields of Qnn and Rnn are appropriately set on return.
procedure Do_Divide_Fixed_Fixed (N : Node_Id);
-- Handles expansion of divide for case of two fixed-point operands
-- (neither of them universal), with an integer or fixed-point result.
-- N is the N_Op_Divide node to be expanded.
procedure Do_Divide_Fixed_Universal (N : Node_Id);
-- Handles expansion of divide for case of a fixed-point operand divided
-- by a universal real operand, with an integer or fixed-point result. N
-- is the N_Op_Divide node to be expanded.
procedure Do_Divide_Universal_Fixed (N : Node_Id);
-- Handles expansion of divide for case of a universal real operand
-- divided by a fixed-point operand, with an integer or fixed-point
-- result. N is the N_Op_Divide node to be expanded.
procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
-- Handles expansion of multiply for case of two fixed-point operands
-- (neither of them universal), with an integer or fixed-point result.
-- N is the N_Op_Multiply node to be expanded.
procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
-- Handles expansion of multiply for case of a fixed-point operand
-- multiplied by a universal real operand, with an integer or fixed-
-- point result. N is the N_Op_Multiply node to be expanded, and
-- Left, Right are the operands (which may have been switched).
procedure Expand_Convert_Fixed_Static (N : Node_Id);
-- This routine is called where the node N is a conversion of a literal
-- or other static expression of a fixed-point type to some other type.
-- In such cases, we simply rewrite the operand as a real literal and
-- reanalyze. This avoids problems which would otherwise result from
-- attempting to build and fold expressions involving constants.
function Fpt_Value (N : Node_Id) return Node_Id;
-- Given an operand of fixed-point operation, return an expression that
-- represents the corresponding Long_Long_Float value. The expression
-- can be of integer type, floating-point type, or fixed-point type.
-- The expression returned is neither analyzed and resolved. The Etype
-- of the result is properly set (to Long_Long_Float).
function Integer_Literal (N : Node_Id; V : Uint) return Node_Id;
-- Given a non-negative universal integer value, build a typed integer
-- literal node, using the smallest applicable standard integer type. If
-- the value exceeds 2**63-1, the largest value allowed for perfect result
-- set scaling factors (see RM G.2.3(22)), then Empty is returned. The
-- node N provides the Sloc value for the constructed literal. The Etype
-- of the resulting literal is correctly set, and it is marked as analyzed.
function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
-- Build a real literal node from the given value, the Etype of the
-- returned node is set to Long_Long_Float, since all floating-point
-- arithmetic operations that we construct use Long_Long_Float
function Rounded_Result_Set (N : Node_Id) return Boolean;
-- Returns True if N is a node that contains the Rounded_Result flag
-- and if the flag is true.
procedure Set_Result (N : Node_Id; Expr : Node_Id; Rchk : Boolean := False);
-- N is the node for the current conversion, division or multiplication
-- operation, and Expr is an expression representing the result. Expr
-- may be of floating-point or integer type. If the operation result
-- is fixed-point, then the value of Expr is in units of small of the
-- result type (i.e. small's have already been dealt with). The result
-- of the call is to replace N by an appropriate conversion to the
-- result type, dealing with rounding for the decimal types case. The
-- node is then analyzed and resolved using the result type. If Rchk
-- is True, then Do_Range_Check is set in the resulting conversion.
----------------------
-- Build_Conversion --
----------------------
function Build_Conversion
(N : Node_Id;
Typ : Entity_Id;
Expr : Node_Id;
Rchk : Boolean := False)
return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
Result : Node_Id;
Rcheck : Boolean := Rchk;
begin
-- A special case, if the expression is an integer literal and the
-- target type is an integer type, then just retype the integer
-- literal to the desired target type. Don't do this if we need
-- a range check.
if Nkind (Expr) = N_Integer_Literal
and then Is_Integer_Type (Typ)
and then not Rchk
then
Result := Expr;
-- Cases where we end up with a conversion. Note that we do not use the
-- Convert_To abstraction here, since we may be decorating the resulting
-- conversion with Rounded_Result and/or Conversion_OK, so we want the
-- conversion node present, even if it appears to be redundant.
else
-- Remove inner conversion if both inner and outer conversions are
-- to integer types, since the inner one serves no purpose (except
-- perhaps to set rounding, so we preserve the Rounded_Result flag)
-- and also we preserve the range check flag on the inner operand
if Is_Integer_Type (Typ)
and then Is_Integer_Type (Etype (Expr))
and then Nkind (Expr) = N_Type_Conversion
then
Result :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Expression => Expression (Expr));
Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
Rcheck := Rcheck or Do_Range_Check (Expr);
-- For all other cases, a simple type conversion will work
else
Result :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Expression => Expr);
end if;
-- Set Conversion_OK if either result or expression type is a
-- fixed-point type, since from a semantic point of view, we are
-- treating fixed-point values as integers at this stage.
if Is_Fixed_Point_Type (Typ)
or else Is_Fixed_Point_Type (Etype (Expression (Result)))
then
Set_Conversion_OK (Result);
end if;
-- Set Do_Range_Check if either it was requested by the caller,
-- or if an eliminated inner conversion had a range check.
if Rcheck then
Enable_Range_Check (Result);
else
Set_Do_Range_Check (Result, False);
end if;
end if;
Set_Etype (Result, Typ);
return Result;
end Build_Conversion;
------------------
-- Build_Divide --
------------------
function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Base_Type (Etype (L));
Right_Type : constant Entity_Id := Base_Type (Etype (R));
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
-- Deal with floating-point case first
if Is_Floating_Point_Type (Left_Type) then
pragma Assert (Left_Type = Standard_Long_Long_Float);
pragma Assert (Right_Type = Standard_Long_Long_Float);
Rnode := Make_Op_Divide (Loc, L, R);
Result_Type := Standard_Long_Long_Float;
-- Integer and fixed-point cases
else
-- An optimization. If the right operand is the literal 1, then we
-- can just return the left hand operand. Putting the optimization
-- here allows us to omit the check at the call site.
if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
return L;
end if;
-- If left and right types are the same, no conversion needed
if Left_Type = Right_Type then
Result_Type := Left_Type;
Rnode :=
Make_Op_Divide (Loc,
Left_Opnd => L,
Right_Opnd => R);
-- Use left type if it is the larger of the two
elsif Esize (Left_Type) >= Esize (Right_Type) then
Result_Type := Left_Type;
Rnode :=
Make_Op_Divide (Loc,
Left_Opnd => L,
Right_Opnd => Build_Conversion (N, Left_Type, R));
-- Otherwise right type is larger of the two, us it
else
Result_Type := Right_Type;
Rnode :=
Make_Op_Divide (Loc,
Left_Opnd => Build_Conversion (N, Right_Type, L),
Right_Opnd => R);
end if;
end if;
-- We now have a divide node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
-- Set Treat_Fixed_As_Integer if operation on fixed-point type
-- since this is a literal arithmetic operation, to be performed
-- by Gigi without any consideration of small values.
if Is_Fixed_Point_Type (Result_Type) then
Set_Treat_Fixed_As_Integer (Rnode);
end if;
-- The result is rounded if the target of the operation is decimal
-- and Rounded_Result is set, or if the target of the operation
-- is an integer type.
if Is_Integer_Type (Etype (N))
or else Rounded_Result_Set (N)
then
Set_Rounded_Result (Rnode);
end if;
return Rnode;
end Build_Divide;
-------------------------
-- Build_Double_Divide --
-------------------------
function Build_Double_Divide
(N : Node_Id;
X, Y, Z : Node_Id)
return Node_Id
is
Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
Expr : Node_Id;
begin
-- If denominator fits in 64 bits, we can build the operations directly
-- without causing any intermediate overflow, so that's what we do!
if Int'Max (Y_Size, Z_Size) <= 32 then
return
Build_Divide (N, X, Build_Multiply (N, Y, Z));
-- Otherwise we use the runtime routine
-- [Qnn : Interfaces.Integer_64,
-- Rnn : Interfaces.Integer_64;
-- Double_Divide (X, Y, Z, Qnn, Rnn, Round);
-- Qnn]
else
declare
Loc : constant Source_Ptr := Sloc (N);
Qnn : Entity_Id;
Rnn : Entity_Id;
Code : List_Id;
begin
Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
Insert_Actions (N, Code);
Expr := New_Occurrence_Of (Qnn, Loc);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (Expr, Etype (Qnn));
-- Set result as analyzed (see note at start on build routines)
return Expr;
end;
end if;
end Build_Double_Divide;
------------------------------
-- Build_Double_Divide_Code --
------------------------------
-- If the denominator can be computed in 64-bits, we build
-- [Nnn : constant typ := typ (X);
-- Dnn : constant typ := typ (Y) * typ (Z)
-- Qnn : constant typ := Nnn / Dnn;
-- Rnn : constant typ := Nnn / Dnn;
-- If the numerator cannot be computed in 64 bits, we build
-- [Qnn : typ;
-- Rnn : typ;
-- Double_Divide (X, Y, Z, Qnn, Rnn, Round);]
procedure Build_Double_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
QR_Siz : Int;
QR_Typ : Entity_Id;
Nnn : Entity_Id;
Dnn : Entity_Id;
Quo : Node_Id;
Rnd : Entity_Id;
begin
-- Find type that will allow computation of numerator
QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
if QR_Siz <= 16 then
QR_Typ := Standard_Integer_16;
elsif QR_Siz <= 32 then
QR_Typ := Standard_Integer_32;
elsif QR_Siz <= 64 then
QR_Typ := Standard_Integer_64;
-- For more than 64, bits, we use the 64-bit integer defined in
-- Interfaces, so that it can be handled by the runtime routine
else
QR_Typ := RTE (RE_Integer_64);
end if;
-- Define quotient and remainder, and set their Etypes, so
-- that they can be picked up by Build_xxx routines.
Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
Set_Etype (Qnn, QR_Typ);
Set_Etype (Rnn, QR_Typ);
-- Case that we can compute the denominator in 64 bits
if QR_Siz <= 64 then
-- Create temporaries for numerator and denominator and set Etypes,
-- so that New_Occurrence_Of picks them up for Build_xxx calls.
Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
Set_Etype (Nnn, QR_Typ);
Set_Etype (Dnn, QR_Typ);
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Nnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Conversion (N, QR_Typ, X)),
Make_Object_Declaration (Loc,
Defining_Identifier => Dnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression =>
Build_Multiply (N,
Build_Conversion (N, QR_Typ, Y),
Build_Conversion (N, QR_Typ, Z))));
Quo :=
Build_Divide (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc));
Set_Rounded_Result (Quo, Rounded_Result_Set (N));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Quo));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression =>
Build_Rem (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc))));
-- Case where denominator does not fit in 64 bits, so we have to
-- call the runtime routine to compute the quotient and remainder
else
Rnd := Boolean_Literals (Rounded_Result_Set (N));
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RE_Double_Divide), Loc),
Parameter_Associations => New_List (
Build_Conversion (N, QR_Typ, X),
Build_Conversion (N, QR_Typ, Y),
Build_Conversion (N, QR_Typ, Z),
New_Occurrence_Of (Qnn, Loc),
New_Occurrence_Of (Rnn, Loc),
New_Occurrence_Of (Rnd, Loc))));
end if;
end Build_Double_Divide_Code;
--------------------
-- Build_Multiply --
--------------------
function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Etype (L);
Right_Type : constant Entity_Id := Etype (R);
Left_Size : Int;
Right_Size : Int;
Rsize : Int;
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
-- Deal with floating-point case first
if Is_Floating_Point_Type (Left_Type) then
pragma Assert (Left_Type = Standard_Long_Long_Float);
pragma Assert (Right_Type = Standard_Long_Long_Float);
Result_Type := Standard_Long_Long_Float;
Rnode := Make_Op_Multiply (Loc, L, R);
-- Integer and fixed-point cases
else
-- An optimization. If the right operand is the literal 1, then we
-- can just return the left hand operand. Putting the optimization
-- here allows us to omit the check at the call site. Similarly, if
-- the left operand is the integer 1 we can return the right operand.
if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
return L;
elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
return R;
end if;
-- Otherwise we need to figure out the correct result type size
-- First figure out the effective sizes of the operands. Normally
-- the effective size of an operand is the RM_Size of the operand.
-- But a special case arises with operands whose size is known at
-- compile time. In this case, we can use the actual value of the
-- operand to get its size if it would fit in 8 or 16 bits.
-- Note: if both operands are known at compile time (can that
-- happen?) and both were equal to the power of 2, then we would
-- be one bit off in this test, so for the left operand, we only
-- go up to the power of 2 - 1. This ensures that we do not get
-- this anomolous case, and in practice the right operand is by
-- far the more likely one to be the constant.
Left_Size := UI_To_Int (RM_Size (Left_Type));
if Compile_Time_Known_Value (L) then
declare
Val : constant Uint := Expr_Value (L);
begin
if Val < Int'(2 ** 8) then
Left_Size := 8;
elsif Val < Int'(2 ** 16) then
Left_Size := 16;
end if;
end;
end if;
Right_Size := UI_To_Int (RM_Size (Right_Type));
if Compile_Time_Known_Value (R) then
declare
Val : constant Uint := Expr_Value (R);
begin
if Val <= Int'(2 ** 8) then
Right_Size := 8;
elsif Val <= Int'(2 ** 16) then
Right_Size := 16;
end if;
end;
end if;
-- Now the result size must be at least twice the longer of
-- the two sizes, to accomodate all possible results.
Rsize := 2 * Int'Max (Left_Size, Right_Size);
if Rsize <= 8 then
Result_Type := Standard_Integer_8;
elsif Rsize <= 16 then
Result_Type := Standard_Integer_16;
elsif Rsize <= 32 then
Result_Type := Standard_Integer_32;
else
Result_Type := Standard_Integer_64;
end if;
Rnode :=
Make_Op_Multiply (Loc,
Left_Opnd => Build_Conversion (N, Result_Type, L),
Right_Opnd => Build_Conversion (N, Result_Type, R));
end if;
-- We now have a multiply node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
-- Set Treat_Fixed_As_Integer if operation on fixed-point type
-- since this is a literal arithmetic operation, to be performed
-- by Gigi without any consideration of small values.
if Is_Fixed_Point_Type (Result_Type) then
Set_Treat_Fixed_As_Integer (Rnode);
end if;
return Rnode;
end Build_Multiply;
---------------
-- Build_Rem --
---------------
function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Etype (L);
Right_Type : constant Entity_Id := Etype (R);
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
if Left_Type = Right_Type then
Result_Type := Left_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => L,
Right_Opnd => R);
-- If left size is larger, we do the remainder operation using the
-- size of the left type (i.e. the larger of the two integer types).
elsif Esize (Left_Type) >= Esize (Right_Type) then
Result_Type := Left_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => L,
Right_Opnd => Build_Conversion (N, Left_Type, R));
-- Similarly, if the right size is larger, we do the remainder
-- operation using the right type.
else
Result_Type := Right_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => Build_Conversion (N, Right_Type, L),
Right_Opnd => R);
end if;
-- We now have an N_Op_Rem node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
-- Set Treat_Fixed_As_Integer if operation on fixed-point type
-- since this is a literal arithmetic operation, to be performed
-- by Gigi without any consideration of small values.
if Is_Fixed_Point_Type (Result_Type) then
Set_Treat_Fixed_As_Integer (Rnode);
end if;
-- One more check. We did the rem operation using the larger of the
-- two types, which is reasonable. However, in the case where the
-- two types have unequal sizes, it is impossible for the result of
-- a remainder operation to be larger than the smaller of the two
-- types, so we can put a conversion round the result to keep the
-- evolving operation size as small as possible.
if Esize (Left_Type) >= Esize (Right_Type) then
Rnode := Build_Conversion (N, Right_Type, Rnode);
elsif Esize (Right_Type) >= Esize (Left_Type) then
Rnode := Build_Conversion (N, Left_Type, Rnode);
end if;
return Rnode;
end Build_Rem;
-------------------------
-- Build_Scaled_Divide --
-------------------------
function Build_Scaled_Divide
(N : Node_Id;
X, Y, Z : Node_Id)
return Node_Id
is
X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
Expr : Node_Id;
begin
-- If numerator fits in 64 bits, we can build the operations directly
-- without causing any intermediate overflow, so that's what we do!
if Int'Max (X_Size, Y_Size) <= 32 then
return
Build_Divide (N, Build_Multiply (N, X, Y), Z);
-- Otherwise we use the runtime routine
-- [Qnn : Integer_64,
-- Rnn : Integer_64;
-- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);
-- Qnn]
else
declare
Loc : constant Source_Ptr := Sloc (N);
Qnn : Entity_Id;
Rnn : Entity_Id;
Code : List_Id;
begin
Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
Insert_Actions (N, Code);
Expr := New_Occurrence_Of (Qnn, Loc);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (Expr, Etype (Qnn));
return Expr;
end;
end if;
end Build_Scaled_Divide;
------------------------------
-- Build_Scaled_Divide_Code --
------------------------------
-- If the numerator can be computed in 64-bits, we build
-- [Nnn : constant typ := typ (X) * typ (Y);
-- Dnn : constant typ := typ (Z)
-- Qnn : constant typ := Nnn / Dnn;
-- Rnn : constant typ := Nnn / Dnn;
-- If the numerator cannot be computed in 64 bits, we build
-- [Qnn : Interfaces.Integer_64;
-- Rnn : Interfaces.Integer_64;
-- Scaled_Divide (X, Y, Z, Qnn, Rnn, Round);]
procedure Build_Scaled_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
X_Size : constant Int := UI_To_Int (Esize (Etype (X)));
Y_Size : constant Int := UI_To_Int (Esize (Etype (Y)));
Z_Size : constant Int := UI_To_Int (Esize (Etype (Z)));
QR_Siz : Int;
QR_Typ : Entity_Id;
Nnn : Entity_Id;
Dnn : Entity_Id;
Quo : Node_Id;
Rnd : Entity_Id;
begin
-- Find type that will allow computation of numerator
QR_Siz := Int'Max (X_Size, 2 * Int'Max (Y_Size, Z_Size));
if QR_Siz <= 16 then
QR_Typ := Standard_Integer_16;
elsif QR_Siz <= 32 then
QR_Typ := Standard_Integer_32;
elsif QR_Siz <= 64 then
QR_Typ := Standard_Integer_64;
-- For more than 64, bits, we use the 64-bit integer defined in
-- Interfaces, so that it can be handled by the runtime routine
else
QR_Typ := RTE (RE_Integer_64);
end if;
-- Define quotient and remainder, and set their Etypes, so
-- that they can be picked up by Build_xxx routines.
Qnn := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
Rnn := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
Set_Etype (Qnn, QR_Typ);
Set_Etype (Rnn, QR_Typ);
-- Case that we can compute the numerator in 64 bits
if QR_Siz <= 64 then
Nnn := Make_Defining_Identifier (Loc, New_Internal_Name ('N'));
Dnn := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
-- Set Etypes, so that they can be picked up by New_Occurrence_Of
Set_Etype (Nnn, QR_Typ);
Set_Etype (Dnn, QR_Typ);
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Nnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression =>
Build_Multiply (N,
Build_Conversion (N, QR_Typ, X),
Build_Conversion (N, QR_Typ, Y))),
Make_Object_Declaration (Loc,
Defining_Identifier => Dnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Conversion (N, QR_Typ, Z)));
Quo :=
Build_Divide (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Quo));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression =>
Build_Rem (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc))));
-- Case where numerator does not fit in 64 bits, so we have to
-- call the runtime routine to compute the quotient and remainder
else
Rnd := Boolean_Literals (Rounded_Result_Set (N));
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RE_Scaled_Divide), Loc),
Parameter_Associations => New_List (
Build_Conversion (N, QR_Typ, X),
Build_Conversion (N, QR_Typ, Y),
Build_Conversion (N, QR_Typ, Z),
New_Occurrence_Of (Qnn, Loc),
New_Occurrence_Of (Rnn, Loc),
New_Occurrence_Of (Rnd, Loc))));
end if;
-- Set type of result, for use in caller.
Set_Etype (Qnn, QR_Typ);
end Build_Scaled_Divide_Code;
---------------------------
-- Do_Divide_Fixed_Fixed --
---------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- (Left_Value * Left_Small) / (Right_Value * Right_Small)
-- Result_Value = (Left_Value / Right_Value) *
-- (Left_Small / (Right_Small * Result_Small));
-- we can do the operation in integer arithmetic if this fraction is an
-- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
-- Otherwise the result is in the close result set and our approach is to
-- use floating-point to compute this close result.
procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Left_Small : constant Ureal := Small_Value (Left_Type);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_Int : Node_Id;
begin
-- Rounding is required if the result is integral
if Is_Integer_Type (Result_Type) then
Set_Rounded_Result (N);
end if;
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Get small ratio
Frac := Left_Small / (Right_Small * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- If the fraction is an integer, then we get the result by multiplying
-- the left operand by the integer, and then dividing by the right
-- operand (the order is important, if we did the divide first, we
-- would lose precision).
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num);
if Present (Lit_Int) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
return;
end if;
-- If the fraction is the reciprocal of an integer, then we get the
-- result by first multiplying the divisor by the integer, and then
-- doing the division with the adjusted divisor.
-- Note: this is much better than doing two divisions: multiplications
-- are much faster than divisions (and certainly faster than rounded
-- divisions), and we don't get inaccuracies from double rounding.
elsif Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den);
if Present (Lit_Int) then
Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
return;
end if;
end if;
-- If we fall through, we use floating-point to compute the result
Set_Result (N,
Build_Multiply (N,
Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N, Frac)));
end Do_Divide_Fixed_Fixed;
-------------------------------
-- Do_Divide_Fixed_Universal --
-------------------------------
-- We have:
-- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
-- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Right_Small
-- Right_Small = Lit_Value / K
-- such that the small ratio:
-- Left_Small
-- ------------------------------
-- (Lit_Value / K) * Result_Small
-- Left_Small
-- = ------------------------ * K
-- Lit_Value * Result_Small
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms.
-- If numerator = 1, then for K = 1, the small ratio is the reciprocal
-- of an integer, and this is clearly the minimum K case, so set K = 1,
-- Right_Small = Lit_Value.
-- If numerator > 1, then set K to the denominator of the fraction so
-- that the resulting small ratio is an integer (the numerator value).
procedure Do_Divide_Fixed_Universal (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Result_Type : constant Entity_Id := Etype (N);
Left_Small : constant Ureal := Small_Value (Left_Type);
Lit_Value : constant Ureal := Realval (Right);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := Left_Small / (Lit_Value * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is the reciprocal of an integer (K = 1, integer
-- = denominator). If this integer is not too large, this is the case
-- where the result can be obtained by dividing by this integer value.
if Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den);
if Present (Lit_Int) then
Set_Result (N, Build_Divide (N, Left, Lit_Int));
return;
end if;
-- Case where we choose K to make fraction an integer (K = denominator
-- of fraction, integer = numerator of fraction). If both K and the
-- numerator are small enough, this is the case where the result can
-- be obtained by first multiplying by the integer value and then
-- dividing by K (the order is important, if we divided first, we
-- would lose precision).
else
Lit_Int := Integer_Literal (N, Frac_Num);
Lit_K := Integer_Literal (N, Frac_Den);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point multiplication.
Set_Result (N,
Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
end Do_Divide_Fixed_Universal;
-------------------------------
-- Do_Divide_Universal_Fixed --
-------------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- Lit_Value / (Right_Value * Right_Small)
-- Result_Value =
-- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Left_Small
-- Left_Small = Lit_Value / K
-- such that the small ratio:
-- (Lit_Value / K)
-- --------------------------
-- Right_Small * Result_Small
-- Lit_Value 1
-- = -------------------------- * -
-- Right_Small * Result_Small K
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms.
-- If denominator = 1, then for K = 1, the small ratio is an integer
-- (the numerator) and this is clearly the minimum K case, so set K = 1,
-- and Left_Small = Lit_Value.
-- If denominator > 1, then set K to the numerator of the fraction so
-- that the resulting small ratio is the reciprocal of an integer (the
-- numerator value).
procedure Do_Divide_Universal_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Lit_Value : constant Ureal := Realval (Left);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := Lit_Value / (Right_Small * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is an integer (K = 1, integer = numerator). If
-- this integer is not too large, this is the case where the result
-- can be obtained by dividing this integer by the right operand.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num);
if Present (Lit_Int) then
Set_Result (N, Build_Divide (N, Lit_Int, Right));
return;
end if;
-- Case where we choose K to make the fraction the reciprocal of an
-- integer (K = numerator of fraction, integer = numerator of fraction).
-- If both K and the integer are small enough, this is the case where
-- the result can be obtained by multiplying the right operand by K
-- and then dividing by the integer value. The order of the operations
-- is important (if we divided first, we would lose precision).
else
Lit_Int := Integer_Literal (N, Frac_Den);
Lit_K := Integer_Literal (N, Frac_Num);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point division.
Set_Result (N,
Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
end Do_Divide_Universal_Fixed;
-----------------------------
-- Do_Multiply_Fixed_Fixed --
-----------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- (Left_Value * Left_Small) * (Right_Value * Right_Small)
-- Result_Value = (Left_Value * Right_Value) *
-- (Left_Small * Right_Small) / Result_Small;
-- we can do the operation in integer arithmetic if this fraction is an
-- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
-- Otherwise the result is in the close result set and our approach is to
-- use floating-point to compute this close result.
procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Left_Small : constant Ureal := Small_Value (Left_Type);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Get small ratio
Frac := (Left_Small * Right_Small) / Result_Small;
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- If the fraction is an integer, then we get the result by multiplying
-- the operands, and then multiplying the result by the integer value.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num);
if Present (Lit_Int) then
Set_Result (N,
Build_Multiply (N, Build_Multiply (N, Left, Right),
Lit_Int));
return;
end if;
-- If the fraction is the reciprocal of an integer, then we get the
-- result by multiplying the operands, and then dividing the result by
-- the integer value. The order of the operations is important, if we
-- divided first, we would lose precision.
elsif Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den);
if Present (Lit_Int) then
Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
return;
end if;
end if;
-- If we fall through, we use floating-point to compute the result
Set_Result (N,
Build_Multiply (N,
Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N, Frac)));
end Do_Multiply_Fixed_Fixed;
---------------------------------
-- Do_Multiply_Fixed_Universal --
---------------------------------
-- We have:
-- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
-- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Right_Small
-- Right_Small = Lit_Value / K
-- such that the small ratio:
-- Left_Small * (Lit_Value / K)
-- ----------------------------
-- Result_Small
-- Left_Small * Lit_Value 1
-- = ---------------------- * -
-- Result_Small K
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms.
-- If denominator = 1, then for K = 1, the small ratio is an
-- integer, and this is clearly the minimum K case, so set
-- K = 1, Right_Small = Lit_Value.
-- If denominator > 1, then set K to the numerator of the
-- fraction, so that the resulting small ratio is the
-- reciprocal of the integer (the denominator value).
procedure Do_Multiply_Fixed_Universal
(N : Node_Id;
Left, Right : Node_Id)
is
Left_Type : constant Entity_Id := Etype (Left);
Result_Type : constant Entity_Id := Etype (N);
Left_Small : constant Ureal := Small_Value (Left_Type);
Lit_Value : constant Ureal := Realval (Right);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := (Left_Small * Lit_Value) / Result_Small;
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is an integer (K = 1, integer = numerator). If
-- this integer is not too large, this is the case where the result can
-- be obtained by multiplying by this integer value.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num);
if Present (Lit_Int) then
Set_Result (N, Build_Multiply (N, Left, Lit_Int));
return;
end if;
-- Case where we choose K to make fraction the reciprocal of an integer
-- (K = numerator of fraction, integer = denominator of fraction). If
-- both K and the denominator are small enough, this is the case where
-- the result can be obtained by first multiplying by K, and then
-- dividing by the integer value.
else
Lit_Int := Integer_Literal (N, Frac_Den);
Lit_K := Integer_Literal (N, Frac_Num);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point multiplication.
Set_Result (N,
Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
end Do_Multiply_Fixed_Universal;
---------------------------------
-- Expand_Convert_Fixed_Static --
---------------------------------
procedure Expand_Convert_Fixed_Static (N : Node_Id) is
begin
Rewrite (N,
Convert_To (Etype (N),
Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
Analyze_And_Resolve (N);
end Expand_Convert_Fixed_Static;
-----------------------------------
-- Expand_Convert_Fixed_To_Fixed --
-----------------------------------
-- We have:
-- Result_Value * Result_Small = Source_Value * Source_Small
-- Result_Value = Source_Value * (Source_Small / Result_Small)
-- If the small ratio (Source_Small / Result_Small) is a sufficiently small
-- integer, then the perfect result set is obtained by a single integer
-- multiplication.
-- If the small ratio is the reciprocal of a sufficiently small integer,
-- then the perfect result set is obtained by a single integer division.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point.
procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small_Ratio : Ureal;
Ratio_Num : Uint;
Ratio_Den : Uint;
Lit : Node_Id;
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
Ratio_Num := Norm_Num (Small_Ratio);
Ratio_Den := Norm_Den (Small_Ratio);
if Ratio_Den = 1 then
if Ratio_Num = 1 then
Set_Result (N, Expr);
return;
else
Lit := Integer_Literal (N, Ratio_Num);
if Present (Lit) then
Set_Result (N, Build_Multiply (N, Expr, Lit));
return;
end if;
end if;
elsif Ratio_Num = 1 then
Lit := Integer_Literal (N, Ratio_Den);
if Present (Lit) then
Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case
-- either as a result of the small ratio not being an integer or the
-- reciprocal of an integer, or if the integer is out of range.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small_Ratio)),
Rng_Check);
end Expand_Convert_Fixed_To_Fixed;
-----------------------------------
-- Expand_Convert_Fixed_To_Float --
-----------------------------------
-- If the small of the fixed type is 1.0, then we simply convert the
-- integer value directly to the target floating-point type, otherwise
-- we first have to multiply by the small, in Long_Long_Float, and then
-- convert the result to the target floating-point type.
procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small : constant Ureal := Small_Value (Source_Type);
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
if Small = Ureal_1 then
Set_Result (N, Expr);
else
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small)),
Rng_Check);
end if;
end Expand_Convert_Fixed_To_Float;
-------------------------------------
-- Expand_Convert_Fixed_To_Integer --
-------------------------------------
-- We have:
-- Result_Value = Source_Value * Source_Small
-- If the small value is a sufficiently small integer, then the perfect
-- result set is obtained by a single integer multiplication.
-- If the small value is the reciprocal of a sufficiently small integer,
-- then the perfect result set is obtained by a single integer division.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point.
procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small : constant Ureal := Small_Value (Source_Type);
Small_Num : constant Uint := Norm_Num (Small);
Small_Den : constant Uint := Norm_Den (Small);
Lit : Node_Id;
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
if Small_Den = 1 then
Lit := Integer_Literal (N, Small_Num);
if Present (Lit) then
Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
return;
end if;
elsif Small_Num = 1 then
Lit := Integer_Literal (N, Small_Den);
if Present (Lit) then
Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case
-- either as a result of the small value not being an integer or the
-- reciprocal of an integer, or if the integer is out of range.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small)),
Rng_Check);
end Expand_Convert_Fixed_To_Integer;
-----------------------------------
-- Expand_Convert_Float_To_Fixed --
-----------------------------------
-- We have
-- Result_Value * Result_Small = Operand_Value
-- so compute:
-- Result_Value = Operand_Value * (1.0 / Result_Small)
-- We do the small scaling in floating-point, and we do a multiplication
-- rather than a division, since it is accurate enough for the perfect
-- result cases, and faster.
procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Small : constant Ureal := Small_Value (Result_Type);
begin
-- Optimize small = 1, where we can avoid the multiply completely
if Small = Ureal_1 then
Set_Result (N, Expr, Rng_Check);
-- Normal case where multiply is required
else
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Ureal_1 / Small)),
Rng_Check);
end if;
end Expand_Convert_Float_To_Fixed;
-------------------------------------
-- Expand_Convert_Integer_To_Fixed --
-------------------------------------
-- We have
-- Result_Value * Result_Small = Operand_Value
-- Result_Value = Operand_Value / Result_Small
-- If the small value is a sufficiently small integer, then the perfect
-- result set is obtained by a single integer division.
-- If the small value is the reciprocal of a sufficiently small integer,
-- the perfect result set is obtained by a single integer multiplication.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point using a multiplication by the reciprocal
-- of the Result_Small.
procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Small : constant Ureal := Small_Value (Result_Type);
Small_Num : constant Uint := Norm_Num (Small);
Small_Den : constant Uint := Norm_Den (Small);
Lit : Node_Id;
begin
if Small_Den = 1 then
Lit := Integer_Literal (N, Small_Num);
if Present (Lit) then
Set_Result (N, Build_Divide (N, Expr, Lit), Rng_Check);
return;
end if;
elsif Small_Num = 1 then
Lit := Integer_Literal (N, Small_Den);
if Present (Lit) then
Set_Result (N, Build_Multiply (N, Expr, Lit), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case
-- either as a result of the small value not being an integer or the
-- reciprocal of an integer, or if the integer is out of range.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Ureal_1 / Small)),
Rng_Check);
end Expand_Convert_Integer_To_Fixed;
--------------------------------
-- Expand_Decimal_Divide_Call --
--------------------------------
-- We have four operands
-- Dividend
-- Divisor
-- Quotient
-- Remainder
-- All of which are decimal types, and which thus have associated
-- decimal scales.
-- Computing the quotient is a similar problem to that faced by the
-- normal fixed-point division, except that it is simpler, because
-- we always have compatible smalls.
-- Quotient = (Dividend / Divisor) * 10**q
-- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
-- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
-- For q >= 0, we compute
-- Numerator := Dividend * 10 ** q
-- Denominator := Divisor
-- Quotient := Numerator / Denominator
-- For q < 0, we compute
-- Numerator := Dividend
-- Denominator := Divisor * 10 ** q
-- Quotient := Numerator / Denominator
-- Both these divisions are done in truncated mode, and the remainder
-- from these divisions is used to compute the result Remainder. This
-- remainder has the effective scale of the numerator of the division,
-- For q >= 0, the remainder scale is Dividend'Scale + q
-- For q < 0, the remainder scale is Dividend'Scale
-- The result Remainder is then computed by a normal truncating decimal
-- conversion from this scale to the scale of the remainder, i.e. by a
-- division or multiplication by the appropriate power of 10.
procedure Expand_Decimal_Divide_Call (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Dividend : Node_Id := First_Actual (N);
Divisor : Node_Id := Next_Actual (Dividend);
Quotient : Node_Id := Next_Actual (Divisor);
Remainder : Node_Id := Next_Actual (Quotient);
Dividend_Type : constant Entity_Id := Etype (Dividend);
Divisor_Type : constant Entity_Id := Etype (Divisor);
Quotient_Type : constant Entity_Id := Etype (Quotient);
Remainder_Type : constant Entity_Id := Etype (Remainder);
Dividend_Scale : constant Uint := Scale_Value (Dividend_Type);
Divisor_Scale : constant Uint := Scale_Value (Divisor_Type);
Quotient_Scale : constant Uint := Scale_Value (Quotient_Type);
Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
Q : Uint;
Numerator_Scale : Uint;
Stmts : List_Id;
Qnn : Entity_Id;
Rnn : Entity_Id;
Computed_Remainder : Node_Id;
Adjusted_Remainder : Node_Id;
Scale_Adjust : Uint;
begin
-- Relocate the operands, since they are now list elements, and we
-- need to reference them separately as operands in the expanded code.
Dividend := Relocate_Node (Dividend);
Divisor := Relocate_Node (Divisor);
Quotient := Relocate_Node (Quotient);
Remainder := Relocate_Node (Remainder);
-- Now compute Q, the adjustment scale
Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
-- If Q is non-negative then we need a scaled divide
if Q >= 0 then
Build_Scaled_Divide_Code
(N,
Dividend,
Integer_Literal (N, Uint_10 ** Q),
Divisor,
Qnn, Rnn, Stmts);
Numerator_Scale := Dividend_Scale + Q;
-- If Q is negative, then we need a double divide
else
Build_Double_Divide_Code
(N,
Dividend,
Divisor,
Integer_Literal (N, Uint_10 ** (-Q)),
Qnn, Rnn, Stmts);
Numerator_Scale := Dividend_Scale;
end if;
-- Add statement to set quotient value
-- Quotient := quotient-type!(Qnn);
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => Quotient,
Expression =>
Unchecked_Convert_To (Quotient_Type,
Build_Conversion (N, Quotient_Type,
New_Occurrence_Of (Qnn, Loc)))));
-- Now we need to deal with computing and setting the remainder. The
-- scale of the remainder is in Numerator_Scale, and the desired
-- scale is the scale of the given Remainder argument. There are
-- three cases:
-- Numerator_Scale > Remainder_Scale
-- in this case, there are extra digits in the computed remainder
-- which must be eliminated by an extra division:
-- computed-remainder := Numerator rem Denominator
-- scale_adjust = Numerator_Scale - Remainder_Scale
-- adjusted-remainder := computed-remainder / 10 ** scale_adjust
-- Numerator_Scale = Remainder_Scale
-- in this case, the we have the remainder we need
-- computed-remainder := Numerator rem Denominator
-- adjusted-remainder := computed-remainder
-- Numerator_Scale < Remainder_Scale
-- in this case, we have insufficient digits in the computed
-- remainder, which must be eliminated by an extra multiply
-- computed-remainder := Numerator rem Denominator
-- scale_adjust = Remainder_Scale - Numerator_Scale
-- adjusted-remainder := computed-remainder * 10 ** scale_adjust
-- Finally we assign the adjusted-remainder to the result Remainder
-- with conversions to get the proper fixed-point type representation.
Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
if Numerator_Scale > Remainder_Scale then
Scale_Adjust := Numerator_Scale - Remainder_Scale;
Adjusted_Remainder :=
Build_Divide
(N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
elsif Numerator_Scale = Remainder_Scale then
Adjusted_Remainder := Computed_Remainder;
else -- Numerator_Scale < Remainder_Scale
Scale_Adjust := Remainder_Scale - Numerator_Scale;
Adjusted_Remainder :=
Build_Multiply
(N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
end if;
-- Assignment of remainder result
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => Remainder,
Expression =>
Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
-- Final step is to rewrite the call with a block containing the
-- above sequence of constructed statements for the divide operation.
Rewrite (N,
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts)));
Analyze (N);
end Expand_Decimal_Divide_Call;
-----------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
-----------------------------------------------
procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
-- Suppress expansion of a fixed-by-fixed division if the
-- operation is supported directly by the target.
if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
return;
end if;
if Etype (Left) = Universal_Real then
Do_Divide_Universal_Fixed (N);
elsif Etype (Right) = Universal_Real then
Do_Divide_Fixed_Universal (N);
else
Do_Divide_Fixed_Fixed (N);
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
-----------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Float --
-----------------------------------------------
-- The division is done in long_long_float, and the result is multiplied
-- by the small ratio, which is Small (Right) / Small (Left). Special
-- treatment is required for universal operands, which represent their
-- own value and do not require conversion.
procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
begin
-- Case of left operand is universal real, the result we want is:
-- Left_Value / (Right_Value * Right_Small)
-- so we compute this as:
-- (Left_Value / Right_Small) / Right_Value
if Left_Type = Universal_Real then
Set_Result (N,
Build_Divide (N,
Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
Fpt_Value (Right)));
-- Case of right operand is universal real, the result we want is
-- (Left_Value * Left_Small) / Right_Value
-- so we compute this as:
-- Left_Value * (Left_Small / Right_Value)
-- Note we invert to a multiplication since usually floating-point
-- multiplication is much faster than floating-point division.
elsif Right_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Left),
Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
-- Both operands are fixed, so the value we want is
-- (Left_Value * Left_Small) / (Right_Value * Right_Small)
-- which we compute as:
-- (Left_Value / Right_Value) * (Left_Small / Right_Small)
else
Set_Result (N,
Build_Multiply (N,
Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N,
Small_Value (Left_Type) / Small_Value (Right_Type))));
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Float;
-------------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
-------------------------------------------------
procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
if Etype (Left) = Universal_Real then
Do_Divide_Universal_Fixed (N);
elsif Etype (Right) = Universal_Real then
Do_Divide_Fixed_Universal (N);
else
Do_Divide_Fixed_Fixed (N);
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
-------------------------------------------------
-- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
-------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight divide by the right operand, the small can be ignored.
procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
Set_Result (N, Build_Divide (N, Left, Right));
end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
-------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
-------------------------------------------------
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
-- The operand may be a non-static universal value, such an
-- exponentiation with a non-static exponent. In that case, treat
-- as a fixed * fixed multiplication, and convert the argument to
-- the target fixed type.
procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
begin
Rewrite (Opnd,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
Expression => Expression (Opnd)));
Analyze_And_Resolve (Opnd, Etype (N));
end Rewrite_Non_Static_Universal;
begin
-- Suppress expansion of a fixed-by-fixed multiplication if the
-- operation is supported directly by the target.
if Target_Has_Fixed_Ops (Etype (Left), Etype (Right), Etype (N)) then
return;
end if;
if Etype (Left) = Universal_Real then
if Nkind (Left) = N_Real_Literal then
Do_Multiply_Fixed_Universal (N, Right, Left);
elsif Nkind (Left) = N_Type_Conversion then
Rewrite_Non_Static_Universal (Left);
Do_Multiply_Fixed_Fixed (N);
end if;
elsif Etype (Right) = Universal_Real then
if Nkind (Right) = N_Real_Literal then
Do_Multiply_Fixed_Universal (N, Left, Right);
elsif Nkind (Right) = N_Type_Conversion then
Rewrite_Non_Static_Universal (Right);
Do_Multiply_Fixed_Fixed (N);
end if;
else
Do_Multiply_Fixed_Fixed (N);
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
-------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
-------------------------------------------------
-- The multiply is done in long_long_float, and the result is multiplied
-- by the adjustment for the smalls which is Small (Right) * Small (Left).
-- Special treatment is required for universal operands.
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
begin
-- Case of left operand is universal real, the result we want is
-- Left_Value * (Right_Value * Right_Small)
-- so we compute this as:
-- (Left_Value * Right_Small) * Right_Value;
if Left_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
Fpt_Value (Right)));
-- Case of right operand is universal real, the result we want is
-- (Left_Value * Left_Small) * Right_Value
-- so we compute this as:
-- Left_Value * (Left_Small * Right_Value)
elsif Right_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Left),
Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
-- Both operands are fixed, so the value we want is
-- (Left_Value * Left_Small) * (Right_Value * Right_Small)
-- which we compute as:
-- (Left_Value * Right_Value) * (Right_Small * Left_Small)
else
Set_Result (N,
Build_Multiply (N,
Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N,
Small_Value (Right_Type) * Small_Value (Left_Type))));
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
---------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
---------------------------------------------------
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
if Etype (Left) = Universal_Real then
Do_Multiply_Fixed_Universal (N, Right, Left);
elsif Etype (Right) = Universal_Real then
Do_Multiply_Fixed_Universal (N, Left, Right);
else
Do_Multiply_Fixed_Fixed (N);
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
---------------------------------------------------
-- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
---------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight multiply by the right operand, the small can be ignored.
procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
begin
Set_Result (N,
Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
---------------------------------------------------
-- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
---------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight multiply by the right operand, the small can be ignored.
procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
begin
Set_Result (N,
Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
---------------
-- Fpt_Value --
---------------
function Fpt_Value (N : Node_Id) return Node_Id is
Typ : constant Entity_Id := Etype (N);
begin
if Is_Integer_Type (Typ)
or else Is_Floating_Point_Type (Typ)
then
return
Build_Conversion
(N, Standard_Long_Long_Float, N);
-- Fixed-point case, must get integer value first
else
return
Build_Conversion (N, Standard_Long_Long_Float, N);
end if;
end Fpt_Value;
---------------------
-- Integer_Literal --
---------------------
function Integer_Literal (N : Node_Id; V : Uint) return Node_Id is
T : Entity_Id;
L : Node_Id;
begin
if V < Uint_2 ** 7 then
T := Standard_Integer_8;
elsif V < Uint_2 ** 15 then
T := Standard_Integer_16;
elsif V < Uint_2 ** 31 then
T := Standard_Integer_32;
elsif V < Uint_2 ** 63 then
T := Standard_Integer_64;
else
return Empty;
end if;
L := Make_Integer_Literal (Sloc (N), V);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (L, T);
Set_Is_Static_Expression (L);
-- We really need to set Analyzed here because we may be creating a
-- very strange beast, namely an integer literal typed as fixed-point
-- and the analyzer won't like that. Probably we should allow the
-- Treat_Fixed_As_Integer flag to appear on integer literal nodes
-- and teach the analyzer how to handle them ???
Set_Analyzed (L);
return L;
end Integer_Literal;
------------------
-- Real_Literal --
------------------
function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
L : Node_Id;
begin
L := Make_Real_Literal (Sloc (N), V);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (L, Standard_Long_Long_Float);
return L;
end Real_Literal;
------------------------
-- Rounded_Result_Set --
------------------------
function Rounded_Result_Set (N : Node_Id) return Boolean is
K : constant Node_Kind := Nkind (N);
begin
if (K = N_Type_Conversion or else
K = N_Op_Divide or else
K = N_Op_Multiply)
and then Rounded_Result (N)
then
return True;
else
return False;
end if;
end Rounded_Result_Set;
----------------
-- Set_Result --
----------------
procedure Set_Result
(N : Node_Id;
Expr : Node_Id;
Rchk : Boolean := False)
is
Cnode : Node_Id;
Expr_Type : constant Entity_Id := Etype (Expr);
Result_Type : constant Entity_Id := Etype (N);
begin
-- No conversion required if types match and no range check
if Result_Type = Expr_Type and then not Rchk then
Cnode := Expr;
-- Else perform required conversion
else
Cnode := Build_Conversion (N, Result_Type, Expr, Rchk);
end if;
Rewrite (N, Cnode);
Analyze_And_Resolve (N, Result_Type);
end Set_Result;
end Exp_Fixd;
|