1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ C H 6 --
-- --
-- B o d y --
-- --
-- $Revision$
-- --
-- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Errout; use Errout;
with Elists; use Elists;
with Exp_Ch2; use Exp_Ch2;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Ch11; use Exp_Ch11;
with Exp_Dbug; use Exp_Dbug;
with Exp_Disp; use Exp_Disp;
with Exp_Dist; use Exp_Dist;
with Exp_Intr; use Exp_Intr;
with Exp_Pakd; use Exp_Pakd;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Hostparm; use Hostparm;
with Inline; use Inline;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Validsw; use Validsw;
package body Exp_Ch6 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Check_Overriding_Operation (Subp : Entity_Id);
-- Subp is a dispatching operation. Check whether it may override an
-- inherited private operation, in which case its DT entry is that of
-- the hidden operation, not the one it may have received earlier.
-- This must be done before emitting the code to set the corresponding
-- DT to the address of the subprogram. The actual placement of Subp in
-- the proper place in the list of primitive operations is done in
-- Declare_Inherited_Private_Subprograms, which also has to deal with
-- implicit operations. This duplication is unavoidable for now???
procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
-- This procedure is called only if the subprogram body N, whose spec
-- has the given entity Spec, contains a parameterless recursive call.
-- It attempts to generate runtime code to detect if this a case of
-- infinite recursion.
--
-- The body is scanned to determine dependencies. If the only external
-- dependencies are on a small set of scalar variables, then the values
-- of these variables are captured on entry to the subprogram, and if
-- the values are not changed for the call, we know immediately that
-- we have an infinite recursion.
procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id);
-- For each actual of an in-out parameter which is a numeric conversion
-- of the form T(A), where A denotes a variable, we insert the declaration:
--
-- Temp : T := T(A);
--
-- prior to the call. Then we replace the actual with a reference to Temp,
-- and append the assignment:
--
-- A := T' (Temp);
--
-- after the call. Here T' is the actual type of variable A.
-- For out parameters, the initial declaration has no expression.
-- If A is not an entity name, we generate instead:
--
-- Var : T' renames A;
-- Temp : T := Var; -- omitting expression for out parameter.
-- ...
-- Var := T' (Temp);
--
-- For other in-out parameters, we emit the required constraint checks
-- before and/or after the call.
-- For all parameter modes, actuals that denote components and slices
-- of packed arrays are expanded into suitable temporaries.
procedure Expand_Inlined_Call
(N : Node_Id;
Subp : Entity_Id;
Orig_Subp : Entity_Id);
-- If called subprogram can be inlined by the front-end, retrieve the
-- analyzed body, replace formals with actuals and expand call in place.
-- Generate thunks for actuals that are expressions, and insert the
-- corresponding constant declarations before the call. If the original
-- call is to a derived operation, the return type is the one of the
-- derived operation, but the body is that of the original, so return
-- expressions in the body must be converted to the desired type (which
-- is simply not noted in the tree without inline expansion).
function Expand_Protected_Object_Reference
(N : Node_Id;
Scop : Entity_Id)
return Node_Id;
procedure Expand_Protected_Subprogram_Call
(N : Node_Id;
Subp : Entity_Id;
Scop : Entity_Id);
-- A call to a protected subprogram within the protected object may appear
-- as a regular call. The list of actuals must be expanded to contain a
-- reference to the object itself, and the call becomes a call to the
-- corresponding protected subprogram.
--------------------------------
-- Check_Overriding_Operation --
--------------------------------
procedure Check_Overriding_Operation (Subp : Entity_Id) is
Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
Op_List : constant Elist_Id := Primitive_Operations (Typ);
Op_Elmt : Elmt_Id;
Prim_Op : Entity_Id;
Par_Op : Entity_Id;
begin
if Is_Derived_Type (Typ)
and then not Is_Private_Type (Typ)
and then In_Open_Scopes (Scope (Etype (Typ)))
and then Typ = Base_Type (Typ)
then
-- Subp overrides an inherited private operation if there is
-- an inherited operation with a different name than Subp (see
-- Derive_Subprogram) whose Alias is a hidden subprogram with
-- the same name as Subp.
Op_Elmt := First_Elmt (Op_List);
while Present (Op_Elmt) loop
Prim_Op := Node (Op_Elmt);
Par_Op := Alias (Prim_Op);
if Present (Par_Op)
and then not Comes_From_Source (Prim_Op)
and then Chars (Prim_Op) /= Chars (Par_Op)
and then Chars (Par_Op) = Chars (Subp)
and then Is_Hidden (Par_Op)
and then Type_Conformant (Prim_Op, Subp)
then
Set_DT_Position (Subp, DT_Position (Prim_Op));
end if;
Next_Elmt (Op_Elmt);
end loop;
end if;
end Check_Overriding_Operation;
-------------------------------
-- Detect_Infinite_Recursion --
-------------------------------
procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Var_List : Elist_Id := New_Elmt_List;
-- List of globals referenced by body of procedure
Call_List : Elist_Id := New_Elmt_List;
-- List of recursive calls in body of procedure
Shad_List : Elist_Id := New_Elmt_List;
-- List of entity id's for entities created to capture the
-- value of referenced globals on entry to the procedure.
Scop : constant Uint := Scope_Depth (Spec);
-- This is used to record the scope depth of the current
-- procedure, so that we can identify global references.
Max_Vars : constant := 4;
-- Do not test more than four global variables
Count_Vars : Natural := 0;
-- Count variables found so far
Var : Entity_Id;
Elm : Elmt_Id;
Ent : Entity_Id;
Call : Elmt_Id;
Decl : Node_Id;
Test : Node_Id;
Elm1 : Elmt_Id;
Elm2 : Elmt_Id;
Last : Node_Id;
function Process (Nod : Node_Id) return Traverse_Result;
-- Function to traverse the subprogram body (using Traverse_Func)
-------------
-- Process --
-------------
function Process (Nod : Node_Id) return Traverse_Result is
begin
-- Procedure call
if Nkind (Nod) = N_Procedure_Call_Statement then
-- Case of one of the detected recursive calls
if Is_Entity_Name (Name (Nod))
and then Has_Recursive_Call (Entity (Name (Nod)))
and then Entity (Name (Nod)) = Spec
then
Append_Elmt (Nod, Call_List);
return Skip;
-- Any other procedure call may have side effects
else
return Abandon;
end if;
-- A call to a pure function can always be ignored
elsif Nkind (Nod) = N_Function_Call
and then Is_Entity_Name (Name (Nod))
and then Is_Pure (Entity (Name (Nod)))
then
return Skip;
-- Case of an identifier reference
elsif Nkind (Nod) = N_Identifier then
Ent := Entity (Nod);
-- If no entity, then ignore the reference
-- Not clear why this can happen. To investigate, remove this
-- test and look at the crash that occurs here in 3401-004 ???
if No (Ent) then
return Skip;
-- Ignore entities with no Scope, again not clear how this
-- can happen, to investigate, look at 4108-008 ???
elsif No (Scope (Ent)) then
return Skip;
-- Ignore the reference if not to a more global object
elsif Scope_Depth (Scope (Ent)) >= Scop then
return Skip;
-- References to types, exceptions and constants are always OK
elsif Is_Type (Ent)
or else Ekind (Ent) = E_Exception
or else Ekind (Ent) = E_Constant
then
return Skip;
-- If other than a non-volatile scalar variable, we have some
-- kind of global reference (e.g. to a function) that we cannot
-- deal with so we forget the attempt.
elsif Ekind (Ent) /= E_Variable
or else not Is_Scalar_Type (Etype (Ent))
or else Is_Volatile (Ent)
then
return Abandon;
-- Otherwise we have a reference to a global scalar
else
-- Loop through global entities already detected
Elm := First_Elmt (Var_List);
loop
-- If not detected before, record this new global reference
if No (Elm) then
Count_Vars := Count_Vars + 1;
if Count_Vars <= Max_Vars then
Append_Elmt (Entity (Nod), Var_List);
else
return Abandon;
end if;
exit;
-- If recorded before, ignore
elsif Node (Elm) = Entity (Nod) then
return Skip;
-- Otherwise keep looking
else
Next_Elmt (Elm);
end if;
end loop;
return Skip;
end if;
-- For all other node kinds, recursively visit syntactic children
else
return OK;
end if;
end Process;
function Traverse_Body is new Traverse_Func;
-- Start of processing for Detect_Infinite_Recursion
begin
-- Do not attempt detection in No_Implicit_Conditional mode,
-- since we won't be able to generate the code to handle the
-- recursion in any case.
if Restrictions (No_Implicit_Conditionals) then
return;
end if;
-- Otherwise do traversal and quit if we get abandon signal
if Traverse_Body (N) = Abandon then
return;
-- We must have a call, since Has_Recursive_Call was set. If not
-- just ignore (this is only an error check, so if we have a funny
-- situation, due to bugs or errors, we do not want to bomb!)
elsif Is_Empty_Elmt_List (Call_List) then
return;
end if;
-- Here is the case where we detect recursion at compile time
-- Push our current scope for analyzing the declarations and
-- code that we will insert for the checking.
New_Scope (Spec);
-- This loop builds temporary variables for each of the
-- referenced globals, so that at the end of the loop the
-- list Shad_List contains these temporaries in one-to-one
-- correspondence with the elements in Var_List.
Last := Empty;
Elm := First_Elmt (Var_List);
while Present (Elm) loop
Var := Node (Elm);
Ent :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('S'));
Append_Elmt (Ent, Shad_List);
-- Insert a declaration for this temporary at the start of
-- the declarations for the procedure. The temporaries are
-- declared as constant objects initialized to the current
-- values of the corresponding temporaries.
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
Constant_Present => True,
Expression => New_Occurrence_Of (Var, Loc));
if No (Last) then
Prepend (Decl, Declarations (N));
else
Insert_After (Last, Decl);
end if;
Last := Decl;
Analyze (Decl);
Next_Elmt (Elm);
end loop;
-- Loop through calls
Call := First_Elmt (Call_List);
while Present (Call) loop
-- Build a predicate expression of the form
-- True
-- and then global1 = temp1
-- and then global2 = temp2
-- ...
-- This predicate determines if any of the global values
-- referenced by the procedure have changed since the
-- current call, if not an infinite recursion is assured.
Test := New_Occurrence_Of (Standard_True, Loc);
Elm1 := First_Elmt (Var_List);
Elm2 := First_Elmt (Shad_List);
while Present (Elm1) loop
Test :=
Make_And_Then (Loc,
Left_Opnd => Test,
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
Next_Elmt (Elm1);
Next_Elmt (Elm2);
end loop;
-- Now we replace the call with the sequence
-- if no-changes (see above) then
-- raise Storage_Error;
-- else
-- original-call
-- end if;
Rewrite (Node (Call),
Make_If_Statement (Loc,
Condition => Test,
Then_Statements => New_List (
Make_Raise_Storage_Error (Loc,
Reason => SE_Infinite_Recursion)),
Else_Statements => New_List (
Relocate_Node (Node (Call)))));
Analyze (Node (Call));
Next_Elmt (Call);
end loop;
-- Remove temporary scope stack entry used for analysis
Pop_Scope;
end Detect_Infinite_Recursion;
--------------------
-- Expand_Actuals --
--------------------
procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Actual : Node_Id;
Formal : Entity_Id;
N_Node : Node_Id;
Post_Call : List_Id;
E_Formal : Entity_Id;
procedure Add_Call_By_Copy_Code;
-- For In and In-Out parameters, where the parameter must be passed
-- by copy, this routine generates a temporary variable into which
-- the actual is copied, and then passes this as the parameter. This
-- routine also takes care of any constraint checks required for the
-- type conversion case (on both the way in and the way out).
procedure Add_Packed_Call_By_Copy_Code;
-- This is used when the actual involves a reference to an element
-- of a packed array, where we can appropriately use a simpler
-- approach than the full call by copy code. We just copy the value
-- in and out of an appropriate temporary.
procedure Check_Fortran_Logical;
-- A value of type Logical that is passed through a formal parameter
-- must be normalized because .TRUE. usually does not have the same
-- representation as True. We assume that .FALSE. = False = 0.
-- What about functions that return a logical type ???
function Make_Var (Actual : Node_Id) return Entity_Id;
-- Returns an entity that refers to the given actual parameter,
-- Actual (not including any type conversion). If Actual is an
-- entity name, then this entity is returned unchanged, otherwise
-- a renaming is created to provide an entity for the actual.
procedure Reset_Packed_Prefix;
-- The expansion of a packed array component reference is delayed in
-- the context of a call. Now we need to complete the expansion, so we
-- unmark the analyzed bits in all prefixes.
---------------------------
-- Add_Call_By_Copy_Code --
---------------------------
procedure Add_Call_By_Copy_Code is
Expr : Node_Id;
Init : Node_Id;
Temp : Entity_Id;
Var : Entity_Id;
V_Typ : Entity_Id;
Crep : Boolean;
begin
Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
if Nkind (Actual) = N_Type_Conversion then
V_Typ := Etype (Expression (Actual));
Var := Make_Var (Expression (Actual));
Crep := not Same_Representation
(Etype (Formal), Etype (Expression (Actual)));
else
V_Typ := Etype (Actual);
Var := Make_Var (Actual);
Crep := False;
end if;
-- Setup initialization for case of in out parameter, or an out
-- parameter where the formal is an unconstrained array (in the
-- latter case, we have to pass in an object with bounds).
if Ekind (Formal) = E_In_Out_Parameter
or else (Is_Array_Type (Etype (Formal))
and then
not Is_Constrained (Etype (Formal)))
then
if Nkind (Actual) = N_Type_Conversion then
if Conversion_OK (Actual) then
Init := OK_Convert_To
(Etype (Formal), New_Occurrence_Of (Var, Loc));
else
Init := Convert_To
(Etype (Formal), New_Occurrence_Of (Var, Loc));
end if;
else
Init := New_Occurrence_Of (Var, Loc);
end if;
-- An initialization is created for packed conversions as
-- actuals for out parameters to enable Make_Object_Declaration
-- to determine the proper subtype for N_Node. Note that this
-- is wasteful because the extra copying on the call side is
-- not required for such out parameters. ???
elsif Ekind (Formal) = E_Out_Parameter
and then Nkind (Actual) = N_Type_Conversion
and then (Is_Bit_Packed_Array (Etype (Formal))
or else
Is_Bit_Packed_Array (Etype (Expression (Actual))))
then
if Conversion_OK (Actual) then
Init :=
OK_Convert_To (Etype (Formal), New_Occurrence_Of (Var, Loc));
else
Init :=
Convert_To (Etype (Formal), New_Occurrence_Of (Var, Loc));
end if;
else
Init := Empty;
end if;
N_Node :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression => Init);
Set_Assignment_OK (N_Node);
Insert_Action (N, N_Node);
-- Now, normally the deal here is that we use the defining
-- identifier created by that object declaration. There is
-- one exception to this. In the change of representation case
-- the above declaration will end up looking like:
-- temp : type := identifier;
-- And in this case we might as well use the identifier directly
-- and eliminate the temporary. Note that the analysis of the
-- declaration was not a waste of time in that case, since it is
-- what generated the necessary change of representation code. If
-- the change of representation introduced additional code, as in
-- a fixed-integer conversion, the expression is not an identifier
-- and must be kept.
if Crep
and then Present (Expression (N_Node))
and then Is_Entity_Name (Expression (N_Node))
then
Temp := Entity (Expression (N_Node));
Rewrite (N_Node, Make_Null_Statement (Loc));
end if;
-- If type conversion, use reverse conversion on exit
if Nkind (Actual) = N_Type_Conversion then
if Conversion_OK (Actual) then
Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
else
Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
end if;
else
Expr := New_Occurrence_Of (Temp, Loc);
end if;
Rewrite (Actual, New_Reference_To (Temp, Loc));
Analyze (Actual);
Append_To (Post_Call,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Var, Loc),
Expression => Expr));
Set_Assignment_OK (Name (Last (Post_Call)));
end Add_Call_By_Copy_Code;
----------------------------------
-- Add_Packed_Call_By_Copy_Code --
----------------------------------
procedure Add_Packed_Call_By_Copy_Code is
Temp : Entity_Id;
Incod : Node_Id;
Outcod : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
begin
Reset_Packed_Prefix;
-- Prepare to generate code
Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
Incod := Relocate_Node (Actual);
Outcod := New_Copy_Tree (Incod);
-- Generate declaration of temporary variable, initializing it
-- with the input parameter unless we have an OUT variable.
if Ekind (Formal) = E_Out_Parameter then
Incod := Empty;
end if;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Occurrence_Of (Etype (Formal), Loc),
Expression => Incod));
-- The actual is simply a reference to the temporary
Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
-- Generate copy out if OUT or IN OUT parameter
if Ekind (Formal) /= E_In_Parameter then
Lhs := Outcod;
Rhs := New_Occurrence_Of (Temp, Loc);
-- Deal with conversion
if Nkind (Lhs) = N_Type_Conversion then
Lhs := Expression (Lhs);
Rhs := Convert_To (Etype (Actual), Rhs);
end if;
Append_To (Post_Call,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Rhs));
end if;
end Add_Packed_Call_By_Copy_Code;
---------------------------
-- Check_Fortran_Logical --
---------------------------
procedure Check_Fortran_Logical is
Logical : Entity_Id := Etype (Formal);
Var : Entity_Id;
-- Note: this is very incomplete, e.g. it does not handle arrays
-- of logical values. This is really not the right approach at all???)
begin
if Convention (Subp) = Convention_Fortran
and then Root_Type (Etype (Formal)) = Standard_Boolean
and then Ekind (Formal) /= E_In_Parameter
then
Var := Make_Var (Actual);
Append_To (Post_Call,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Var, Loc),
Expression =>
Unchecked_Convert_To (
Logical,
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Var, Loc),
Right_Opnd =>
Unchecked_Convert_To (
Logical,
New_Occurrence_Of (Standard_False, Loc))))));
end if;
end Check_Fortran_Logical;
--------------
-- Make_Var --
--------------
function Make_Var (Actual : Node_Id) return Entity_Id is
Var : Entity_Id;
begin
if Is_Entity_Name (Actual) then
return Entity (Actual);
else
Var := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
N_Node :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Var,
Subtype_Mark =>
New_Occurrence_Of (Etype (Actual), Loc),
Name => Relocate_Node (Actual));
Insert_Action (N, N_Node);
return Var;
end if;
end Make_Var;
-------------------------
-- Reset_Packed_Prefix --
-------------------------
procedure Reset_Packed_Prefix is
Pfx : Node_Id := Actual;
begin
loop
Set_Analyzed (Pfx, False);
exit when Nkind (Pfx) /= N_Selected_Component
and then Nkind (Pfx) /= N_Indexed_Component;
Pfx := Prefix (Pfx);
end loop;
end Reset_Packed_Prefix;
-- Start of processing for Expand_Actuals
begin
Formal := First_Formal (Subp);
Actual := First_Actual (N);
Post_Call := New_List;
while Present (Formal) loop
E_Formal := Etype (Formal);
if Is_Scalar_Type (E_Formal)
or else Nkind (Actual) = N_Slice
then
Check_Fortran_Logical;
-- RM 6.4.1 (11)
elsif Ekind (Formal) /= E_Out_Parameter then
-- The unusual case of the current instance of a protected type
-- requires special handling. This can only occur in the context
-- of a call within the body of a protected operation.
if Is_Entity_Name (Actual)
and then Ekind (Entity (Actual)) = E_Protected_Type
and then In_Open_Scopes (Entity (Actual))
then
if Scope (Subp) /= Entity (Actual) then
Error_Msg_N ("operation outside protected type may not "
& "call back its protected operations?", Actual);
end if;
Rewrite (Actual,
Expand_Protected_Object_Reference (N, Entity (Actual)));
end if;
Apply_Constraint_Check (Actual, E_Formal);
-- Out parameter case. No constraint checks on access type
-- RM 6.4.1 (13)
elsif Is_Access_Type (E_Formal) then
null;
-- RM 6.4.1 (14)
elsif Has_Discriminants (Base_Type (E_Formal))
or else Has_Non_Null_Base_Init_Proc (E_Formal)
then
Apply_Constraint_Check (Actual, E_Formal);
-- RM 6.4.1 (15)
else
Apply_Constraint_Check (Actual, Base_Type (E_Formal));
end if;
-- Processing for IN-OUT and OUT parameters
if Ekind (Formal) /= E_In_Parameter then
-- For type conversions of arrays, apply length/range checks
if Is_Array_Type (E_Formal)
and then Nkind (Actual) = N_Type_Conversion
then
if Is_Constrained (E_Formal) then
Apply_Length_Check (Expression (Actual), E_Formal);
else
Apply_Range_Check (Expression (Actual), E_Formal);
end if;
end if;
-- If argument is a type conversion for a type that is passed
-- by copy, then we must pass the parameter by copy.
if Nkind (Actual) = N_Type_Conversion
and then
(Is_Numeric_Type (E_Formal)
or else Is_Access_Type (E_Formal)
or else Is_Enumeration_Type (E_Formal)
or else Is_Bit_Packed_Array (Etype (Formal))
or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
-- Also pass by copy if change of representation
or else not Same_Representation
(Etype (Formal),
Etype (Expression (Actual))))
then
Add_Call_By_Copy_Code;
-- References to components of bit packed arrays are expanded
-- at this point, rather than at the point of analysis of the
-- actuals, to handle the expansion of the assignment to
-- [in] out parameters.
elsif Is_Ref_To_Bit_Packed_Array (Actual) then
Add_Packed_Call_By_Copy_Code;
-- References to slices of bit packed arrays are expanded
elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
Add_Call_By_Copy_Code;
-- Deal with access types where the actual subtpe and the
-- formal subtype are not the same, requiring a check.
-- It is necessary to exclude tagged types because of "downward
-- conversion" errors and a strange assertion error in namet
-- from gnatf in bug 1215-001 ???
elsif Is_Access_Type (E_Formal)
and then not Same_Type (E_Formal, Etype (Actual))
and then not Is_Tagged_Type (Designated_Type (E_Formal))
then
Add_Call_By_Copy_Code;
elsif Is_Entity_Name (Actual)
and then Is_Volatile (Entity (Actual))
and then not Is_Scalar_Type (Etype (Entity (Actual)))
and then not Is_Volatile (E_Formal)
then
Add_Call_By_Copy_Code;
elsif Nkind (Actual) = N_Indexed_Component
and then Is_Entity_Name (Prefix (Actual))
and then Has_Volatile_Components (Entity (Prefix (Actual)))
then
Add_Call_By_Copy_Code;
end if;
-- The only processing required for IN parameters is in the packed
-- array case, where we expand the indexed component (the circuit
-- in Exp_Ch4 deliberately left indexed components appearing as
-- actuals untouched, so that the special processing above for
-- the OUT and IN OUT cases could be performed. We could make the
-- test in Exp_Ch4 more complex and have it detect the parameter
-- mode, but it is easier simply to handle all cases here.
-- Similarly, we have to expand slices of packed arrays here
else
if Nkind (Actual) = N_Indexed_Component
and then Is_Packed (Etype (Prefix (Actual)))
then
Reset_Packed_Prefix;
Expand_Packed_Element_Reference (Actual);
elsif Is_Ref_To_Bit_Packed_Array (Actual) then
Add_Packed_Call_By_Copy_Code;
elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
declare
Typ : constant Entity_Id := Etype (Actual);
Ent : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('T'));
Decl : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Object_Definition =>
New_Occurrence_Of (Typ, Loc));
begin
Set_No_Initialization (Decl);
Insert_Actions (N, New_List (
Decl,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Expression => Relocate_Node (Actual))));
Rewrite
(Actual, New_Occurrence_Of (Ent, Loc));
Analyze_And_Resolve (Actual, Typ);
end;
end if;
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
-- Find right place to put post call stuff if it is present
if not Is_Empty_List (Post_Call) then
-- If call is not a list member, it must be the triggering
-- statement of a triggering alternative or an entry call
-- alternative, and we can add the post call stuff to the
-- corresponding statement list.
if not Is_List_Member (N) then
declare
P : constant Node_Id := Parent (N);
begin
pragma Assert (Nkind (P) = N_Triggering_Alternative
or else Nkind (P) = N_Entry_Call_Alternative);
if Is_Non_Empty_List (Statements (P)) then
Insert_List_Before_And_Analyze
(First (Statements (P)), Post_Call);
else
Set_Statements (P, Post_Call);
end if;
end;
-- Otherwise, normal case where N is in a statement sequence,
-- just put the post-call stuff after the call statement.
else
Insert_Actions_After (N, Post_Call);
end if;
end if;
-- The call node itself is re-analyzed in Expand_Call.
end Expand_Actuals;
-----------------
-- Expand_Call --
-----------------
-- This procedure handles expansion of function calls and procedure call
-- statements (i.e. it serves as the body for Expand_N_Function_Call and
-- Expand_N_Procedure_Call_Statement. Processing for calls includes:
-- Replace call to Raise_Exception by Raise_Exception always if possible
-- Provide values of actuals for all formals in Extra_Formals list
-- Replace "call" to enumeration literal function by literal itself
-- Rewrite call to predefined operator as operator
-- Replace actuals to in-out parameters that are numeric conversions,
-- with explicit assignment to temporaries before and after the call.
-- Remove optional actuals if First_Optional_Parameter specified.
-- Note that the list of actuals has been filled with default expressions
-- during semantic analysis of the call. Only the extra actuals required
-- for the 'Constrained attribute and for accessibility checks are added
-- at this point.
procedure Expand_Call (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Remote : constant Boolean := Is_Remote_Call (N);
Subp : Entity_Id;
Orig_Subp : Entity_Id := Empty;
Parent_Subp : Entity_Id;
Parent_Formal : Entity_Id;
Actual : Node_Id;
Formal : Entity_Id;
Prev : Node_Id := Empty;
Prev_Orig : Node_Id;
Scop : Entity_Id;
Extra_Actuals : List_Id := No_List;
Cond : Node_Id;
procedure Add_Actual_Parameter (Insert_Param : Node_Id);
-- Adds one entry to the end of the actual parameter list. Used for
-- default parameters and for extra actuals (for Extra_Formals).
-- The argument is an N_Parameter_Association node.
procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
-- Adds an extra actual to the list of extra actuals. Expr
-- is the expression for the value of the actual, EF is the
-- entity for the extra formal.
function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
-- Within an instance, a type derived from a non-tagged formal derived
-- type inherits from the original parent, not from the actual. This is
-- tested in 4723-003. The current derivation mechanism has the derived
-- type inherit from the actual, which is only correct outside of the
-- instance. If the subprogram is inherited, we test for this particular
-- case through a convoluted tree traversal before setting the proper
-- subprogram to be called.
--------------------------
-- Add_Actual_Parameter --
--------------------------
procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
Actual_Expr : constant Node_Id :=
Explicit_Actual_Parameter (Insert_Param);
begin
-- Case of insertion is first named actual
if No (Prev) or else
Nkind (Parent (Prev)) /= N_Parameter_Association
then
Set_Next_Named_Actual (Insert_Param, First_Named_Actual (N));
Set_First_Named_Actual (N, Actual_Expr);
if No (Prev) then
if not Present (Parameter_Associations (N)) then
Set_Parameter_Associations (N, New_List);
Append (Insert_Param, Parameter_Associations (N));
end if;
else
Insert_After (Prev, Insert_Param);
end if;
-- Case of insertion is not first named actual
else
Set_Next_Named_Actual
(Insert_Param, Next_Named_Actual (Parent (Prev)));
Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
Append (Insert_Param, Parameter_Associations (N));
end if;
Prev := Actual_Expr;
end Add_Actual_Parameter;
----------------------
-- Add_Extra_Actual --
----------------------
procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Expr);
begin
if Extra_Actuals = No_List then
Extra_Actuals := New_List;
Set_Parent (Extra_Actuals, N);
end if;
Append_To (Extra_Actuals,
Make_Parameter_Association (Loc,
Explicit_Actual_Parameter => Expr,
Selector_Name =>
Make_Identifier (Loc, Chars (EF))));
Analyze_And_Resolve (Expr, Etype (EF));
end Add_Extra_Actual;
---------------------------
-- Inherited_From_Formal --
---------------------------
function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
Par : Entity_Id;
Gen_Par : Entity_Id;
Gen_Prim : Elist_Id;
Elmt : Elmt_Id;
Indic : Node_Id;
begin
-- If the operation is inherited, it is attached to the corresponding
-- type derivation. If the parent in the derivation is a generic
-- actual, it is a subtype of the actual, and we have to recover the
-- original derived type declaration to find the proper parent.
if Nkind (Parent (S)) /= N_Full_Type_Declaration
or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
or else Nkind (Type_Definition (Original_Node (Parent (S))))
/= N_Derived_Type_Definition
then
return Empty;
else
Indic :=
(Subtype_Indication
(Type_Definition (Original_Node (Parent (S)))));
if Nkind (Indic) = N_Subtype_Indication then
Par := Entity (Subtype_Mark (Indic));
else
Par := Entity (Indic);
end if;
end if;
if not Is_Generic_Actual_Type (Par)
or else Is_Tagged_Type (Par)
or else Nkind (Parent (Par)) /= N_Subtype_Declaration
or else not In_Open_Scopes (Scope (Par))
or else not In_Instance
then
return Empty;
else
Gen_Par := Generic_Parent_Type (Parent (Par));
end if;
Gen_Prim := Collect_Primitive_Operations (Gen_Par);
Elmt := First_Elmt (Gen_Prim);
while Present (Elmt) loop
if Chars (Node (Elmt)) = Chars (S) then
declare
F1 : Entity_Id;
F2 : Entity_Id;
begin
F1 := First_Formal (S);
F2 := First_Formal (Node (Elmt));
while Present (F1)
and then Present (F2)
loop
if Etype (F1) = Etype (F2)
or else Etype (F2) = Gen_Par
then
Next_Formal (F1);
Next_Formal (F2);
else
Next_Elmt (Elmt);
exit; -- not the right subprogram
end if;
return Node (Elmt);
end loop;
end;
else
Next_Elmt (Elmt);
end if;
end loop;
raise Program_Error;
end Inherited_From_Formal;
-- Start of processing for Expand_Call
begin
-- Ignore if previous error
if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
return;
end if;
-- Call using access to subprogram with explicit dereference
if Nkind (Name (N)) = N_Explicit_Dereference then
Subp := Etype (Name (N));
Parent_Subp := Empty;
-- Case of call to simple entry, where the Name is a selected component
-- whose prefix is the task, and whose selector name is the entry name
elsif Nkind (Name (N)) = N_Selected_Component then
Subp := Entity (Selector_Name (Name (N)));
Parent_Subp := Empty;
-- Case of call to member of entry family, where Name is an indexed
-- component, with the prefix being a selected component giving the
-- task and entry family name, and the index being the entry index.
elsif Nkind (Name (N)) = N_Indexed_Component then
Subp := Entity (Selector_Name (Prefix (Name (N))));
Parent_Subp := Empty;
-- Normal case
else
Subp := Entity (Name (N));
Parent_Subp := Alias (Subp);
-- Replace call to Raise_Exception by call to Raise_Exception_Always
-- if we can tell that the first parameter cannot possibly be null.
if not Restrictions (No_Exception_Handlers)
and then Is_RTE (Subp, RE_Raise_Exception)
then
declare
FA : constant Node_Id := Original_Node (First_Actual (N));
begin
-- The case we catch is where the first argument is obtained
-- using the Identity attribute (which must always be non-null)
if Nkind (FA) = N_Attribute_Reference
and then Attribute_Name (FA) = Name_Identity
then
Subp := RTE (RE_Raise_Exception_Always);
Set_Entity (Name (N), Subp);
end if;
end;
end if;
if Ekind (Subp) = E_Entry then
Parent_Subp := Empty;
end if;
end if;
-- First step, compute extra actuals, corresponding to any
-- Extra_Formals present. Note that we do not access Extra_Formals
-- directly, instead we simply note the presence of the extra
-- formals as we process the regular formals and collect the
-- corresponding actuals in Extra_Actuals.
Formal := First_Formal (Subp);
Actual := First_Actual (N);
while Present (Formal) loop
Prev := Actual;
Prev_Orig := Original_Node (Prev);
-- Create possible extra actual for constrained case. Usually,
-- the extra actual is of the form actual'constrained, but since
-- this attribute is only available for unconstrained records,
-- TRUE is expanded if the type of the formal happens to be
-- constrained (for instance when this procedure is inherited
-- from an unconstrained record to a constrained one) or if the
-- actual has no discriminant (its type is constrained). An
-- exception to this is the case of a private type without
-- discriminants. In this case we pass FALSE because the
-- object has underlying discriminants with defaults.
if Present (Extra_Constrained (Formal)) then
if Ekind (Etype (Prev)) in Private_Kind
and then not Has_Discriminants (Base_Type (Etype (Prev)))
then
Add_Extra_Actual (
New_Occurrence_Of (Standard_False, Loc),
Extra_Constrained (Formal));
elsif Is_Constrained (Etype (Formal))
or else not Has_Discriminants (Etype (Prev))
then
Add_Extra_Actual (
New_Occurrence_Of (Standard_True, Loc),
Extra_Constrained (Formal));
else
-- If the actual is a type conversion, then the constrained
-- test applies to the actual, not the target type.
declare
Act_Prev : Node_Id := Prev;
begin
-- Test for unchecked conversions as well, which can
-- occur as out parameter actuals on calls to stream
-- procedures.
if Nkind (Act_Prev) = N_Type_Conversion
or else Nkind (Act_Prev) = N_Unchecked_Type_Conversion
then
Act_Prev := Expression (Act_Prev);
end if;
Add_Extra_Actual (
Make_Attribute_Reference (Sloc (Prev),
Prefix => Duplicate_Subexpr (Act_Prev, Name_Req => True),
Attribute_Name => Name_Constrained),
Extra_Constrained (Formal));
end;
end if;
end if;
-- Create possible extra actual for accessibility level
if Present (Extra_Accessibility (Formal)) then
if Is_Entity_Name (Prev_Orig) then
-- When passing an access parameter as the actual to another
-- access parameter we need to pass along the actual's own
-- associated access level parameter. This is done is we are
-- in the scope of the formal access parameter (if this is an
-- inlined body the extra formal is irrelevant).
if Ekind (Entity (Prev_Orig)) in Formal_Kind
and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
then
declare
Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
begin
pragma Assert (Present (Parm_Ent));
if Present (Extra_Accessibility (Parm_Ent)) then
Add_Extra_Actual (
New_Occurrence_Of
(Extra_Accessibility (Parm_Ent), Loc),
Extra_Accessibility (Formal));
-- If the actual access parameter does not have an
-- associated extra formal providing its scope level,
-- then treat the actual as having library-level
-- accessibility.
else
Add_Extra_Actual (
Make_Integer_Literal (Loc,
Intval => Scope_Depth (Standard_Standard)),
Extra_Accessibility (Formal));
end if;
end;
-- The actual is a normal access value, so just pass the
-- level of the actual's access type.
else
Add_Extra_Actual (
Make_Integer_Literal (Loc,
Intval => Type_Access_Level (Etype (Prev_Orig))),
Extra_Accessibility (Formal));
end if;
else
case Nkind (Prev_Orig) is
when N_Attribute_Reference =>
case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
-- For X'Access, pass on the level of the prefix X
when Attribute_Access =>
Add_Extra_Actual (
Make_Integer_Literal (Loc,
Intval =>
Object_Access_Level (Prefix (Prev_Orig))),
Extra_Accessibility (Formal));
-- Treat the unchecked attributes as library-level
when Attribute_Unchecked_Access |
Attribute_Unrestricted_Access =>
Add_Extra_Actual (
Make_Integer_Literal (Loc,
Intval => Scope_Depth (Standard_Standard)),
Extra_Accessibility (Formal));
-- No other cases of attributes returning access
-- values that can be passed to access parameters
when others =>
raise Program_Error;
end case;
-- For allocators we pass the level of the execution of
-- the called subprogram, which is one greater than the
-- current scope level.
when N_Allocator =>
Add_Extra_Actual (
Make_Integer_Literal (Loc,
Scope_Depth (Current_Scope) + 1),
Extra_Accessibility (Formal));
-- For other cases we simply pass the level of the
-- actual's access type.
when others =>
Add_Extra_Actual (
Make_Integer_Literal (Loc,
Intval => Type_Access_Level (Etype (Prev_Orig))),
Extra_Accessibility (Formal));
end case;
end if;
end if;
-- Perform the check of 4.6(49) that prevents a null value
-- from being passed as an actual to an access parameter.
-- Note that the check is elided in the common cases of
-- passing an access attribute or access parameter as an
-- actual. Also, we currently don't enforce this check for
-- expander-generated actuals and when -gnatdj is set.
if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
or else Suppress_Accessibility_Checks (Subp)
then
null;
elsif Debug_Flag_J then
null;
elsif not Comes_From_Source (Prev) then
null;
elsif Is_Entity_Name (Prev)
and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
then
null;
elsif Nkind (Prev) = N_Allocator
or else Nkind (Prev) = N_Attribute_Reference
then
null;
-- Suppress null checks when passing to access parameters
-- of Java subprograms. (Should this be done for other
-- foreign conventions as well ???)
elsif Convention (Subp) = Convention_Java then
null;
else
Cond :=
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Prev),
Right_Opnd => Make_Null (Loc));
Insert_Action (Prev,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Access_Parameter_Is_Null));
end if;
-- Perform appropriate validity checks on parameters
if Validity_Checks_On then
if Ekind (Formal) = E_In_Parameter
and then Validity_Check_In_Params
then
Ensure_Valid (Actual);
elsif Ekind (Formal) = E_In_Out_Parameter
and then Validity_Check_In_Out_Params
then
Ensure_Valid (Actual);
end if;
end if;
-- For IN OUT and OUT parameters, ensure that subscripts are valid
-- since this is a left side reference. We only do this for calls
-- from the source program since we assume that compiler generated
-- calls explicitly generate any required checks. We also need it
-- only if we are doing standard validity checks, since clearly it
-- is not needed if validity checks are off, and in subscript
-- validity checking mode, all indexed components are checked with
-- a call directly from Expand_N_Indexed_Component.
if Comes_From_Source (N)
and then Ekind (Formal) /= E_In_Parameter
and then Validity_Checks_On
and then Validity_Check_Default
and then not Validity_Check_Subscripts
then
Check_Valid_Lvalue_Subscripts (Actual);
end if;
-- If the formal is class wide and the actual is an aggregate, force
-- evaluation so that the back end who does not know about class-wide
-- type, does not generate a temporary of the wrong size.
if not Is_Class_Wide_Type (Etype (Formal)) then
null;
elsif Nkind (Actual) = N_Aggregate
or else (Nkind (Actual) = N_Qualified_Expression
and then Nkind (Expression (Actual)) = N_Aggregate)
then
Force_Evaluation (Actual);
end if;
-- In a remote call, if the formal is of a class-wide type, check
-- that the actual meets the requirements described in E.4(18).
if Remote
and then Is_Class_Wide_Type (Etype (Formal))
then
Insert_Action (Actual,
Make_Implicit_If_Statement (N,
Condition =>
Make_Op_Not (Loc,
Get_Remotely_Callable (Duplicate_Subexpr (Actual))),
Then_Statements => New_List (
Make_Procedure_Call_Statement (Loc,
New_Occurrence_Of (RTE
(RE_Raise_Program_Error_For_E_4_18), Loc)))));
end if;
Next_Actual (Actual);
Next_Formal (Formal);
end loop;
-- If we are expanding a rhs of an assignement we need to check if
-- tag propagation is needed. This code belongs theorically in Analyze
-- Assignment but has to be done earlier (bottom-up) because the
-- assignment might be transformed into a declaration for an uncons-
-- trained value, if the expression is classwide.
if Nkind (N) = N_Function_Call
and then Is_Tag_Indeterminate (N)
and then Is_Entity_Name (Name (N))
then
declare
Ass : Node_Id := Empty;
begin
if Nkind (Parent (N)) = N_Assignment_Statement then
Ass := Parent (N);
elsif Nkind (Parent (N)) = N_Qualified_Expression
and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
then
Ass := Parent (Parent (N));
end if;
if Present (Ass)
and then Is_Class_Wide_Type (Etype (Name (Ass)))
then
Propagate_Tag (Name (Ass), N);
return;
end if;
end;
end if;
-- Deals with Dispatch_Call if we still have a call, before expanding
-- extra actuals since this will be done on the re-analysis of the
-- dispatching call. Note that we do not try to shorten the actual
-- list for a dispatching call, it would not make sense to do so.
-- Expansion of dispatching calls is suppressed when Java_VM, because
-- the JVM back end directly handles the generation of dispatching
-- calls and would have to undo any expansion to an indirect call.
if (Nkind (N) = N_Function_Call
or else Nkind (N) = N_Procedure_Call_Statement)
and then Present (Controlling_Argument (N))
and then not Java_VM
then
Expand_Dispatch_Call (N);
return;
-- Similarly, expand calls to RCI subprograms on which pragma
-- All_Calls_Remote applies. The rewriting will be reanalyzed
-- later. Do this only when the call comes from source since we do
-- not want such a rewritting to occur in expanded code.
elsif Is_All_Remote_Call (N) then
Expand_All_Calls_Remote_Subprogram_Call (N);
-- Similarly, do not add extra actuals for an entry call whose entity
-- is a protected procedure, or for an internal protected subprogram
-- call, because it will be rewritten as a protected subprogram call
-- and reanalyzed (see Expand_Protected_Subprogram_Call).
elsif Is_Protected_Type (Scope (Subp))
and then (Ekind (Subp) = E_Procedure
or else Ekind (Subp) = E_Function)
then
null;
-- During that loop we gathered the extra actuals (the ones that
-- correspond to Extra_Formals), so now they can be appended.
else
while Is_Non_Empty_List (Extra_Actuals) loop
Add_Actual_Parameter (Remove_Head (Extra_Actuals));
end loop;
end if;
if Ekind (Subp) = E_Procedure
or else (Ekind (Subp) = E_Subprogram_Type
and then Etype (Subp) = Standard_Void_Type)
or else Is_Entry (Subp)
then
Expand_Actuals (N, Subp);
end if;
-- If the subprogram is a renaming, or if it is inherited, replace it
-- in the call with the name of the actual subprogram being called.
-- If this is a dispatching call, the run-time decides what to call.
-- The Alias attribute does not apply to entries.
if Nkind (N) /= N_Entry_Call_Statement
and then No (Controlling_Argument (N))
and then Present (Parent_Subp)
then
if Present (Inherited_From_Formal (Subp)) then
Parent_Subp := Inherited_From_Formal (Subp);
else
while Present (Alias (Parent_Subp)) loop
Parent_Subp := Alias (Parent_Subp);
end loop;
end if;
Set_Entity (Name (N), Parent_Subp);
if Is_Abstract (Parent_Subp)
and then not In_Instance
then
Error_Msg_NE
("cannot call abstract subprogram &!", Name (N), Parent_Subp);
end if;
-- Add an explicit conversion for parameter of the derived type.
-- This is only done for scalar and access in-parameters. Others
-- have been expanded in expand_actuals.
Formal := First_Formal (Subp);
Parent_Formal := First_Formal (Parent_Subp);
Actual := First_Actual (N);
-- It is not clear that conversion is needed for intrinsic
-- subprograms, but it certainly is for those that are user-
-- defined, and that can be inherited on derivation, namely
-- unchecked conversion and deallocation.
-- General case needs study ???
if not Is_Intrinsic_Subprogram (Parent_Subp)
or else Is_Generic_Instance (Parent_Subp)
then
while Present (Formal) loop
if Etype (Formal) /= Etype (Parent_Formal)
and then Is_Scalar_Type (Etype (Formal))
and then Ekind (Formal) = E_In_Parameter
and then not Raises_Constraint_Error (Actual)
then
Rewrite (Actual,
OK_Convert_To (Etype (Parent_Formal),
Relocate_Node (Actual)));
Analyze (Actual);
Resolve (Actual, Etype (Parent_Formal));
Enable_Range_Check (Actual);
elsif Is_Access_Type (Etype (Formal))
and then Base_Type (Etype (Parent_Formal))
/= Base_Type (Etype (Actual))
then
if Ekind (Formal) /= E_In_Parameter then
Rewrite (Actual,
Convert_To (Etype (Parent_Formal),
Relocate_Node (Actual)));
Analyze (Actual);
Resolve (Actual, Etype (Parent_Formal));
elsif
Ekind (Etype (Parent_Formal)) = E_Anonymous_Access_Type
and then
Designated_Type (Etype (Parent_Formal))
/= Designated_Type (Etype (Actual))
and then not Is_Controlling_Formal (Formal)
then
-- This unchecked conversion is not necessary unless
-- inlining is unabled, because in that case the type
-- mismatch may become visible in the body about to be
-- inlined.
Rewrite (Actual,
Unchecked_Convert_To (Etype (Parent_Formal),
Relocate_Node (Actual)));
Analyze (Actual);
Resolve (Actual, Etype (Parent_Formal));
end if;
end if;
Next_Formal (Formal);
Next_Formal (Parent_Formal);
Next_Actual (Actual);
end loop;
end if;
Orig_Subp := Subp;
Subp := Parent_Subp;
end if;
-- Some more special cases for cases other than explicit dereference
if Nkind (Name (N)) /= N_Explicit_Dereference then
-- Calls to an enumeration literal are replaced by the literal
-- This case occurs only when we have a call to a function that
-- is a renaming of an enumeration literal. The normal case of
-- a direct reference to an enumeration literal has already been
-- been dealt with by Resolve_Call. If the function is itself
-- inherited (see 7423-001) the literal of the parent type must
-- be explicitly converted to the return type of the function.
if Ekind (Subp) = E_Enumeration_Literal then
if Base_Type (Etype (Subp)) /= Base_Type (Etype (N)) then
Rewrite
(N, Convert_To (Etype (N), New_Occurrence_Of (Subp, Loc)));
else
Rewrite (N, New_Occurrence_Of (Subp, Loc));
Resolve (N, Etype (N));
end if;
end if;
-- Handle case of access to protected subprogram type
else
if Ekind (Base_Type (Etype (Prefix (Name (N))))) =
E_Access_Protected_Subprogram_Type
then
-- If this is a call through an access to protected operation,
-- the prefix has the form (object'address, operation'access).
-- Rewrite as a for other protected calls: the object is the
-- first parameter of the list of actuals.
declare
Call : Node_Id;
Parm : List_Id;
Nam : Node_Id;
Obj : Node_Id;
Ptr : Node_Id := Prefix (Name (N));
T : Entity_Id := Equivalent_Type (Base_Type (Etype (Ptr)));
D_T : Entity_Id := Designated_Type (Base_Type (Etype (Ptr)));
begin
Obj := Make_Selected_Component (Loc,
Prefix => Unchecked_Convert_To (T, Ptr),
Selector_Name => New_Occurrence_Of (First_Entity (T), Loc));
Nam := Make_Selected_Component (Loc,
Prefix => Unchecked_Convert_To (T, Ptr),
Selector_Name => New_Occurrence_Of (
Next_Entity (First_Entity (T)), Loc));
Nam := Make_Explicit_Dereference (Loc, Nam);
if Present (Parameter_Associations (N)) then
Parm := Parameter_Associations (N);
else
Parm := New_List;
end if;
Prepend (Obj, Parm);
if Etype (D_T) = Standard_Void_Type then
Call := Make_Procedure_Call_Statement (Loc,
Name => Nam,
Parameter_Associations => Parm);
else
Call := Make_Function_Call (Loc,
Name => Nam,
Parameter_Associations => Parm);
end if;
Set_First_Named_Actual (Call, First_Named_Actual (N));
Set_Etype (Call, Etype (D_T));
-- We do not re-analyze the call to avoid infinite recursion.
-- We analyze separately the prefix and the object, and set
-- the checks on the prefix that would otherwise be emitted
-- when resolving a call.
Rewrite (N, Call);
Analyze (Nam);
Apply_Access_Check (Nam);
Analyze (Obj);
return;
end;
end if;
end if;
-- If this is a call to an intrinsic subprogram, then perform the
-- appropriate expansion to the corresponding tree node and we
-- are all done (since after that the call is gone!)
if Is_Intrinsic_Subprogram (Subp) then
Expand_Intrinsic_Call (N, Subp);
return;
end if;
if Ekind (Subp) = E_Function
or else Ekind (Subp) = E_Procedure
then
if Is_Inlined (Subp) then
declare
Spec : constant Node_Id := Unit_Declaration_Node (Subp);
begin
-- Verify that the body to inline has already been seen,
-- and that if the body is in the current unit the inlining
-- does not occur earlier. This avoids order-of-elaboration
-- problems in gigi.
if Present (Spec)
and then Nkind (Spec) = N_Subprogram_Declaration
and then Present (Body_To_Inline (Spec))
and then (In_Extended_Main_Code_Unit (N)
or else In_Extended_Main_Code_Unit (Parent (N)))
and then (not In_Same_Extended_Unit
(Sloc (Body_To_Inline (Spec)), Loc)
or else
Earlier_In_Extended_Unit
(Sloc (Body_To_Inline (Spec)), Loc))
then
Expand_Inlined_Call (N, Subp, Orig_Subp);
else
-- Let the back-end handle it.
Add_Inlined_Body (Subp);
if Front_End_Inlining
and then Nkind (Spec) = N_Subprogram_Declaration
and then (In_Extended_Main_Code_Unit (N))
and then No (Body_To_Inline (Spec))
and then not Has_Completion (Subp)
and then In_Same_Extended_Unit (Sloc (Spec), Loc)
and then Ineffective_Inline_Warnings
then
Error_Msg_N
("call cannot be inlined before body is seen?", N);
end if;
end if;
end;
end if;
end if;
-- Check for a protected subprogram. This is either an intra-object
-- call, or a protected function call. Protected procedure calls are
-- rewritten as entry calls and handled accordingly.
Scop := Scope (Subp);
if Nkind (N) /= N_Entry_Call_Statement
and then Is_Protected_Type (Scop)
then
-- If the call is an internal one, it is rewritten as a call to
-- to the corresponding unprotected subprogram.
Expand_Protected_Subprogram_Call (N, Subp, Scop);
end if;
-- Functions returning controlled objects need special attention
if Controlled_Type (Etype (Subp))
and then not Is_Return_By_Reference_Type (Etype (Subp))
then
Expand_Ctrl_Function_Call (N);
end if;
-- Test for First_Optional_Parameter, and if so, truncate parameter
-- list if there are optional parameters at the trailing end.
-- Note we never delete procedures for call via a pointer.
if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
and then Present (First_Optional_Parameter (Subp))
then
declare
Last_Keep_Arg : Node_Id;
begin
-- Last_Keep_Arg will hold the last actual that should be
-- retained. If it remains empty at the end, it means that
-- all parameters are optional.
Last_Keep_Arg := Empty;
-- Find first optional parameter, must be present since we
-- checked the validity of the parameter before setting it.
Formal := First_Formal (Subp);
Actual := First_Actual (N);
while Formal /= First_Optional_Parameter (Subp) loop
Last_Keep_Arg := Actual;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
-- Now we have Formal and Actual pointing to the first
-- potentially droppable argument. We can drop all the
-- trailing arguments whose actual matches the default.
-- Note that we know that all remaining formals have
-- defaults, because we checked that this requirement
-- was met before setting First_Optional_Parameter.
-- We use Fully_Conformant_Expressions to check for identity
-- between formals and actuals, which may miss some cases, but
-- on the other hand, this is only an optimization (if we fail
-- to truncate a parameter it does not affect functionality).
-- So if the default is 3 and the actual is 1+2, we consider
-- them unequal, which hardly seems worrisome.
while Present (Formal) loop
if not Fully_Conformant_Expressions
(Actual, Default_Value (Formal))
then
Last_Keep_Arg := Actual;
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
-- If no arguments, delete entire list, this is the easy case
if No (Last_Keep_Arg) then
while Is_Non_Empty_List (Parameter_Associations (N)) loop
Delete_Tree (Remove_Head (Parameter_Associations (N)));
end loop;
Set_Parameter_Associations (N, No_List);
Set_First_Named_Actual (N, Empty);
-- Case where at the last retained argument is positional. This
-- is also an easy case, since the retained arguments are already
-- in the right form, and we don't need to worry about the order
-- of arguments that get eliminated.
elsif Is_List_Member (Last_Keep_Arg) then
while Present (Next (Last_Keep_Arg)) loop
Delete_Tree (Remove_Next (Last_Keep_Arg));
end loop;
Set_First_Named_Actual (N, Empty);
-- This is the annoying case where the last retained argument
-- is a named parameter. Since the original arguments are not
-- in declaration order, we may have to delete some fairly
-- random collection of arguments.
else
declare
Temp : Node_Id;
Passoc : Node_Id;
Junk : Node_Id;
begin
-- First step, remove all the named parameters from the
-- list (they are still chained using First_Named_Actual
-- and Next_Named_Actual, so we have not lost them!)
Temp := First (Parameter_Associations (N));
-- Case of all parameters named, remove them all
if Nkind (Temp) = N_Parameter_Association then
while Is_Non_Empty_List (Parameter_Associations (N)) loop
Temp := Remove_Head (Parameter_Associations (N));
end loop;
-- Case of mixed positional/named, remove named parameters
else
while Nkind (Next (Temp)) /= N_Parameter_Association loop
Next (Temp);
end loop;
while Present (Next (Temp)) loop
Junk := Remove_Next (Temp);
end loop;
end if;
-- Now we loop through the named parameters, till we get
-- to the last one to be retained, adding them to the list.
-- Note that the Next_Named_Actual list does not need to be
-- touched since we are only reordering them on the actual
-- parameter association list.
Passoc := Parent (First_Named_Actual (N));
loop
Temp := Relocate_Node (Passoc);
Append_To
(Parameter_Associations (N), Temp);
exit when
Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
Passoc := Parent (Next_Named_Actual (Passoc));
end loop;
Set_Next_Named_Actual (Temp, Empty);
loop
Temp := Next_Named_Actual (Passoc);
exit when No (Temp);
Set_Next_Named_Actual
(Passoc, Next_Named_Actual (Parent (Temp)));
Delete_Tree (Temp);
end loop;
end;
end if;
end;
end if;
end Expand_Call;
--------------------------
-- Expand_Inlined_Call --
--------------------------
procedure Expand_Inlined_Call
(N : Node_Id;
Subp : Entity_Id;
Orig_Subp : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Blk : Node_Id;
Bod : Node_Id;
Decl : Node_Id;
Exit_Lab : Entity_Id := Empty;
F : Entity_Id;
A : Node_Id;
Lab_Decl : Node_Id;
Lab_Id : Node_Id;
New_A : Node_Id;
Num_Ret : Int := 0;
Orig_Bod : constant Node_Id :=
Body_To_Inline (Unit_Declaration_Node (Subp));
Ret_Type : Entity_Id;
Targ : Node_Id;
Temp : Entity_Id;
Temp_Typ : Entity_Id;
procedure Make_Exit_Label;
-- Build declaration for exit label to be used in Return statements.
function Process_Formals (N : Node_Id) return Traverse_Result;
-- Replace occurrence of a formal with the corresponding actual, or
-- the thunk generated for it.
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
-- If the function body is a single expression, replace call with
-- expression, else insert block appropriately.
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
-- If procedure body has no local variables, inline body without
-- creating block, otherwise rewrite call with block.
---------------------
-- Make_Exit_Label --
---------------------
procedure Make_Exit_Label is
begin
-- Create exit label for subprogram, if one doesn't exist yet.
if No (Exit_Lab) then
Lab_Id := Make_Identifier (Loc, New_Internal_Name ('L'));
Set_Entity (Lab_Id,
Make_Defining_Identifier (Loc, Chars (Lab_Id)));
Exit_Lab := Make_Label (Loc, Lab_Id);
Lab_Decl :=
Make_Implicit_Label_Declaration (Loc,
Defining_Identifier => Entity (Lab_Id),
Label_Construct => Exit_Lab);
end if;
end Make_Exit_Label;
---------------------
-- Process_Formals --
---------------------
function Process_Formals (N : Node_Id) return Traverse_Result is
A : Entity_Id;
E : Entity_Id;
Ret : Node_Id;
begin
if Is_Entity_Name (N)
and then Present (Entity (N))
then
E := Entity (N);
if Is_Formal (E)
and then Scope (E) = Subp
then
A := Renamed_Object (E);
if Is_Entity_Name (A) then
Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
elsif Nkind (A) = N_Defining_Identifier then
Rewrite (N, New_Occurrence_Of (A, Loc));
else -- numeric literal
Rewrite (N, New_Copy (A));
end if;
end if;
return Skip;
elsif Nkind (N) = N_Return_Statement then
if No (Expression (N)) then
Make_Exit_Label;
Rewrite (N, Make_Goto_Statement (Loc,
Name => New_Copy (Lab_Id)));
else
if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
then
-- function body is a single expression. No need for
-- exit label.
null;
else
Num_Ret := Num_Ret + 1;
Make_Exit_Label;
end if;
-- Because of the presence of private types, the views of the
-- expression and the context may be different, so place an
-- unchecked conversion to the context type to avoid spurious
-- errors, eg. when the expression is a numeric literal and
-- the context is private. If the expression is an aggregate,
-- use a qualified expression, because an aggregate is not a
-- legal argument of a conversion.
if Nkind (Expression (N)) = N_Aggregate
or else Nkind (Expression (N)) = N_Null
then
Ret :=
Make_Qualified_Expression (Sloc (N),
Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
Expression => Relocate_Node (Expression (N)));
else
Ret :=
Unchecked_Convert_To
(Ret_Type, Relocate_Node (Expression (N)));
end if;
if Nkind (Targ) = N_Defining_Identifier then
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Targ, Loc),
Expression => Ret));
else
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Copy (Targ),
Expression => Ret));
end if;
Set_Assignment_OK (Name (N));
if Present (Exit_Lab) then
Insert_After (N,
Make_Goto_Statement (Loc,
Name => New_Copy (Lab_Id)));
end if;
end if;
return OK;
else
return OK;
end if;
end Process_Formals;
procedure Replace_Formals is new Traverse_Proc (Process_Formals);
---------------------------
-- Rewrite_Function_Call --
---------------------------
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
HSS : Node_Id := Handled_Statement_Sequence (Blk);
Fst : Node_Id := First (Statements (HSS));
begin
-- Optimize simple case: function body is a single return statement,
-- which has been expanded into an assignment.
if Is_Empty_List (Declarations (Blk))
and then Nkind (Fst) = N_Assignment_Statement
and then No (Next (Fst))
then
-- The function call may have been rewritten as the temporary
-- that holds the result of the call, in which case remove the
-- now useless declaration.
if Nkind (N) = N_Identifier
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
then
Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
end if;
Rewrite (N, Expression (Fst));
elsif Nkind (N) = N_Identifier
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
then
-- The block assigns the result of the call to the temporary.
Insert_After (Parent (Entity (N)), Blk);
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then Is_Entity_Name (Name (Parent (N)))
then
-- replace assignment with the block.
Rewrite (Parent (N), Blk);
elsif Nkind (Parent (N)) = N_Object_Declaration then
Set_Expression (Parent (N), Empty);
Insert_After (Parent (N), Blk);
end if;
end Rewrite_Function_Call;
----------------------------
-- Rewrite_Procedure_Call --
----------------------------
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
HSS : Node_Id := Handled_Statement_Sequence (Blk);
begin
if Is_Empty_List (Declarations (Blk)) then
Insert_List_After (N, Statements (HSS));
Rewrite (N, Make_Null_Statement (Loc));
else
Rewrite (N, Blk);
end if;
end Rewrite_Procedure_Call;
-- Start of processing for Expand_Inlined_Call
begin
if Nkind (Orig_Bod) = N_Defining_Identifier then
-- Subprogram is a renaming_as_body. Calls appearing after the
-- renaming can be replaced with calls to the renamed entity
-- directly, because the subprograms are subtype conformant.
Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
return;
end if;
-- Use generic machinery to copy body of inlined subprogram, as if it
-- were an instantiation, resetting source locations appropriately, so
-- that nested inlined calls appear in the main unit.
Save_Env (Subp, Empty);
Set_Copied_Sloc (N, Defining_Entity (Orig_Bod));
Bod :=
Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
Blk :=
Make_Block_Statement (Loc,
Declarations => Declarations (Bod),
Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
if No (Declarations (Bod)) then
Set_Declarations (Blk, New_List);
end if;
-- If this is a derived function, establish the proper return type.
if Present (Orig_Subp)
and then Orig_Subp /= Subp
then
Ret_Type := Etype (Orig_Subp);
else
Ret_Type := Etype (Subp);
end if;
F := First_Formal (Subp);
A := First_Actual (N);
-- Create temporaries for the actuals that are expressions, or that
-- are scalars and require copying to preserve semantics.
while Present (F) loop
if Present (Renamed_Object (F)) then
Error_Msg_N (" cannot inline call to recursive subprogram", N);
return;
end if;
-- If the argument may be a controlling argument in a call within
-- the inlined body, we must preserve its classwide nature to
-- insure that dynamic dispatching take place subsequently.
-- If the formal has a constraint it must be preserved to retain
-- the semantics of the body.
if Is_Class_Wide_Type (Etype (F))
or else (Is_Access_Type (Etype (F))
and then
Is_Class_Wide_Type (Designated_Type (Etype (F))))
then
Temp_Typ := Etype (F);
elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
and then Etype (F) /= Base_Type (Etype (F))
then
Temp_Typ := Etype (F);
else
Temp_Typ := Etype (A);
end if;
if (not Is_Entity_Name (A)
and then Nkind (A) /= N_Integer_Literal
and then Nkind (A) /= N_Real_Literal)
or else Is_Scalar_Type (Etype (A))
then
Temp :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('C'));
-- If the actual for an in/in-out parameter is a view conversion,
-- make it into an unchecked conversion, given that an untagged
-- type conversion is not a proper object for a renaming.
-- In-out conversions that involve real conversions have already
-- been transformed in Expand_Actuals.
if Nkind (A) = N_Type_Conversion
and then
(Ekind (F) = E_In_Out_Parameter
or else not Is_Tagged_Type (Etype (F)))
then
New_A := Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
Expression => Relocate_Node (Expression (A)));
elsif Etype (F) /= Etype (A) then
New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
Temp_Typ := Etype (F);
else
New_A := Relocate_Node (A);
end if;
Set_Sloc (New_A, Sloc (N));
if Ekind (F) = E_In_Parameter
and then not Is_Limited_Type (Etype (A))
then
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
Expression => New_A);
else
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Temp,
Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
Name => New_A);
end if;
Prepend (Decl, Declarations (Blk));
Set_Renamed_Object (F, Temp);
else
if Etype (F) /= Etype (A) then
Set_Renamed_Object
(F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
else
Set_Renamed_Object (F, A);
end if;
end if;
Next_Formal (F);
Next_Actual (A);
end loop;
-- Establish target of function call. If context is not assignment or
-- declaration, create a temporary as a target. The declaration for
-- the temporary may be subsequently optimized away if the body is a
-- single expression, or if the left-hand side of the assignment is
-- simple enough.
if Ekind (Subp) = E_Function then
if Nkind (Parent (N)) = N_Assignment_Statement
and then Is_Entity_Name (Name (Parent (N)))
then
Targ := Name (Parent (N));
else
-- Replace call with temporary, and create its declaration.
Temp :=
Make_Defining_Identifier (Loc, New_Internal_Name ('C'));
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Occurrence_Of (Ret_Type, Loc));
Set_No_Initialization (Decl);
Insert_Action (N, Decl);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Targ := Temp;
end if;
end if;
-- Traverse the tree and replace formals with actuals or their thunks.
-- Attach block to tree before analysis and rewriting.
Replace_Formals (Blk);
Set_Parent (Blk, N);
if Present (Exit_Lab) then
-- If the body was a single expression, the single return statement
-- and the corresponding label are useless.
if Num_Ret = 1
and then
Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
N_Goto_Statement
then
Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
else
Append (Lab_Decl, (Declarations (Blk)));
Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
end if;
end if;
-- Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
-- conflicting private views that Gigi would ignore.
declare
I_Flag : constant Boolean := In_Inlined_Body;
begin
In_Inlined_Body := True;
Analyze (Blk);
In_Inlined_Body := I_Flag;
end;
if Ekind (Subp) = E_Procedure then
Rewrite_Procedure_Call (N, Blk);
else
Rewrite_Function_Call (N, Blk);
end if;
Restore_Env;
-- Cleanup mapping between formals and actuals, for other expansions.
F := First_Formal (Subp);
while Present (F) loop
Set_Renamed_Object (F, Empty);
Next_Formal (F);
end loop;
end Expand_Inlined_Call;
----------------------------
-- Expand_N_Function_Call --
----------------------------
procedure Expand_N_Function_Call (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
function Returned_By_Reference return Boolean;
-- If the return type is returned through the secondary stack. i.e.
-- by reference, we don't want to create a temporary to force stack
-- checking.
function Returned_By_Reference return Boolean is
S : Entity_Id := Current_Scope;
begin
if Is_Return_By_Reference_Type (Typ) then
return True;
elsif Nkind (Parent (N)) /= N_Return_Statement then
return False;
elsif Requires_Transient_Scope (Typ) then
-- Verify that the return type of the enclosing function has
-- the same constrained status as that of the expression.
while Ekind (S) /= E_Function loop
S := Scope (S);
end loop;
return Is_Constrained (Typ) = Is_Constrained (Etype (S));
else
return False;
end if;
end Returned_By_Reference;
-- Start of processing for Expand_N_Function_Call
begin
-- A special check. If stack checking is enabled, and the return type
-- might generate a large temporary, and the call is not the right
-- side of an assignment, then generate an explicit temporary. We do
-- this because otherwise gigi may generate a large temporary on the
-- fly and this can cause trouble with stack checking.
if May_Generate_Large_Temp (Typ)
and then Nkind (Parent (N)) /= N_Assignment_Statement
and then
(Nkind (Parent (N)) /= N_Object_Declaration
or else Expression (Parent (N)) /= N)
and then not Returned_By_Reference
then
-- Note: it might be thought that it would be OK to use a call to
-- Force_Evaluation here, but that's not good enough, because that
-- results in a 'Reference construct that may still need a temporary.
declare
Loc : constant Source_Ptr := Sloc (N);
Temp_Obj : constant Entity_Id := Make_Defining_Identifier (Loc,
New_Internal_Name ('F'));
Temp_Typ : Entity_Id := Typ;
Decl : Node_Id;
A : Node_Id;
F : Entity_Id;
Proc : Entity_Id;
begin
if Is_Tagged_Type (Typ)
and then Present (Controlling_Argument (N))
then
if Nkind (Parent (N)) /= N_Procedure_Call_Statement
and then Nkind (Parent (N)) /= N_Function_Call
then
-- If this is a tag-indeterminate call, the object must
-- be classwide.
if Is_Tag_Indeterminate (N) then
Temp_Typ := Class_Wide_Type (Typ);
end if;
else
-- If this is a dispatching call that is itself the
-- controlling argument of an enclosing call, the nominal
-- subtype of the object that replaces it must be classwide,
-- so that dispatching will take place properly. If it is
-- not a controlling argument, the object is not classwide.
Proc := Entity (Name (Parent (N)));
F := First_Formal (Proc);
A := First_Actual (Parent (N));
while A /= N loop
Next_Formal (F);
Next_Actual (A);
end loop;
if Is_Controlling_Formal (F) then
Temp_Typ := Class_Wide_Type (Typ);
end if;
end if;
end if;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Obj,
Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
Constant_Present => True,
Expression => Relocate_Node (N));
Set_Assignment_OK (Decl);
Insert_Actions (N, New_List (Decl));
Rewrite (N, New_Occurrence_Of (Temp_Obj, Loc));
end;
-- Normal case, expand the call
else
Expand_Call (N);
end if;
end Expand_N_Function_Call;
---------------------------------------
-- Expand_N_Procedure_Call_Statement --
---------------------------------------
procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
begin
Expand_Call (N);
end Expand_N_Procedure_Call_Statement;
------------------------------
-- Expand_N_Subprogram_Body --
------------------------------
-- Add poll call if ATC polling is enabled
-- Add return statement if last statement in body is not a return
-- statement (this makes things easier on Gigi which does not want
-- to have to handle a missing return).
-- Add call to Activate_Tasks if body is a task activator
-- Deal with possible detection of infinite recursion
-- Eliminate body completely if convention stubbed
-- Encode entity names within body, since we will not need to reference
-- these entities any longer in the front end.
-- Initialize scalar out parameters if Initialize/Normalize_Scalars
-- Reset Pure indication if any parameter has root type System.Address
procedure Expand_N_Subprogram_Body (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
H : constant Node_Id := Handled_Statement_Sequence (N);
Body_Id : Entity_Id;
Spec_Id : Entity_Id;
Except_H : Node_Id;
Scop : Entity_Id;
Dec : Node_Id;
Next_Op : Node_Id;
L : List_Id;
procedure Add_Return (S : List_Id);
-- Append a return statement to the statement sequence S if the last
-- statement is not already a return or a goto statement. Note that
-- the latter test is not critical, it does not matter if we add a
-- few extra returns, since they get eliminated anyway later on.
----------------
-- Add_Return --
----------------
procedure Add_Return (S : List_Id) is
Last_S : constant Node_Id := Last (S);
-- Get original node, in case raise has been rewritten
begin
if not Is_Transfer (Last_S) then
Append_To (S, Make_Return_Statement (Sloc (Last_S)));
end if;
end Add_Return;
-- Start of processing for Expand_N_Subprogram_Body
begin
-- Set L to either the list of declarations if present, or
-- to the list of statements if no declarations are present.
-- This is used to insert new stuff at the start.
if Is_Non_Empty_List (Declarations (N)) then
L := Declarations (N);
else
L := Statements (Handled_Statement_Sequence (N));
end if;
-- Need poll on entry to subprogram if polling enabled. We only
-- do this for non-empty subprograms, since it does not seem
-- necessary to poll for a dummy null subprogram.
if Is_Non_Empty_List (L) then
Generate_Poll_Call (First (L));
end if;
-- Find entity for subprogram
Body_Id := Defining_Entity (N);
if Present (Corresponding_Spec (N)) then
Spec_Id := Corresponding_Spec (N);
else
Spec_Id := Body_Id;
end if;
-- If this is a Pure function which has any parameters whose root
-- type is System.Address, reset the Pure indication, since it will
-- likely cause incorrect code to be generated.
if Is_Pure (Spec_Id)
and then Is_Subprogram (Spec_Id)
and then not Has_Pragma_Pure_Function (Spec_Id)
then
declare
F : Entity_Id := First_Formal (Spec_Id);
begin
while Present (F) loop
if Is_RTE (Root_Type (Etype (F)), RE_Address) then
Set_Is_Pure (Spec_Id, False);
if Spec_Id /= Body_Id then
Set_Is_Pure (Body_Id, False);
end if;
exit;
end if;
Next_Formal (F);
end loop;
end;
end if;
-- Initialize any scalar OUT args if Initialize/Normalize_Scalars
if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
declare
F : Entity_Id := First_Formal (Spec_Id);
V : constant Boolean := Validity_Checks_On;
begin
-- We turn off validity checking, since we do not want any
-- check on the initializing value itself (which we know
-- may well be invalid!)
Validity_Checks_On := False;
-- Loop through formals
while Present (F) loop
if Is_Scalar_Type (Etype (F))
and then Ekind (F) = E_Out_Parameter
then
Insert_Before_And_Analyze (First (L),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (F, Loc),
Expression => Get_Simple_Init_Val (Etype (F), Loc)));
end if;
Next_Formal (F);
end loop;
Validity_Checks_On := V;
end;
end if;
-- Clear out statement list for stubbed procedure
if Present (Corresponding_Spec (N)) then
Set_Elaboration_Flag (N, Spec_Id);
if Convention (Spec_Id) = Convention_Stubbed
or else Is_Eliminated (Spec_Id)
then
Set_Declarations (N, Empty_List);
Set_Handled_Statement_Sequence (N,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Null_Statement (Loc))));
return;
end if;
end if;
Scop := Scope (Spec_Id);
-- Returns_By_Ref flag is normally set when the subprogram is frozen
-- but subprograms with no specs are not frozen
declare
Typ : constant Entity_Id := Etype (Spec_Id);
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if not Acts_As_Spec (N)
and then Nkind (Parent (Parent (Spec_Id))) /=
N_Subprogram_Body_Stub
then
null;
elsif Is_Return_By_Reference_Type (Typ) then
Set_Returns_By_Ref (Spec_Id);
elsif Present (Utyp) and then Controlled_Type (Utyp) then
Set_Returns_By_Ref (Spec_Id);
end if;
end;
-- For a procedure, we add a return for all possible syntactic ends
-- of the subprogram. Note that reanalysis is not necessary in this
-- case since it would require a lot of work and accomplish nothing.
if Ekind (Spec_Id) = E_Procedure
or else Ekind (Spec_Id) = E_Generic_Procedure
then
Add_Return (Statements (H));
if Present (Exception_Handlers (H)) then
Except_H := First_Non_Pragma (Exception_Handlers (H));
while Present (Except_H) loop
Add_Return (Statements (Except_H));
Next_Non_Pragma (Except_H);
end loop;
end if;
-- For a function, we must deal with the case where there is at
-- least one missing return. What we do is to wrap the entire body
-- of the function in a block:
-- begin
-- ...
-- end;
-- becomes
-- begin
-- begin
-- ...
-- end;
-- raise Program_Error;
-- end;
-- This approach is necessary because the raise must be signalled
-- to the caller, not handled by any local handler (RM 6.4(11)).
-- Note: we do not need to analyze the constructed sequence here,
-- since it has no handler, and an attempt to analyze the handled
-- statement sequence twice is risky in various ways (e.g. the
-- issue of expanding cleanup actions twice).
elsif Has_Missing_Return (Spec_Id) then
declare
Hloc : constant Source_Ptr := Sloc (H);
Blok : constant Node_Id :=
Make_Block_Statement (Hloc,
Handled_Statement_Sequence => H);
Rais : constant Node_Id :=
Make_Raise_Program_Error (Hloc,
Reason => PE_Missing_Return);
begin
Set_Handled_Statement_Sequence (N,
Make_Handled_Sequence_Of_Statements (Hloc,
Statements => New_List (Blok, Rais)));
New_Scope (Spec_Id);
Analyze (Blok);
Analyze (Rais);
Pop_Scope;
end;
end if;
-- Add discriminal renamings to protected subprograms.
-- Install new discriminals for expansion of the next
-- subprogram of this protected type, if any.
if Is_List_Member (N)
and then Present (Parent (List_Containing (N)))
and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
then
Add_Discriminal_Declarations
(Declarations (N), Scop, Name_uObject, Loc);
Add_Private_Declarations (Declarations (N), Scop, Name_uObject, Loc);
-- Associate privals and discriminals with the next protected
-- operation body to be expanded. These are used to expand
-- references to private data objects and discriminants,
-- respectively.
Next_Op := Next_Protected_Operation (N);
if Present (Next_Op) then
Dec := Parent (Base_Type (Scop));
Set_Privals (Dec, Next_Op, Loc);
Set_Discriminals (Dec);
end if;
end if;
-- If subprogram contains a parameterless recursive call, then we may
-- have an infinite recursion, so see if we can generate code to check
-- for this possibility if storage checks are not suppressed.
if Ekind (Spec_Id) = E_Procedure
and then Has_Recursive_Call (Spec_Id)
and then not Storage_Checks_Suppressed (Spec_Id)
then
Detect_Infinite_Recursion (N, Spec_Id);
end if;
-- Finally, if we are in Normalize_Scalars mode, then any scalar out
-- parameters must be initialized to the appropriate default value.
if Ekind (Spec_Id) = E_Procedure and then Normalize_Scalars then
declare
Floc : Source_Ptr;
Formal : Entity_Id;
Stm : Node_Id;
begin
Formal := First_Formal (Spec_Id);
while Present (Formal) loop
Floc := Sloc (Formal);
if Ekind (Formal) = E_Out_Parameter
and then Is_Scalar_Type (Etype (Formal))
then
Stm :=
Make_Assignment_Statement (Floc,
Name => New_Occurrence_Of (Formal, Floc),
Expression =>
Get_Simple_Init_Val (Etype (Formal), Floc));
Prepend (Stm, Declarations (N));
Analyze (Stm);
end if;
Next_Formal (Formal);
end loop;
end;
end if;
-- If the subprogram does not have pending instantiations, then we
-- must generate the subprogram descriptor now, since the code for
-- the subprogram is complete, and this is our last chance. However
-- if there are pending instantiations, then the code is not
-- complete, and we will delay the generation.
if Is_Subprogram (Spec_Id)
and then not Delay_Subprogram_Descriptors (Spec_Id)
then
Generate_Subprogram_Descriptor_For_Subprogram (N, Spec_Id);
end if;
-- Set to encode entity names in package body before gigi is called
Qualify_Entity_Names (N);
end Expand_N_Subprogram_Body;
-----------------------------------
-- Expand_N_Subprogram_Body_Stub --
-----------------------------------
procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
begin
if Present (Corresponding_Body (N)) then
Expand_N_Subprogram_Body (
Unit_Declaration_Node (Corresponding_Body (N)));
end if;
end Expand_N_Subprogram_Body_Stub;
-------------------------------------
-- Expand_N_Subprogram_Declaration --
-------------------------------------
-- The first task to be performed is the construction of default
-- expression functions for in parameters with default values. These
-- are parameterless inlined functions that are used to evaluate
-- default expressions that are more complicated than simple literals
-- or identifiers referencing constants and variables.
-- If the declaration appears within a protected body, it is a private
-- operation of the protected type. We must create the corresponding
-- protected subprogram an associated formals. For a normal protected
-- operation, this is done when expanding the protected type declaration.
procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Subp : Entity_Id := Defining_Entity (N);
Scop : Entity_Id := Scope (Subp);
Prot_Sub : Entity_Id;
Prot_Bod : Node_Id;
begin
-- Deal with case of protected subprogram
if Is_List_Member (N)
and then Present (Parent (List_Containing (N)))
and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
and then Is_Protected_Type (Scop)
then
if No (Protected_Body_Subprogram (Subp)) then
Prot_Sub :=
Make_Subprogram_Declaration (Loc,
Specification =>
Build_Protected_Sub_Specification
(N, Scop, Unprotected => True));
-- The protected subprogram is declared outside of the protected
-- body. Given that the body has frozen all entities so far, we
-- freeze the subprogram explicitly. If the body is a subunit,
-- the insertion point is before the stub in the parent.
Prot_Bod := Parent (List_Containing (N));
if Nkind (Parent (Prot_Bod)) = N_Subunit then
Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
end if;
Insert_Before (Prot_Bod, Prot_Sub);
New_Scope (Scope (Scop));
Analyze (Prot_Sub);
Set_Protected_Body_Subprogram (Subp,
Defining_Unit_Name (Specification (Prot_Sub)));
Pop_Scope;
end if;
end if;
end Expand_N_Subprogram_Declaration;
---------------------------------------
-- Expand_Protected_Object_Reference --
---------------------------------------
function Expand_Protected_Object_Reference
(N : Node_Id;
Scop : Entity_Id)
return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
Corr : Entity_Id;
Rec : Node_Id;
Param : Entity_Id;
Proc : Entity_Id;
begin
Rec := Make_Identifier (Loc, Name_uObject);
Set_Etype (Rec, Corresponding_Record_Type (Scop));
-- Find enclosing protected operation, and retrieve its first
-- parameter, which denotes the enclosing protected object.
-- If the enclosing operation is an entry, we are immediately
-- within the protected body, and we can retrieve the object
-- from the service entries procedure. A barrier function has
-- has the same signature as an entry. A barrier function is
-- compiled within the protected object, but unlike protected
-- operations its never needs locks, so that its protected body
-- subprogram points to itself.
Proc := Current_Scope;
while Present (Proc)
and then Scope (Proc) /= Scop
loop
Proc := Scope (Proc);
end loop;
Corr := Protected_Body_Subprogram (Proc);
if No (Corr) then
-- Previous error left expansion incomplete.
-- Nothing to do on this call.
return Empty;
end if;
Param :=
Defining_Identifier
(First (Parameter_Specifications (Parent (Corr))));
if Is_Subprogram (Proc)
and then Proc /= Corr
then
-- Protected function or procedure.
Set_Entity (Rec, Param);
-- Rec is a reference to an entity which will not be in scope
-- when the call is reanalyzed, and needs no further analysis.
Set_Analyzed (Rec);
else
-- Entry or barrier function for entry body.
-- The first parameter of the entry body procedure is a
-- pointer to the object. We create a local variable
-- of the proper type, duplicating what is done to define
-- _object later on.
declare
Decls : List_Id;
Obj_Ptr : Entity_Id := Make_Defining_Identifier
(Loc, New_Internal_Name ('T'));
begin
Decls := New_List (
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Obj_Ptr,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication =>
New_Reference_To
(Corresponding_Record_Type (Scop), Loc))));
Insert_Actions (N, Decls);
Insert_Actions (N, Freeze_Entity (Obj_Ptr, Sloc (N)));
Rec :=
Make_Explicit_Dereference (Loc,
Unchecked_Convert_To (Obj_Ptr,
New_Occurrence_Of (Param, Loc)));
-- Analyze new actual. Other actuals in calls are already
-- analyzed and the list of actuals is not renalyzed after
-- rewriting.
Set_Parent (Rec, N);
Analyze (Rec);
end;
end if;
return Rec;
end Expand_Protected_Object_Reference;
--------------------------------------
-- Expand_Protected_Subprogram_Call --
--------------------------------------
procedure Expand_Protected_Subprogram_Call
(N : Node_Id;
Subp : Entity_Id;
Scop : Entity_Id)
is
Rec : Node_Id;
begin
-- If the protected object is not an enclosing scope, this is
-- an inter-object function call. Inter-object procedure
-- calls are expanded by Exp_Ch9.Build_Simple_Entry_Call.
-- The call is intra-object only if the subprogram being
-- called is in the protected body being compiled, and if the
-- protected object in the call is statically the enclosing type.
-- The object may be an component of some other data structure,
-- in which case this must be handled as an inter-object call.
if not In_Open_Scopes (Scop)
or else not Is_Entity_Name (Name (N))
then
if Nkind (Name (N)) = N_Selected_Component then
Rec := Prefix (Name (N));
else
pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
Rec := Prefix (Prefix (Name (N)));
end if;
Build_Protected_Subprogram_Call (N,
Name => New_Occurrence_Of (Subp, Sloc (N)),
Rec => Convert_Concurrent (Rec, Etype (Rec)),
External => True);
else
Rec := Expand_Protected_Object_Reference (N, Scop);
if No (Rec) then
return;
end if;
Build_Protected_Subprogram_Call (N,
Name => Name (N),
Rec => Rec,
External => False);
end if;
Analyze (N);
-- If it is a function call it can appear in elaboration code and
-- the called entity must be frozen here.
if Ekind (Subp) = E_Function then
Freeze_Expression (Name (N));
end if;
end Expand_Protected_Subprogram_Call;
-----------------------
-- Freeze_Subprogram --
-----------------------
procedure Freeze_Subprogram (N : Node_Id) is
E : constant Entity_Id := Entity (N);
begin
-- When a primitive is frozen, enter its name in the corresponding
-- dispatch table. If the DTC_Entity field is not set this is an
-- overridden primitive that can be ignored. We suppress the
-- initialization of the dispatch table entry when Java_VM because
-- the dispatching mechanism is handled internally by the JVM.
if Is_Dispatching_Operation (E)
and then not Is_Abstract (E)
and then Present (DTC_Entity (E))
and then not Is_CPP_Class (Scope (DTC_Entity (E)))
and then not Java_VM
then
Check_Overriding_Operation (E);
Insert_After (N, Fill_DT_Entry (Sloc (N), E));
end if;
-- Mark functions that return by reference. Note that it cannot be
-- part of the normal semantic analysis of the spec since the
-- underlying returned type may not be known yet (for private types)
declare
Typ : constant Entity_Id := Etype (E);
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if Is_Return_By_Reference_Type (Typ) then
Set_Returns_By_Ref (E);
elsif Present (Utyp) and then Controlled_Type (Utyp) then
Set_Returns_By_Ref (E);
end if;
end;
end Freeze_Subprogram;
end Exp_Ch6;
|