1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ C H 6 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Errout; use Errout;
with Elists; use Elists;
with Exp_Aggr; use Exp_Aggr;
with Exp_Atag; use Exp_Atag;
with Exp_Ch2; use Exp_Ch2;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Dbug; use Exp_Dbug;
with Exp_Disp; use Exp_Disp;
with Exp_Dist; use Exp_Dist;
with Exp_Intr; use Exp_Intr;
with Exp_Pakd; use Exp_Pakd;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Exp_VFpt; use Exp_VFpt;
with Fname; use Fname;
with Freeze; use Freeze;
with Inline; use Inline;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dim; use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_SCIL; use Sem_SCIL;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Validsw; use Validsw;
package body Exp_Ch6 is
Inlined_Calls : Elist_Id := No_Elist;
Backend_Calls : Elist_Id := No_Elist;
-- List of frontend inlined calls and inline calls passed to the backend
-----------------------
-- Local Subprograms --
-----------------------
procedure Add_Access_Actual_To_Build_In_Place_Call
(Function_Call : Node_Id;
Function_Id : Entity_Id;
Return_Object : Node_Id;
Is_Access : Boolean := False);
-- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
-- object name given by Return_Object and add the attribute to the end of
-- the actual parameter list associated with the build-in-place function
-- call denoted by Function_Call. However, if Is_Access is True, then
-- Return_Object is already an access expression, in which case it's passed
-- along directly to the build-in-place function. Finally, if Return_Object
-- is empty, then pass a null literal as the actual.
procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Function_Call : Node_Id;
Function_Id : Entity_Id;
Alloc_Form : BIP_Allocation_Form := Unspecified;
Alloc_Form_Exp : Node_Id := Empty;
Pool_Actual : Node_Id := Make_Null (No_Location));
-- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
-- function call that returns a caller-unknown-size result (BIP_Alloc_Form
-- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
-- otherwise pass a literal corresponding to the Alloc_Form parameter
-- (which must not be Unspecified in that case). Pool_Actual is the
-- parameter to pass to BIP_Storage_Pool.
procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
(Func_Call : Node_Id;
Func_Id : Entity_Id;
Ptr_Typ : Entity_Id := Empty;
Master_Exp : Node_Id := Empty);
-- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
-- finalization actions, add an actual parameter which is a pointer to the
-- finalization master of the caller. If Master_Exp is not Empty, then that
-- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
-- will result in an automatic "null" value for the actual.
procedure Add_Task_Actuals_To_Build_In_Place_Call
(Function_Call : Node_Id;
Function_Id : Entity_Id;
Master_Actual : Node_Id);
-- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
-- contains tasks, add two actual parameters: the master, and a pointer to
-- the caller's activation chain. Master_Actual is the actual parameter
-- expression to pass for the master. In most cases, this is the current
-- master (_master). The two exceptions are: If the function call is the
-- initialization expression for an allocator, we pass the master of the
-- access type. If the function call is the initialization expression for a
-- return object, we pass along the master passed in by the caller. The
-- activation chain to pass is always the local one. Note: Master_Actual
-- can be Empty, but only if there are no tasks.
procedure Check_Overriding_Operation (Subp : Entity_Id);
-- Subp is a dispatching operation. Check whether it may override an
-- inherited private operation, in which case its DT entry is that of
-- the hidden operation, not the one it may have received earlier.
-- This must be done before emitting the code to set the corresponding
-- DT to the address of the subprogram. The actual placement of Subp in
-- the proper place in the list of primitive operations is done in
-- Declare_Inherited_Private_Subprograms, which also has to deal with
-- implicit operations. This duplication is unavoidable for now???
procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
-- This procedure is called only if the subprogram body N, whose spec
-- has the given entity Spec, contains a parameterless recursive call.
-- It attempts to generate runtime code to detect if this a case of
-- infinite recursion.
--
-- The body is scanned to determine dependencies. If the only external
-- dependencies are on a small set of scalar variables, then the values
-- of these variables are captured on entry to the subprogram, and if
-- the values are not changed for the call, we know immediately that
-- we have an infinite recursion.
procedure Expand_Ctrl_Function_Call (N : Node_Id);
-- N is a function call which returns a controlled object. Transform the
-- call into a temporary which retrieves the returned object from the
-- secondary stack using 'reference.
procedure Expand_Inlined_Call
(N : Node_Id;
Subp : Entity_Id;
Orig_Subp : Entity_Id);
-- If called subprogram can be inlined by the front-end, retrieve the
-- analyzed body, replace formals with actuals and expand call in place.
-- Generate thunks for actuals that are expressions, and insert the
-- corresponding constant declarations before the call. If the original
-- call is to a derived operation, the return type is the one of the
-- derived operation, but the body is that of the original, so return
-- expressions in the body must be converted to the desired type (which
-- is simply not noted in the tree without inline expansion).
procedure Expand_Non_Function_Return (N : Node_Id);
-- Called by Expand_N_Simple_Return_Statement in case we're returning from
-- a procedure body, entry body, accept statement, or extended return
-- statement. Note that all non-function returns are simple return
-- statements.
function Expand_Protected_Object_Reference
(N : Node_Id;
Scop : Entity_Id) return Node_Id;
procedure Expand_Protected_Subprogram_Call
(N : Node_Id;
Subp : Entity_Id;
Scop : Entity_Id);
-- A call to a protected subprogram within the protected object may appear
-- as a regular call. The list of actuals must be expanded to contain a
-- reference to the object itself, and the call becomes a call to the
-- corresponding protected subprogram.
function Has_Unconstrained_Access_Discriminants
(Subtyp : Entity_Id) return Boolean;
-- Returns True if the given subtype is unconstrained and has one
-- or more access discriminants.
procedure Expand_Simple_Function_Return (N : Node_Id);
-- Expand simple return from function. In the case where we are returning
-- from a function body this is called by Expand_N_Simple_Return_Statement.
----------------------------------------------
-- Add_Access_Actual_To_Build_In_Place_Call --
----------------------------------------------
procedure Add_Access_Actual_To_Build_In_Place_Call
(Function_Call : Node_Id;
Function_Id : Entity_Id;
Return_Object : Node_Id;
Is_Access : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (Function_Call);
Obj_Address : Node_Id;
Obj_Acc_Formal : Entity_Id;
begin
-- Locate the implicit access parameter in the called function
Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
-- If no return object is provided, then pass null
if not Present (Return_Object) then
Obj_Address := Make_Null (Loc);
Set_Parent (Obj_Address, Function_Call);
-- If Return_Object is already an expression of an access type, then use
-- it directly, since it must be an access value denoting the return
-- object, and couldn't possibly be the return object itself.
elsif Is_Access then
Obj_Address := Return_Object;
Set_Parent (Obj_Address, Function_Call);
-- Apply Unrestricted_Access to caller's return object
else
Obj_Address :=
Make_Attribute_Reference (Loc,
Prefix => Return_Object,
Attribute_Name => Name_Unrestricted_Access);
Set_Parent (Return_Object, Obj_Address);
Set_Parent (Obj_Address, Function_Call);
end if;
Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
-- Build the parameter association for the new actual and add it to the
-- end of the function's actuals.
Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
end Add_Access_Actual_To_Build_In_Place_Call;
------------------------------------------------------
-- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
------------------------------------------------------
procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Function_Call : Node_Id;
Function_Id : Entity_Id;
Alloc_Form : BIP_Allocation_Form := Unspecified;
Alloc_Form_Exp : Node_Id := Empty;
Pool_Actual : Node_Id := Make_Null (No_Location))
is
Loc : constant Source_Ptr := Sloc (Function_Call);
Alloc_Form_Actual : Node_Id;
Alloc_Form_Formal : Node_Id;
Pool_Formal : Node_Id;
begin
-- The allocation form generally doesn't need to be passed in the case
-- of a constrained result subtype, since normally the caller performs
-- the allocation in that case. However this formal is still needed in
-- the case where the function has a tagged result, because generally
-- such functions can be called in a dispatching context and such calls
-- must be handled like calls to class-wide functions.
if Is_Constrained (Underlying_Type (Etype (Function_Id)))
and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
then
return;
end if;
-- Locate the implicit allocation form parameter in the called function.
-- Maybe it would be better for each implicit formal of a build-in-place
-- function to have a flag or a Uint attribute to identify it. ???
Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
if Present (Alloc_Form_Exp) then
pragma Assert (Alloc_Form = Unspecified);
Alloc_Form_Actual := Alloc_Form_Exp;
else
pragma Assert (Alloc_Form /= Unspecified);
Alloc_Form_Actual :=
Make_Integer_Literal (Loc,
Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
end if;
Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
-- Build the parameter association for the new actual and add it to the
-- end of the function's actuals.
Add_Extra_Actual_To_Call
(Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
-- Pass the Storage_Pool parameter. This parameter is omitted on
-- .NET/JVM/ZFP as those targets do not support pools.
if VM_Target = No_VM
and then RTE_Available (RE_Root_Storage_Pool_Ptr)
then
Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
Add_Extra_Actual_To_Call
(Function_Call, Pool_Formal, Pool_Actual);
end if;
end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
-----------------------------------------------------------
-- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
-----------------------------------------------------------
procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
(Func_Call : Node_Id;
Func_Id : Entity_Id;
Ptr_Typ : Entity_Id := Empty;
Master_Exp : Node_Id := Empty)
is
begin
if not Needs_BIP_Finalization_Master (Func_Id) then
return;
end if;
declare
Formal : constant Entity_Id :=
Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
Loc : constant Source_Ptr := Sloc (Func_Call);
Actual : Node_Id;
Desig_Typ : Entity_Id;
begin
-- If there is a finalization master actual, such as the implicit
-- finalization master of an enclosing build-in-place function,
-- then this must be added as an extra actual of the call.
if Present (Master_Exp) then
Actual := Master_Exp;
-- Case where the context does not require an actual master
elsif No (Ptr_Typ) then
Actual := Make_Null (Loc);
else
Desig_Typ := Directly_Designated_Type (Ptr_Typ);
-- Check for a library-level access type whose designated type has
-- supressed finalization. Such an access types lack a master.
-- Pass a null actual to the callee in order to signal a missing
-- master.
if Is_Library_Level_Entity (Ptr_Typ)
and then Finalize_Storage_Only (Desig_Typ)
then
Actual := Make_Null (Loc);
-- Types in need of finalization actions
elsif Needs_Finalization (Desig_Typ) then
-- The general mechanism of creating finalization masters for
-- anonymous access types is disabled by default, otherwise
-- finalization masters will pop all over the place. Such types
-- use context-specific masters.
if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
and then No (Finalization_Master (Ptr_Typ))
then
Build_Finalization_Master
(Typ => Ptr_Typ,
Ins_Node => Associated_Node_For_Itype (Ptr_Typ),
Encl_Scope => Scope (Ptr_Typ));
end if;
-- Access-to-controlled types should always have a master
pragma Assert (Present (Finalization_Master (Ptr_Typ)));
Actual :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Reference_To (Finalization_Master (Ptr_Typ), Loc),
Attribute_Name => Name_Unrestricted_Access);
-- Tagged types
else
Actual := Make_Null (Loc);
end if;
end if;
Analyze_And_Resolve (Actual, Etype (Formal));
-- Build the parameter association for the new actual and add it to
-- the end of the function's actuals.
Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
end;
end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
------------------------------
-- Add_Extra_Actual_To_Call --
------------------------------
procedure Add_Extra_Actual_To_Call
(Subprogram_Call : Node_Id;
Extra_Formal : Entity_Id;
Extra_Actual : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Subprogram_Call);
Param_Assoc : Node_Id;
begin
Param_Assoc :=
Make_Parameter_Association (Loc,
Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
Explicit_Actual_Parameter => Extra_Actual);
Set_Parent (Param_Assoc, Subprogram_Call);
Set_Parent (Extra_Actual, Param_Assoc);
if Present (Parameter_Associations (Subprogram_Call)) then
if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
N_Parameter_Association
then
-- Find last named actual, and append
declare
L : Node_Id;
begin
L := First_Actual (Subprogram_Call);
while Present (L) loop
if No (Next_Actual (L)) then
Set_Next_Named_Actual (Parent (L), Extra_Actual);
exit;
end if;
Next_Actual (L);
end loop;
end;
else
Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
end if;
Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
else
Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
end if;
end Add_Extra_Actual_To_Call;
---------------------------------------------
-- Add_Task_Actuals_To_Build_In_Place_Call --
---------------------------------------------
procedure Add_Task_Actuals_To_Build_In_Place_Call
(Function_Call : Node_Id;
Function_Id : Entity_Id;
Master_Actual : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Function_Call);
Result_Subt : constant Entity_Id :=
Available_View (Etype (Function_Id));
Actual : Node_Id;
Chain_Actual : Node_Id;
Chain_Formal : Node_Id;
Master_Formal : Node_Id;
begin
-- No such extra parameters are needed if there are no tasks
if not Has_Task (Result_Subt) then
return;
end if;
Actual := Master_Actual;
-- Use a dummy _master actual in case of No_Task_Hierarchy
if Restriction_Active (No_Task_Hierarchy) then
Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
-- In the case where we use the master associated with an access type,
-- the actual is an entity and requires an explicit reference.
elsif Nkind (Actual) = N_Defining_Identifier then
Actual := New_Reference_To (Actual, Loc);
end if;
-- Locate the implicit master parameter in the called function
Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
Analyze_And_Resolve (Actual, Etype (Master_Formal));
-- Build the parameter association for the new actual and add it to the
-- end of the function's actuals.
Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
-- Locate the implicit activation chain parameter in the called function
Chain_Formal :=
Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
-- Create the actual which is a pointer to the current activation chain
Chain_Actual :=
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uChain),
Attribute_Name => Name_Unrestricted_Access);
Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
-- Build the parameter association for the new actual and add it to the
-- end of the function's actuals.
Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
end Add_Task_Actuals_To_Build_In_Place_Call;
-----------------------
-- BIP_Formal_Suffix --
-----------------------
function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
begin
case Kind is
when BIP_Alloc_Form =>
return "BIPalloc";
when BIP_Storage_Pool =>
return "BIPstoragepool";
when BIP_Finalization_Master =>
return "BIPfinalizationmaster";
when BIP_Task_Master =>
return "BIPtaskmaster";
when BIP_Activation_Chain =>
return "BIPactivationchain";
when BIP_Object_Access =>
return "BIPaccess";
end case;
end BIP_Formal_Suffix;
---------------------------
-- Build_In_Place_Formal --
---------------------------
function Build_In_Place_Formal
(Func : Entity_Id;
Kind : BIP_Formal_Kind) return Entity_Id
is
Formal_Name : constant Name_Id :=
New_External_Name
(Chars (Func), BIP_Formal_Suffix (Kind));
Extra_Formal : Entity_Id := Extra_Formals (Func);
begin
-- Maybe it would be better for each implicit formal of a build-in-place
-- function to have a flag or a Uint attribute to identify it. ???
-- The return type in the function declaration may have been a limited
-- view, and the extra formals for the function were not generated at
-- that point. At the point of call the full view must be available and
-- the extra formals can be created.
if No (Extra_Formal) then
Create_Extra_Formals (Func);
Extra_Formal := Extra_Formals (Func);
end if;
loop
pragma Assert (Present (Extra_Formal));
exit when Chars (Extra_Formal) = Formal_Name;
Next_Formal_With_Extras (Extra_Formal);
end loop;
return Extra_Formal;
end Build_In_Place_Formal;
--------------------------------
-- Check_Overriding_Operation --
--------------------------------
procedure Check_Overriding_Operation (Subp : Entity_Id) is
Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
Op_List : constant Elist_Id := Primitive_Operations (Typ);
Op_Elmt : Elmt_Id;
Prim_Op : Entity_Id;
Par_Op : Entity_Id;
begin
if Is_Derived_Type (Typ)
and then not Is_Private_Type (Typ)
and then In_Open_Scopes (Scope (Etype (Typ)))
and then Is_Base_Type (Typ)
then
-- Subp overrides an inherited private operation if there is an
-- inherited operation with a different name than Subp (see
-- Derive_Subprogram) whose Alias is a hidden subprogram with the
-- same name as Subp.
Op_Elmt := First_Elmt (Op_List);
while Present (Op_Elmt) loop
Prim_Op := Node (Op_Elmt);
Par_Op := Alias (Prim_Op);
if Present (Par_Op)
and then not Comes_From_Source (Prim_Op)
and then Chars (Prim_Op) /= Chars (Par_Op)
and then Chars (Par_Op) = Chars (Subp)
and then Is_Hidden (Par_Op)
and then Type_Conformant (Prim_Op, Subp)
then
Set_DT_Position (Subp, DT_Position (Prim_Op));
end if;
Next_Elmt (Op_Elmt);
end loop;
end if;
end Check_Overriding_Operation;
-------------------------------
-- Detect_Infinite_Recursion --
-------------------------------
procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Var_List : constant Elist_Id := New_Elmt_List;
-- List of globals referenced by body of procedure
Call_List : constant Elist_Id := New_Elmt_List;
-- List of recursive calls in body of procedure
Shad_List : constant Elist_Id := New_Elmt_List;
-- List of entity id's for entities created to capture the value of
-- referenced globals on entry to the procedure.
Scop : constant Uint := Scope_Depth (Spec);
-- This is used to record the scope depth of the current procedure, so
-- that we can identify global references.
Max_Vars : constant := 4;
-- Do not test more than four global variables
Count_Vars : Natural := 0;
-- Count variables found so far
Var : Entity_Id;
Elm : Elmt_Id;
Ent : Entity_Id;
Call : Elmt_Id;
Decl : Node_Id;
Test : Node_Id;
Elm1 : Elmt_Id;
Elm2 : Elmt_Id;
Last : Node_Id;
function Process (Nod : Node_Id) return Traverse_Result;
-- Function to traverse the subprogram body (using Traverse_Func)
-------------
-- Process --
-------------
function Process (Nod : Node_Id) return Traverse_Result is
begin
-- Procedure call
if Nkind (Nod) = N_Procedure_Call_Statement then
-- Case of one of the detected recursive calls
if Is_Entity_Name (Name (Nod))
and then Has_Recursive_Call (Entity (Name (Nod)))
and then Entity (Name (Nod)) = Spec
then
Append_Elmt (Nod, Call_List);
return Skip;
-- Any other procedure call may have side effects
else
return Abandon;
end if;
-- A call to a pure function can always be ignored
elsif Nkind (Nod) = N_Function_Call
and then Is_Entity_Name (Name (Nod))
and then Is_Pure (Entity (Name (Nod)))
then
return Skip;
-- Case of an identifier reference
elsif Nkind (Nod) = N_Identifier then
Ent := Entity (Nod);
-- If no entity, then ignore the reference
-- Not clear why this can happen. To investigate, remove this
-- test and look at the crash that occurs here in 3401-004 ???
if No (Ent) then
return Skip;
-- Ignore entities with no Scope, again not clear how this
-- can happen, to investigate, look at 4108-008 ???
elsif No (Scope (Ent)) then
return Skip;
-- Ignore the reference if not to a more global object
elsif Scope_Depth (Scope (Ent)) >= Scop then
return Skip;
-- References to types, exceptions and constants are always OK
elsif Is_Type (Ent)
or else Ekind (Ent) = E_Exception
or else Ekind (Ent) = E_Constant
then
return Skip;
-- If other than a non-volatile scalar variable, we have some
-- kind of global reference (e.g. to a function) that we cannot
-- deal with so we forget the attempt.
elsif Ekind (Ent) /= E_Variable
or else not Is_Scalar_Type (Etype (Ent))
or else Treat_As_Volatile (Ent)
then
return Abandon;
-- Otherwise we have a reference to a global scalar
else
-- Loop through global entities already detected
Elm := First_Elmt (Var_List);
loop
-- If not detected before, record this new global reference
if No (Elm) then
Count_Vars := Count_Vars + 1;
if Count_Vars <= Max_Vars then
Append_Elmt (Entity (Nod), Var_List);
else
return Abandon;
end if;
exit;
-- If recorded before, ignore
elsif Node (Elm) = Entity (Nod) then
return Skip;
-- Otherwise keep looking
else
Next_Elmt (Elm);
end if;
end loop;
return Skip;
end if;
-- For all other node kinds, recursively visit syntactic children
else
return OK;
end if;
end Process;
function Traverse_Body is new Traverse_Func (Process);
-- Start of processing for Detect_Infinite_Recursion
begin
-- Do not attempt detection in No_Implicit_Conditional mode, since we
-- won't be able to generate the code to handle the recursion in any
-- case.
if Restriction_Active (No_Implicit_Conditionals) then
return;
end if;
-- Otherwise do traversal and quit if we get abandon signal
if Traverse_Body (N) = Abandon then
return;
-- We must have a call, since Has_Recursive_Call was set. If not just
-- ignore (this is only an error check, so if we have a funny situation,
-- due to bugs or errors, we do not want to bomb!)
elsif Is_Empty_Elmt_List (Call_List) then
return;
end if;
-- Here is the case where we detect recursion at compile time
-- Push our current scope for analyzing the declarations and code that
-- we will insert for the checking.
Push_Scope (Spec);
-- This loop builds temporary variables for each of the referenced
-- globals, so that at the end of the loop the list Shad_List contains
-- these temporaries in one-to-one correspondence with the elements in
-- Var_List.
Last := Empty;
Elm := First_Elmt (Var_List);
while Present (Elm) loop
Var := Node (Elm);
Ent := Make_Temporary (Loc, 'S');
Append_Elmt (Ent, Shad_List);
-- Insert a declaration for this temporary at the start of the
-- declarations for the procedure. The temporaries are declared as
-- constant objects initialized to the current values of the
-- corresponding temporaries.
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
Constant_Present => True,
Expression => New_Occurrence_Of (Var, Loc));
if No (Last) then
Prepend (Decl, Declarations (N));
else
Insert_After (Last, Decl);
end if;
Last := Decl;
Analyze (Decl);
Next_Elmt (Elm);
end loop;
-- Loop through calls
Call := First_Elmt (Call_List);
while Present (Call) loop
-- Build a predicate expression of the form
-- True
-- and then global1 = temp1
-- and then global2 = temp2
-- ...
-- This predicate determines if any of the global values
-- referenced by the procedure have changed since the
-- current call, if not an infinite recursion is assured.
Test := New_Occurrence_Of (Standard_True, Loc);
Elm1 := First_Elmt (Var_List);
Elm2 := First_Elmt (Shad_List);
while Present (Elm1) loop
Test :=
Make_And_Then (Loc,
Left_Opnd => Test,
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
Next_Elmt (Elm1);
Next_Elmt (Elm2);
end loop;
-- Now we replace the call with the sequence
-- if no-changes (see above) then
-- raise Storage_Error;
-- else
-- original-call
-- end if;
Rewrite (Node (Call),
Make_If_Statement (Loc,
Condition => Test,
Then_Statements => New_List (
Make_Raise_Storage_Error (Loc,
Reason => SE_Infinite_Recursion)),
Else_Statements => New_List (
Relocate_Node (Node (Call)))));
Analyze (Node (Call));
Next_Elmt (Call);
end loop;
-- Remove temporary scope stack entry used for analysis
Pop_Scope;
end Detect_Infinite_Recursion;
--------------------
-- Expand_Actuals --
--------------------
procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Actual : Node_Id;
Formal : Entity_Id;
N_Node : Node_Id;
Post_Call : List_Id;
E_Actual : Entity_Id;
E_Formal : Entity_Id;
procedure Add_Call_By_Copy_Code;
-- For cases where the parameter must be passed by copy, this routine
-- generates a temporary variable into which the actual is copied and
-- then passes this as the parameter. For an OUT or IN OUT parameter,
-- an assignment is also generated to copy the result back. The call
-- also takes care of any constraint checks required for the type
-- conversion case (on both the way in and the way out).
procedure Add_Simple_Call_By_Copy_Code;
-- This is similar to the above, but is used in cases where we know
-- that all that is needed is to simply create a temporary and copy
-- the value in and out of the temporary.
procedure Check_Fortran_Logical;
-- A value of type Logical that is passed through a formal parameter
-- must be normalized because .TRUE. usually does not have the same
-- representation as True. We assume that .FALSE. = False = 0.
-- What about functions that return a logical type ???
function Is_Legal_Copy return Boolean;
-- Check that an actual can be copied before generating the temporary
-- to be used in the call. If the actual is of a by_reference type then
-- the program is illegal (this can only happen in the presence of
-- rep. clauses that force an incorrect alignment). If the formal is
-- a by_reference parameter imposed by a DEC pragma, emit a warning to
-- the effect that this might lead to unaligned arguments.
function Make_Var (Actual : Node_Id) return Entity_Id;
-- Returns an entity that refers to the given actual parameter,
-- Actual (not including any type conversion). If Actual is an
-- entity name, then this entity is returned unchanged, otherwise
-- a renaming is created to provide an entity for the actual.
procedure Reset_Packed_Prefix;
-- The expansion of a packed array component reference is delayed in
-- the context of a call. Now we need to complete the expansion, so we
-- unmark the analyzed bits in all prefixes.
---------------------------
-- Add_Call_By_Copy_Code --
---------------------------
procedure Add_Call_By_Copy_Code is
Expr : Node_Id;
Init : Node_Id;
Temp : Entity_Id;
Indic : Node_Id;
Var : Entity_Id;
F_Typ : constant Entity_Id := Etype (Formal);
V_Typ : Entity_Id;
Crep : Boolean;
begin
if not Is_Legal_Copy then
return;
end if;
Temp := Make_Temporary (Loc, 'T', Actual);
-- Use formal type for temp, unless formal type is an unconstrained
-- array, in which case we don't have to worry about bounds checks,
-- and we use the actual type, since that has appropriate bounds.
if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
Indic := New_Occurrence_Of (Etype (Actual), Loc);
else
Indic := New_Occurrence_Of (Etype (Formal), Loc);
end if;
if Nkind (Actual) = N_Type_Conversion then
V_Typ := Etype (Expression (Actual));
-- If the formal is an (in-)out parameter, capture the name
-- of the variable in order to build the post-call assignment.
Var := Make_Var (Expression (Actual));
Crep := not Same_Representation
(F_Typ, Etype (Expression (Actual)));
else
V_Typ := Etype (Actual);
Var := Make_Var (Actual);
Crep := False;
end if;
-- Setup initialization for case of in out parameter, or an out
-- parameter where the formal is an unconstrained array (in the
-- latter case, we have to pass in an object with bounds).
-- If this is an out parameter, the initial copy is wasteful, so as
-- an optimization for the one-dimensional case we extract the
-- bounds of the actual and build an uninitialized temporary of the
-- right size.
if Ekind (Formal) = E_In_Out_Parameter
or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
then
if Nkind (Actual) = N_Type_Conversion then
if Conversion_OK (Actual) then
Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
else
Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
end if;
elsif Ekind (Formal) = E_Out_Parameter
and then Is_Array_Type (F_Typ)
and then Number_Dimensions (F_Typ) = 1
and then not Has_Non_Null_Base_Init_Proc (F_Typ)
then
-- Actual is a one-dimensional array or slice, and the type
-- requires no initialization. Create a temporary of the
-- right size, but do not copy actual into it (optimization).
Init := Empty;
Indic :=
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (F_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Var, Loc),
Attribute_Name => Name_First),
High_Bound =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Var, Loc),
Attribute_Name => Name_Last)))));
else
Init := New_Occurrence_Of (Var, Loc);
end if;
-- An initialization is created for packed conversions as
-- actuals for out parameters to enable Make_Object_Declaration
-- to determine the proper subtype for N_Node. Note that this
-- is wasteful because the extra copying on the call side is
-- not required for such out parameters. ???
elsif Ekind (Formal) = E_Out_Parameter
and then Nkind (Actual) = N_Type_Conversion
and then (Is_Bit_Packed_Array (F_Typ)
or else
Is_Bit_Packed_Array (Etype (Expression (Actual))))
then
if Conversion_OK (Actual) then
Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
else
Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
end if;
elsif Ekind (Formal) = E_In_Parameter then
-- Handle the case in which the actual is a type conversion
if Nkind (Actual) = N_Type_Conversion then
if Conversion_OK (Actual) then
Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
else
Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
end if;
else
Init := New_Occurrence_Of (Var, Loc);
end if;
else
Init := Empty;
end if;
N_Node :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => Indic,
Expression => Init);
Set_Assignment_OK (N_Node);
Insert_Action (N, N_Node);
-- Now, normally the deal here is that we use the defining
-- identifier created by that object declaration. There is
-- one exception to this. In the change of representation case
-- the above declaration will end up looking like:
-- temp : type := identifier;
-- And in this case we might as well use the identifier directly
-- and eliminate the temporary. Note that the analysis of the
-- declaration was not a waste of time in that case, since it is
-- what generated the necessary change of representation code. If
-- the change of representation introduced additional code, as in
-- a fixed-integer conversion, the expression is not an identifier
-- and must be kept.
if Crep
and then Present (Expression (N_Node))
and then Is_Entity_Name (Expression (N_Node))
then
Temp := Entity (Expression (N_Node));
Rewrite (N_Node, Make_Null_Statement (Loc));
end if;
-- For IN parameter, all we do is to replace the actual
if Ekind (Formal) = E_In_Parameter then
Rewrite (Actual, New_Reference_To (Temp, Loc));
Analyze (Actual);
-- Processing for OUT or IN OUT parameter
else
-- Kill current value indications for the temporary variable we
-- created, since we just passed it as an OUT parameter.
Kill_Current_Values (Temp);
Set_Is_Known_Valid (Temp, False);
-- If type conversion, use reverse conversion on exit
if Nkind (Actual) = N_Type_Conversion then
if Conversion_OK (Actual) then
Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
else
Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
end if;
else
Expr := New_Occurrence_Of (Temp, Loc);
end if;
Rewrite (Actual, New_Reference_To (Temp, Loc));
Analyze (Actual);
-- If the actual is a conversion of a packed reference, it may
-- already have been expanded by Remove_Side_Effects, and the
-- resulting variable is a temporary which does not designate
-- the proper out-parameter, which may not be addressable. In
-- that case, generate an assignment to the original expression
-- (before expansion of the packed reference) so that the proper
-- expansion of assignment to a packed component can take place.
declare
Obj : Node_Id;
Lhs : Node_Id;
begin
if Is_Renaming_Of_Object (Var)
and then Nkind (Renamed_Object (Var)) = N_Selected_Component
and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
= N_Indexed_Component
and then
Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
then
Obj := Renamed_Object (Var);
Lhs :=
Make_Selected_Component (Loc,
Prefix =>
New_Copy_Tree (Original_Node (Prefix (Obj))),
Selector_Name => New_Copy (Selector_Name (Obj)));
Reset_Analyzed_Flags (Lhs);
else
Lhs := New_Occurrence_Of (Var, Loc);
end if;
Set_Assignment_OK (Lhs);
if Is_Access_Type (E_Formal)
and then Is_Entity_Name (Lhs)
and then
Present (Effective_Extra_Accessibility (Entity (Lhs)))
then
-- Copyback target is an Ada 2012 stand-alone object of an
-- anonymous access type.
pragma Assert (Ada_Version >= Ada_2012);
if Type_Access_Level (E_Formal) >
Object_Access_Level (Lhs)
then
Append_To (Post_Call,
Make_Raise_Program_Error (Loc,
Reason => PE_Accessibility_Check_Failed));
end if;
Append_To (Post_Call,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Expr));
-- We would like to somehow suppress generation of the
-- extra_accessibility assignment generated by the expansion
-- of the above assignment statement. It's not a correctness
-- issue because the following assignment renders it dead,
-- but generating back-to-back assignments to the same
-- target is undesirable. ???
Append_To (Post_Call,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (
Effective_Extra_Accessibility (Entity (Lhs)), Loc),
Expression => Make_Integer_Literal (Loc,
Type_Access_Level (E_Formal))));
else
Append_To (Post_Call,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Expr));
end if;
end;
end if;
end Add_Call_By_Copy_Code;
----------------------------------
-- Add_Simple_Call_By_Copy_Code --
----------------------------------
procedure Add_Simple_Call_By_Copy_Code is
Temp : Entity_Id;
Decl : Node_Id;
Incod : Node_Id;
Outcod : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
Indic : Node_Id;
F_Typ : constant Entity_Id := Etype (Formal);
begin
if not Is_Legal_Copy then
return;
end if;
-- Use formal type for temp, unless formal type is an unconstrained
-- array, in which case we don't have to worry about bounds checks,
-- and we use the actual type, since that has appropriate bounds.
if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
Indic := New_Occurrence_Of (Etype (Actual), Loc);
else
Indic := New_Occurrence_Of (Etype (Formal), Loc);
end if;
-- Prepare to generate code
Reset_Packed_Prefix;
Temp := Make_Temporary (Loc, 'T', Actual);
Incod := Relocate_Node (Actual);
Outcod := New_Copy_Tree (Incod);
-- Generate declaration of temporary variable, initializing it
-- with the input parameter unless we have an OUT formal or
-- this is an initialization call.
-- If the formal is an out parameter with discriminants, the
-- discriminants must be captured even if the rest of the object
-- is in principle uninitialized, because the discriminants may
-- be read by the called subprogram.
if Ekind (Formal) = E_Out_Parameter then
Incod := Empty;
if Has_Discriminants (Etype (Formal)) then
Indic := New_Occurrence_Of (Etype (Actual), Loc);
end if;
elsif Inside_Init_Proc then
-- Could use a comment here to match comment below ???
if Nkind (Actual) /= N_Selected_Component
or else
not Has_Discriminant_Dependent_Constraint
(Entity (Selector_Name (Actual)))
then
Incod := Empty;
-- Otherwise, keep the component in order to generate the proper
-- actual subtype, that depends on enclosing discriminants.
else
null;
end if;
end if;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => Indic,
Expression => Incod);
if Inside_Init_Proc
and then No (Incod)
then
-- If the call is to initialize a component of a composite type,
-- and the component does not depend on discriminants, use the
-- actual type of the component. This is required in case the
-- component is constrained, because in general the formal of the
-- initialization procedure will be unconstrained. Note that if
-- the component being initialized is constrained by an enclosing
-- discriminant, the presence of the initialization in the
-- declaration will generate an expression for the actual subtype.
Set_No_Initialization (Decl);
Set_Object_Definition (Decl,
New_Occurrence_Of (Etype (Actual), Loc));
end if;
Insert_Action (N, Decl);
-- The actual is simply a reference to the temporary
Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
-- Generate copy out if OUT or IN OUT parameter
if Ekind (Formal) /= E_In_Parameter then
Lhs := Outcod;
Rhs := New_Occurrence_Of (Temp, Loc);
-- Deal with conversion
if Nkind (Lhs) = N_Type_Conversion then
Lhs := Expression (Lhs);
Rhs := Convert_To (Etype (Actual), Rhs);
end if;
Append_To (Post_Call,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Rhs));
Set_Assignment_OK (Name (Last (Post_Call)));
end if;
end Add_Simple_Call_By_Copy_Code;
---------------------------
-- Check_Fortran_Logical --
---------------------------
procedure Check_Fortran_Logical is
Logical : constant Entity_Id := Etype (Formal);
Var : Entity_Id;
-- Note: this is very incomplete, e.g. it does not handle arrays
-- of logical values. This is really not the right approach at all???)
begin
if Convention (Subp) = Convention_Fortran
and then Root_Type (Etype (Formal)) = Standard_Boolean
and then Ekind (Formal) /= E_In_Parameter
then
Var := Make_Var (Actual);
Append_To (Post_Call,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Var, Loc),
Expression =>
Unchecked_Convert_To (
Logical,
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Var, Loc),
Right_Opnd =>
Unchecked_Convert_To (
Logical,
New_Occurrence_Of (Standard_False, Loc))))));
end if;
end Check_Fortran_Logical;
-------------------
-- Is_Legal_Copy --
-------------------
function Is_Legal_Copy return Boolean is
begin
-- An attempt to copy a value of such a type can only occur if
-- representation clauses give the actual a misaligned address.
if Is_By_Reference_Type (Etype (Formal)) then
-- If the front-end does not perform full type layout, the actual
-- may in fact be properly aligned but there is not enough front-
-- end information to determine this. In that case gigi will emit
-- an error if a copy is not legal, or generate the proper code.
-- For other backends we report the error now.
-- Seems wrong to be issuing an error in the expander, since it
-- will be missed in -gnatc mode ???
if Frontend_Layout_On_Target then
Error_Msg_N
("misaligned actual cannot be passed by reference", Actual);
end if;
return False;
-- For users of Starlet, we assume that the specification of by-
-- reference mechanism is mandatory. This may lead to unaligned
-- objects but at least for DEC legacy code it is known to work.
-- The warning will alert users of this code that a problem may
-- be lurking.
elsif Mechanism (Formal) = By_Reference
and then Is_Valued_Procedure (Scope (Formal))
then
Error_Msg_N
("by_reference actual may be misaligned??", Actual);
return False;
else
return True;
end if;
end Is_Legal_Copy;
--------------
-- Make_Var --
--------------
function Make_Var (Actual : Node_Id) return Entity_Id is
Var : Entity_Id;
begin
if Is_Entity_Name (Actual) then
return Entity (Actual);
else
Var := Make_Temporary (Loc, 'T', Actual);
N_Node :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Var,
Subtype_Mark =>
New_Occurrence_Of (Etype (Actual), Loc),
Name => Relocate_Node (Actual));
Insert_Action (N, N_Node);
return Var;
end if;
end Make_Var;
-------------------------
-- Reset_Packed_Prefix --
-------------------------
procedure Reset_Packed_Prefix is
Pfx : Node_Id := Actual;
begin
loop
Set_Analyzed (Pfx, False);
exit when
not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
Pfx := Prefix (Pfx);
end loop;
end Reset_Packed_Prefix;
-- Start of processing for Expand_Actuals
begin
Post_Call := New_List;
Formal := First_Formal (Subp);
Actual := First_Actual (N);
while Present (Formal) loop
E_Formal := Etype (Formal);
E_Actual := Etype (Actual);
if Is_Scalar_Type (E_Formal)
or else Nkind (Actual) = N_Slice
then
Check_Fortran_Logical;
-- RM 6.4.1 (11)
elsif Ekind (Formal) /= E_Out_Parameter then
-- The unusual case of the current instance of a protected type
-- requires special handling. This can only occur in the context
-- of a call within the body of a protected operation.
if Is_Entity_Name (Actual)
and then Ekind (Entity (Actual)) = E_Protected_Type
and then In_Open_Scopes (Entity (Actual))
then
if Scope (Subp) /= Entity (Actual) then
Error_Msg_N
("operation outside protected type may not "
& "call back its protected operations??", Actual);
end if;
Rewrite (Actual,
Expand_Protected_Object_Reference (N, Entity (Actual)));
end if;
-- Ada 2005 (AI-318-02): If the actual parameter is a call to a
-- build-in-place function, then a temporary return object needs
-- to be created and access to it must be passed to the function.
-- Currently we limit such functions to those with inherently
-- limited result subtypes, but eventually we plan to expand the
-- functions that are treated as build-in-place to include other
-- composite result types.
if Is_Build_In_Place_Function_Call (Actual) then
Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
end if;
Apply_Constraint_Check (Actual, E_Formal);
-- Out parameter case. No constraint checks on access type
-- RM 6.4.1 (13)
elsif Is_Access_Type (E_Formal) then
null;
-- RM 6.4.1 (14)
elsif Has_Discriminants (Base_Type (E_Formal))
or else Has_Non_Null_Base_Init_Proc (E_Formal)
then
Apply_Constraint_Check (Actual, E_Formal);
-- RM 6.4.1 (15)
else
Apply_Constraint_Check (Actual, Base_Type (E_Formal));
end if;
-- Processing for IN-OUT and OUT parameters
if Ekind (Formal) /= E_In_Parameter then
-- For type conversions of arrays, apply length/range checks
if Is_Array_Type (E_Formal)
and then Nkind (Actual) = N_Type_Conversion
then
if Is_Constrained (E_Formal) then
Apply_Length_Check (Expression (Actual), E_Formal);
else
Apply_Range_Check (Expression (Actual), E_Formal);
end if;
end if;
-- If argument is a type conversion for a type that is passed
-- by copy, then we must pass the parameter by copy.
if Nkind (Actual) = N_Type_Conversion
and then
(Is_Numeric_Type (E_Formal)
or else Is_Access_Type (E_Formal)
or else Is_Enumeration_Type (E_Formal)
or else Is_Bit_Packed_Array (Etype (Formal))
or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
-- Also pass by copy if change of representation
or else not Same_Representation
(Etype (Formal),
Etype (Expression (Actual))))
then
Add_Call_By_Copy_Code;
-- References to components of bit packed arrays are expanded
-- at this point, rather than at the point of analysis of the
-- actuals, to handle the expansion of the assignment to
-- [in] out parameters.
elsif Is_Ref_To_Bit_Packed_Array (Actual) then
Add_Simple_Call_By_Copy_Code;
-- If a non-scalar actual is possibly bit-aligned, we need a copy
-- because the back-end cannot cope with such objects. In other
-- cases where alignment forces a copy, the back-end generates
-- it properly. It should not be generated unconditionally in the
-- front-end because it does not know precisely the alignment
-- requirements of the target, and makes too conservative an
-- estimate, leading to superfluous copies or spurious errors
-- on by-reference parameters.
elsif Nkind (Actual) = N_Selected_Component
and then
Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
and then not Represented_As_Scalar (Etype (Formal))
then
Add_Simple_Call_By_Copy_Code;
-- References to slices of bit packed arrays are expanded
elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
Add_Call_By_Copy_Code;
-- References to possibly unaligned slices of arrays are expanded
elsif Is_Possibly_Unaligned_Slice (Actual) then
Add_Call_By_Copy_Code;
-- Deal with access types where the actual subtype and the
-- formal subtype are not the same, requiring a check.
-- It is necessary to exclude tagged types because of "downward
-- conversion" errors.
elsif Is_Access_Type (E_Formal)
and then not Same_Type (E_Formal, E_Actual)
and then not Is_Tagged_Type (Designated_Type (E_Formal))
then
Add_Call_By_Copy_Code;
-- If the actual is not a scalar and is marked for volatile
-- treatment, whereas the formal is not volatile, then pass
-- by copy unless it is a by-reference type.
-- Note: we use Is_Volatile here rather than Treat_As_Volatile,
-- because this is the enforcement of a language rule that applies
-- only to "real" volatile variables, not e.g. to the address
-- clause overlay case.
elsif Is_Entity_Name (Actual)
and then Is_Volatile (Entity (Actual))
and then not Is_By_Reference_Type (E_Actual)
and then not Is_Scalar_Type (Etype (Entity (Actual)))
and then not Is_Volatile (E_Formal)
then
Add_Call_By_Copy_Code;
elsif Nkind (Actual) = N_Indexed_Component
and then Is_Entity_Name (Prefix (Actual))
and then Has_Volatile_Components (Entity (Prefix (Actual)))
then
Add_Call_By_Copy_Code;
-- Add call-by-copy code for the case of scalar out parameters
-- when it is not known at compile time that the subtype of the
-- formal is a subrange of the subtype of the actual (or vice
-- versa for in out parameters), in order to get range checks
-- on such actuals. (Maybe this case should be handled earlier
-- in the if statement???)
elsif Is_Scalar_Type (E_Formal)
and then
(not In_Subrange_Of (E_Formal, E_Actual)
or else
(Ekind (Formal) = E_In_Out_Parameter
and then not In_Subrange_Of (E_Actual, E_Formal)))
then
-- Perhaps the setting back to False should be done within
-- Add_Call_By_Copy_Code, since it could get set on other
-- cases occurring above???
if Do_Range_Check (Actual) then
Set_Do_Range_Check (Actual, False);
end if;
Add_Call_By_Copy_Code;
end if;
-- RM 3.2.4 (23/3) : A predicate is checked on in-out and out
-- by-reference parameters on exit from the call. If the actual
-- is a derived type and the operation is inherited, the body
-- of the operation will not contain a call to the predicate
-- function, so it must be done explicitly after the call. Ditto
-- if the actual is an entity of a predicated subtype.
-- The rule refers to by-reference types, but a check is needed
-- for by-copy types as well. That check is subsumed by the rule
-- for subtype conversion on assignment, but we can generate the
-- required check now.
-- Note that this is needed only if the subtype of the actual has
-- an explicit predicate aspect, not if it inherits them from a
-- base type or ancestor. The check is also superfluous if the
-- subtype is elaborated before the body of the subprogram, but
-- this is harder to verify, and there may be a redundant check.
-- Note also that Subp may be either a subprogram entity for
-- direct calls, or a type entity for indirect calls, which must
-- be handled separately because the name does not denote an
-- overloadable entity.
-- If the formal is class-wide the corresponding postcondition
-- procedure does not include a predicate call, so it has to be
-- generated explicitly.
if not Is_Init_Proc (Subp)
and then (Has_Aspect (E_Actual, Aspect_Predicate)
or else
Has_Aspect (E_Actual, Aspect_Dynamic_Predicate)
or else
Has_Aspect (E_Actual, Aspect_Static_Predicate))
and then Present (Predicate_Function (E_Actual))
then
if Is_Entity_Name (Actual)
or else
(Is_Derived_Type (E_Actual)
and then Is_Overloadable (Subp)
and then Is_Inherited_Operation_For_Type (Subp, E_Actual))
then
Append_To (Post_Call,
Make_Predicate_Check (E_Actual, Actual));
elsif Is_Class_Wide_Type (E_Formal)
and then not Is_Class_Wide_Type (E_Actual)
then
Append_To (Post_Call,
Make_Predicate_Check (E_Actual, Actual));
end if;
end if;
-- Processing for IN parameters
else
-- For IN parameters is in the packed array case, we expand an
-- indexed component (the circuit in Exp_Ch4 deliberately left
-- indexed components appearing as actuals untouched, so that
-- the special processing above for the OUT and IN OUT cases
-- could be performed. We could make the test in Exp_Ch4 more
-- complex and have it detect the parameter mode, but it is
-- easier simply to handle all cases here.)
if Nkind (Actual) = N_Indexed_Component
and then Is_Packed (Etype (Prefix (Actual)))
then
Reset_Packed_Prefix;
Expand_Packed_Element_Reference (Actual);
-- If we have a reference to a bit packed array, we copy it, since
-- the actual must be byte aligned.
-- Is this really necessary in all cases???
elsif Is_Ref_To_Bit_Packed_Array (Actual) then
Add_Simple_Call_By_Copy_Code;
-- If a non-scalar actual is possibly unaligned, we need a copy
elsif Is_Possibly_Unaligned_Object (Actual)
and then not Represented_As_Scalar (Etype (Formal))
then
Add_Simple_Call_By_Copy_Code;
-- Similarly, we have to expand slices of packed arrays here
-- because the result must be byte aligned.
elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
Add_Call_By_Copy_Code;
-- Only processing remaining is to pass by copy if this is a
-- reference to a possibly unaligned slice, since the caller
-- expects an appropriately aligned argument.
elsif Is_Possibly_Unaligned_Slice (Actual) then
Add_Call_By_Copy_Code;
-- An unusual case: a current instance of an enclosing task can be
-- an actual, and must be replaced by a reference to self.
elsif Is_Entity_Name (Actual)
and then Is_Task_Type (Entity (Actual))
then
if In_Open_Scopes (Entity (Actual)) then
Rewrite (Actual,
(Make_Function_Call (Loc,
Name => New_Reference_To (RTE (RE_Self), Loc))));
Analyze (Actual);
-- A task type cannot otherwise appear as an actual
else
raise Program_Error;
end if;
end if;
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
-- Find right place to put post call stuff if it is present
if not Is_Empty_List (Post_Call) then
-- Cases where the call is not a member of a statement list
if not Is_List_Member (N) then
declare
P : Node_Id := Parent (N);
begin
-- In Ada 2012 the call may be a function call in an expression
-- (since OUT and IN OUT parameters are now allowed for such
-- calls. The write-back of (in)-out parameters is handled
-- by the back-end, but the constraint checks generated when
-- subtypes of formal and actual don't match must be inserted
-- in the form of assignments, at the nearest point after the
-- declaration or statement that contains the call.
if Ada_Version >= Ada_2012
and then Nkind (N) = N_Function_Call
then
while Nkind (P) not in N_Declaration
and then
Nkind (P) not in N_Statement_Other_Than_Procedure_Call
loop
P := Parent (P);
end loop;
Insert_Actions_After (P, Post_Call);
-- If not the special Ada 2012 case of a function call, then
-- we must have the triggering statement of a triggering
-- alternative or an entry call alternative, and we can add
-- the post call stuff to the corresponding statement list.
else
pragma Assert (Nkind_In (P, N_Triggering_Alternative,
N_Entry_Call_Alternative));
if Is_Non_Empty_List (Statements (P)) then
Insert_List_Before_And_Analyze
(First (Statements (P)), Post_Call);
else
Set_Statements (P, Post_Call);
end if;
end if;
end;
-- Otherwise, normal case where N is in a statement sequence,
-- just put the post-call stuff after the call statement.
else
Insert_Actions_After (N, Post_Call);
end if;
end if;
-- The call node itself is re-analyzed in Expand_Call
end Expand_Actuals;
-----------------
-- Expand_Call --
-----------------
-- This procedure handles expansion of function calls and procedure call
-- statements (i.e. it serves as the body for Expand_N_Function_Call and
-- Expand_N_Procedure_Call_Statement). Processing for calls includes:
-- Replace call to Raise_Exception by Raise_Exception_Always if possible
-- Provide values of actuals for all formals in Extra_Formals list
-- Replace "call" to enumeration literal function by literal itself
-- Rewrite call to predefined operator as operator
-- Replace actuals to in-out parameters that are numeric conversions,
-- with explicit assignment to temporaries before and after the call.
-- Remove optional actuals if First_Optional_Parameter specified.
-- Note that the list of actuals has been filled with default expressions
-- during semantic analysis of the call. Only the extra actuals required
-- for the 'Constrained attribute and for accessibility checks are added
-- at this point.
procedure Expand_Call (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Call_Node : Node_Id := N;
Extra_Actuals : List_Id := No_List;
Prev : Node_Id := Empty;
procedure Add_Actual_Parameter (Insert_Param : Node_Id);
-- Adds one entry to the end of the actual parameter list. Used for
-- default parameters and for extra actuals (for Extra_Formals). The
-- argument is an N_Parameter_Association node.
procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
-- Adds an extra actual to the list of extra actuals. Expr is the
-- expression for the value of the actual, EF is the entity for the
-- extra formal.
procedure Do_Inline (Subp : Entity_Id; Orig_Subp : Entity_Id);
-- Check and inline the body of Subp. Invoked when compiling with
-- optimizations enabled and Subp has pragma inline or inline always.
-- If the subprogram is a renaming, or if it is inherited, then Subp
-- references the renamed entity and Orig_Subp is the entity of the
-- call node N.
procedure Do_Inline_Always (Subp : Entity_Id; Orig_Subp : Entity_Id);
-- Check and inline the body of Subp. Invoked when compiling without
-- optimizations and Subp has pragma inline always. If the subprogram is
-- a renaming, or if it is inherited, then Subp references the renamed
-- entity and Orig_Subp is the entity of the call node N.
function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
-- Within an instance, a type derived from a non-tagged formal derived
-- type inherits from the original parent, not from the actual. The
-- current derivation mechanism has the derived type inherit from the
-- actual, which is only correct outside of the instance. If the
-- subprogram is inherited, we test for this particular case through a
-- convoluted tree traversal before setting the proper subprogram to be
-- called.
function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
-- Return true if E comes from an instance that is not yet frozen
function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
-- Determine if Subp denotes a non-dispatching call to a Deep routine
function New_Value (From : Node_Id) return Node_Id;
-- From is the original Expression. New_Value is equivalent to a call
-- to Duplicate_Subexpr with an explicit dereference when From is an
-- access parameter.
--------------------------
-- Add_Actual_Parameter --
--------------------------
procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
Actual_Expr : constant Node_Id :=
Explicit_Actual_Parameter (Insert_Param);
begin
-- Case of insertion is first named actual
if No (Prev) or else
Nkind (Parent (Prev)) /= N_Parameter_Association
then
Set_Next_Named_Actual
(Insert_Param, First_Named_Actual (Call_Node));
Set_First_Named_Actual (Call_Node, Actual_Expr);
if No (Prev) then
if No (Parameter_Associations (Call_Node)) then
Set_Parameter_Associations (Call_Node, New_List);
end if;
Append (Insert_Param, Parameter_Associations (Call_Node));
else
Insert_After (Prev, Insert_Param);
end if;
-- Case of insertion is not first named actual
else
Set_Next_Named_Actual
(Insert_Param, Next_Named_Actual (Parent (Prev)));
Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
Append (Insert_Param, Parameter_Associations (Call_Node));
end if;
Prev := Actual_Expr;
end Add_Actual_Parameter;
----------------------
-- Add_Extra_Actual --
----------------------
procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Expr);
begin
if Extra_Actuals = No_List then
Extra_Actuals := New_List;
Set_Parent (Extra_Actuals, Call_Node);
end if;
Append_To (Extra_Actuals,
Make_Parameter_Association (Loc,
Selector_Name => Make_Identifier (Loc, Chars (EF)),
Explicit_Actual_Parameter => Expr));
Analyze_And_Resolve (Expr, Etype (EF));
if Nkind (Call_Node) = N_Function_Call then
Set_Is_Accessibility_Actual (Parent (Expr));
end if;
end Add_Extra_Actual;
----------------
-- Do_Inline --
----------------
procedure Do_Inline (Subp : Entity_Id; Orig_Subp : Entity_Id) is
Spec : constant Node_Id := Unit_Declaration_Node (Subp);
procedure Do_Backend_Inline;
-- Check that the call can be safely passed to the backend. If true
-- then register the enclosing unit of Subp to Inlined_Bodies so that
-- the body of Subp can be retrieved and analyzed by the backend.
procedure Register_Backend_Call (N : Node_Id);
-- Append N to the list Backend_Calls
-----------------------
-- Do_Backend_Inline --
-----------------------
procedure Do_Backend_Inline is
begin
-- No extra test needed for init subprograms since we know they
-- are available to the backend!
if Is_Init_Proc (Subp) then
Add_Inlined_Body (Subp);
Register_Backend_Call (Call_Node);
-- Verify that if the body to inline is located in the current
-- unit the inlining does not occur earlier. This avoids
-- order-of-elaboration problems in the back end.
elsif In_Same_Extended_Unit (Call_Node, Subp)
and then Nkind (Spec) = N_Subprogram_Declaration
and then Earlier_In_Extended_Unit
(Loc, Sloc (Body_To_Inline (Spec)))
then
Error_Msg_NE
("cannot inline& (body not seen yet)??", Call_Node, Subp);
else
declare
Backend_Inline : Boolean := True;
begin
-- If we are compiling a package body that is not the
-- main unit, it must be for inlining/instantiation
-- purposes, in which case we inline the call to insure
-- that the same temporaries are generated when compiling
-- the body by itself. Otherwise link errors can occur.
-- If the function being called is itself in the main
-- unit, we cannot inline, because there is a risk of
-- double elaboration and/or circularity: the inlining
-- can make visible a private entity in the body of the
-- main unit, that gigi will see before its sees its
-- proper definition.
if not (In_Extended_Main_Code_Unit (Call_Node))
and then In_Package_Body
then
Backend_Inline :=
not In_Extended_Main_Source_Unit (Subp);
end if;
if Backend_Inline then
Add_Inlined_Body (Subp);
Register_Backend_Call (Call_Node);
end if;
end;
end if;
end Do_Backend_Inline;
---------------------------
-- Register_Backend_Call --
---------------------------
procedure Register_Backend_Call (N : Node_Id) is
begin
if Backend_Calls = No_Elist then
Backend_Calls := New_Elmt_List;
end if;
Append_Elmt (N, To => Backend_Calls);
end Register_Backend_Call;
-- Start of processing for Do_Inline
begin
-- Verify that the body to inline has already been seen
if No (Spec)
or else Nkind (Spec) /= N_Subprogram_Declaration
or else No (Body_To_Inline (Spec))
then
if Comes_From_Source (Subp)
and then Must_Inline (Subp)
then
Cannot_Inline
("cannot inline& (body not seen yet)?", Call_Node, Subp);
-- Let the back end handle it
else
Do_Backend_Inline;
return;
end if;
-- If this an inherited function that returns a private type, do not
-- inline if the full view is an unconstrained array, because such
-- calls cannot be inlined.
elsif Present (Orig_Subp)
and then Is_Array_Type (Etype (Orig_Subp))
and then not Is_Constrained (Etype (Orig_Subp))
then
Cannot_Inline
("cannot inline& (unconstrained array)?", Call_Node, Subp);
else
Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
end if;
end Do_Inline;
----------------------
-- Do_Inline_Always --
----------------------
procedure Do_Inline_Always (Subp : Entity_Id; Orig_Subp : Entity_Id) is
Spec : constant Node_Id := Unit_Declaration_Node (Subp);
Body_Id : Entity_Id;
begin
if No (Spec)
or else Nkind (Spec) /= N_Subprogram_Declaration
or else No (Body_To_Inline (Spec))
or else Serious_Errors_Detected /= 0
then
return;
end if;
Body_Id := Corresponding_Body (Spec);
-- Verify that the body to inline has already been seen
if No (Body_Id)
or else not Analyzed (Body_Id)
then
Set_Is_Inlined (Subp, False);
if Comes_From_Source (Subp) then
-- Report a warning only if the call is located in the unit of
-- the called subprogram; otherwise it is an error.
if not In_Same_Extended_Unit (Call_Node, Subp) then
Cannot_Inline
("cannot inline& (body not seen yet)?", Call_Node, Subp,
Is_Serious => True);
elsif In_Open_Scopes (Subp) then
-- For backward compatibility we generate the same error
-- or warning of the previous implementation. This will
-- be changed when we definitely incorporate the new
-- support ???
if Front_End_Inlining
and then Optimization_Level = 0
then
Error_Msg_N
("call to recursive subprogram cannot be inlined?p?",
N);
-- Do not emit error compiling runtime packages
elsif Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Subp)))
then
Error_Msg_N
("call to recursive subprogram cannot be inlined??",
N);
else
Error_Msg_N
("call to recursive subprogram cannot be inlined",
N);
end if;
else
Cannot_Inline
("cannot inline& (body not seen yet)?", Call_Node, Subp);
end if;
end if;
return;
-- If this an inherited function that returns a private type, do not
-- inline if the full view is an unconstrained array, because such
-- calls cannot be inlined.
elsif Present (Orig_Subp)
and then Is_Array_Type (Etype (Orig_Subp))
and then not Is_Constrained (Etype (Orig_Subp))
then
Cannot_Inline
("cannot inline& (unconstrained array)?", Call_Node, Subp);
-- If the called subprogram comes from an instance in the same
-- unit, and the instance is not yet frozen, inlining might
-- trigger order-of-elaboration problems.
elsif In_Unfrozen_Instance (Scope (Subp)) then
Cannot_Inline
("cannot inline& (unfrozen instance)?", Call_Node, Subp);
else
Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
end if;
end Do_Inline_Always;
---------------------------
-- Inherited_From_Formal --
---------------------------
function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
Par : Entity_Id;
Gen_Par : Entity_Id;
Gen_Prim : Elist_Id;
Elmt : Elmt_Id;
Indic : Node_Id;
begin
-- If the operation is inherited, it is attached to the corresponding
-- type derivation. If the parent in the derivation is a generic
-- actual, it is a subtype of the actual, and we have to recover the
-- original derived type declaration to find the proper parent.
if Nkind (Parent (S)) /= N_Full_Type_Declaration
or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
N_Derived_Type_Definition
or else not In_Instance
then
return Empty;
else
Indic :=
Subtype_Indication
(Type_Definition (Original_Node (Parent (S))));
if Nkind (Indic) = N_Subtype_Indication then
Par := Entity (Subtype_Mark (Indic));
else
Par := Entity (Indic);
end if;
end if;
if not Is_Generic_Actual_Type (Par)
or else Is_Tagged_Type (Par)
or else Nkind (Parent (Par)) /= N_Subtype_Declaration
or else not In_Open_Scopes (Scope (Par))
then
return Empty;
else
Gen_Par := Generic_Parent_Type (Parent (Par));
end if;
-- If the actual has no generic parent type, the formal is not
-- a formal derived type, so nothing to inherit.
if No (Gen_Par) then
return Empty;
end if;
-- If the generic parent type is still the generic type, this is a
-- private formal, not a derived formal, and there are no operations
-- inherited from the formal.
if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
return Empty;
end if;
Gen_Prim := Collect_Primitive_Operations (Gen_Par);
Elmt := First_Elmt (Gen_Prim);
while Present (Elmt) loop
if Chars (Node (Elmt)) = Chars (S) then
declare
F1 : Entity_Id;
F2 : Entity_Id;
begin
F1 := First_Formal (S);
F2 := First_Formal (Node (Elmt));
while Present (F1)
and then Present (F2)
loop
if Etype (F1) = Etype (F2)
or else Etype (F2) = Gen_Par
then
Next_Formal (F1);
Next_Formal (F2);
else
Next_Elmt (Elmt);
exit; -- not the right subprogram
end if;
return Node (Elmt);
end loop;
end;
else
Next_Elmt (Elmt);
end if;
end loop;
raise Program_Error;
end Inherited_From_Formal;
--------------------------
-- In_Unfrozen_Instance --
--------------------------
function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
S : Entity_Id;
begin
S := E;
while Present (S) and then S /= Standard_Standard loop
if Is_Generic_Instance (S)
and then Present (Freeze_Node (S))
and then not Analyzed (Freeze_Node (S))
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end In_Unfrozen_Instance;
-------------------------
-- Is_Direct_Deep_Call --
-------------------------
function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
begin
if Is_TSS (Subp, TSS_Deep_Adjust)
or else Is_TSS (Subp, TSS_Deep_Finalize)
or else Is_TSS (Subp, TSS_Deep_Initialize)
then
declare
Actual : Node_Id;
Formal : Node_Id;
begin
Actual := First (Parameter_Associations (N));
Formal := First_Formal (Subp);
while Present (Actual)
and then Present (Formal)
loop
if Nkind (Actual) = N_Identifier
and then Is_Controlling_Actual (Actual)
and then Etype (Actual) = Etype (Formal)
then
return True;
end if;
Next (Actual);
Next_Formal (Formal);
end loop;
end;
end if;
return False;
end Is_Direct_Deep_Call;
---------------
-- New_Value --
---------------
function New_Value (From : Node_Id) return Node_Id is
Res : constant Node_Id := Duplicate_Subexpr (From);
begin
if Is_Access_Type (Etype (From)) then
return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
else
return Res;
end if;
end New_Value;
-- Local variables
Curr_S : constant Entity_Id := Current_Scope;
Remote : constant Boolean := Is_Remote_Call (Call_Node);
Actual : Node_Id;
Formal : Entity_Id;
Orig_Subp : Entity_Id := Empty;
Param_Count : Natural := 0;
Parent_Formal : Entity_Id;
Parent_Subp : Entity_Id;
Scop : Entity_Id;
Subp : Entity_Id;
Prev_Orig : Node_Id;
-- Original node for an actual, which may have been rewritten. If the
-- actual is a function call that has been transformed from a selected
-- component, the original node is unanalyzed. Otherwise, it carries
-- semantic information used to generate additional actuals.
CW_Interface_Formals_Present : Boolean := False;
-- Start of processing for Expand_Call
begin
-- Expand the procedure call if the first actual has a dimension and if
-- the procedure is Put (Ada 2012).
if Ada_Version >= Ada_2012
and then Nkind (Call_Node) = N_Procedure_Call_Statement
and then Present (Parameter_Associations (Call_Node))
then
Expand_Put_Call_With_Symbol (Call_Node);
end if;
-- Ignore if previous error
if Nkind (Call_Node) in N_Has_Etype
and then Etype (Call_Node) = Any_Type
then
return;
end if;
-- Call using access to subprogram with explicit dereference
if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
Subp := Etype (Name (Call_Node));
Parent_Subp := Empty;
-- Case of call to simple entry, where the Name is a selected component
-- whose prefix is the task, and whose selector name is the entry name
elsif Nkind (Name (Call_Node)) = N_Selected_Component then
Subp := Entity (Selector_Name (Name (Call_Node)));
Parent_Subp := Empty;
-- Case of call to member of entry family, where Name is an indexed
-- component, with the prefix being a selected component giving the
-- task and entry family name, and the index being the entry index.
elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
Parent_Subp := Empty;
-- Normal case
else
Subp := Entity (Name (Call_Node));
Parent_Subp := Alias (Subp);
-- Replace call to Raise_Exception by call to Raise_Exception_Always
-- if we can tell that the first parameter cannot possibly be null.
-- This improves efficiency by avoiding a run-time test.
-- We do not do this if Raise_Exception_Always does not exist, which
-- can happen in configurable run time profiles which provide only a
-- Raise_Exception.
if Is_RTE (Subp, RE_Raise_Exception)
and then RTE_Available (RE_Raise_Exception_Always)
then
declare
FA : constant Node_Id :=
Original_Node (First_Actual (Call_Node));
begin
-- The case we catch is where the first argument is obtained
-- using the Identity attribute (which must always be
-- non-null).
if Nkind (FA) = N_Attribute_Reference
and then Attribute_Name (FA) = Name_Identity
then
Subp := RTE (RE_Raise_Exception_Always);
Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
end if;
end;
end if;
if Ekind (Subp) = E_Entry then
Parent_Subp := Empty;
end if;
end if;
-- Detect the following code in System.Finalization_Masters only on
-- .NET/JVM targets:
--
-- procedure Finalize (Master : in out Finalization_Master) is
-- begin
-- . . .
-- begin
-- Finalize (Curr_Ptr.all);
--
-- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
-- cannot be named in library or user code, the compiler has to install
-- a kludge and transform the call to Finalize into Deep_Finalize.
if VM_Target /= No_VM
and then Chars (Subp) = Name_Finalize
and then Ekind (Curr_S) = E_Block
and then Ekind (Scope (Curr_S)) = E_Procedure
and then Chars (Scope (Curr_S)) = Name_Finalize
and then Etype (First_Formal (Scope (Curr_S))) =
RTE (RE_Finalization_Master)
then
declare
Deep_Fin : constant Entity_Id :=
Find_Prim_Op (RTE (RE_Root_Controlled),
TSS_Deep_Finalize);
begin
-- Since Root_Controlled is a tagged type, the compiler should
-- always generate Deep_Finalize for it.
pragma Assert (Present (Deep_Fin));
-- Generate:
-- Deep_Finalize (Curr_Ptr.all);
Rewrite (N,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To (Deep_Fin, Loc),
Parameter_Associations =>
New_Copy_List_Tree (Parameter_Associations (N))));
Analyze (N);
return;
end;
end if;
-- Ada 2005 (AI-345): We have a procedure call as a triggering
-- alternative in an asynchronous select or as an entry call in
-- a conditional or timed select. Check whether the procedure call
-- is a renaming of an entry and rewrite it as an entry call.
if Ada_Version >= Ada_2005
and then Nkind (Call_Node) = N_Procedure_Call_Statement
and then
((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
or else
(Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
then
declare
Ren_Decl : Node_Id;
Ren_Root : Entity_Id := Subp;
begin
-- This may be a chain of renamings, find the root
if Present (Alias (Ren_Root)) then
Ren_Root := Alias (Ren_Root);
end if;
if Present (Original_Node (Parent (Parent (Ren_Root)))) then
Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
Rewrite (Call_Node,
Make_Entry_Call_Statement (Loc,
Name =>
New_Copy_Tree (Name (Ren_Decl)),
Parameter_Associations =>
New_Copy_List_Tree
(Parameter_Associations (Call_Node))));
return;
end if;
end if;
end;
end if;
-- First step, compute extra actuals, corresponding to any Extra_Formals
-- present. Note that we do not access Extra_Formals directly, instead
-- we simply note the presence of the extra formals as we process the
-- regular formals collecting corresponding actuals in Extra_Actuals.
-- We also generate any required range checks for actuals for in formals
-- as we go through the loop, since this is a convenient place to do it.
-- (Though it seems that this would be better done in Expand_Actuals???)
-- Special case: Thunks must not compute the extra actuals; they must
-- just propagate to the target primitive their extra actuals.
if Is_Thunk (Current_Scope)
and then Thunk_Entity (Current_Scope) = Subp
and then Present (Extra_Formals (Subp))
then
pragma Assert (Present (Extra_Formals (Current_Scope)));
declare
Target_Formal : Entity_Id;
Thunk_Formal : Entity_Id;
begin
Target_Formal := Extra_Formals (Subp);
Thunk_Formal := Extra_Formals (Current_Scope);
while Present (Target_Formal) loop
Add_Extra_Actual
(New_Occurrence_Of (Thunk_Formal, Loc), Thunk_Formal);
Target_Formal := Extra_Formal (Target_Formal);
Thunk_Formal := Extra_Formal (Thunk_Formal);
end loop;
while Is_Non_Empty_List (Extra_Actuals) loop
Add_Actual_Parameter (Remove_Head (Extra_Actuals));
end loop;
Expand_Actuals (Call_Node, Subp);
return;
end;
end if;
Formal := First_Formal (Subp);
Actual := First_Actual (Call_Node);
Param_Count := 1;
while Present (Formal) loop
-- Generate range check if required
if Do_Range_Check (Actual)
and then Ekind (Formal) = E_In_Parameter
then
Set_Do_Range_Check (Actual, False);
Generate_Range_Check
(Actual, Etype (Formal), CE_Range_Check_Failed);
end if;
-- Prepare to examine current entry
Prev := Actual;
Prev_Orig := Original_Node (Prev);
-- Ada 2005 (AI-251): Check if any formal is a class-wide interface
-- to expand it in a further round.
CW_Interface_Formals_Present :=
CW_Interface_Formals_Present
or else
(Ekind (Etype (Formal)) = E_Class_Wide_Type
and then Is_Interface (Etype (Etype (Formal))))
or else
(Ekind (Etype (Formal)) = E_Anonymous_Access_Type
and then Is_Interface (Directly_Designated_Type
(Etype (Etype (Formal)))));
-- Create possible extra actual for constrained case. Usually, the
-- extra actual is of the form actual'constrained, but since this
-- attribute is only available for unconstrained records, TRUE is
-- expanded if the type of the formal happens to be constrained (for
-- instance when this procedure is inherited from an unconstrained
-- record to a constrained one) or if the actual has no discriminant
-- (its type is constrained). An exception to this is the case of a
-- private type without discriminants. In this case we pass FALSE
-- because the object has underlying discriminants with defaults.
if Present (Extra_Constrained (Formal)) then
if Ekind (Etype (Prev)) in Private_Kind
and then not Has_Discriminants (Base_Type (Etype (Prev)))
then
Add_Extra_Actual
(New_Occurrence_Of (Standard_False, Loc),
Extra_Constrained (Formal));
elsif Is_Constrained (Etype (Formal))
or else not Has_Discriminants (Etype (Prev))
then
Add_Extra_Actual
(New_Occurrence_Of (Standard_True, Loc),
Extra_Constrained (Formal));
-- Do not produce extra actuals for Unchecked_Union parameters.
-- Jump directly to the end of the loop.
elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
goto Skip_Extra_Actual_Generation;
else
-- If the actual is a type conversion, then the constrained
-- test applies to the actual, not the target type.
declare
Act_Prev : Node_Id;
begin
-- Test for unchecked conversions as well, which can occur
-- as out parameter actuals on calls to stream procedures.
Act_Prev := Prev;
while Nkind_In (Act_Prev, N_Type_Conversion,
N_Unchecked_Type_Conversion)
loop
Act_Prev := Expression (Act_Prev);
end loop;
-- If the expression is a conversion of a dereference, this
-- is internally generated code that manipulates addresses,
-- e.g. when building interface tables. No check should
-- occur in this case, and the discriminated object is not
-- directly a hand.
if not Comes_From_Source (Actual)
and then Nkind (Actual) = N_Unchecked_Type_Conversion
and then Nkind (Act_Prev) = N_Explicit_Dereference
then
Add_Extra_Actual
(New_Occurrence_Of (Standard_False, Loc),
Extra_Constrained (Formal));
else
Add_Extra_Actual
(Make_Attribute_Reference (Sloc (Prev),
Prefix =>
Duplicate_Subexpr_No_Checks
(Act_Prev, Name_Req => True),
Attribute_Name => Name_Constrained),
Extra_Constrained (Formal));
end if;
end;
end if;
end if;
-- Create possible extra actual for accessibility level
if Present (Extra_Accessibility (Formal)) then
-- Ada 2005 (AI-252): If the actual was rewritten as an Access
-- attribute, then the original actual may be an aliased object
-- occurring as the prefix in a call using "Object.Operation"
-- notation. In that case we must pass the level of the object,
-- so Prev_Orig is reset to Prev and the attribute will be
-- processed by the code for Access attributes further below.
if Prev_Orig /= Prev
and then Nkind (Prev) = N_Attribute_Reference
and then
Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
and then Is_Aliased_View (Prev_Orig)
then
Prev_Orig := Prev;
end if;
-- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
-- accessibility levels.
if Is_Thunk (Current_Scope) then
declare
Parm_Ent : Entity_Id;
begin
if Is_Controlling_Actual (Actual) then
-- Find the corresponding actual of the thunk
Parm_Ent := First_Entity (Current_Scope);
for J in 2 .. Param_Count loop
Next_Entity (Parm_Ent);
end loop;
-- Handle unchecked conversion of access types generated
-- in thunks (cf. Expand_Interface_Thunk).
elsif Is_Access_Type (Etype (Actual))
and then Nkind (Actual) = N_Unchecked_Type_Conversion
then
Parm_Ent := Entity (Expression (Actual));
else pragma Assert (Is_Entity_Name (Actual));
Parm_Ent := Entity (Actual);
end if;
Add_Extra_Actual
(New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
Extra_Accessibility (Formal));
end;
elsif Is_Entity_Name (Prev_Orig) then
-- When passing an access parameter, or a renaming of an access
-- parameter, as the actual to another access parameter we need
-- to pass along the actual's own access level parameter. This
-- is done if we are within the scope of the formal access
-- parameter (if this is an inlined body the extra formal is
-- irrelevant).
if (Is_Formal (Entity (Prev_Orig))
or else
(Present (Renamed_Object (Entity (Prev_Orig)))
and then
Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
and then
Is_Formal
(Entity (Renamed_Object (Entity (Prev_Orig))))))
and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
then
declare
Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
begin
pragma Assert (Present (Parm_Ent));
if Present (Extra_Accessibility (Parm_Ent)) then
Add_Extra_Actual
(New_Occurrence_Of
(Extra_Accessibility (Parm_Ent), Loc),
Extra_Accessibility (Formal));
-- If the actual access parameter does not have an
-- associated extra formal providing its scope level,
-- then treat the actual as having library-level
-- accessibility.
else
Add_Extra_Actual
(Make_Integer_Literal (Loc,
Intval => Scope_Depth (Standard_Standard)),
Extra_Accessibility (Formal));
end if;
end;
-- The actual is a normal access value, so just pass the level
-- of the actual's access type.
else
Add_Extra_Actual
(Dynamic_Accessibility_Level (Prev_Orig),
Extra_Accessibility (Formal));
end if;
-- If the actual is an access discriminant, then pass the level
-- of the enclosing object (RM05-3.10.2(12.4/2)).
elsif Nkind (Prev_Orig) = N_Selected_Component
and then Ekind (Entity (Selector_Name (Prev_Orig))) =
E_Discriminant
and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
E_Anonymous_Access_Type
then
Add_Extra_Actual
(Make_Integer_Literal (Loc,
Intval => Object_Access_Level (Prefix (Prev_Orig))),
Extra_Accessibility (Formal));
-- All other cases
else
case Nkind (Prev_Orig) is
when N_Attribute_Reference =>
case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
-- For X'Access, pass on the level of the prefix X
when Attribute_Access =>
-- If this is an Access attribute applied to the
-- the current instance object passed to a type
-- initialization procedure, then use the level
-- of the type itself. This is not really correct,
-- as there should be an extra level parameter
-- passed in with _init formals (only in the case
-- where the type is immutably limited), but we
-- don't have an easy way currently to create such
-- an extra formal (init procs aren't ever frozen).
-- For now we just use the level of the type,
-- which may be too shallow, but that works better
-- than passing Object_Access_Level of the type,
-- which can be one level too deep in some cases.
-- ???
if Is_Entity_Name (Prefix (Prev_Orig))
and then Is_Type (Entity (Prefix (Prev_Orig)))
then
Add_Extra_Actual
(Make_Integer_Literal (Loc,
Intval =>
Type_Access_Level
(Entity (Prefix (Prev_Orig)))),
Extra_Accessibility (Formal));
else
Add_Extra_Actual
(Make_Integer_Literal (Loc,
Intval =>
Object_Access_Level
(Prefix (Prev_Orig))),
Extra_Accessibility (Formal));
end if;
-- Treat the unchecked attributes as library-level
when Attribute_Unchecked_Access |
Attribute_Unrestricted_Access =>
Add_Extra_Actual
(Make_Integer_Literal (Loc,
Intval => Scope_Depth (Standard_Standard)),
Extra_Accessibility (Formal));
-- No other cases of attributes returning access
-- values that can be passed to access parameters.
when others =>
raise Program_Error;
end case;
-- For allocators we pass the level of the execution of the
-- called subprogram, which is one greater than the current
-- scope level.
when N_Allocator =>
Add_Extra_Actual
(Make_Integer_Literal (Loc,
Intval => Scope_Depth (Current_Scope) + 1),
Extra_Accessibility (Formal));
-- For most other cases we simply pass the level of the
-- actual's access type. The type is retrieved from
-- Prev rather than Prev_Orig, because in some cases
-- Prev_Orig denotes an original expression that has
-- not been analyzed.
when others =>
Add_Extra_Actual
(Dynamic_Accessibility_Level (Prev),
Extra_Accessibility (Formal));
end case;
end if;
end if;
-- Perform the check of 4.6(49) that prevents a null value from being
-- passed as an actual to an access parameter. Note that the check
-- is elided in the common cases of passing an access attribute or
-- access parameter as an actual. Also, we currently don't enforce
-- this check for expander-generated actuals and when -gnatdj is set.
if Ada_Version >= Ada_2005 then
-- Ada 2005 (AI-231): Check null-excluding access types. Note that
-- the intent of 6.4.1(13) is that null-exclusion checks should
-- not be done for 'out' parameters, even though it refers only
-- to constraint checks, and a null_exclusion is not a constraint.
-- Note that AI05-0196-1 corrects this mistake in the RM.
if Is_Access_Type (Etype (Formal))
and then Can_Never_Be_Null (Etype (Formal))
and then Ekind (Formal) /= E_Out_Parameter
and then Nkind (Prev) /= N_Raise_Constraint_Error
and then (Known_Null (Prev)
or else not Can_Never_Be_Null (Etype (Prev)))
then
Install_Null_Excluding_Check (Prev);
end if;
-- Ada_Version < Ada_2005
else
if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
or else Access_Checks_Suppressed (Subp)
then
null;
elsif Debug_Flag_J then
null;
elsif not Comes_From_Source (Prev) then
null;
elsif Is_Entity_Name (Prev)
and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
then
null;
elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
null;
-- Suppress null checks when passing to access parameters of Java
-- and CIL subprograms. (Should this be done for other foreign
-- conventions as well ???)
elsif Convention (Subp) = Convention_Java
or else Convention (Subp) = Convention_CIL
then
null;
else
Install_Null_Excluding_Check (Prev);
end if;
end if;
-- Perform appropriate validity checks on parameters that
-- are entities.
if Validity_Checks_On then
if (Ekind (Formal) = E_In_Parameter
and then Validity_Check_In_Params)
or else
(Ekind (Formal) = E_In_Out_Parameter
and then Validity_Check_In_Out_Params)
then
-- If the actual is an indexed component of a packed type (or
-- is an indexed or selected component whose prefix recursively
-- meets this condition), it has not been expanded yet. It will
-- be copied in the validity code that follows, and has to be
-- expanded appropriately, so reanalyze it.
-- What we do is just to unset analyzed bits on prefixes till
-- we reach something that does not have a prefix.
declare
Nod : Node_Id;
begin
Nod := Actual;
while Nkind_In (Nod, N_Indexed_Component,
N_Selected_Component)
loop
Set_Analyzed (Nod, False);
Nod := Prefix (Nod);
end loop;
end;
Ensure_Valid (Actual);
end if;
end if;
-- For Ada 2012, if a parameter is aliased, the actual must be a
-- tagged type or an aliased view of an object.
if Is_Aliased (Formal)
and then not Is_Aliased_View (Actual)
and then not Is_Tagged_Type (Etype (Formal))
then
Error_Msg_NE
("actual for aliased formal& must be aliased object",
Actual, Formal);
end if;
-- For IN OUT and OUT parameters, ensure that subscripts are valid
-- since this is a left side reference. We only do this for calls
-- from the source program since we assume that compiler generated
-- calls explicitly generate any required checks. We also need it
-- only if we are doing standard validity checks, since clearly it is
-- not needed if validity checks are off, and in subscript validity
-- checking mode, all indexed components are checked with a call
-- directly from Expand_N_Indexed_Component.
if Comes_From_Source (Call_Node)
and then Ekind (Formal) /= E_In_Parameter
and then Validity_Checks_On
and then Validity_Check_Default
and then not Validity_Check_Subscripts
then
Check_Valid_Lvalue_Subscripts (Actual);
end if;
-- Mark any scalar OUT parameter that is a simple variable as no
-- longer known to be valid (unless the type is always valid). This
-- reflects the fact that if an OUT parameter is never set in a
-- procedure, then it can become invalid on the procedure return.
if Ekind (Formal) = E_Out_Parameter
and then Is_Entity_Name (Actual)
and then Ekind (Entity (Actual)) = E_Variable
and then not Is_Known_Valid (Etype (Actual))
then
Set_Is_Known_Valid (Entity (Actual), False);
end if;
-- For an OUT or IN OUT parameter, if the actual is an entity, then
-- clear current values, since they can be clobbered. We are probably
-- doing this in more places than we need to, but better safe than
-- sorry when it comes to retaining bad current values!
if Ekind (Formal) /= E_In_Parameter
and then Is_Entity_Name (Actual)
and then Present (Entity (Actual))
then
declare
Ent : constant Entity_Id := Entity (Actual);
Sav : Node_Id;
begin
-- For an OUT or IN OUT parameter that is an assignable entity,
-- we do not want to clobber the Last_Assignment field, since
-- if it is set, it was precisely because it is indeed an OUT
-- or IN OUT parameter! We do reset the Is_Known_Valid flag
-- since the subprogram could have returned in invalid value.
if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
and then Is_Assignable (Ent)
then
Sav := Last_Assignment (Ent);
Kill_Current_Values (Ent);
Set_Last_Assignment (Ent, Sav);
Set_Is_Known_Valid (Ent, False);
-- For all other cases, just kill the current values
else
Kill_Current_Values (Ent);
end if;
end;
end if;
-- If the formal is class wide and the actual is an aggregate, force
-- evaluation so that the back end who does not know about class-wide
-- type, does not generate a temporary of the wrong size.
if not Is_Class_Wide_Type (Etype (Formal)) then
null;
elsif Nkind (Actual) = N_Aggregate
or else (Nkind (Actual) = N_Qualified_Expression
and then Nkind (Expression (Actual)) = N_Aggregate)
then
Force_Evaluation (Actual);
end if;
-- In a remote call, if the formal is of a class-wide type, check
-- that the actual meets the requirements described in E.4(18).
if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
Insert_Action (Actual,
Make_Transportable_Check (Loc,
Duplicate_Subexpr_Move_Checks (Actual)));
end if;
-- This label is required when skipping extra actual generation for
-- Unchecked_Union parameters.
<<Skip_Extra_Actual_Generation>>
Param_Count := Param_Count + 1;
Next_Actual (Actual);
Next_Formal (Formal);
end loop;
-- If we are calling an Ada 2012 function which needs to have the
-- "accessibility level determined by the point of call" (AI05-0234)
-- passed in to it, then pass it in.
if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
and then
Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
then
declare
Ancestor : Node_Id := Parent (Call_Node);
Level : Node_Id := Empty;
Defer : Boolean := False;
begin
-- Unimplemented: if Subp returns an anonymous access type, then
-- a) if the call is the operand of an explict conversion, then
-- the target type of the conversion (a named access type)
-- determines the accessibility level pass in;
-- b) if the call defines an access discriminant of an object
-- (e.g., the discriminant of an object being created by an
-- allocator, or the discriminant of a function result),
-- then the accessibility level to pass in is that of the
-- discriminated object being initialized).
-- ???
while Nkind (Ancestor) = N_Qualified_Expression
loop
Ancestor := Parent (Ancestor);
end loop;
case Nkind (Ancestor) is
when N_Allocator =>
-- At this point, we'd like to assign
-- Level := Dynamic_Accessibility_Level (Ancestor);
-- but Etype of Ancestor may not have been set yet,
-- so that doesn't work.
-- Handle this later in Expand_Allocator_Expression.
Defer := True;
when N_Object_Declaration | N_Object_Renaming_Declaration =>
declare
Def_Id : constant Entity_Id :=
Defining_Identifier (Ancestor);
begin
if Is_Return_Object (Def_Id) then
if Present (Extra_Accessibility_Of_Result
(Return_Applies_To (Scope (Def_Id))))
then
-- Pass along value that was passed in if the
-- routine we are returning from also has an
-- Accessibility_Of_Result formal.
Level :=
New_Occurrence_Of
(Extra_Accessibility_Of_Result
(Return_Applies_To (Scope (Def_Id))), Loc);
end if;
else
Level :=
Make_Integer_Literal (Loc,
Intval => Object_Access_Level (Def_Id));
end if;
end;
when N_Simple_Return_Statement =>
if Present (Extra_Accessibility_Of_Result
(Return_Applies_To
(Return_Statement_Entity (Ancestor))))
then
-- Pass along value that was passed in if the routine
-- we are returning from also has an
-- Accessibility_Of_Result formal.
Level :=
New_Occurrence_Of
(Extra_Accessibility_Of_Result
(Return_Applies_To
(Return_Statement_Entity (Ancestor))), Loc);
end if;
when others =>
null;
end case;
if not Defer then
if not Present (Level) then
-- The "innermost master that evaluates the function call".
-- ??? - Should we use Integer'Last here instead in order
-- to deal with (some of) the problems associated with
-- calls to subps whose enclosing scope is unknown (e.g.,
-- Anon_Access_To_Subp_Param.all)?
Level := Make_Integer_Literal (Loc,
Scope_Depth (Current_Scope) + 1);
end if;
Add_Extra_Actual
(Level,
Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
end if;
end;
end if;
-- If we are expanding the RHS of an assignment we need to check if tag
-- propagation is needed. You might expect this processing to be in
-- Analyze_Assignment but has to be done earlier (bottom-up) because the
-- assignment might be transformed to a declaration for an unconstrained
-- value if the expression is classwide.
if Nkind (Call_Node) = N_Function_Call
and then Is_Tag_Indeterminate (Call_Node)
and then Is_Entity_Name (Name (Call_Node))
then
declare
Ass : Node_Id := Empty;
begin
if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
Ass := Parent (Call_Node);
elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
and then Nkind (Parent (Parent (Call_Node))) =
N_Assignment_Statement
then
Ass := Parent (Parent (Call_Node));
elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
and then Nkind (Parent (Parent (Call_Node))) =
N_Assignment_Statement
then
Ass := Parent (Parent (Call_Node));
end if;
if Present (Ass)
and then Is_Class_Wide_Type (Etype (Name (Ass)))
then
if Is_Access_Type (Etype (Call_Node)) then
if Designated_Type (Etype (Call_Node)) /=
Root_Type (Etype (Name (Ass)))
then
Error_Msg_NE
("tag-indeterminate expression "
& " must have designated type& (RM 5.2 (6))",
Call_Node, Root_Type (Etype (Name (Ass))));
else
Propagate_Tag (Name (Ass), Call_Node);
end if;
elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
Error_Msg_NE
("tag-indeterminate expression must have type&"
& "(RM 5.2 (6))",
Call_Node, Root_Type (Etype (Name (Ass))));
else
Propagate_Tag (Name (Ass), Call_Node);
end if;
-- The call will be rewritten as a dispatching call, and
-- expanded as such.
return;
end if;
end;
end if;
-- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
-- it to point to the correct secondary virtual table
if Nkind (Call_Node) in N_Subprogram_Call
and then CW_Interface_Formals_Present
then
Expand_Interface_Actuals (Call_Node);
end if;
-- Deals with Dispatch_Call if we still have a call, before expanding
-- extra actuals since this will be done on the re-analysis of the
-- dispatching call. Note that we do not try to shorten the actual list
-- for a dispatching call, it would not make sense to do so. Expansion
-- of dispatching calls is suppressed when VM_Target, because the VM
-- back-ends directly handle the generation of dispatching calls and
-- would have to undo any expansion to an indirect call.
if Nkind (Call_Node) in N_Subprogram_Call
and then Present (Controlling_Argument (Call_Node))
then
declare
Call_Typ : constant Entity_Id := Etype (Call_Node);
Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
Eq_Prim_Op : Entity_Id := Empty;
New_Call : Node_Id;
Param : Node_Id;
Prev_Call : Node_Id;
begin
if not Is_Limited_Type (Typ) then
Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
end if;
if Tagged_Type_Expansion then
Expand_Dispatching_Call (Call_Node);
-- The following return is worrisome. Is it really OK to skip
-- all remaining processing in this procedure ???
return;
-- VM targets
else
Apply_Tag_Checks (Call_Node);
-- If this is a dispatching "=", we must first compare the
-- tags so we generate: x.tag = y.tag and then x = y
if Subp = Eq_Prim_Op then
-- Mark the node as analyzed to avoid reanalizing this
-- dispatching call (which would cause a never-ending loop)
Prev_Call := Relocate_Node (Call_Node);
Set_Analyzed (Prev_Call);
Param := First_Actual (Call_Node);
New_Call :=
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Selected_Component (Loc,
Prefix => New_Value (Param),
Selector_Name =>
New_Reference_To (First_Tag_Component (Typ),
Loc)),
Right_Opnd =>
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Typ,
New_Value (Next_Actual (Param))),
Selector_Name =>
New_Reference_To
(First_Tag_Component (Typ), Loc))),
Right_Opnd => Prev_Call);
Rewrite (Call_Node, New_Call);
Analyze_And_Resolve
(Call_Node, Call_Typ, Suppress => All_Checks);
end if;
-- Expansion of a dispatching call results in an indirect call,
-- which in turn causes current values to be killed (see
-- Resolve_Call), so on VM targets we do the call here to
-- ensure consistent warnings between VM and non-VM targets.
Kill_Current_Values;
end if;
-- If this is a dispatching "=" then we must update the reference
-- to the call node because we generated:
-- x.tag = y.tag and then x = y
if Subp = Eq_Prim_Op then
Call_Node := Right_Opnd (Call_Node);
end if;
end;
end if;
-- Similarly, expand calls to RCI subprograms on which pragma
-- All_Calls_Remote applies. The rewriting will be reanalyzed
-- later. Do this only when the call comes from source since we
-- do not want such a rewriting to occur in expanded code.
if Is_All_Remote_Call (Call_Node) then
Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
-- Similarly, do not add extra actuals for an entry call whose entity
-- is a protected procedure, or for an internal protected subprogram
-- call, because it will be rewritten as a protected subprogram call
-- and reanalyzed (see Expand_Protected_Subprogram_Call).
elsif Is_Protected_Type (Scope (Subp))
and then (Ekind (Subp) = E_Procedure
or else Ekind (Subp) = E_Function)
then
null;
-- During that loop we gathered the extra actuals (the ones that
-- correspond to Extra_Formals), so now they can be appended.
else
while Is_Non_Empty_List (Extra_Actuals) loop
Add_Actual_Parameter (Remove_Head (Extra_Actuals));
end loop;
end if;
-- At this point we have all the actuals, so this is the point at which
-- the various expansion activities for actuals is carried out.
Expand_Actuals (Call_Node, Subp);
-- Verify that the actuals do not share storage. This check must be done
-- on the caller side rather that inside the subprogram to avoid issues
-- of parameter passing.
if Check_Aliasing_Of_Parameters then
Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
end if;
-- If the subprogram is a renaming, or if it is inherited, replace it in
-- the call with the name of the actual subprogram being called. If this
-- is a dispatching call, the run-time decides what to call. The Alias
-- attribute does not apply to entries.
if Nkind (Call_Node) /= N_Entry_Call_Statement
and then No (Controlling_Argument (Call_Node))
and then Present (Parent_Subp)
and then not Is_Direct_Deep_Call (Subp)
then
if Present (Inherited_From_Formal (Subp)) then
Parent_Subp := Inherited_From_Formal (Subp);
else
Parent_Subp := Ultimate_Alias (Parent_Subp);
end if;
-- The below setting of Entity is suspect, see F109-018 discussion???
Set_Entity (Name (Call_Node), Parent_Subp);
if Is_Abstract_Subprogram (Parent_Subp)
and then not In_Instance
then
Error_Msg_NE
("cannot call abstract subprogram &!",
Name (Call_Node), Parent_Subp);
end if;
-- Inspect all formals of derived subprogram Subp. Compare parameter
-- types with the parent subprogram and check whether an actual may
-- need a type conversion to the corresponding formal of the parent
-- subprogram.
-- Not clear whether intrinsic subprograms need such conversions. ???
if not Is_Intrinsic_Subprogram (Parent_Subp)
or else Is_Generic_Instance (Parent_Subp)
then
declare
procedure Convert (Act : Node_Id; Typ : Entity_Id);
-- Rewrite node Act as a type conversion of Act to Typ. Analyze
-- and resolve the newly generated construct.
-------------
-- Convert --
-------------
procedure Convert (Act : Node_Id; Typ : Entity_Id) is
begin
Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
Analyze (Act);
Resolve (Act, Typ);
end Convert;
-- Local variables
Actual_Typ : Entity_Id;
Formal_Typ : Entity_Id;
Parent_Typ : Entity_Id;
begin
Actual := First_Actual (Call_Node);
Formal := First_Formal (Subp);
Parent_Formal := First_Formal (Parent_Subp);
while Present (Formal) loop
Actual_Typ := Etype (Actual);
Formal_Typ := Etype (Formal);
Parent_Typ := Etype (Parent_Formal);
-- For an IN parameter of a scalar type, the parent formal
-- type and derived formal type differ or the parent formal
-- type and actual type do not match statically.
if Is_Scalar_Type (Formal_Typ)
and then Ekind (Formal) = E_In_Parameter
and then Formal_Typ /= Parent_Typ
and then
not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
and then not Raises_Constraint_Error (Actual)
then
Convert (Actual, Parent_Typ);
Enable_Range_Check (Actual);
-- If the actual has been marked as requiring a range
-- check, then generate it here.
if Do_Range_Check (Actual) then
Set_Do_Range_Check (Actual, False);
Generate_Range_Check
(Actual, Etype (Formal), CE_Range_Check_Failed);
end if;
-- For access types, the parent formal type and actual type
-- differ.
elsif Is_Access_Type (Formal_Typ)
and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
then
if Ekind (Formal) /= E_In_Parameter then
Convert (Actual, Parent_Typ);
elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
and then Designated_Type (Parent_Typ) /=
Designated_Type (Actual_Typ)
and then not Is_Controlling_Formal (Formal)
then
-- This unchecked conversion is not necessary unless
-- inlining is enabled, because in that case the type
-- mismatch may become visible in the body about to be
-- inlined.
Rewrite (Actual,
Unchecked_Convert_To (Parent_Typ,
Relocate_Node (Actual)));
Analyze (Actual);
Resolve (Actual, Parent_Typ);
end if;
-- For array and record types, the parent formal type and
-- derived formal type have different sizes or pragma Pack
-- status.
elsif ((Is_Array_Type (Formal_Typ)
and then Is_Array_Type (Parent_Typ))
or else
(Is_Record_Type (Formal_Typ)
and then Is_Record_Type (Parent_Typ)))
and then
(Esize (Formal_Typ) /= Esize (Parent_Typ)
or else Has_Pragma_Pack (Formal_Typ) /=
Has_Pragma_Pack (Parent_Typ))
then
Convert (Actual, Parent_Typ);
end if;
Next_Actual (Actual);
Next_Formal (Formal);
Next_Formal (Parent_Formal);
end loop;
end;
end if;
Orig_Subp := Subp;
Subp := Parent_Subp;
end if;
-- Check for violation of No_Abort_Statements
if Restriction_Check_Required (No_Abort_Statements)
and then Is_RTE (Subp, RE_Abort_Task)
then
Check_Restriction (No_Abort_Statements, Call_Node);
-- Check for violation of No_Dynamic_Attachment
elsif Restriction_Check_Required (No_Dynamic_Attachment)
and then RTU_Loaded (Ada_Interrupts)
and then (Is_RTE (Subp, RE_Is_Reserved) or else
Is_RTE (Subp, RE_Is_Attached) or else
Is_RTE (Subp, RE_Current_Handler) or else
Is_RTE (Subp, RE_Attach_Handler) or else
Is_RTE (Subp, RE_Exchange_Handler) or else
Is_RTE (Subp, RE_Detach_Handler) or else
Is_RTE (Subp, RE_Reference))
then
Check_Restriction (No_Dynamic_Attachment, Call_Node);
end if;
-- Deal with case where call is an explicit dereference
if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
-- Handle case of access to protected subprogram type
if Is_Access_Protected_Subprogram_Type
(Base_Type (Etype (Prefix (Name (Call_Node)))))
then
-- If this is a call through an access to protected operation, the
-- prefix has the form (object'address, operation'access). Rewrite
-- as a for other protected calls: the object is the 1st parameter
-- of the list of actuals.
declare
Call : Node_Id;
Parm : List_Id;
Nam : Node_Id;
Obj : Node_Id;
Ptr : constant Node_Id := Prefix (Name (Call_Node));
T : constant Entity_Id :=
Equivalent_Type (Base_Type (Etype (Ptr)));
D_T : constant Entity_Id :=
Designated_Type (Base_Type (Etype (Ptr)));
begin
Obj :=
Make_Selected_Component (Loc,
Prefix => Unchecked_Convert_To (T, Ptr),
Selector_Name =>
New_Occurrence_Of (First_Entity (T), Loc));
Nam :=
Make_Selected_Component (Loc,
Prefix => Unchecked_Convert_To (T, Ptr),
Selector_Name =>
New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
Nam :=
Make_Explicit_Dereference (Loc,
Prefix => Nam);
if Present (Parameter_Associations (Call_Node)) then
Parm := Parameter_Associations (Call_Node);
else
Parm := New_List;
end if;
Prepend (Obj, Parm);
if Etype (D_T) = Standard_Void_Type then
Call :=
Make_Procedure_Call_Statement (Loc,
Name => Nam,
Parameter_Associations => Parm);
else
Call :=
Make_Function_Call (Loc,
Name => Nam,
Parameter_Associations => Parm);
end if;
Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
Set_Etype (Call, Etype (D_T));
-- We do not re-analyze the call to avoid infinite recursion.
-- We analyze separately the prefix and the object, and set
-- the checks on the prefix that would otherwise be emitted
-- when resolving a call.
Rewrite (Call_Node, Call);
Analyze (Nam);
Apply_Access_Check (Nam);
Analyze (Obj);
return;
end;
end if;
end if;
-- If this is a call to an intrinsic subprogram, then perform the
-- appropriate expansion to the corresponding tree node and we
-- are all done (since after that the call is gone!)
-- In the case where the intrinsic is to be processed by the back end,
-- the call to Expand_Intrinsic_Call will do nothing, which is fine,
-- since the idea in this case is to pass the call unchanged. If the
-- intrinsic is an inherited unchecked conversion, and the derived type
-- is the target type of the conversion, we must retain it as the return
-- type of the expression. Otherwise the expansion below, which uses the
-- parent operation, will yield the wrong type.
if Is_Intrinsic_Subprogram (Subp) then
Expand_Intrinsic_Call (Call_Node, Subp);
if Nkind (Call_Node) = N_Unchecked_Type_Conversion
and then Parent_Subp /= Orig_Subp
and then Etype (Parent_Subp) /= Etype (Orig_Subp)
then
Set_Etype (Call_Node, Etype (Orig_Subp));
end if;
return;
end if;
if Ekind_In (Subp, E_Function, E_Procedure) then
-- We perform two simple optimization on calls:
-- a) replace calls to null procedures unconditionally;
-- b) for To_Address, just do an unchecked conversion. Not only is
-- this efficient, but it also avoids order of elaboration problems
-- when address clauses are inlined (address expression elaborated
-- at the wrong point).
-- We perform these optimization regardless of whether we are in the
-- main unit or in a unit in the context of the main unit, to ensure
-- that tree generated is the same in both cases, for CodePeer use.
if Is_RTE (Subp, RE_To_Address) then
Rewrite (Call_Node,
Unchecked_Convert_To
(RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
return;
elsif Is_Null_Procedure (Subp) then
Rewrite (Call_Node, Make_Null_Statement (Loc));
return;
end if;
-- Handle inlining (old semantics)
if Is_Inlined (Subp) and then not Debug_Flag_Dot_K then
Inlined_Subprogram : declare
Bod : Node_Id;
Must_Inline : Boolean := False;
Spec : constant Node_Id := Unit_Declaration_Node (Subp);
begin
-- Verify that the body to inline has already been seen, and
-- that if the body is in the current unit the inlining does
-- not occur earlier. This avoids order-of-elaboration problems
-- in the back end.
-- This should be documented in sinfo/einfo ???
if No (Spec)
or else Nkind (Spec) /= N_Subprogram_Declaration
or else No (Body_To_Inline (Spec))
then
Must_Inline := False;
-- If this an inherited function that returns a private type,
-- do not inline if the full view is an unconstrained array,
-- because such calls cannot be inlined.
elsif Present (Orig_Subp)
and then Is_Array_Type (Etype (Orig_Subp))
and then not Is_Constrained (Etype (Orig_Subp))
then
Must_Inline := False;
elsif In_Unfrozen_Instance (Scope (Subp)) then
Must_Inline := False;
else
Bod := Body_To_Inline (Spec);
if (In_Extended_Main_Code_Unit (Call_Node)
or else In_Extended_Main_Code_Unit (Parent (Call_Node))
or else Has_Pragma_Inline_Always (Subp))
and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
or else
Earlier_In_Extended_Unit (Sloc (Bod), Loc))
then
Must_Inline := True;
-- If we are compiling a package body that is not the main
-- unit, it must be for inlining/instantiation purposes,
-- in which case we inline the call to insure that the same
-- temporaries are generated when compiling the body by
-- itself. Otherwise link errors can occur.
-- If the function being called is itself in the main unit,
-- we cannot inline, because there is a risk of double
-- elaboration and/or circularity: the inlining can make
-- visible a private entity in the body of the main unit,
-- that gigi will see before its sees its proper definition.
elsif not (In_Extended_Main_Code_Unit (Call_Node))
and then In_Package_Body
then
Must_Inline := not In_Extended_Main_Source_Unit (Subp);
end if;
end if;
if Must_Inline then
Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
else
-- Let the back end handle it
Add_Inlined_Body (Subp);
if Front_End_Inlining
and then Nkind (Spec) = N_Subprogram_Declaration
and then (In_Extended_Main_Code_Unit (Call_Node))
and then No (Body_To_Inline (Spec))
and then not Has_Completion (Subp)
and then In_Same_Extended_Unit (Sloc (Spec), Loc)
then
Cannot_Inline
("cannot inline& (body not seen yet)?",
Call_Node, Subp);
end if;
end if;
end Inlined_Subprogram;
-- Handle inlining (new semantics)
elsif Is_Inlined (Subp) then
declare
Spec : constant Node_Id := Unit_Declaration_Node (Subp);
begin
if Must_Inline (Subp) then
if In_Extended_Main_Code_Unit (Call_Node)
and then In_Same_Extended_Unit (Sloc (Spec), Loc)
and then not Has_Completion (Subp)
then
Cannot_Inline
("cannot inline& (body not seen yet)?",
Call_Node, Subp);
else
Do_Inline_Always (Subp, Orig_Subp);
end if;
elsif Optimization_Level > 0 then
Do_Inline (Subp, Orig_Subp);
end if;
-- The call may have been inlined or may have been passed to
-- the backend. No further action needed if it was inlined.
if Nkind (N) /= N_Function_Call then
return;
end if;
end;
end if;
end if;
-- Check for protected subprogram. This is either an intra-object call,
-- or a protected function call. Protected procedure calls are rewritten
-- as entry calls and handled accordingly.
-- In Ada 2005, this may be an indirect call to an access parameter that
-- is an access_to_subprogram. In that case the anonymous type has a
-- scope that is a protected operation, but the call is a regular one.
-- In either case do not expand call if subprogram is eliminated.
Scop := Scope (Subp);
if Nkind (Call_Node) /= N_Entry_Call_Statement
and then Is_Protected_Type (Scop)
and then Ekind (Subp) /= E_Subprogram_Type
and then not Is_Eliminated (Subp)
then
-- If the call is an internal one, it is rewritten as a call to the
-- corresponding unprotected subprogram.
Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
end if;
-- Functions returning controlled objects need special attention. If
-- the return type is limited, then the context is initialization and
-- different processing applies. If the call is to a protected function,
-- the expansion above will call Expand_Call recursively. Otherwise the
-- function call is transformed into a temporary which obtains the
-- result from the secondary stack.
if Needs_Finalization (Etype (Subp)) then
if not Is_Limited_View (Etype (Subp))
and then
(No (First_Formal (Subp))
or else
not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
then
Expand_Ctrl_Function_Call (Call_Node);
-- Build-in-place function calls which appear in anonymous contexts
-- need a transient scope to ensure the proper finalization of the
-- intermediate result after its use.
elsif Is_Build_In_Place_Function_Call (Call_Node)
and then
Nkind_In (Parent (Call_Node), N_Attribute_Reference,
N_Function_Call,
N_Indexed_Component,
N_Object_Renaming_Declaration,
N_Procedure_Call_Statement,
N_Selected_Component,
N_Slice)
then
Establish_Transient_Scope (Call_Node, Sec_Stack => True);
end if;
end if;
-- Test for First_Optional_Parameter, and if so, truncate parameter list
-- if there are optional parameters at the trailing end.
-- Note: we never delete procedures for call via a pointer.
if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
and then Present (First_Optional_Parameter (Subp))
then
declare
Last_Keep_Arg : Node_Id;
begin
-- Last_Keep_Arg will hold the last actual that should be kept.
-- If it remains empty at the end, it means that all parameters
-- are optional.
Last_Keep_Arg := Empty;
-- Find first optional parameter, must be present since we checked
-- the validity of the parameter before setting it.
Formal := First_Formal (Subp);
Actual := First_Actual (Call_Node);
while Formal /= First_Optional_Parameter (Subp) loop
Last_Keep_Arg := Actual;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
-- We have Formal and Actual pointing to the first potentially
-- droppable argument. We can drop all the trailing arguments
-- whose actual matches the default. Note that we know that all
-- remaining formals have defaults, because we checked that this
-- requirement was met before setting First_Optional_Parameter.
-- We use Fully_Conformant_Expressions to check for identity
-- between formals and actuals, which may miss some cases, but
-- on the other hand, this is only an optimization (if we fail
-- to truncate a parameter it does not affect functionality).
-- So if the default is 3 and the actual is 1+2, we consider
-- them unequal, which hardly seems worrisome.
while Present (Formal) loop
if not Fully_Conformant_Expressions
(Actual, Default_Value (Formal))
then
Last_Keep_Arg := Actual;
end if;
Next_Formal (Formal);
Next_Actual (Actual);
end loop;
-- If no arguments, delete entire list, this is the easy case
if No (Last_Keep_Arg) then
Set_Parameter_Associations (Call_Node, No_List);
Set_First_Named_Actual (Call_Node, Empty);
-- Case where at the last retained argument is positional. This
-- is also an easy case, since the retained arguments are already
-- in the right form, and we don't need to worry about the order
-- of arguments that get eliminated.
elsif Is_List_Member (Last_Keep_Arg) then
while Present (Next (Last_Keep_Arg)) loop
Discard_Node (Remove_Next (Last_Keep_Arg));
end loop;
Set_First_Named_Actual (Call_Node, Empty);
-- This is the annoying case where the last retained argument
-- is a named parameter. Since the original arguments are not
-- in declaration order, we may have to delete some fairly
-- random collection of arguments.
else
declare
Temp : Node_Id;
Passoc : Node_Id;
begin
-- First step, remove all the named parameters from the
-- list (they are still chained using First_Named_Actual
-- and Next_Named_Actual, so we have not lost them!)
Temp := First (Parameter_Associations (Call_Node));
-- Case of all parameters named, remove them all
if Nkind (Temp) = N_Parameter_Association then
-- Suppress warnings to avoid warning on possible
-- infinite loop (because Call_Node is not modified).
pragma Warnings (Off);
while Is_Non_Empty_List
(Parameter_Associations (Call_Node))
loop
Temp :=
Remove_Head (Parameter_Associations (Call_Node));
end loop;
pragma Warnings (On);
-- Case of mixed positional/named, remove named parameters
else
while Nkind (Next (Temp)) /= N_Parameter_Association loop
Next (Temp);
end loop;
while Present (Next (Temp)) loop
Remove (Next (Temp));
end loop;
end if;
-- Now we loop through the named parameters, till we get
-- to the last one to be retained, adding them to the list.
-- Note that the Next_Named_Actual list does not need to be
-- touched since we are only reordering them on the actual
-- parameter association list.
Passoc := Parent (First_Named_Actual (Call_Node));
loop
Temp := Relocate_Node (Passoc);
Append_To
(Parameter_Associations (Call_Node), Temp);
exit when
Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
Passoc := Parent (Next_Named_Actual (Passoc));
end loop;
Set_Next_Named_Actual (Temp, Empty);
loop
Temp := Next_Named_Actual (Passoc);
exit when No (Temp);
Set_Next_Named_Actual
(Passoc, Next_Named_Actual (Parent (Temp)));
end loop;
end;
end if;
end;
end if;
end Expand_Call;
---------------------------
-- Expand_Contract_Cases --
---------------------------
-- Pragma Contract_Cases is expanded in the following manner:
-- subprogram S is
-- Flag_1 : Boolean := False;
-- . . .
-- Flag_N : Boolean := False;
-- Flag_N+1 : Boolean := False; -- when "others" present
-- Count : Natural := 0;
-- <preconditions (if any)>
-- if Case_Guard_1 then
-- Flag_1 := True;
-- Count := Count + 1;
-- end if;
-- . . .
-- if Case_Guard_N then
-- Flag_N := True;
-- Count := Count + 1;
-- end if;
-- if Count = 0 then
-- raise Assertion_Error with "xxx contract cases incomplete";
-- <or>
-- Flag_N+1 := True; -- when "others" present
-- elsif Count > 1 then
-- declare
-- Str0 : constant String :=
-- "contract cases overlap for subprogram ABC";
-- Str1 : constant String :=
-- (if Flag_1 then
-- Str0 & "case guard at xxx evaluates to True"
-- else Str0);
-- StrN : constant String :=
-- (if Flag_N then
-- StrN-1 & "case guard at xxx evaluates to True"
-- else StrN-1);
-- begin
-- raise Assertion_Error with StrN;
-- end;
-- end if;
-- procedure _Postconditions is
-- begin
-- <postconditions (if any)>
-- if Flag_1 and then not Consequence_1 then
-- raise Assertion_Error with "failed contract case at xxx";
-- end if;
-- . . .
-- if Flag_N[+1] and then not Consequence_N[+1] then
-- raise Assertion_Error with "failed contract case at xxx";
-- end if;
-- end _Postconditions;
-- begin
-- . . .
-- end S;
procedure Expand_Contract_Cases
(CCs : Node_Id;
Subp_Id : Entity_Id;
Decls : List_Id;
Stmts : in out List_Id)
is
Loc : constant Source_Ptr := Sloc (CCs);
procedure Case_Guard_Error
(Decls : List_Id;
Flag : Entity_Id;
Error_Loc : Source_Ptr;
Msg : in out Entity_Id);
-- Given a declarative list Decls, status flag Flag, the location of the
-- error and a string Msg, construct the following check:
-- Msg : constant String :=
-- (if Flag then
-- Msg & "case guard at Error_Loc evaluates to True"
-- else Msg);
-- The resulting code is added to Decls
procedure Consequence_Error
(Checks : in out Node_Id;
Flag : Entity_Id;
Conseq : Node_Id);
-- Given an if statement Checks, status flag Flag and a consequence
-- Conseq, construct the following check:
-- [els]if Flag and then not Conseq then
-- raise Assertion_Error
-- with "failed contract case at Sloc (Conseq)";
-- [end if;]
-- The resulting code is added to Checks
function Declaration_Of (Id : Entity_Id) return Node_Id;
-- Given the entity Id of a boolean flag, generate:
-- Id : Boolean := False;
function Increment (Id : Entity_Id) return Node_Id;
-- Given the entity Id of a numerical variable, generate:
-- Id := Id + 1;
function Set (Id : Entity_Id) return Node_Id;
-- Given the entity Id of a boolean variable, generate:
-- Id := True;
----------------------
-- Case_Guard_Error --
----------------------
procedure Case_Guard_Error
(Decls : List_Id;
Flag : Entity_Id;
Error_Loc : Source_Ptr;
Msg : in out Entity_Id)
is
New_Line : constant Character := Character'Val (10);
New_Msg : constant Entity_Id := Make_Temporary (Loc, 'S');
begin
Start_String;
Store_String_Char (New_Line);
Store_String_Chars (" case guard at ");
Store_String_Chars (Build_Location_String (Error_Loc));
Store_String_Chars (" evaluates to True");
-- Generate:
-- New_Msg : constant String :=
-- (if Flag then
-- Msg & "case guard at Error_Loc evaluates to True"
-- else Msg);
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => New_Msg,
Constant_Present => True,
Object_Definition => New_Reference_To (Standard_String, Loc),
Expression =>
Make_If_Expression (Loc,
Expressions => New_List (
New_Reference_To (Flag, Loc),
Make_Op_Concat (Loc,
Left_Opnd => New_Reference_To (Msg, Loc),
Right_Opnd => Make_String_Literal (Loc, End_String)),
New_Reference_To (Msg, Loc)))));
Msg := New_Msg;
end Case_Guard_Error;
-----------------------
-- Consequence_Error --
-----------------------
procedure Consequence_Error
(Checks : in out Node_Id;
Flag : Entity_Id;
Conseq : Node_Id)
is
Cond : Node_Id;
Error : Node_Id;
begin
-- Generate:
-- Flag and then not Conseq
Cond :=
Make_And_Then (Loc,
Left_Opnd => New_Reference_To (Flag, Loc),
Right_Opnd =>
Make_Op_Not (Loc,
Right_Opnd => Relocate_Node (Conseq)));
-- Generate:
-- raise Assertion_Error
-- with "failed contract case at Sloc (Conseq)";
Start_String;
Store_String_Chars ("failed contract case at ");
Store_String_Chars (Build_Location_String (Sloc (Conseq)));
Error :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To (RTE (RE_Raise_Assert_Failure), Loc),
Parameter_Associations => New_List (
Make_String_Literal (Loc, End_String)));
if No (Checks) then
Checks :=
Make_Implicit_If_Statement (CCs,
Condition => Cond,
Then_Statements => New_List (Error));
else
if No (Elsif_Parts (Checks)) then
Set_Elsif_Parts (Checks, New_List);
end if;
Append_To (Elsif_Parts (Checks),
Make_Elsif_Part (Loc,
Condition => Cond,
Then_Statements => New_List (Error)));
end if;
end Consequence_Error;
--------------------
-- Declaration_Of --
--------------------
function Declaration_Of (Id : Entity_Id) return Node_Id is
begin
return
Make_Object_Declaration (Loc,
Defining_Identifier => Id,
Object_Definition => New_Reference_To (Standard_Boolean, Loc),
Expression => New_Reference_To (Standard_False, Loc));
end Declaration_Of;
---------------
-- Increment --
---------------
function Increment (Id : Entity_Id) return Node_Id is
begin
return
Make_Assignment_Statement (Loc,
Name => New_Reference_To (Id, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Reference_To (Id, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
end Increment;
---------
-- Set --
---------
function Set (Id : Entity_Id) return Node_Id is
begin
return
Make_Assignment_Statement (Loc,
Name => New_Reference_To (Id, Loc),
Expression => New_Reference_To (Standard_True, Loc));
end Set;
-- Local variables
Aggr : constant Node_Id :=
Expression (First
(Pragma_Argument_Associations (CCs)));
Case_Guard : Node_Id;
CG_Checks : Node_Id;
CG_Stmts : List_Id;
Conseq : Node_Id;
Conseq_Checks : Node_Id := Empty;
Count : Entity_Id;
Error_Decls : List_Id;
Flag : Entity_Id;
Msg_Str : Entity_Id;
Multiple_PCs : Boolean;
Others_Flag : Entity_Id := Empty;
Post_Case : Node_Id;
-- Start of processing for Expand_Contract_Cases
begin
-- Do nothing if pragma is not enabled. If pragma is disabled, it has
-- already been rewritten as a Null statement.
if Is_Ignored (CCs) then
return;
-- Guard against malformed contract cases
elsif Nkind (Aggr) /= N_Aggregate then
return;
end if;
Multiple_PCs := List_Length (Component_Associations (Aggr)) > 1;
-- Create the counter which tracks the number of case guards that
-- evaluate to True.
-- Count : Natural := 0;
Count := Make_Temporary (Loc, 'C');
Prepend_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Count,
Object_Definition => New_Reference_To (Standard_Natural, Loc),
Expression => Make_Integer_Literal (Loc, 0)));
-- Create the base error message for multiple overlapping case guards
-- Msg_Str : constant String :=
-- "contract cases overlap for subprogram Subp_Id";
if Multiple_PCs then
Msg_Str := Make_Temporary (Loc, 'S');
Start_String;
Store_String_Chars ("contract cases overlap for subprogram ");
Store_String_Chars (Get_Name_String (Chars (Subp_Id)));
Error_Decls := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Msg_Str,
Constant_Present => True,
Object_Definition => New_Reference_To (Standard_String, Loc),
Expression => Make_String_Literal (Loc, End_String)));
end if;
-- Process individual post cases
Post_Case := First (Component_Associations (Aggr));
while Present (Post_Case) loop
Case_Guard := First (Choices (Post_Case));
Conseq := Expression (Post_Case);
-- The "others" choice requires special processing
if Nkind (Case_Guard) = N_Others_Choice then
Others_Flag := Make_Temporary (Loc, 'F');
Prepend_To (Decls, Declaration_Of (Others_Flag));
-- Check possible overlap between a case guard and "others"
if Multiple_PCs and Exception_Extra_Info then
Case_Guard_Error
(Decls => Error_Decls,
Flag => Others_Flag,
Error_Loc => Sloc (Case_Guard),
Msg => Msg_Str);
end if;
-- Check the corresponding consequence of "others"
Consequence_Error
(Checks => Conseq_Checks,
Flag => Others_Flag,
Conseq => Conseq);
-- Regular post case
else
-- Create the flag which tracks the state of its associated case
-- guard.
Flag := Make_Temporary (Loc, 'F');
Prepend_To (Decls, Declaration_Of (Flag));
-- The flag is set when the case guard is evaluated to True
-- if Case_Guard then
-- Flag := True;
-- Count := Count + 1;
-- end if;
Append_To (Decls,
Make_Implicit_If_Statement (CCs,
Condition => Relocate_Node (Case_Guard),
Then_Statements => New_List (
Set (Flag),
Increment (Count))));
-- Check whether this case guard overlaps with another one
if Multiple_PCs and Exception_Extra_Info then
Case_Guard_Error
(Decls => Error_Decls,
Flag => Flag,
Error_Loc => Sloc (Case_Guard),
Msg => Msg_Str);
end if;
-- The corresponding consequence of the case guard which evaluated
-- to True must hold on exit from the subprogram.
Consequence_Error
(Checks => Conseq_Checks,
Flag => Flag,
Conseq => Conseq);
end if;
Next (Post_Case);
end loop;
-- Raise Assertion_Error when none of the case guards evaluate to True.
-- The only exception is when we have "others", in which case there is
-- no error because "others" acts as a default True.
-- Generate:
-- Flag := True;
if Present (Others_Flag) then
CG_Stmts := New_List (Set (Others_Flag));
-- Generate:
-- raise Assertion_Error with "xxx contract cases incomplete";
else
Start_String;
Store_String_Chars (Build_Location_String (Loc));
Store_String_Chars (" contract cases incomplete");
CG_Stmts := New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To (RTE (RE_Raise_Assert_Failure), Loc),
Parameter_Associations => New_List (
Make_String_Literal (Loc, End_String))));
end if;
CG_Checks :=
Make_Implicit_If_Statement (CCs,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Reference_To (Count, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Then_Statements => CG_Stmts);
-- Detect a possible failure due to several case guards evaluating to
-- True.
-- Generate:
-- elsif Count > 0 then
-- declare
-- <Error_Decls>
-- begin
-- raise Assertion_Error with <Msg_Str>;
-- end if;
if Multiple_PCs then
Set_Elsif_Parts (CG_Checks, New_List (
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Gt (Loc,
Left_Opnd => New_Reference_To (Count, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1)),
Then_Statements => New_List (
Make_Block_Statement (Loc,
Declarations => Error_Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To
(RTE (RE_Raise_Assert_Failure), Loc),
Parameter_Associations => New_List (
New_Reference_To (Msg_Str, Loc))))))))));
end if;
Append_To (Decls, CG_Checks);
-- Raise Assertion_Error when the corresponding consequence of a case
-- guard that evaluated to True fails.
if No (Stmts) then
Stmts := New_List;
end if;
Append_To (Stmts, Conseq_Checks);
end Expand_Contract_Cases;
-------------------------------
-- Expand_Ctrl_Function_Call --
-------------------------------
procedure Expand_Ctrl_Function_Call (N : Node_Id) is
begin
-- Optimization, if the returned value (which is on the sec-stack) is
-- returned again, no need to copy/readjust/finalize, we can just pass
-- the value thru (see Expand_N_Simple_Return_Statement), and thus no
-- attachment is needed
if Nkind (Parent (N)) = N_Simple_Return_Statement then
return;
end if;
-- Resolution is now finished, make sure we don't start analysis again
-- because of the duplication.
Set_Analyzed (N);
-- A function which returns a controlled object uses the secondary
-- stack. Rewrite the call into a temporary which obtains the result of
-- the function using 'reference.
Remove_Side_Effects (N);
-- When the temporary function result appears inside a case or an if
-- expression, its lifetime must be extended to match that of the
-- context. If not, the function result would be finalized prematurely
-- and the evaluation of the expression could yield the wrong result.
if Within_Case_Or_If_Expression (N)
and then Nkind (N) = N_Explicit_Dereference
then
Set_Is_Processed_Transient (Entity (Prefix (N)));
end if;
end Expand_Ctrl_Function_Call;
-------------------------
-- Expand_Inlined_Call --
-------------------------
procedure Expand_Inlined_Call
(N : Node_Id;
Subp : Entity_Id;
Orig_Subp : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Is_Predef : constant Boolean :=
Is_Predefined_File_Name
(Unit_File_Name (Get_Source_Unit (Subp)));
Orig_Bod : constant Node_Id :=
Body_To_Inline (Unit_Declaration_Node (Subp));
Blk : Node_Id;
Decl : Node_Id;
Decls : constant List_Id := New_List;
Exit_Lab : Entity_Id := Empty;
F : Entity_Id;
A : Node_Id;
Lab_Decl : Node_Id;
Lab_Id : Node_Id;
New_A : Node_Id;
Num_Ret : Int := 0;
Ret_Type : Entity_Id;
Targ : Node_Id;
-- The target of the call. If context is an assignment statement then
-- this is the left-hand side of the assignment, else it is a temporary
-- to which the return value is assigned prior to rewriting the call.
Targ1 : Node_Id;
-- A separate target used when the return type is unconstrained
Temp : Entity_Id;
Temp_Typ : Entity_Id;
Return_Object : Entity_Id := Empty;
-- Entity in declaration in an extended_return_statement
Is_Unc : Boolean;
Is_Unc_Decl : Boolean;
-- If the type returned by the function is unconstrained and the call
-- can be inlined, special processing is required.
procedure Make_Exit_Label;
-- Build declaration for exit label to be used in Return statements,
-- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
-- declaration). Does nothing if Exit_Lab already set.
function Process_Formals (N : Node_Id) return Traverse_Result;
-- Replace occurrence of a formal with the corresponding actual, or the
-- thunk generated for it. Replace a return statement with an assignment
-- to the target of the call, with appropriate conversions if needed.
function Process_Sloc (Nod : Node_Id) return Traverse_Result;
-- If the call being expanded is that of an internal subprogram, set the
-- sloc of the generated block to that of the call itself, so that the
-- expansion is skipped by the "next" command in gdb.
-- Same processing for a subprogram in a predefined file, e.g.
-- Ada.Tags. If Debug_Generated_Code is true, suppress this change to
-- simplify our own development.
procedure Reset_Dispatching_Calls (N : Node_Id);
-- In subtree N search for occurrences of dispatching calls that use the
-- Ada 2005 Object.Operation notation and the object is a formal of the
-- inlined subprogram. Reset the entity associated with Operation in all
-- the found occurrences.
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
-- If the function body is a single expression, replace call with
-- expression, else insert block appropriately.
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
-- If procedure body has no local variables, inline body without
-- creating block, otherwise rewrite call with block.
function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
-- Determine whether a formal parameter is used only once in Orig_Bod
---------------------
-- Make_Exit_Label --
---------------------
procedure Make_Exit_Label is
Lab_Ent : Entity_Id;
begin
if No (Exit_Lab) then
Lab_Ent := Make_Temporary (Loc, 'L');
Lab_Id := New_Reference_To (Lab_Ent, Loc);
Exit_Lab := Make_Label (Loc, Lab_Id);
Lab_Decl :=
Make_Implicit_Label_Declaration (Loc,
Defining_Identifier => Lab_Ent,
Label_Construct => Exit_Lab);
end if;
end Make_Exit_Label;
---------------------
-- Process_Formals --
---------------------
function Process_Formals (N : Node_Id) return Traverse_Result is
A : Entity_Id;
E : Entity_Id;
Ret : Node_Id;
begin
if Is_Entity_Name (N) and then Present (Entity (N)) then
E := Entity (N);
if Is_Formal (E) and then Scope (E) = Subp then
A := Renamed_Object (E);
-- Rewrite the occurrence of the formal into an occurrence of
-- the actual. Also establish visibility on the proper view of
-- the actual's subtype for the body's context (if the actual's
-- subtype is private at the call point but its full view is
-- visible to the body, then the inlined tree here must be
-- analyzed with the full view).
if Is_Entity_Name (A) then
Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
Check_Private_View (N);
elsif Nkind (A) = N_Defining_Identifier then
Rewrite (N, New_Occurrence_Of (A, Loc));
Check_Private_View (N);
-- Numeric literal
else
Rewrite (N, New_Copy (A));
end if;
end if;
return Skip;
elsif Is_Entity_Name (N)
and then Present (Return_Object)
and then Chars (N) = Chars (Return_Object)
then
-- Occurrence within an extended return statement. The return
-- object is local to the body been inlined, and thus the generic
-- copy is not analyzed yet, so we match by name, and replace it
-- with target of call.
if Nkind (Targ) = N_Defining_Identifier then
Rewrite (N, New_Occurrence_Of (Targ, Loc));
else
Rewrite (N, New_Copy_Tree (Targ));
end if;
return Skip;
elsif Nkind (N) = N_Simple_Return_Statement then
if No (Expression (N)) then
Make_Exit_Label;
Rewrite (N,
Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
else
if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
then
-- Function body is a single expression. No need for
-- exit label.
null;
else
Num_Ret := Num_Ret + 1;
Make_Exit_Label;
end if;
-- Because of the presence of private types, the views of the
-- expression and the context may be different, so place an
-- unchecked conversion to the context type to avoid spurious
-- errors, e.g. when the expression is a numeric literal and
-- the context is private. If the expression is an aggregate,
-- use a qualified expression, because an aggregate is not a
-- legal argument of a conversion. Ditto for numeric literals,
-- which must be resolved to a specific type.
if Nkind_In (Expression (N), N_Aggregate,
N_Null,
N_Real_Literal,
N_Integer_Literal)
then
Ret :=
Make_Qualified_Expression (Sloc (N),
Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
Expression => Relocate_Node (Expression (N)));
else
Ret :=
Unchecked_Convert_To
(Ret_Type, Relocate_Node (Expression (N)));
end if;
if Nkind (Targ) = N_Defining_Identifier then
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Targ, Loc),
Expression => Ret));
else
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Copy (Targ),
Expression => Ret));
end if;
Set_Assignment_OK (Name (N));
if Present (Exit_Lab) then
Insert_After (N,
Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
end if;
end if;
return OK;
-- An extended return becomes a block whose first statement is the
-- assignment of the initial expression of the return object to the
-- target of the call itself.
elsif Nkind (N) = N_Extended_Return_Statement then
declare
Return_Decl : constant Entity_Id :=
First (Return_Object_Declarations (N));
Assign : Node_Id;
begin
Return_Object := Defining_Identifier (Return_Decl);
if Present (Expression (Return_Decl)) then
if Nkind (Targ) = N_Defining_Identifier then
Assign :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Targ, Loc),
Expression => Expression (Return_Decl));
else
Assign :=
Make_Assignment_Statement (Loc,
Name => New_Copy (Targ),
Expression => Expression (Return_Decl));
end if;
Set_Assignment_OK (Name (Assign));
if No (Handled_Statement_Sequence (N)) then
Set_Handled_Statement_Sequence (N,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List));
end if;
Prepend (Assign,
Statements (Handled_Statement_Sequence (N)));
end if;
Rewrite (N,
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Handled_Statement_Sequence (N)));
return OK;
end;
-- Remove pragma Unreferenced since it may refer to formals that
-- are not visible in the inlined body, and in any case we will
-- not be posting warnings on the inlined body so it is unneeded.
elsif Nkind (N) = N_Pragma
and then Pragma_Name (N) = Name_Unreferenced
then
Rewrite (N, Make_Null_Statement (Sloc (N)));
return OK;
else
return OK;
end if;
end Process_Formals;
procedure Replace_Formals is new Traverse_Proc (Process_Formals);
------------------
-- Process_Sloc --
------------------
function Process_Sloc (Nod : Node_Id) return Traverse_Result is
begin
if not Debug_Generated_Code then
Set_Sloc (Nod, Sloc (N));
Set_Comes_From_Source (Nod, False);
end if;
return OK;
end Process_Sloc;
procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
------------------------------
-- Reset_Dispatching_Calls --
------------------------------
procedure Reset_Dispatching_Calls (N : Node_Id) is
function Do_Reset (N : Node_Id) return Traverse_Result;
-- Comment required ???
--------------
-- Do_Reset --
--------------
function Do_Reset (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Procedure_Call_Statement
and then Nkind (Name (N)) = N_Selected_Component
and then Nkind (Prefix (Name (N))) = N_Identifier
and then Is_Formal (Entity (Prefix (Name (N))))
and then Is_Dispatching_Operation
(Entity (Selector_Name (Name (N))))
then
Set_Entity (Selector_Name (Name (N)), Empty);
end if;
return OK;
end Do_Reset;
function Do_Reset_Calls is new Traverse_Func (Do_Reset);
-- Local variables
Dummy : constant Traverse_Result := Do_Reset_Calls (N);
pragma Unreferenced (Dummy);
-- Start of processing for Reset_Dispatching_Calls
begin
null;
end Reset_Dispatching_Calls;
---------------------------
-- Rewrite_Function_Call --
---------------------------
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
Fst : constant Node_Id := First (Statements (HSS));
begin
-- Optimize simple case: function body is a single return statement,
-- which has been expanded into an assignment.
if Is_Empty_List (Declarations (Blk))
and then Nkind (Fst) = N_Assignment_Statement
and then No (Next (Fst))
then
-- The function call may have been rewritten as the temporary
-- that holds the result of the call, in which case remove the
-- now useless declaration.
if Nkind (N) = N_Identifier
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
then
Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
end if;
Rewrite (N, Expression (Fst));
elsif Nkind (N) = N_Identifier
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
then
-- The block assigns the result of the call to the temporary
Insert_After (Parent (Entity (N)), Blk);
-- If the context is an assignment, and the left-hand side is free of
-- side-effects, the replacement is also safe.
-- Can this be generalized further???
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then
(Is_Entity_Name (Name (Parent (N)))
or else
(Nkind (Name (Parent (N))) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Name (Parent (N)))))
or else
(Nkind (Name (Parent (N))) = N_Selected_Component
and then Is_Entity_Name (Prefix (Name (Parent (N))))))
then
-- Replace assignment with the block
declare
Original_Assignment : constant Node_Id := Parent (N);
begin
-- Preserve the original assignment node to keep the complete
-- assignment subtree consistent enough for Analyze_Assignment
-- to proceed (specifically, the original Lhs node must still
-- have an assignment statement as its parent).
-- We cannot rely on Original_Node to go back from the block
-- node to the assignment node, because the assignment might
-- already be a rewrite substitution.
Discard_Node (Relocate_Node (Original_Assignment));
Rewrite (Original_Assignment, Blk);
end;
elsif Nkind (Parent (N)) = N_Object_Declaration then
-- A call to a function which returns an unconstrained type
-- found in the expression initializing an object-declaration is
-- expanded into a procedure call which must be added after the
-- object declaration.
if Is_Unc_Decl and then Debug_Flag_Dot_K then
Insert_Action_After (Parent (N), Blk);
else
Set_Expression (Parent (N), Empty);
Insert_After (Parent (N), Blk);
end if;
elsif Is_Unc and then not Debug_Flag_Dot_K then
Insert_Before (Parent (N), Blk);
end if;
end Rewrite_Function_Call;
----------------------------
-- Rewrite_Procedure_Call --
----------------------------
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
begin
-- If there is a transient scope for N, this will be the scope of the
-- actions for N, and the statements in Blk need to be within this
-- scope. For example, they need to have visibility on the constant
-- declarations created for the formals.
-- If N needs no transient scope, and if there are no declarations in
-- the inlined body, we can do a little optimization and insert the
-- statements for the body directly after N, and rewrite N to a
-- null statement, instead of rewriting N into a full-blown block
-- statement.
if not Scope_Is_Transient
and then Is_Empty_List (Declarations (Blk))
then
Insert_List_After (N, Statements (HSS));
Rewrite (N, Make_Null_Statement (Loc));
else
Rewrite (N, Blk);
end if;
end Rewrite_Procedure_Call;
-------------------------
-- Formal_Is_Used_Once --
-------------------------
function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
Use_Counter : Int := 0;
function Count_Uses (N : Node_Id) return Traverse_Result;
-- Traverse the tree and count the uses of the formal parameter.
-- In this case, for optimization purposes, we do not need to
-- continue the traversal once more than one use is encountered.
----------------
-- Count_Uses --
----------------
function Count_Uses (N : Node_Id) return Traverse_Result is
begin
-- The original node is an identifier
if Nkind (N) = N_Identifier
and then Present (Entity (N))
-- Original node's entity points to the one in the copied body
and then Nkind (Entity (N)) = N_Identifier
and then Present (Entity (Entity (N)))
-- The entity of the copied node is the formal parameter
and then Entity (Entity (N)) = Formal
then
Use_Counter := Use_Counter + 1;
if Use_Counter > 1 then
-- Denote more than one use and abandon the traversal
Use_Counter := 2;
return Abandon;
end if;
end if;
return OK;
end Count_Uses;
procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
-- Start of processing for Formal_Is_Used_Once
begin
Count_Formal_Uses (Orig_Bod);
return Use_Counter = 1;
end Formal_Is_Used_Once;
-- Start of processing for Expand_Inlined_Call
begin
-- Initializations for old/new semantics
if not Debug_Flag_Dot_K then
Is_Unc := Is_Array_Type (Etype (Subp))
and then not Is_Constrained (Etype (Subp));
Is_Unc_Decl := False;
else
Is_Unc := Returns_Unconstrained_Type (Subp)
and then Optimization_Level > 0;
Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
and then Is_Unc;
end if;
-- Check for an illegal attempt to inline a recursive procedure. If the
-- subprogram has parameters this is detected when trying to supply a
-- binding for parameters that already have one. For parameterless
-- subprograms this must be done explicitly.
if In_Open_Scopes (Subp) then
Error_Msg_N ("call to recursive subprogram cannot be inlined??", N);
Set_Is_Inlined (Subp, False);
return;
-- Skip inlining if this is not a true inlining since the attribute
-- Body_To_Inline is also set for renamings (see sinfo.ads)
elsif Nkind (Orig_Bod) in N_Entity then
return;
-- Skip inlining if the function returns an unconstrained type using
-- an extended return statement since this part of the new inlining
-- model which is not yet supported by the current implementation. ???
elsif Is_Unc
and then
Nkind (First (Statements (Handled_Statement_Sequence (Orig_Bod))))
= N_Extended_Return_Statement
and then not Debug_Flag_Dot_K
then
return;
end if;
if Nkind (Orig_Bod) = N_Defining_Identifier
or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
then
-- Subprogram is renaming_as_body. Calls occurring after the renaming
-- can be replaced with calls to the renamed entity directly, because
-- the subprograms are subtype conformant. If the renamed subprogram
-- is an inherited operation, we must redo the expansion because
-- implicit conversions may be needed. Similarly, if the renamed
-- entity is inlined, expand the call for further optimizations.
Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
Expand_Call (N);
end if;
return;
end if;
-- Register the call in the list of inlined calls
if Inlined_Calls = No_Elist then
Inlined_Calls := New_Elmt_List;
end if;
Append_Elmt (N, To => Inlined_Calls);
-- Use generic machinery to copy body of inlined subprogram, as if it
-- were an instantiation, resetting source locations appropriately, so
-- that nested inlined calls appear in the main unit.
Save_Env (Subp, Empty);
Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
-- Old semantics
if not Debug_Flag_Dot_K then
declare
Bod : Node_Id;
begin
Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
Blk :=
Make_Block_Statement (Loc,
Declarations => Declarations (Bod),
Handled_Statement_Sequence =>
Handled_Statement_Sequence (Bod));
if No (Declarations (Bod)) then
Set_Declarations (Blk, New_List);
end if;
-- For the unconstrained case, capture the name of the local
-- variable that holds the result. This must be the first
-- declaration in the block, because its bounds cannot depend
-- on local variables. Otherwise there is no way to declare the
-- result outside of the block. Needless to say, in general the
-- bounds will depend on the actuals in the call.
-- If the context is an assignment statement, as is the case
-- for the expansion of an extended return, the left-hand side
-- provides bounds even if the return type is unconstrained.
if Is_Unc then
declare
First_Decl : Node_Id;
begin
First_Decl := First (Declarations (Blk));
if Nkind (First_Decl) /= N_Object_Declaration then
return;
end if;
if Nkind (Parent (N)) /= N_Assignment_Statement then
Targ1 := Defining_Identifier (First_Decl);
else
Targ1 := Name (Parent (N));
end if;
end;
end if;
end;
-- New semantics
else
declare
Bod : Node_Id;
begin
-- General case
if not Is_Unc then
Bod :=
Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
Blk :=
Make_Block_Statement (Loc,
Declarations => Declarations (Bod),
Handled_Statement_Sequence =>
Handled_Statement_Sequence (Bod));
-- Inline a call to a function that returns an unconstrained type.
-- The semantic analyzer checked that frontend-inlined functions
-- returning unconstrained types have no declarations and have
-- a single extended return statement. As part of its processing
-- the function was split in two subprograms: a procedure P and
-- a function F that has a block with a call to procedure P (see
-- Split_Unconstrained_Function).
else
pragma Assert
(Nkind
(First
(Statements (Handled_Statement_Sequence (Orig_Bod))))
= N_Block_Statement);
declare
Blk_Stmt : constant Node_Id :=
First
(Statements
(Handled_Statement_Sequence (Orig_Bod)));
First_Stmt : constant Node_Id :=
First
(Statements
(Handled_Statement_Sequence (Blk_Stmt)));
Second_Stmt : constant Node_Id := Next (First_Stmt);
begin
pragma Assert
(Nkind (First_Stmt) = N_Procedure_Call_Statement
and then Nkind (Second_Stmt) = N_Simple_Return_Statement
and then No (Next (Second_Stmt)));
Bod :=
Copy_Generic_Node
(First
(Statements (Handled_Statement_Sequence (Orig_Bod))),
Empty, Instantiating => True);
Blk := Bod;
-- Capture the name of the local variable that holds the
-- result. This must be the first declaration in the block,
-- because its bounds cannot depend on local variables.
-- Otherwise there is no way to declare the result outside
-- of the block. Needless to say, in general the bounds will
-- depend on the actuals in the call.
if Nkind (Parent (N)) /= N_Assignment_Statement then
Targ1 := Defining_Identifier (First (Declarations (Blk)));
-- If the context is an assignment statement, as is the case
-- for the expansion of an extended return, the left-hand
-- side provides bounds even if the return type is
-- unconstrained.
else
Targ1 := Name (Parent (N));
end if;
end;
end if;
if No (Declarations (Bod)) then
Set_Declarations (Blk, New_List);
end if;
end;
end if;
-- If this is a derived function, establish the proper return type
if Present (Orig_Subp) and then Orig_Subp /= Subp then
Ret_Type := Etype (Orig_Subp);
else
Ret_Type := Etype (Subp);
end if;
-- Create temporaries for the actuals that are expressions, or that are
-- scalars and require copying to preserve semantics.
F := First_Formal (Subp);
A := First_Actual (N);
while Present (F) loop
if Present (Renamed_Object (F)) then
Error_Msg_N ("cannot inline call to recursive subprogram", N);
return;
end if;
-- Reset Last_Assignment for any parameters of mode out or in out, to
-- prevent spurious warnings about overwriting for assignments to the
-- formal in the inlined code.
if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
Set_Last_Assignment (Entity (A), Empty);
end if;
-- If the argument may be a controlling argument in a call within
-- the inlined body, we must preserve its classwide nature to insure
-- that dynamic dispatching take place subsequently. If the formal
-- has a constraint it must be preserved to retain the semantics of
-- the body.
if Is_Class_Wide_Type (Etype (F))
or else (Is_Access_Type (Etype (F))
and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
then
Temp_Typ := Etype (F);
elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
and then Etype (F) /= Base_Type (Etype (F))
then
Temp_Typ := Etype (F);
else
Temp_Typ := Etype (A);
end if;
-- If the actual is a simple name or a literal, no need to
-- create a temporary, object can be used directly.
-- If the actual is a literal and the formal has its address taken,
-- we cannot pass the literal itself as an argument, so its value
-- must be captured in a temporary.
if (Is_Entity_Name (A)
and then
(not Is_Scalar_Type (Etype (A))
or else Ekind (Entity (A)) = E_Enumeration_Literal))
-- When the actual is an identifier and the corresponding formal is
-- used only once in the original body, the formal can be substituted
-- directly with the actual parameter.
or else (Nkind (A) = N_Identifier
and then Formal_Is_Used_Once (F))
or else
(Nkind_In (A, N_Real_Literal,
N_Integer_Literal,
N_Character_Literal)
and then not Address_Taken (F))
then
if Etype (F) /= Etype (A) then
Set_Renamed_Object
(F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
else
Set_Renamed_Object (F, A);
end if;
else
Temp := Make_Temporary (Loc, 'C');
-- If the actual for an in/in-out parameter is a view conversion,
-- make it into an unchecked conversion, given that an untagged
-- type conversion is not a proper object for a renaming.
-- In-out conversions that involve real conversions have already
-- been transformed in Expand_Actuals.
if Nkind (A) = N_Type_Conversion
and then Ekind (F) /= E_In_Parameter
then
New_A :=
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
Expression => Relocate_Node (Expression (A)));
elsif Etype (F) /= Etype (A) then
New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
Temp_Typ := Etype (F);
else
New_A := Relocate_Node (A);
end if;
Set_Sloc (New_A, Sloc (N));
-- If the actual has a by-reference type, it cannot be copied,
-- so its value is captured in a renaming declaration. Otherwise
-- declare a local constant initialized with the actual.
-- We also use a renaming declaration for expressions of an array
-- type that is not bit-packed, both for efficiency reasons and to
-- respect the semantics of the call: in most cases the original
-- call will pass the parameter by reference, and thus the inlined
-- code will have the same semantics.
if Ekind (F) = E_In_Parameter
and then not Is_By_Reference_Type (Etype (A))
and then
(not Is_Array_Type (Etype (A))
or else not Is_Object_Reference (A)
or else Is_Bit_Packed_Array (Etype (A)))
then
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
Expression => New_A);
else
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Temp,
Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
Name => New_A);
end if;
Append (Decl, Decls);
Set_Renamed_Object (F, Temp);
end if;
Next_Formal (F);
Next_Actual (A);
end loop;
-- Establish target of function call. If context is not assignment or
-- declaration, create a temporary as a target. The declaration for the
-- temporary may be subsequently optimized away if the body is a single
-- expression, or if the left-hand side of the assignment is simple
-- enough, i.e. an entity or an explicit dereference of one.
if Ekind (Subp) = E_Function then
if Nkind (Parent (N)) = N_Assignment_Statement
and then Is_Entity_Name (Name (Parent (N)))
then
Targ := Name (Parent (N));
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Name (Parent (N))))
then
Targ := Name (Parent (N));
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then Nkind (Name (Parent (N))) = N_Selected_Component
and then Is_Entity_Name (Prefix (Name (Parent (N))))
then
Targ := New_Copy_Tree (Name (Parent (N)));
elsif Nkind (Parent (N)) = N_Object_Declaration
and then Is_Limited_Type (Etype (Subp))
then
Targ := Defining_Identifier (Parent (N));
-- New semantics: In an object declaration avoid an extra copy
-- of the result of a call to an inlined function that returns
-- an unconstrained type
elsif Debug_Flag_Dot_K
and then Nkind (Parent (N)) = N_Object_Declaration
and then Is_Unc
then
Targ := Defining_Identifier (Parent (N));
else
-- Replace call with temporary and create its declaration
Temp := Make_Temporary (Loc, 'C');
Set_Is_Internal (Temp);
-- For the unconstrained case, the generated temporary has the
-- same constrained declaration as the result variable. It may
-- eventually be possible to remove that temporary and use the
-- result variable directly.
if Is_Unc
and then Nkind (Parent (N)) /= N_Assignment_Statement
then
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Copy_Tree (Object_Definition (Parent (Targ1))));
Replace_Formals (Decl);
else
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
Set_Etype (Temp, Ret_Type);
end if;
Set_No_Initialization (Decl);
Append (Decl, Decls);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Targ := Temp;
end if;
end if;
Insert_Actions (N, Decls);
if Is_Unc_Decl then
-- Special management for inlining a call to a function that returns
-- an unconstrained type and initializes an object declaration: we
-- avoid generating undesired extra calls and goto statements.
-- Given:
-- function Func (...) return ...
-- begin
-- declare
-- Result : String (1 .. 4);
-- begin
-- Proc (Result, ...);
-- return Result;
-- end;
-- end F;
-- Result : String := Func (...);
-- Replace this object declaration by:
-- Result : String (1 .. 4);
-- Proc (Result, ...);
Remove_Homonym (Targ);
Decl :=
Make_Object_Declaration
(Loc,
Defining_Identifier => Targ,
Object_Definition =>
New_Copy_Tree (Object_Definition (Parent (Targ1))));
Replace_Formals (Decl);
Rewrite (Parent (N), Decl);
Analyze (Parent (N));
-- Avoid spurious warnings since we know that this declaration is
-- referenced by the procedure call.
Set_Never_Set_In_Source (Targ, False);
-- Remove the local declaration of the extended return stmt from the
-- inlined code
Remove (Parent (Targ1));
-- Update the reference to the result (since we have rewriten the
-- object declaration)
declare
Blk_Call_Stmt : Node_Id;
begin
-- Capture the call to the procedure
Blk_Call_Stmt :=
First (Statements (Handled_Statement_Sequence (Blk)));
pragma Assert
(Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
Remove (First (Parameter_Associations (Blk_Call_Stmt)));
Prepend_To (Parameter_Associations (Blk_Call_Stmt),
New_Reference_To (Targ, Loc));
end;
-- Remove the return statement
pragma Assert
(Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
N_Simple_Return_Statement);
Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
end if;
-- Traverse the tree and replace formals with actuals or their thunks.
-- Attach block to tree before analysis and rewriting.
Replace_Formals (Blk);
Set_Parent (Blk, N);
if not Comes_From_Source (Subp) or else Is_Predef then
Reset_Slocs (Blk);
end if;
if Is_Unc_Decl then
-- No action needed since return statement has been already removed!
null;
elsif Present (Exit_Lab) then
-- If the body was a single expression, the single return statement
-- and the corresponding label are useless.
if Num_Ret = 1
and then
Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
N_Goto_Statement
then
Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
else
Append (Lab_Decl, (Declarations (Blk)));
Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
end if;
end if;
-- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
-- on conflicting private views that Gigi would ignore. If this is a
-- predefined unit, analyze with checks off, as is done in the non-
-- inlined run-time units.
declare
I_Flag : constant Boolean := In_Inlined_Body;
begin
In_Inlined_Body := True;
if Is_Predef then
declare
Style : constant Boolean := Style_Check;
begin
Style_Check := False;
-- Search for dispatching calls that use the Object.Operation
-- notation using an Object that is a parameter of the inlined
-- function. We reset the decoration of Operation to force
-- the reanalysis of the inlined dispatching call because
-- the actual object has been inlined.
Reset_Dispatching_Calls (Blk);
Analyze (Blk, Suppress => All_Checks);
Style_Check := Style;
end;
else
Analyze (Blk);
end if;
In_Inlined_Body := I_Flag;
end;
if Ekind (Subp) = E_Procedure then
Rewrite_Procedure_Call (N, Blk);
else
Rewrite_Function_Call (N, Blk);
if Is_Unc_Decl then
null;
-- For the unconstrained case, the replacement of the call has been
-- made prior to the complete analysis of the generated declarations.
-- Propagate the proper type now.
elsif Is_Unc then
if Nkind (N) = N_Identifier then
Set_Etype (N, Etype (Entity (N)));
else
Set_Etype (N, Etype (Targ1));
end if;
end if;
end if;
Restore_Env;
-- Cleanup mapping between formals and actuals for other expansions
F := First_Formal (Subp);
while Present (F) loop
Set_Renamed_Object (F, Empty);
Next_Formal (F);
end loop;
end Expand_Inlined_Call;
----------------------------------------
-- Expand_N_Extended_Return_Statement --
----------------------------------------
-- If there is a Handled_Statement_Sequence, we rewrite this:
-- return Result : T := <expression> do
-- <handled_seq_of_stms>
-- end return;
-- to be:
-- declare
-- Result : T := <expression>;
-- begin
-- <handled_seq_of_stms>
-- return Result;
-- end;
-- Otherwise (no Handled_Statement_Sequence), we rewrite this:
-- return Result : T := <expression>;
-- to be:
-- return <expression>;
-- unless it's build-in-place or there's no <expression>, in which case
-- we generate:
-- declare
-- Result : T := <expression>;
-- begin
-- return Result;
-- end;
-- Note that this case could have been written by the user as an extended
-- return statement, or could have been transformed to this from a simple
-- return statement.
-- That is, we need to have a reified return object if there are statements
-- (which might refer to it) or if we're doing build-in-place (so we can
-- set its address to the final resting place or if there is no expression
-- (in which case default initial values might need to be set).
procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Par_Func : constant Entity_Id :=
Return_Applies_To (Return_Statement_Entity (N));
Result_Subt : constant Entity_Id := Etype (Par_Func);
Ret_Obj_Id : constant Entity_Id :=
First_Entity (Return_Statement_Entity (N));
Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
Is_Build_In_Place : constant Boolean :=
Is_Build_In_Place_Function (Par_Func);
Exp : Node_Id;
HSS : Node_Id;
Result : Node_Id;
Return_Stmt : Node_Id;
Stmts : List_Id;
function Build_Heap_Allocator
(Temp_Id : Entity_Id;
Temp_Typ : Entity_Id;
Func_Id : Entity_Id;
Ret_Typ : Entity_Id;
Alloc_Expr : Node_Id) return Node_Id;
-- Create the statements necessary to allocate a return object on the
-- caller's master. The master is available through implicit parameter
-- BIPfinalizationmaster.
--
-- if BIPfinalizationmaster /= null then
-- declare
-- type Ptr_Typ is access Ret_Typ;
-- for Ptr_Typ'Storage_Pool use
-- Base_Pool (BIPfinalizationmaster.all).all;
-- Local : Ptr_Typ;
--
-- begin
-- procedure Allocate (...) is
-- begin
-- System.Storage_Pools.Subpools.Allocate_Any (...);
-- end Allocate;
--
-- Local := <Alloc_Expr>;
-- Temp_Id := Temp_Typ (Local);
-- end;
-- end if;
--
-- Temp_Id is the temporary which is used to reference the internally
-- created object in all allocation forms. Temp_Typ is the type of the
-- temporary. Func_Id is the enclosing function. Ret_Typ is the return
-- type of Func_Id. Alloc_Expr is the actual allocator.
function Move_Activation_Chain return Node_Id;
-- Construct a call to System.Tasking.Stages.Move_Activation_Chain
-- with parameters:
-- From current activation chain
-- To activation chain passed in by the caller
-- New_Master master passed in by the caller
--------------------------
-- Build_Heap_Allocator --
--------------------------
function Build_Heap_Allocator
(Temp_Id : Entity_Id;
Temp_Typ : Entity_Id;
Func_Id : Entity_Id;
Ret_Typ : Entity_Id;
Alloc_Expr : Node_Id) return Node_Id
is
begin
pragma Assert (Is_Build_In_Place_Function (Func_Id));
-- Processing for build-in-place object allocation. This is disabled
-- on .NET/JVM because the targets do not support pools.
if VM_Target = No_VM
and then Needs_Finalization (Ret_Typ)
then
declare
Decls : constant List_Id := New_List;
Fin_Mas_Id : constant Entity_Id :=
Build_In_Place_Formal
(Func_Id, BIP_Finalization_Master);
Stmts : constant List_Id := New_List;
Desig_Typ : Entity_Id;
Local_Id : Entity_Id;
Pool_Id : Entity_Id;
Ptr_Typ : Entity_Id;
begin
-- Generate:
-- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
Pool_Id := Make_Temporary (Loc, 'P');
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pool_Id,
Subtype_Mark =>
New_Reference_To (RTE (RE_Root_Storage_Pool), Loc),
Name =>
Make_Explicit_Dereference (Loc,
Prefix =>
Make_Function_Call (Loc,
Name =>
New_Reference_To (RTE (RE_Base_Pool), Loc),
Parameter_Associations => New_List (
Make_Explicit_Dereference (Loc,
Prefix =>
New_Reference_To (Fin_Mas_Id, Loc)))))));
-- Create an access type which uses the storage pool of the
-- caller's master. This additional type is necessary because
-- the finalization master cannot be associated with the type
-- of the temporary. Otherwise the secondary stack allocation
-- will fail.
Desig_Typ := Ret_Typ;
-- Ensure that the build-in-place machinery uses a fat pointer
-- when allocating an unconstrained array on the heap. In this
-- case the result object type is a constrained array type even
-- though the function type is unconstrained.
if Ekind (Desig_Typ) = E_Array_Subtype then
Desig_Typ := Base_Type (Desig_Typ);
end if;
-- Generate:
-- type Ptr_Typ is access Desig_Typ;
Ptr_Typ := Make_Temporary (Loc, 'P');
Append_To (Decls,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication =>
New_Reference_To (Desig_Typ, Loc))));
-- Perform minor decoration in order to set the master and the
-- storage pool attributes.
Set_Ekind (Ptr_Typ, E_Access_Type);
Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
-- Create the temporary, generate:
-- Local_Id : Ptr_Typ;
Local_Id := Make_Temporary (Loc, 'T');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Local_Id,
Object_Definition =>
New_Reference_To (Ptr_Typ, Loc)));
-- Allocate the object, generate:
-- Local_Id := <Alloc_Expr>;
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => New_Reference_To (Local_Id, Loc),
Expression => Alloc_Expr));
-- Generate:
-- Temp_Id := Temp_Typ (Local_Id);
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => New_Reference_To (Temp_Id, Loc),
Expression =>
Unchecked_Convert_To (Temp_Typ,
New_Reference_To (Local_Id, Loc))));
-- Wrap the allocation in a block. This is further conditioned
-- by checking the caller finalization master at runtime. A
-- null value indicates a non-existent master, most likely due
-- to a Finalize_Storage_Only allocation.
-- Generate:
-- if BIPfinalizationmaster /= null then
-- declare
-- <Decls>
-- begin
-- <Stmts>
-- end;
-- end if;
return
Make_If_Statement (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Reference_To (Fin_Mas_Id, Loc),
Right_Opnd => Make_Null (Loc)),
Then_Statements => New_List (
Make_Block_Statement (Loc,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts))));
end;
-- For all other cases, generate:
-- Temp_Id := <Alloc_Expr>;
else
return
Make_Assignment_Statement (Loc,
Name => New_Reference_To (Temp_Id, Loc),
Expression => Alloc_Expr);
end if;
end Build_Heap_Allocator;
---------------------------
-- Move_Activation_Chain --
---------------------------
function Move_Activation_Chain return Node_Id is
begin
return
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To (RTE (RE_Move_Activation_Chain), Loc),
Parameter_Associations => New_List (
-- Source chain
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uChain),
Attribute_Name => Name_Unrestricted_Access),
-- Destination chain
New_Reference_To
(Build_In_Place_Formal (Par_Func, BIP_Activation_Chain), Loc),
-- New master
New_Reference_To
(Build_In_Place_Formal (Par_Func, BIP_Task_Master), Loc)));
end Move_Activation_Chain;
-- Start of processing for Expand_N_Extended_Return_Statement
begin
-- Given that functionality of interface thunks is simple (just displace
-- the pointer to the object) they are always handled by means of
-- simple return statements.
pragma Assert (not Is_Thunk (Current_Scope));
if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
Exp := Expression (Ret_Obj_Decl);
else
Exp := Empty;
end if;
HSS := Handled_Statement_Sequence (N);
-- If the returned object needs finalization actions, the function must
-- perform the appropriate cleanup should it fail to return. The state
-- of the function itself is tracked through a flag which is coupled
-- with the scope finalizer. There is one flag per each return object
-- in case of multiple returns.
if Is_Build_In_Place
and then Needs_Finalization (Etype (Ret_Obj_Id))
then
declare
Flag_Decl : Node_Id;
Flag_Id : Entity_Id;
Func_Bod : Node_Id;
begin
-- Recover the function body
Func_Bod := Unit_Declaration_Node (Par_Func);
if Nkind (Func_Bod) = N_Subprogram_Declaration then
Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
end if;
-- Create a flag to track the function state
Flag_Id := Make_Temporary (Loc, 'F');
Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
-- Insert the flag at the beginning of the function declarations,
-- generate:
-- Fnn : Boolean := False;
Flag_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Flag_Id,
Object_Definition =>
New_Reference_To (Standard_Boolean, Loc),
Expression => New_Reference_To (Standard_False, Loc));
Prepend_To (Declarations (Func_Bod), Flag_Decl);
Analyze (Flag_Decl);
end;
end if;
-- Build a simple_return_statement that returns the return object when
-- there is a statement sequence, or no expression, or the result will
-- be built in place. Note however that we currently do this for all
-- composite cases, even though nonlimited composite results are not yet
-- built in place (though we plan to do so eventually).
if Present (HSS)
or else Is_Composite_Type (Result_Subt)
or else No (Exp)
then
if No (HSS) then
Stmts := New_List;
-- If the extended return has a handled statement sequence, then wrap
-- it in a block and use the block as the first statement.
else
Stmts := New_List (
Make_Block_Statement (Loc,
Declarations => New_List,
Handled_Statement_Sequence => HSS));
end if;
-- If the result type contains tasks, we call Move_Activation_Chain.
-- Later, the cleanup code will call Complete_Master, which will
-- terminate any unactivated tasks belonging to the return statement
-- master. But Move_Activation_Chain updates their master to be that
-- of the caller, so they will not be terminated unless the return
-- statement completes unsuccessfully due to exception, abort, goto,
-- or exit. As a formality, we test whether the function requires the
-- result to be built in place, though that's necessarily true for
-- the case of result types with task parts.
if Is_Build_In_Place
and then Has_Task (Result_Subt)
then
-- The return expression is an aggregate for a complex type which
-- contains tasks. This particular case is left unexpanded since
-- the regular expansion would insert all temporaries and
-- initialization code in the wrong block.
if Nkind (Exp) = N_Aggregate then
Expand_N_Aggregate (Exp);
end if;
-- Do not move the activation chain if the return object does not
-- contain tasks.
if Has_Task (Etype (Ret_Obj_Id)) then
Append_To (Stmts, Move_Activation_Chain);
end if;
end if;
-- Update the state of the function right before the object is
-- returned.
if Is_Build_In_Place
and then Needs_Finalization (Etype (Ret_Obj_Id))
then
declare
Flag_Id : constant Entity_Id :=
Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
begin
-- Generate:
-- Fnn := True;
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => New_Reference_To (Flag_Id, Loc),
Expression => New_Reference_To (Standard_True, Loc)));
end;
end if;
-- Build a simple_return_statement that returns the return object
Return_Stmt :=
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
Append_To (Stmts, Return_Stmt);
HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
end if;
-- Case where we build a return statement block
if Present (HSS) then
Result :=
Make_Block_Statement (Loc,
Declarations => Return_Object_Declarations (N),
Handled_Statement_Sequence => HSS);
-- We set the entity of the new block statement to be that of the
-- return statement. This is necessary so that various fields, such
-- as Finalization_Chain_Entity carry over from the return statement
-- to the block. Note that this block is unusual, in that its entity
-- is an E_Return_Statement rather than an E_Block.
Set_Identifier
(Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
-- If the object decl was already rewritten as a renaming, then we
-- don't want to do the object allocation and transformation of of
-- the return object declaration to a renaming. This case occurs
-- when the return object is initialized by a call to another
-- build-in-place function, and that function is responsible for
-- the allocation of the return object.
if Is_Build_In_Place
and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
then
pragma Assert
(Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
and then Is_Build_In_Place_Function_Call
(Expression (Original_Node (Ret_Obj_Decl))));
-- Return the build-in-place result by reference
Set_By_Ref (Return_Stmt);
elsif Is_Build_In_Place then
-- Locate the implicit access parameter associated with the
-- caller-supplied return object and convert the return
-- statement's return object declaration to a renaming of a
-- dereference of the access parameter. If the return object's
-- declaration includes an expression that has not already been
-- expanded as separate assignments, then add an assignment
-- statement to ensure the return object gets initialized.
-- declare
-- Result : T [:= <expression>];
-- begin
-- ...
-- is converted to
-- declare
-- Result : T renames FuncRA.all;
-- [Result := <expression;]
-- begin
-- ...
declare
Return_Obj_Id : constant Entity_Id :=
Defining_Identifier (Ret_Obj_Decl);
Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
Return_Obj_Expr : constant Node_Id :=
Expression (Ret_Obj_Decl);
Constr_Result : constant Boolean :=
Is_Constrained (Result_Subt);
Obj_Alloc_Formal : Entity_Id;
Object_Access : Entity_Id;
Obj_Acc_Deref : Node_Id;
Init_Assignment : Node_Id := Empty;
begin
-- Build-in-place results must be returned by reference
Set_By_Ref (Return_Stmt);
-- Retrieve the implicit access parameter passed by the caller
Object_Access :=
Build_In_Place_Formal (Par_Func, BIP_Object_Access);
-- If the return object's declaration includes an expression
-- and the declaration isn't marked as No_Initialization, then
-- we need to generate an assignment to the object and insert
-- it after the declaration before rewriting it as a renaming
-- (otherwise we'll lose the initialization). The case where
-- the result type is an interface (or class-wide interface)
-- is also excluded because the context of the function call
-- must be unconstrained, so the initialization will always
-- be done as part of an allocator evaluation (storage pool
-- or secondary stack), never to a constrained target object
-- passed in by the caller. Besides the assignment being
-- unneeded in this case, it avoids problems with trying to
-- generate a dispatching assignment when the return expression
-- is a nonlimited descendant of a limited interface (the
-- interface has no assignment operation).
if Present (Return_Obj_Expr)
and then not No_Initialization (Ret_Obj_Decl)
and then not Is_Interface (Return_Obj_Typ)
then
Init_Assignment :=
Make_Assignment_Statement (Loc,
Name => New_Reference_To (Return_Obj_Id, Loc),
Expression => Relocate_Node (Return_Obj_Expr));
Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
Set_Assignment_OK (Name (Init_Assignment));
Set_No_Ctrl_Actions (Init_Assignment);
Set_Parent (Name (Init_Assignment), Init_Assignment);
Set_Parent (Expression (Init_Assignment), Init_Assignment);
Set_Expression (Ret_Obj_Decl, Empty);
if Is_Class_Wide_Type (Etype (Return_Obj_Id))
and then not Is_Class_Wide_Type
(Etype (Expression (Init_Assignment)))
then
Rewrite (Expression (Init_Assignment),
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Return_Obj_Id), Loc),
Expression =>
Relocate_Node (Expression (Init_Assignment))));
end if;
-- In the case of functions where the calling context can
-- determine the form of allocation needed, initialization
-- is done with each part of the if statement that handles
-- the different forms of allocation (this is true for
-- unconstrained and tagged result subtypes).
if Constr_Result
and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
then
Insert_After (Ret_Obj_Decl, Init_Assignment);
end if;
end if;
-- When the function's subtype is unconstrained, a run-time
-- test is needed to determine the form of allocation to use
-- for the return object. The function has an implicit formal
-- parameter indicating this. If the BIP_Alloc_Form formal has
-- the value one, then the caller has passed access to an
-- existing object for use as the return object. If the value
-- is two, then the return object must be allocated on the
-- secondary stack. Otherwise, the object must be allocated in
-- a storage pool (currently only supported for the global
-- heap, user-defined storage pools TBD ???). We generate an
-- if statement to test the implicit allocation formal and
-- initialize a local access value appropriately, creating
-- allocators in the secondary stack and global heap cases.
-- The special formal also exists and must be tested when the
-- function has a tagged result, even when the result subtype
-- is constrained, because in general such functions can be
-- called in dispatching contexts and must be handled similarly
-- to functions with a class-wide result.
if not Constr_Result
or else Is_Tagged_Type (Underlying_Type (Result_Subt))
then
Obj_Alloc_Formal :=
Build_In_Place_Formal (Par_Func, BIP_Alloc_Form);
declare
Pool_Id : constant Entity_Id :=
Make_Temporary (Loc, 'P');
Alloc_Obj_Id : Entity_Id;
Alloc_Obj_Decl : Node_Id;
Alloc_If_Stmt : Node_Id;
Heap_Allocator : Node_Id;
Pool_Decl : Node_Id;
Pool_Allocator : Node_Id;
Ptr_Type_Decl : Node_Id;
Ref_Type : Entity_Id;
SS_Allocator : Node_Id;
begin
-- Reuse the itype created for the function's implicit
-- access formal. This avoids the need to create a new
-- access type here, plus it allows assigning the access
-- formal directly without applying a conversion.
-- Ref_Type := Etype (Object_Access);
-- Create an access type designating the function's
-- result subtype.
Ref_Type := Make_Temporary (Loc, 'A');
Ptr_Type_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ref_Type,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Reference_To (Return_Obj_Typ, Loc)));
Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
-- Create an access object that will be initialized to an
-- access value denoting the return object, either coming
-- from an implicit access value passed in by the caller
-- or from the result of an allocator.
Alloc_Obj_Id := Make_Temporary (Loc, 'R');
Set_Etype (Alloc_Obj_Id, Ref_Type);
Alloc_Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Alloc_Obj_Id,
Object_Definition =>
New_Reference_To (Ref_Type, Loc));
Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
-- Create allocators for both the secondary stack and
-- global heap. If there's an initialization expression,
-- then create these as initialized allocators.
if Present (Return_Obj_Expr)
and then not No_Initialization (Ret_Obj_Decl)
then
-- Always use the type of the expression for the
-- qualified expression, rather than the result type.
-- In general we cannot always use the result type
-- for the allocator, because the expression might be
-- of a specific type, such as in the case of an
-- aggregate or even a nonlimited object when the
-- result type is a limited class-wide interface type.
Heap_Allocator :=
Make_Allocator (Loc,
Expression =>
Make_Qualified_Expression (Loc,
Subtype_Mark =>
New_Reference_To
(Etype (Return_Obj_Expr), Loc),
Expression =>
New_Copy_Tree (Return_Obj_Expr)));
else
-- If the function returns a class-wide type we cannot
-- use the return type for the allocator. Instead we
-- use the type of the expression, which must be an
-- aggregate of a definite type.
if Is_Class_Wide_Type (Return_Obj_Typ) then
Heap_Allocator :=
Make_Allocator (Loc,
Expression =>
New_Reference_To
(Etype (Return_Obj_Expr), Loc));
else
Heap_Allocator :=
Make_Allocator (Loc,
Expression =>
New_Reference_To (Return_Obj_Typ, Loc));
end if;
-- If the object requires default initialization then
-- that will happen later following the elaboration of
-- the object renaming. If we don't turn it off here
-- then the object will be default initialized twice.
Set_No_Initialization (Heap_Allocator);
end if;
-- The Pool_Allocator is just like the Heap_Allocator,
-- except we set Storage_Pool and Procedure_To_Call so
-- it will use the user-defined storage pool.
Pool_Allocator := New_Copy_Tree (Heap_Allocator);
-- Do not generate the renaming of the build-in-place
-- pool parameter on .NET/JVM/ZFP because the parameter
-- is not created in the first place.
if VM_Target = No_VM
and then RTE_Available (RE_Root_Storage_Pool_Ptr)
then
Pool_Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pool_Id,
Subtype_Mark =>
New_Reference_To
(RTE (RE_Root_Storage_Pool), Loc),
Name =>
Make_Explicit_Dereference (Loc,
New_Reference_To
(Build_In_Place_Formal
(Par_Func, BIP_Storage_Pool), Loc)));
Set_Storage_Pool (Pool_Allocator, Pool_Id);
Set_Procedure_To_Call
(Pool_Allocator, RTE (RE_Allocate_Any));
else
Pool_Decl := Make_Null_Statement (Loc);
end if;
-- If the No_Allocators restriction is active, then only
-- an allocator for secondary stack allocation is needed.
-- It's OK for such allocators to have Comes_From_Source
-- set to False, because gigi knows not to flag them as
-- being a violation of No_Implicit_Heap_Allocations.
if Restriction_Active (No_Allocators) then
SS_Allocator := Heap_Allocator;
Heap_Allocator := Make_Null (Loc);
Pool_Allocator := Make_Null (Loc);
-- Otherwise the heap and pool allocators may be needed,
-- so we make another allocator for secondary stack
-- allocation.
else
SS_Allocator := New_Copy_Tree (Heap_Allocator);
-- The heap and pool allocators are marked as
-- Comes_From_Source since they correspond to an
-- explicit user-written allocator (that is, it will
-- only be executed on behalf of callers that call the
-- function as initialization for such an allocator).
-- Prevents errors when No_Implicit_Heap_Allocations
-- is in force.
Set_Comes_From_Source (Heap_Allocator, True);
Set_Comes_From_Source (Pool_Allocator, True);
end if;
-- The allocator is returned on the secondary stack. We
-- don't do this on VM targets, since the SS is not used.
if VM_Target = No_VM then
Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
Set_Procedure_To_Call
(SS_Allocator, RTE (RE_SS_Allocate));
-- The allocator is returned on the secondary stack,
-- so indicate that the function return, as well as
-- the block that encloses the allocator, must not
-- release it. The flags must be set now because
-- the decision to use the secondary stack is done
-- very late in the course of expanding the return
-- statement, past the point where these flags are
-- normally set.
Set_Sec_Stack_Needed_For_Return (Par_Func);
Set_Sec_Stack_Needed_For_Return
(Return_Statement_Entity (N));
Set_Uses_Sec_Stack (Par_Func);
Set_Uses_Sec_Stack (Return_Statement_Entity (N));
end if;
-- Create an if statement to test the BIP_Alloc_Form
-- formal and initialize the access object to either the
-- BIP_Object_Access formal (BIP_Alloc_Form =
-- Caller_Allocation), the result of allocating the
-- object in the secondary stack (BIP_Alloc_Form =
-- Secondary_Stack), or else an allocator to create the
-- return object in the heap or user-defined pool
-- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
-- ??? An unchecked type conversion must be made in the
-- case of assigning the access object formal to the
-- local access object, because a normal conversion would
-- be illegal in some cases (such as converting access-
-- to-unconstrained to access-to-constrained), but the
-- the unchecked conversion will presumably fail to work
-- right in just such cases. It's not clear at all how to
-- handle this. ???
Alloc_If_Stmt :=
Make_If_Statement (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
New_Reference_To (Obj_Alloc_Formal, Loc),
Right_Opnd =>
Make_Integer_Literal (Loc,
UI_From_Int (BIP_Allocation_Form'Pos
(Caller_Allocation)))),
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name =>
New_Reference_To (Alloc_Obj_Id, Loc),
Expression =>
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark =>
New_Reference_To (Ref_Type, Loc),
Expression =>
New_Reference_To (Object_Access, Loc)))),
Elsif_Parts => New_List (
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
New_Reference_To (Obj_Alloc_Formal, Loc),
Right_Opnd =>
Make_Integer_Literal (Loc,
UI_From_Int (BIP_Allocation_Form'Pos
(Secondary_Stack)))),
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name =>
New_Reference_To (Alloc_Obj_Id, Loc),
Expression => SS_Allocator))),
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
New_Reference_To (Obj_Alloc_Formal, Loc),
Right_Opnd =>
Make_Integer_Literal (Loc,
UI_From_Int (BIP_Allocation_Form'Pos
(Global_Heap)))),
Then_Statements => New_List (
Build_Heap_Allocator
(Temp_Id => Alloc_Obj_Id,
Temp_Typ => Ref_Type,
Func_Id => Par_Func,
Ret_Typ => Return_Obj_Typ,
Alloc_Expr => Heap_Allocator)))),
Else_Statements => New_List (
Pool_Decl,
Build_Heap_Allocator
(Temp_Id => Alloc_Obj_Id,
Temp_Typ => Ref_Type,
Func_Id => Par_Func,
Ret_Typ => Return_Obj_Typ,
Alloc_Expr => Pool_Allocator)));
-- If a separate initialization assignment was created
-- earlier, append that following the assignment of the
-- implicit access formal to the access object, to ensure
-- that the return object is initialized in that case. In
-- this situation, the target of the assignment must be
-- rewritten to denote a dereference of the access to the
-- return object passed in by the caller.
if Present (Init_Assignment) then
Rewrite (Name (Init_Assignment),
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (Alloc_Obj_Id, Loc)));
Set_Etype
(Name (Init_Assignment), Etype (Return_Obj_Id));
Append_To
(Then_Statements (Alloc_If_Stmt), Init_Assignment);
end if;
Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
-- Remember the local access object for use in the
-- dereference of the renaming created below.
Object_Access := Alloc_Obj_Id;
end;
end if;
-- Replace the return object declaration with a renaming of a
-- dereference of the access value designating the return
-- object.
Obj_Acc_Deref :=
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (Object_Access, Loc));
Rewrite (Ret_Obj_Decl,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Return_Obj_Id,
Access_Definition => Empty,
Subtype_Mark =>
New_Occurrence_Of (Return_Obj_Typ, Loc),
Name => Obj_Acc_Deref));
Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
end;
end if;
-- Case where we do not build a block
else
-- We're about to drop Return_Object_Declarations on the floor, so
-- we need to insert it, in case it got expanded into useful code.
-- Remove side effects from expression, which may be duplicated in
-- subsequent checks (see Expand_Simple_Function_Return).
Insert_List_Before (N, Return_Object_Declarations (N));
Remove_Side_Effects (Exp);
-- Build simple_return_statement that returns the expression directly
Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
Result := Return_Stmt;
end if;
-- Set the flag to prevent infinite recursion
Set_Comes_From_Extended_Return_Statement (Return_Stmt);
Rewrite (N, Result);
Analyze (N);
end Expand_N_Extended_Return_Statement;
----------------------------
-- Expand_N_Function_Call --
----------------------------
procedure Expand_N_Function_Call (N : Node_Id) is
begin
Expand_Call (N);
-- If the return value of a foreign compiled function is VAX Float, then
-- expand the return (adjusts the location of the return value on
-- Alpha/VMS, no-op everywhere else).
-- Comes_From_Source intercepts recursive expansion.
if Nkind (N) = N_Function_Call
and then Vax_Float (Etype (N))
and then Present (Name (N))
and then Present (Entity (Name (N)))
and then Has_Foreign_Convention (Entity (Name (N)))
and then Comes_From_Source (Parent (N))
then
Expand_Vax_Foreign_Return (N);
end if;
end Expand_N_Function_Call;
---------------------------------------
-- Expand_N_Procedure_Call_Statement --
---------------------------------------
procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
begin
Expand_Call (N);
end Expand_N_Procedure_Call_Statement;
--------------------------------------
-- Expand_N_Simple_Return_Statement --
--------------------------------------
procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
begin
-- Defend against previous errors (i.e. the return statement calls a
-- function that is not available in configurable runtime).
if Present (Expression (N))
and then Nkind (Expression (N)) = N_Empty
then
Check_Error_Detected;
return;
end if;
-- Distinguish the function and non-function cases:
case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
when E_Function |
E_Generic_Function =>
Expand_Simple_Function_Return (N);
when E_Procedure |
E_Generic_Procedure |
E_Entry |
E_Entry_Family |
E_Return_Statement =>
Expand_Non_Function_Return (N);
when others =>
raise Program_Error;
end case;
exception
when RE_Not_Available =>
return;
end Expand_N_Simple_Return_Statement;
------------------------------
-- Expand_N_Subprogram_Body --
------------------------------
-- Add poll call if ATC polling is enabled, unless the body will be inlined
-- by the back-end.
-- Add dummy push/pop label nodes at start and end to clear any local
-- exception indications if local-exception-to-goto optimization is active.
-- Add return statement if last statement in body is not a return statement
-- (this makes things easier on Gigi which does not want to have to handle
-- a missing return).
-- Add call to Activate_Tasks if body is a task activator
-- Deal with possible detection of infinite recursion
-- Eliminate body completely if convention stubbed
-- Encode entity names within body, since we will not need to reference
-- these entities any longer in the front end.
-- Initialize scalar out parameters if Initialize/Normalize_Scalars
-- Reset Pure indication if any parameter has root type System.Address
-- or has any parameters of limited types, where limited means that the
-- run-time view is limited (i.e. the full type is limited).
-- Wrap thread body
procedure Expand_N_Subprogram_Body (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
H : constant Node_Id := Handled_Statement_Sequence (N);
Body_Id : Entity_Id;
Except_H : Node_Id;
L : List_Id;
Spec_Id : Entity_Id;
procedure Add_Return (S : List_Id);
-- Append a return statement to the statement sequence S if the last
-- statement is not already a return or a goto statement. Note that
-- the latter test is not critical, it does not matter if we add a few
-- extra returns, since they get eliminated anyway later on.
----------------
-- Add_Return --
----------------
procedure Add_Return (S : List_Id) is
Last_Stm : Node_Id;
Loc : Source_Ptr;
begin
-- Get last statement, ignoring any Pop_xxx_Label nodes, which are
-- not relevant in this context since they are not executable.
Last_Stm := Last (S);
while Nkind (Last_Stm) in N_Pop_xxx_Label loop
Prev (Last_Stm);
end loop;
-- Now insert return unless last statement is a transfer
if not Is_Transfer (Last_Stm) then
-- The source location for the return is the end label of the
-- procedure if present. Otherwise use the sloc of the last
-- statement in the list. If the list comes from a generated
-- exception handler and we are not debugging generated code,
-- all the statements within the handler are made invisible
-- to the debugger.
if Nkind (Parent (S)) = N_Exception_Handler
and then not Comes_From_Source (Parent (S))
then
Loc := Sloc (Last_Stm);
elsif Present (End_Label (H)) then
Loc := Sloc (End_Label (H));
else
Loc := Sloc (Last_Stm);
end if;
declare
Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
begin
-- Append return statement, and set analyzed manually. We can't
-- call Analyze on this return since the scope is wrong.
-- Note: it almost works to push the scope and then do the
-- Analyze call, but something goes wrong in some weird cases
-- and it is not worth worrying about ???
Append_To (S, Rtn);
Set_Analyzed (Rtn);
-- Call _Postconditions procedure if appropriate. We need to
-- do this explicitly because we did not analyze the generated
-- return statement above, so the call did not get inserted.
if Ekind (Spec_Id) = E_Procedure
and then Has_Postconditions (Spec_Id)
then
pragma Assert (Present (Postcondition_Proc (Spec_Id)));
Insert_Action (Rtn,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To (Postcondition_Proc (Spec_Id), Loc)));
end if;
end;
end if;
end Add_Return;
-- Start of processing for Expand_N_Subprogram_Body
begin
-- Set L to either the list of declarations if present, or to the list
-- of statements if no declarations are present. This is used to insert
-- new stuff at the start.
if Is_Non_Empty_List (Declarations (N)) then
L := Declarations (N);
else
L := Statements (H);
end if;
-- If local-exception-to-goto optimization active, insert dummy push
-- statements at start, and dummy pop statements at end, but inhibit
-- this if we have No_Exception_Handlers, since they are useless and
-- intefere with analysis, e.g. by codepeer.
if (Debug_Flag_Dot_G
or else Restriction_Active (No_Exception_Propagation))
and then not Restriction_Active (No_Exception_Handlers)
and then not CodePeer_Mode
and then Is_Non_Empty_List (L)
then
declare
FS : constant Node_Id := First (L);
FL : constant Source_Ptr := Sloc (FS);
LS : Node_Id;
LL : Source_Ptr;
begin
-- LS points to either last statement, if statements are present
-- or to the last declaration if there are no statements present.
-- It is the node after which the pop's are generated.
if Is_Non_Empty_List (Statements (H)) then
LS := Last (Statements (H));
else
LS := Last (L);
end if;
LL := Sloc (LS);
Insert_List_Before_And_Analyze (FS, New_List (
Make_Push_Constraint_Error_Label (FL),
Make_Push_Program_Error_Label (FL),
Make_Push_Storage_Error_Label (FL)));
Insert_List_After_And_Analyze (LS, New_List (
Make_Pop_Constraint_Error_Label (LL),
Make_Pop_Program_Error_Label (LL),
Make_Pop_Storage_Error_Label (LL)));
end;
end if;
-- Find entity for subprogram
Body_Id := Defining_Entity (N);
if Present (Corresponding_Spec (N)) then
Spec_Id := Corresponding_Spec (N);
else
Spec_Id := Body_Id;
end if;
-- Need poll on entry to subprogram if polling enabled. We only do this
-- for non-empty subprograms, since it does not seem necessary to poll
-- for a dummy null subprogram.
if Is_Non_Empty_List (L) then
-- Do not add a polling call if the subprogram is to be inlined by
-- the back-end, to avoid repeated calls with multiple inlinings.
if Is_Inlined (Spec_Id)
and then Front_End_Inlining
and then Optimization_Level > 1
then
null;
else
Generate_Poll_Call (First (L));
end if;
end if;
-- If this is a Pure function which has any parameters whose root type
-- is System.Address, reset the Pure indication, since it will likely
-- cause incorrect code to be generated as the parameter is probably
-- a pointer, and the fact that the same pointer is passed does not mean
-- that the same value is being referenced.
-- Note that if the programmer gave an explicit Pure_Function pragma,
-- then we believe the programmer, and leave the subprogram Pure.
-- This code should probably be at the freeze point, so that it happens
-- even on a -gnatc (or more importantly -gnatt) compile, so that the
-- semantic tree has Is_Pure set properly ???
if Is_Pure (Spec_Id)
and then Is_Subprogram (Spec_Id)
and then not Has_Pragma_Pure_Function (Spec_Id)
then
declare
F : Entity_Id;
begin
F := First_Formal (Spec_Id);
while Present (F) loop
if Is_Descendent_Of_Address (Etype (F))
-- Note that this test is being made in the body of the
-- subprogram, not the spec, so we are testing the full
-- type for being limited here, as required.
or else Is_Limited_Type (Etype (F))
then
Set_Is_Pure (Spec_Id, False);
if Spec_Id /= Body_Id then
Set_Is_Pure (Body_Id, False);
end if;
exit;
end if;
Next_Formal (F);
end loop;
end;
end if;
-- Initialize any scalar OUT args if Initialize/Normalize_Scalars
if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
declare
F : Entity_Id;
A : Node_Id;
begin
-- Loop through formals
F := First_Formal (Spec_Id);
while Present (F) loop
if Is_Scalar_Type (Etype (F))
and then Ekind (F) = E_Out_Parameter
then
Check_Restriction (No_Default_Initialization, F);
-- Insert the initialization. We turn off validity checks
-- for this assignment, since we do not want any check on
-- the initial value itself (which may well be invalid).
-- Predicate checks are disabled as well (RM 6.4.1 (13/3))
A := Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (F, Loc),
Expression => Get_Simple_Init_Val (Etype (F), N));
Set_Suppress_Assignment_Checks (A);
Insert_Before_And_Analyze (First (L),
A, Suppress => Validity_Check);
end if;
Next_Formal (F);
end loop;
end;
end if;
-- Clear out statement list for stubbed procedure
if Present (Corresponding_Spec (N)) then
Set_Elaboration_Flag (N, Spec_Id);
if Convention (Spec_Id) = Convention_Stubbed
or else Is_Eliminated (Spec_Id)
then
Set_Declarations (N, Empty_List);
Set_Handled_Statement_Sequence (N,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Make_Null_Statement (Loc))));
return;
end if;
end if;
-- Create a set of discriminals for the next protected subprogram body
if Is_List_Member (N)
and then Present (Parent (List_Containing (N)))
and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
and then Present (Next_Protected_Operation (N))
then
Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
end if;
-- Returns_By_Ref flag is normally set when the subprogram is frozen but
-- subprograms with no specs are not frozen.
declare
Typ : constant Entity_Id := Etype (Spec_Id);
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if not Acts_As_Spec (N)
and then Nkind (Parent (Parent (Spec_Id))) /=
N_Subprogram_Body_Stub
then
null;
elsif Is_Limited_View (Typ) then
Set_Returns_By_Ref (Spec_Id);
elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
Set_Returns_By_Ref (Spec_Id);
end if;
end;
-- For a procedure, we add a return for all possible syntactic ends of
-- the subprogram.
if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
Add_Return (Statements (H));
if Present (Exception_Handlers (H)) then
Except_H := First_Non_Pragma (Exception_Handlers (H));
while Present (Except_H) loop
Add_Return (Statements (Except_H));
Next_Non_Pragma (Except_H);
end loop;
end if;
-- For a function, we must deal with the case where there is at least
-- one missing return. What we do is to wrap the entire body of the
-- function in a block:
-- begin
-- ...
-- end;
-- becomes
-- begin
-- begin
-- ...
-- end;
-- raise Program_Error;
-- end;
-- This approach is necessary because the raise must be signalled to the
-- caller, not handled by any local handler (RM 6.4(11)).
-- Note: we do not need to analyze the constructed sequence here, since
-- it has no handler, and an attempt to analyze the handled statement
-- sequence twice is risky in various ways (e.g. the issue of expanding
-- cleanup actions twice).
elsif Has_Missing_Return (Spec_Id) then
declare
Hloc : constant Source_Ptr := Sloc (H);
Blok : constant Node_Id :=
Make_Block_Statement (Hloc,
Handled_Statement_Sequence => H);
Rais : constant Node_Id :=
Make_Raise_Program_Error (Hloc,
Reason => PE_Missing_Return);
begin
Set_Handled_Statement_Sequence (N,
Make_Handled_Sequence_Of_Statements (Hloc,
Statements => New_List (Blok, Rais)));
Push_Scope (Spec_Id);
Analyze (Blok);
Analyze (Rais);
Pop_Scope;
end;
end if;
-- If subprogram contains a parameterless recursive call, then we may
-- have an infinite recursion, so see if we can generate code to check
-- for this possibility if storage checks are not suppressed.
if Ekind (Spec_Id) = E_Procedure
and then Has_Recursive_Call (Spec_Id)
and then not Storage_Checks_Suppressed (Spec_Id)
then
Detect_Infinite_Recursion (N, Spec_Id);
end if;
-- Set to encode entity names in package body before gigi is called
Qualify_Entity_Names (N);
end Expand_N_Subprogram_Body;
-----------------------------------
-- Expand_N_Subprogram_Body_Stub --
-----------------------------------
procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
begin
if Present (Corresponding_Body (N)) then
Expand_N_Subprogram_Body (
Unit_Declaration_Node (Corresponding_Body (N)));
end if;
end Expand_N_Subprogram_Body_Stub;
-------------------------------------
-- Expand_N_Subprogram_Declaration --
-------------------------------------
-- If the declaration appears within a protected body, it is a private
-- operation of the protected type. We must create the corresponding
-- protected subprogram an associated formals. For a normal protected
-- operation, this is done when expanding the protected type declaration.
-- If the declaration is for a null procedure, emit null body
procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Subp : constant Entity_Id := Defining_Entity (N);
Scop : constant Entity_Id := Scope (Subp);
Prot_Decl : Node_Id;
Prot_Bod : Node_Id;
Prot_Id : Entity_Id;
begin
-- In SPARK, subprogram declarations are only allowed in package
-- specifications.
if Nkind (Parent (N)) /= N_Package_Specification then
if Nkind (Parent (N)) = N_Compilation_Unit then
Check_SPARK_Restriction
("subprogram declaration is not a library item", N);
elsif Present (Next (N))
and then Nkind (Next (N)) = N_Pragma
and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
then
-- In SPARK, subprogram declarations are also permitted in
-- declarative parts when immediately followed by a corresponding
-- pragma Import. We only check here that there is some pragma
-- Import.
null;
else
Check_SPARK_Restriction
("subprogram declaration is not allowed here", N);
end if;
end if;
-- Deal with case of protected subprogram. Do not generate protected
-- operation if operation is flagged as eliminated.
if Is_List_Member (N)
and then Present (Parent (List_Containing (N)))
and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
and then Is_Protected_Type (Scop)
then
if No (Protected_Body_Subprogram (Subp))
and then not Is_Eliminated (Subp)
then
Prot_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Build_Protected_Sub_Specification
(N, Scop, Unprotected_Mode));
-- The protected subprogram is declared outside of the protected
-- body. Given that the body has frozen all entities so far, we
-- analyze the subprogram and perform freezing actions explicitly.
-- including the generation of an explicit freeze node, to ensure
-- that gigi has the proper order of elaboration.
-- If the body is a subunit, the insertion point is before the
-- stub in the parent.
Prot_Bod := Parent (List_Containing (N));
if Nkind (Parent (Prot_Bod)) = N_Subunit then
Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
end if;
Insert_Before (Prot_Bod, Prot_Decl);
Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
Set_Has_Delayed_Freeze (Prot_Id);
Push_Scope (Scope (Scop));
Analyze (Prot_Decl);
Freeze_Before (N, Prot_Id);
Set_Protected_Body_Subprogram (Subp, Prot_Id);
-- Create protected operation as well. Even though the operation
-- is only accessible within the body, it is possible to make it
-- available outside of the protected object by using 'Access to
-- provide a callback, so build protected version in all cases.
Prot_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
Insert_Before (Prot_Bod, Prot_Decl);
Analyze (Prot_Decl);
Pop_Scope;
end if;
-- Ada 2005 (AI-348): Generate body for a null procedure. In most
-- cases this is superfluous because calls to it will be automatically
-- inlined, but we definitely need the body if preconditions for the
-- procedure are present.
elsif Nkind (Specification (N)) = N_Procedure_Specification
and then Null_Present (Specification (N))
then
declare
Bod : constant Node_Id := Body_To_Inline (N);
begin
Set_Has_Completion (Subp, False);
Append_Freeze_Action (Subp, Bod);
-- The body now contains raise statements, so calls to it will
-- not be inlined.
Set_Is_Inlined (Subp, False);
end;
end if;
end Expand_N_Subprogram_Declaration;
--------------------------------
-- Expand_Non_Function_Return --
--------------------------------
procedure Expand_Non_Function_Return (N : Node_Id) is
pragma Assert (No (Expression (N)));
Loc : constant Source_Ptr := Sloc (N);
Scope_Id : Entity_Id :=
Return_Applies_To (Return_Statement_Entity (N));
Kind : constant Entity_Kind := Ekind (Scope_Id);
Call : Node_Id;
Acc_Stat : Node_Id;
Goto_Stat : Node_Id;
Lab_Node : Node_Id;
begin
-- Call _Postconditions procedure if procedure with active
-- postconditions. Here, we use the Postcondition_Proc attribute,
-- which is needed for implicitly-generated returns. Functions
-- never have implicitly-generated returns, and there's no
-- room for Postcondition_Proc in E_Function, so we look up the
-- identifier Name_uPostconditions for function returns (see
-- Expand_Simple_Function_Return).
if Ekind (Scope_Id) = E_Procedure
and then Has_Postconditions (Scope_Id)
then
pragma Assert (Present (Postcondition_Proc (Scope_Id)));
Insert_Action (N,
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To (Postcondition_Proc (Scope_Id), Loc)));
end if;
-- If it is a return from a procedure do no extra steps
if Kind = E_Procedure or else Kind = E_Generic_Procedure then
return;
-- If it is a nested return within an extended one, replace it with a
-- return of the previously declared return object.
elsif Kind = E_Return_Statement then
Rewrite (N,
Make_Simple_Return_Statement (Loc,
Expression =>
New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
Set_Comes_From_Extended_Return_Statement (N);
Set_Return_Statement_Entity (N, Scope_Id);
Expand_Simple_Function_Return (N);
return;
end if;
pragma Assert (Is_Entry (Scope_Id));
-- Look at the enclosing block to see whether the return is from an
-- accept statement or an entry body.
for J in reverse 0 .. Scope_Stack.Last loop
Scope_Id := Scope_Stack.Table (J).Entity;
exit when Is_Concurrent_Type (Scope_Id);
end loop;
-- If it is a return from accept statement it is expanded as call to
-- RTS Complete_Rendezvous and a goto to the end of the accept body.
-- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
-- Expand_N_Accept_Alternative in exp_ch9.adb)
if Is_Task_Type (Scope_Id) then
Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To (RTE (RE_Complete_Rendezvous), Loc));
Insert_Before (N, Call);
-- why not insert actions here???
Analyze (Call);
Acc_Stat := Parent (N);
while Nkind (Acc_Stat) /= N_Accept_Statement loop
Acc_Stat := Parent (Acc_Stat);
end loop;
Lab_Node := Last (Statements
(Handled_Statement_Sequence (Acc_Stat)));
Goto_Stat := Make_Goto_Statement (Loc,
Name => New_Occurrence_Of
(Entity (Identifier (Lab_Node)), Loc));
Set_Analyzed (Goto_Stat);
Rewrite (N, Goto_Stat);
Analyze (N);
-- If it is a return from an entry body, put a Complete_Entry_Body call
-- in front of the return.
elsif Is_Protected_Type (Scope_Id) then
Call :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To (RTE (RE_Complete_Entry_Body), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Reference_To
(Find_Protection_Object (Current_Scope), Loc),
Attribute_Name => Name_Unchecked_Access)));
Insert_Before (N, Call);
Analyze (Call);
end if;
end Expand_Non_Function_Return;
---------------------------------------
-- Expand_Protected_Object_Reference --
---------------------------------------
function Expand_Protected_Object_Reference
(N : Node_Id;
Scop : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
Corr : Entity_Id;
Rec : Node_Id;
Param : Entity_Id;
Proc : Entity_Id;
begin
Rec := Make_Identifier (Loc, Name_uObject);
Set_Etype (Rec, Corresponding_Record_Type (Scop));
-- Find enclosing protected operation, and retrieve its first parameter,
-- which denotes the enclosing protected object. If the enclosing
-- operation is an entry, we are immediately within the protected body,
-- and we can retrieve the object from the service entries procedure. A
-- barrier function has the same signature as an entry. A barrier
-- function is compiled within the protected object, but unlike
-- protected operations its never needs locks, so that its protected
-- body subprogram points to itself.
Proc := Current_Scope;
while Present (Proc)
and then Scope (Proc) /= Scop
loop
Proc := Scope (Proc);
end loop;
Corr := Protected_Body_Subprogram (Proc);
if No (Corr) then
-- Previous error left expansion incomplete.
-- Nothing to do on this call.
return Empty;
end if;
Param :=
Defining_Identifier
(First (Parameter_Specifications (Parent (Corr))));
if Is_Subprogram (Proc)
and then Proc /= Corr
then
-- Protected function or procedure
Set_Entity (Rec, Param);
-- Rec is a reference to an entity which will not be in scope when
-- the call is reanalyzed, and needs no further analysis.
Set_Analyzed (Rec);
else
-- Entry or barrier function for entry body. The first parameter of
-- the entry body procedure is pointer to the object. We create a
-- local variable of the proper type, duplicating what is done to
-- define _object later on.
declare
Decls : List_Id;
Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
begin
Decls := New_List (
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Obj_Ptr,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication =>
New_Reference_To
(Corresponding_Record_Type (Scop), Loc))));
Insert_Actions (N, Decls);
Freeze_Before (N, Obj_Ptr);
Rec :=
Make_Explicit_Dereference (Loc,
Prefix =>
Unchecked_Convert_To (Obj_Ptr,
New_Occurrence_Of (Param, Loc)));
-- Analyze new actual. Other actuals in calls are already analyzed
-- and the list of actuals is not reanalyzed after rewriting.
Set_Parent (Rec, N);
Analyze (Rec);
end;
end if;
return Rec;
end Expand_Protected_Object_Reference;
--------------------------------------
-- Expand_Protected_Subprogram_Call --
--------------------------------------
procedure Expand_Protected_Subprogram_Call
(N : Node_Id;
Subp : Entity_Id;
Scop : Entity_Id)
is
Rec : Node_Id;
begin
-- If the protected object is not an enclosing scope, this is an inter-
-- object function call. Inter-object procedure calls are expanded by
-- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
-- subprogram being called is in the protected body being compiled, and
-- if the protected object in the call is statically the enclosing type.
-- The object may be an component of some other data structure, in which
-- case this must be handled as an inter-object call.
if not In_Open_Scopes (Scop)
or else not Is_Entity_Name (Name (N))
then
if Nkind (Name (N)) = N_Selected_Component then
Rec := Prefix (Name (N));
else
pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
Rec := Prefix (Prefix (Name (N)));
end if;
Build_Protected_Subprogram_Call (N,
Name => New_Occurrence_Of (Subp, Sloc (N)),
Rec => Convert_Concurrent (Rec, Etype (Rec)),
External => True);
else
Rec := Expand_Protected_Object_Reference (N, Scop);
if No (Rec) then
return;
end if;
Build_Protected_Subprogram_Call (N,
Name => Name (N),
Rec => Rec,
External => False);
end if;
-- If it is a function call it can appear in elaboration code and
-- the called entity must be frozen here.
if Ekind (Subp) = E_Function then
Freeze_Expression (Name (N));
end if;
-- Analyze and resolve the new call. The actuals have already been
-- resolved, but expansion of a function call will add extra actuals
-- if needed. Analysis of a procedure call already includes resolution.
Analyze (N);
if Ekind (Subp) = E_Function then
Resolve (N, Etype (Subp));
end if;
end Expand_Protected_Subprogram_Call;
--------------------------------------------
-- Has_Unconstrained_Access_Discriminants --
--------------------------------------------
function Has_Unconstrained_Access_Discriminants
(Subtyp : Entity_Id) return Boolean
is
Discr : Entity_Id;
begin
if Has_Discriminants (Subtyp)
and then not Is_Constrained (Subtyp)
then
Discr := First_Discriminant (Subtyp);
while Present (Discr) loop
if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
return True;
end if;
Next_Discriminant (Discr);
end loop;
end if;
return False;
end Has_Unconstrained_Access_Discriminants;
-----------------------------------
-- Expand_Simple_Function_Return --
-----------------------------------
-- The "simple" comes from the syntax rule simple_return_statement. The
-- semantics are not at all simple!
procedure Expand_Simple_Function_Return (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Scope_Id : constant Entity_Id :=
Return_Applies_To (Return_Statement_Entity (N));
-- The function we are returning from
R_Type : constant Entity_Id := Etype (Scope_Id);
-- The result type of the function
Utyp : constant Entity_Id := Underlying_Type (R_Type);
Exp : constant Node_Id := Expression (N);
pragma Assert (Present (Exp));
Exptyp : constant Entity_Id := Etype (Exp);
-- The type of the expression (not necessarily the same as R_Type)
Subtype_Ind : Node_Id;
-- If the result type of the function is class-wide and the expression
-- has a specific type, then we use the expression's type as the type of
-- the return object. In cases where the expression is an aggregate that
-- is built in place, this avoids the need for an expensive conversion
-- of the return object to the specific type on assignments to the
-- individual components.
begin
if Is_Class_Wide_Type (R_Type)
and then not Is_Class_Wide_Type (Etype (Exp))
then
Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
else
Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
end if;
-- For the case of a simple return that does not come from an extended
-- return, in the case of Ada 2005 where we are returning a limited
-- type, we rewrite "return <expression>;" to be:
-- return _anon_ : <return_subtype> := <expression>
-- The expansion produced by Expand_N_Extended_Return_Statement will
-- contain simple return statements (for example, a block containing
-- simple return of the return object), which brings us back here with
-- Comes_From_Extended_Return_Statement set. The reason for the barrier
-- checking for a simple return that does not come from an extended
-- return is to avoid this infinite recursion.
-- The reason for this design is that for Ada 2005 limited returns, we
-- need to reify the return object, so we can build it "in place", and
-- we need a block statement to hang finalization and tasking stuff.
-- ??? In order to avoid disruption, we avoid translating to extended
-- return except in the cases where we really need to (Ada 2005 for
-- inherently limited). We might prefer to do this translation in all
-- cases (except perhaps for the case of Ada 95 inherently limited),
-- in order to fully exercise the Expand_N_Extended_Return_Statement
-- code. This would also allow us to do the build-in-place optimization
-- for efficiency even in cases where it is semantically not required.
-- As before, we check the type of the return expression rather than the
-- return type of the function, because the latter may be a limited
-- class-wide interface type, which is not a limited type, even though
-- the type of the expression may be.
if not Comes_From_Extended_Return_Statement (N)
and then Is_Limited_View (Etype (Expression (N)))
and then Ada_Version >= Ada_2005
and then not Debug_Flag_Dot_L
-- The functionality of interface thunks is simple and it is always
-- handled by means of simple return statements. This leaves their
-- expansion simple and clean.
and then not Is_Thunk (Current_Scope)
then
declare
Return_Object_Entity : constant Entity_Id :=
Make_Temporary (Loc, 'R', Exp);
Obj_Decl : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => Return_Object_Entity,
Object_Definition => Subtype_Ind,
Expression => Exp);
Ext : constant Node_Id :=
Make_Extended_Return_Statement (Loc,
Return_Object_Declarations => New_List (Obj_Decl));
-- Do not perform this high-level optimization if the result type
-- is an interface because the "this" pointer must be displaced.
begin
Rewrite (N, Ext);
Analyze (N);
return;
end;
end if;
-- Here we have a simple return statement that is part of the expansion
-- of an extended return statement (either written by the user, or
-- generated by the above code).
-- Always normalize C/Fortran boolean result. This is not always needed,
-- but it seems a good idea to minimize the passing around of non-
-- normalized values, and in any case this handles the processing of
-- barrier functions for protected types, which turn the condition into
-- a return statement.
if Is_Boolean_Type (Exptyp)
and then Nonzero_Is_True (Exptyp)
then
Adjust_Condition (Exp);
Adjust_Result_Type (Exp, Exptyp);
end if;
-- Do validity check if enabled for returns
if Validity_Checks_On
and then Validity_Check_Returns
then
Ensure_Valid (Exp);
end if;
-- Check the result expression of a scalar function against the subtype
-- of the function by inserting a conversion. This conversion must
-- eventually be performed for other classes of types, but for now it's
-- only done for scalars.
-- ???
if Is_Scalar_Type (Exptyp) then
Rewrite (Exp, Convert_To (R_Type, Exp));
-- The expression is resolved to ensure that the conversion gets
-- expanded to generate a possible constraint check.
Analyze_And_Resolve (Exp, R_Type);
end if;
-- Deal with returning variable length objects and controlled types
-- Nothing to do if we are returning by reference, or this is not a
-- type that requires special processing (indicated by the fact that
-- it requires a cleanup scope for the secondary stack case).
if Is_Limited_View (Exptyp)
or else Is_Limited_Interface (Exptyp)
then
null;
-- No copy needed for thunks returning interface type objects since
-- the object is returned by reference and the maximum functionality
-- required is just to displace the pointer.
elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
null;
elsif not Requires_Transient_Scope (R_Type) then
-- Mutable records with no variable length components are not
-- returned on the sec-stack, so we need to make sure that the
-- backend will only copy back the size of the actual value, and not
-- the maximum size. We create an actual subtype for this purpose.
declare
Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
Decl : Node_Id;
Ent : Entity_Id;
begin
if Has_Discriminants (Ubt)
and then not Is_Constrained (Ubt)
and then not Has_Unchecked_Union (Ubt)
then
Decl := Build_Actual_Subtype (Ubt, Exp);
Ent := Defining_Identifier (Decl);
Insert_Action (Exp, Decl);
Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
Analyze_And_Resolve (Exp);
end if;
end;
-- Here if secondary stack is used
else
-- Make sure that no surrounding block will reclaim the secondary
-- stack on which we are going to put the result. Not only may this
-- introduce secondary stack leaks but worse, if the reclamation is
-- done too early, then the result we are returning may get
-- clobbered.
declare
S : Entity_Id;
begin
S := Current_Scope;
while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
Set_Sec_Stack_Needed_For_Return (S, True);
S := Enclosing_Dynamic_Scope (S);
end loop;
end;
-- Optimize the case where the result is a function call. In this
-- case either the result is already on the secondary stack, or is
-- already being returned with the stack pointer depressed and no
-- further processing is required except to set the By_Ref flag
-- to ensure that gigi does not attempt an extra unnecessary copy.
-- (actually not just unnecessary but harmfully wrong in the case
-- of a controlled type, where gigi does not know how to do a copy).
-- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
-- for array types if the constrained status of the target type is
-- different from that of the expression.
if Requires_Transient_Scope (Exptyp)
and then
(not Is_Array_Type (Exptyp)
or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
or else CW_Or_Has_Controlled_Part (Utyp))
and then Nkind (Exp) = N_Function_Call
then
Set_By_Ref (N);
-- Remove side effects from the expression now so that other parts
-- of the expander do not have to reanalyze this node without this
-- optimization
Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
-- For controlled types, do the allocation on the secondary stack
-- manually in order to call adjust at the right time:
-- type Anon1 is access R_Type;
-- for Anon1'Storage_pool use ss_pool;
-- Anon2 : anon1 := new R_Type'(expr);
-- return Anon2.all;
-- We do the same for classwide types that are not potentially
-- controlled (by the virtue of restriction No_Finalization) because
-- gigi is not able to properly allocate class-wide types.
elsif CW_Or_Has_Controlled_Part (Utyp) then
declare
Loc : constant Source_Ptr := Sloc (N);
Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
Alloc_Node : Node_Id;
Temp : Entity_Id;
begin
Set_Ekind (Acc_Typ, E_Access_Type);
Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
-- This is an allocator for the secondary stack, and it's fine
-- to have Comes_From_Source set False on it, as gigi knows not
-- to flag it as a violation of No_Implicit_Heap_Allocations.
Alloc_Node :=
Make_Allocator (Loc,
Expression =>
Make_Qualified_Expression (Loc,
Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
Expression => Relocate_Node (Exp)));
-- We do not want discriminant checks on the declaration,
-- given that it gets its value from the allocator.
Set_No_Initialization (Alloc_Node);
Temp := Make_Temporary (Loc, 'R', Alloc_Node);
Insert_List_Before_And_Analyze (N, New_List (
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Acc_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication => Subtype_Ind)),
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Reference_To (Acc_Typ, Loc),
Expression => Alloc_Node)));
Rewrite (Exp,
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (Temp, Loc)));
-- Ada 2005 (AI-251): If the type of the returned object is
-- an interface then add an implicit type conversion to force
-- displacement of the "this" pointer.
if Is_Interface (R_Type) then
Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
end if;
Analyze_And_Resolve (Exp, R_Type);
end;
-- Otherwise use the gigi mechanism to allocate result on the
-- secondary stack.
else
Check_Restriction (No_Secondary_Stack, N);
Set_Storage_Pool (N, RTE (RE_SS_Pool));
-- If we are generating code for the VM do not use
-- SS_Allocate since everything is heap-allocated anyway.
if VM_Target = No_VM then
Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
end if;
end if;
end if;
-- Implement the rules of 6.5(8-10), which require a tag check in
-- the case of a limited tagged return type, and tag reassignment for
-- nonlimited tagged results. These actions are needed when the return
-- type is a specific tagged type and the result expression is a
-- conversion or a formal parameter, because in that case the tag of
-- the expression might differ from the tag of the specific result type.
if Is_Tagged_Type (Utyp)
and then not Is_Class_Wide_Type (Utyp)
and then (Nkind_In (Exp, N_Type_Conversion,
N_Unchecked_Type_Conversion)
or else (Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) in Formal_Kind))
then
-- When the return type is limited, perform a check that the tag of
-- the result is the same as the tag of the return type.
if Is_Limited_Type (R_Type) then
Insert_Action (Exp,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd =>
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr (Exp),
Selector_Name => Make_Identifier (Loc, Name_uTag)),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Base_Type (Utyp), Loc),
Attribute_Name => Name_Tag)),
Reason => CE_Tag_Check_Failed));
-- If the result type is a specific nonlimited tagged type, then we
-- have to ensure that the tag of the result is that of the result
-- type. This is handled by making a copy of the expression in
-- the case where it might have a different tag, namely when the
-- expression is a conversion or a formal parameter. We create a new
-- object of the result type and initialize it from the expression,
-- which will implicitly force the tag to be set appropriately.
else
declare
ExpR : constant Node_Id := Relocate_Node (Exp);
Result_Id : constant Entity_Id :=
Make_Temporary (Loc, 'R', ExpR);
Result_Exp : constant Node_Id :=
New_Reference_To (Result_Id, Loc);
Result_Obj : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => Result_Id,
Object_Definition =>
New_Reference_To (R_Type, Loc),
Constant_Present => True,
Expression => ExpR);
begin
Set_Assignment_OK (Result_Obj);
Insert_Action (Exp, Result_Obj);
Rewrite (Exp, Result_Exp);
Analyze_And_Resolve (Exp, R_Type);
end;
end if;
-- Ada 2005 (AI-344): If the result type is class-wide, then insert
-- a check that the level of the return expression's underlying type
-- is not deeper than the level of the master enclosing the function.
-- Always generate the check when the type of the return expression
-- is class-wide, when it's a type conversion, or when it's a formal
-- parameter. Otherwise, suppress the check in the case where the
-- return expression has a specific type whose level is known not to
-- be statically deeper than the function's result type.
-- No runtime check needed in interface thunks since it is performed
-- by the target primitive associated with the thunk.
-- Note: accessibility check is skipped in the VM case, since there
-- does not seem to be any practical way to implement this check.
elsif Ada_Version >= Ada_2005
and then Tagged_Type_Expansion
and then Is_Class_Wide_Type (R_Type)
and then not Is_Thunk (Current_Scope)
and then not Scope_Suppress.Suppress (Accessibility_Check)
and then
(Is_Class_Wide_Type (Etype (Exp))
or else Nkind_In (Exp, N_Type_Conversion,
N_Unchecked_Type_Conversion)
or else (Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) in Formal_Kind)
or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
then
declare
Tag_Node : Node_Id;
begin
-- Ada 2005 (AI-251): In class-wide interface objects we displace
-- "this" to reference the base of the object. This is required to
-- get access to the TSD of the object.
if Is_Class_Wide_Type (Etype (Exp))
and then Is_Interface (Etype (Exp))
and then Nkind (Exp) = N_Explicit_Dereference
then
Tag_Node :=
Make_Explicit_Dereference (Loc,
Prefix =>
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
Make_Function_Call (Loc,
Name =>
New_Reference_To (RTE (RE_Base_Address), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To (RTE (RE_Address),
Duplicate_Subexpr (Prefix (Exp)))))));
else
Tag_Node :=
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Exp),
Attribute_Name => Name_Tag);
end if;
Insert_Action (Exp,
Make_Raise_Program_Error (Loc,
Condition =>
Make_Op_Gt (Loc,
Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
Right_Opnd =>
Make_Integer_Literal (Loc,
Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
Reason => PE_Accessibility_Check_Failed));
end;
-- AI05-0073: If function has a controlling access result, check that
-- the tag of the return value, if it is not null, matches designated
-- type of return type.
-- The return expression is referenced twice in the code below, so it
-- must be made free of side effects. Given that different compilers
-- may evaluate these parameters in different order, both occurrences
-- perform a copy.
elsif Ekind (R_Type) = E_Anonymous_Access_Type
and then Has_Controlling_Result (Scope_Id)
then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr (Exp),
Right_Opnd => Make_Null (Loc)),
Right_Opnd => Make_Op_Ne (Loc,
Left_Opnd =>
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr (Exp),
Selector_Name => Make_Identifier (Loc, Name_uTag)),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Designated_Type (R_Type), Loc),
Attribute_Name => Name_Tag))),
Reason => CE_Tag_Check_Failed),
Suppress => All_Checks);
end if;
-- AI05-0234: RM 6.5(21/3). Check access discriminants to
-- ensure that the function result does not outlive an
-- object designated by one of it discriminants.
if Present (Extra_Accessibility_Of_Result (Scope_Id))
and then Has_Unconstrained_Access_Discriminants (R_Type)
then
declare
Discrim_Source : Node_Id;
procedure Check_Against_Result_Level (Level : Node_Id);
-- Check the given accessibility level against the level
-- determined by the point of call. (AI05-0234).
--------------------------------
-- Check_Against_Result_Level --
--------------------------------
procedure Check_Against_Result_Level (Level : Node_Id) is
begin
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Condition =>
Make_Op_Gt (Loc,
Left_Opnd => Level,
Right_Opnd =>
New_Occurrence_Of
(Extra_Accessibility_Of_Result (Scope_Id), Loc)),
Reason => PE_Accessibility_Check_Failed));
end Check_Against_Result_Level;
begin
Discrim_Source := Exp;
while Nkind (Discrim_Source) = N_Qualified_Expression loop
Discrim_Source := Expression (Discrim_Source);
end loop;
if Nkind (Discrim_Source) = N_Identifier
and then Is_Return_Object (Entity (Discrim_Source))
then
Discrim_Source := Entity (Discrim_Source);
if Is_Constrained (Etype (Discrim_Source)) then
Discrim_Source := Etype (Discrim_Source);
else
Discrim_Source := Expression (Parent (Discrim_Source));
end if;
elsif Nkind (Discrim_Source) = N_Identifier
and then Nkind_In (Original_Node (Discrim_Source),
N_Aggregate, N_Extension_Aggregate)
then
Discrim_Source := Original_Node (Discrim_Source);
elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
Nkind (Original_Node (Discrim_Source)) = N_Function_Call
then
Discrim_Source := Original_Node (Discrim_Source);
end if;
while Nkind_In (Discrim_Source, N_Qualified_Expression,
N_Type_Conversion,
N_Unchecked_Type_Conversion)
loop
Discrim_Source := Expression (Discrim_Source);
end loop;
case Nkind (Discrim_Source) is
when N_Defining_Identifier =>
pragma Assert (Is_Composite_Type (Discrim_Source)
and then Has_Discriminants (Discrim_Source)
and then Is_Constrained (Discrim_Source));
declare
Discrim : Entity_Id :=
First_Discriminant (Base_Type (R_Type));
Disc_Elmt : Elmt_Id :=
First_Elmt (Discriminant_Constraint
(Discrim_Source));
begin
loop
if Ekind (Etype (Discrim)) =
E_Anonymous_Access_Type
then
Check_Against_Result_Level
(Dynamic_Accessibility_Level (Node (Disc_Elmt)));
end if;
Next_Elmt (Disc_Elmt);
Next_Discriminant (Discrim);
exit when not Present (Discrim);
end loop;
end;
when N_Aggregate | N_Extension_Aggregate =>
-- Unimplemented: extension aggregate case where discrims
-- come from ancestor part, not extension part.
declare
Discrim : Entity_Id :=
First_Discriminant (Base_Type (R_Type));
Disc_Exp : Node_Id := Empty;
Positionals_Exhausted
: Boolean := not Present (Expressions
(Discrim_Source));
function Associated_Expr
(Comp_Id : Entity_Id;
Associations : List_Id) return Node_Id;
-- Given a component and a component associations list,
-- locate the expression for that component; returns
-- Empty if no such expression is found.
---------------------
-- Associated_Expr --
---------------------
function Associated_Expr
(Comp_Id : Entity_Id;
Associations : List_Id) return Node_Id
is
Assoc : Node_Id;
Choice : Node_Id;
begin
-- Simple linear search seems ok here
Assoc := First (Associations);
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if (Nkind (Choice) = N_Identifier
and then Chars (Choice) = Chars (Comp_Id))
or else (Nkind (Choice) = N_Others_Choice)
then
return Expression (Assoc);
end if;
Next (Choice);
end loop;
Next (Assoc);
end loop;
return Empty;
end Associated_Expr;
-- Start of processing for Expand_Simple_Function_Return
begin
if not Positionals_Exhausted then
Disc_Exp := First (Expressions (Discrim_Source));
end if;
loop
if Positionals_Exhausted then
Disc_Exp :=
Associated_Expr
(Discrim,
Component_Associations (Discrim_Source));
end if;
if Ekind (Etype (Discrim)) =
E_Anonymous_Access_Type
then
Check_Against_Result_Level
(Dynamic_Accessibility_Level (Disc_Exp));
end if;
Next_Discriminant (Discrim);
exit when not Present (Discrim);
if not Positionals_Exhausted then
Next (Disc_Exp);
Positionals_Exhausted := not Present (Disc_Exp);
end if;
end loop;
end;
when N_Function_Call =>
-- No check needed (check performed by callee)
null;
when others =>
declare
Level : constant Node_Id :=
Make_Integer_Literal (Loc,
Object_Access_Level (Discrim_Source));
begin
-- Unimplemented: check for name prefix that includes
-- a dereference of an access value with a dynamic
-- accessibility level (e.g., an access param or a
-- saooaaat) and use dynamic level in that case. For
-- example:
-- return Access_Param.all(Some_Index).Some_Component;
-- ???
Set_Etype (Level, Standard_Natural);
Check_Against_Result_Level (Level);
end;
end case;
end;
end if;
-- If we are returning an object that may not be bit-aligned, then copy
-- the value into a temporary first. This copy may need to expand to a
-- loop of component operations.
if Is_Possibly_Unaligned_Slice (Exp)
or else Is_Possibly_Unaligned_Object (Exp)
then
declare
ExpR : constant Node_Id := Relocate_Node (Exp);
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
begin
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (R_Type, Loc),
Expression => ExpR),
Suppress => All_Checks);
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
end;
end if;
-- Generate call to postcondition checks if they are present
if Ekind (Scope_Id) = E_Function
and then Has_Postconditions (Scope_Id)
then
-- We are going to reference the returned value twice in this case,
-- once in the call to _Postconditions, and once in the actual return
-- statement, but we can't have side effects happening twice, and in
-- any case for efficiency we don't want to do the computation twice.
-- If the returned expression is an entity name, we don't need to
-- worry since it is efficient and safe to reference it twice, that's
-- also true for literals other than string literals, and for the
-- case of X.all where X is an entity name.
if Is_Entity_Name (Exp)
or else Nkind_In (Exp, N_Character_Literal,
N_Integer_Literal,
N_Real_Literal)
or else (Nkind (Exp) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Exp)))
then
null;
-- Otherwise we are going to need a temporary to capture the value
else
declare
ExpR : Node_Id := Relocate_Node (Exp);
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
begin
-- In the case of discriminated objects, we have created a
-- constrained subtype above, and used the underlying type.
-- This transformation is post-analysis and harmless, except
-- that now the call to the post-condition will be analyzed and
-- type kinds have to match.
if Nkind (ExpR) = N_Unchecked_Type_Conversion
and then
Is_Private_Type (R_Type) /= Is_Private_Type (Etype (ExpR))
then
ExpR := Expression (ExpR);
end if;
-- For a complex expression of an elementary type, capture
-- value in the temporary and use it as the reference.
if Is_Elementary_Type (R_Type) then
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (R_Type, Loc),
Expression => ExpR),
Suppress => All_Checks);
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
-- If we have something we can rename, generate a renaming of
-- the object and replace the expression with a reference
elsif Is_Object_Reference (Exp) then
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Tnn,
Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
Name => ExpR),
Suppress => All_Checks);
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
-- Otherwise we have something like a string literal or an
-- aggregate. We could copy the value, but that would be
-- inefficient. Instead we make a reference to the value and
-- capture this reference with a renaming, the expression is
-- then replaced by a dereference of this renaming.
else
-- For now, copy the value, since the code below does not
-- seem to work correctly ???
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (R_Type, Loc),
Expression => Relocate_Node (Exp)),
Suppress => All_Checks);
Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
-- Insert_Action (Exp,
-- Make_Object_Renaming_Declaration (Loc,
-- Defining_Identifier => Tnn,
-- Access_Definition =>
-- Make_Access_Definition (Loc,
-- All_Present => True,
-- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
-- Name =>
-- Make_Reference (Loc,
-- Prefix => Relocate_Node (Exp))),
-- Suppress => All_Checks);
-- Rewrite (Exp,
-- Make_Explicit_Dereference (Loc,
-- Prefix => New_Occurrence_Of (Tnn, Loc)));
end if;
end;
end if;
-- Generate call to _postconditions
Insert_Action (Exp,
Make_Procedure_Call_Statement (Loc,
Name => Make_Identifier (Loc, Name_uPostconditions),
Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
end if;
-- Ada 2005 (AI-251): If this return statement corresponds with an
-- simple return statement associated with an extended return statement
-- and the type of the returned object is an interface then generate an
-- implicit conversion to force displacement of the "this" pointer.
if Ada_Version >= Ada_2005
and then Comes_From_Extended_Return_Statement (N)
and then Nkind (Expression (N)) = N_Identifier
and then Is_Interface (Utyp)
and then Utyp /= Underlying_Type (Exptyp)
then
Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp);
end if;
end Expand_Simple_Function_Return;
--------------------------------
-- Expand_Subprogram_Contract --
--------------------------------
procedure Expand_Subprogram_Contract
(N : Node_Id;
Spec_Id : Entity_Id;
Body_Id : Entity_Id)
is
procedure Add_Invariant_And_Predicate_Checks
(Subp_Id : Entity_Id;
Stmts : in out List_Id;
Result : out Node_Id);
-- Process the result of function Subp_Id (if applicable) and all its
-- formals. Add invariant and predicate checks where applicable. The
-- routine appends all the checks to list Stmts. If Subp_Id denotes a
-- function, Result contains the entity of parameter _Result, to be
-- used in the creation of procedure _Postconditions.
procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
-- Append a node to a list. If there is no list, create a new one. When
-- the item denotes a pragma, it is added to the list only when it is
-- enabled.
procedure Build_Postconditions_Procedure
(Subp_Id : Entity_Id;
Stmts : List_Id;
Result : Entity_Id);
-- Create the body of procedure _Postconditions which handles various
-- assertion actions on exit from subprogram Subp_Id. Stmts is the list
-- of statements to be checked on exit. Parameter Result is the entity
-- of parameter _Result when Subp_Id denotes a function.
function Build_Pragma_Check_Equivalent
(Prag : Node_Id;
Subp_Id : Entity_Id := Empty;
Inher_Id : Entity_Id := Empty) return Node_Id;
-- Transform a [refined] pre- or postcondition denoted by Prag into an
-- equivalent pragma Check. When the pre- or postcondition is inherited,
-- the routine corrects the references of all formals of Inher_Id to
-- point to the formals of Subp_Id.
procedure Collect_Body_Postconditions (Stmts : in out List_Id);
-- Process all postconditions found in the declarations of the body. The
-- routine appends the pragma Check equivalents to list Stmts.
procedure Collect_Spec_Postconditions
(Subp_Id : Entity_Id;
Stmts : in out List_Id);
-- Process all [inherited] postconditions of subprogram spec Subp_Id.
-- The routine appends the pragma Check equivalents to list Stmts.
procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id);
-- Process all [inherited] preconditions of subprogram spec Subp_Id. The
-- routine prepends the pragma Check equivalents to the declarations of
-- the body.
procedure Prepend_To_Declarations (Item : Node_Id);
-- Prepend a single item to the declarations of the subprogram body
procedure Process_Contract_Cases
(Subp_Id : Entity_Id;
Stmts : in out List_Id);
-- Process pragma Contract_Cases of subprogram spec Subp_Id. The routine
-- appends the expanded code to list Stmts.
----------------------------------------
-- Add_Invariant_And_Predicate_Checks --
----------------------------------------
procedure Add_Invariant_And_Predicate_Checks
(Subp_Id : Entity_Id;
Stmts : in out List_Id;
Result : out Node_Id)
is
procedure Add_Invariant_Access_Checks (Id : Entity_Id);
-- Id denotes the return value of a function or a formal parameter.
-- Add an invariant check if the type of Id is access to a type with
-- invariants. The routine appends the generated code to Stmts.
function Invariant_Checks_OK (Typ : Entity_Id) return Boolean;
-- Determine whether type Typ can benefit from invariant checks. To
-- qualify, the type must have a non-null invariant procedure and
-- subprogram Subp_Id must appear visible from the point of view of
-- the type.
function Predicate_Checks_OK (Typ : Entity_Id) return Boolean;
-- Determine whether type Typ can benefit from predicate checks. To
-- qualify, the type must have at least one checked predicate.
---------------------------------
-- Add_Invariant_Access_Checks --
---------------------------------
procedure Add_Invariant_Access_Checks (Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ref : Node_Id;
Typ : Entity_Id;
begin
Typ := Etype (Id);
if Is_Access_Type (Typ) and then not Is_Access_Constant (Typ) then
Typ := Designated_Type (Typ);
if Invariant_Checks_OK (Typ) then
Ref :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Id, Loc));
Set_Etype (Ref, Typ);
-- Generate:
-- if <Id> /= null then
-- <invariant_call (<Ref>)>
-- end if;
Append_Enabled_Item
(Item =>
Make_If_Statement (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Id, Loc),
Right_Opnd => Make_Null (Loc)),
Then_Statements => New_List (
Make_Invariant_Call (Ref))),
List => Stmts);
end if;
end if;
end Add_Invariant_Access_Checks;
-------------------------
-- Invariant_Checks_OK --
-------------------------
function Invariant_Checks_OK (Typ : Entity_Id) return Boolean is
function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
-- Determine whether the body of procedure Proc_Id contains a sole
-- null statement, possibly followed by an optional return.
function Has_Public_Visibility_Of_Subprogram return Boolean;
-- Determine whether type Typ has public visibility of subprogram
-- Subp_Id.
-------------------
-- Has_Null_Body --
-------------------
function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
Body_Id : Entity_Id;
Decl : Node_Id;
Spec : Node_Id;
Stmt1 : Node_Id;
Stmt2 : Node_Id;
begin
Spec := Parent (Proc_Id);
Decl := Parent (Spec);
-- Retrieve the entity of the invariant procedure body
if Nkind (Spec) = N_Procedure_Specification
and then Nkind (Decl) = N_Subprogram_Declaration
then
Body_Id := Corresponding_Body (Decl);
-- The body acts as a spec
else
Body_Id := Proc_Id;
end if;
-- The body will be generated later
if No (Body_Id) then
return False;
end if;
Spec := Parent (Body_Id);
Decl := Parent (Spec);
pragma Assert
(Nkind (Spec) = N_Procedure_Specification
and then Nkind (Decl) = N_Subprogram_Body);
Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
-- Look for a null statement followed by an optional return
-- statement.
if Nkind (Stmt1) = N_Null_Statement then
Stmt2 := Next (Stmt1);
if Present (Stmt2) then
return Nkind (Stmt2) = N_Simple_Return_Statement;
else
return True;
end if;
end if;
return False;
end Has_Null_Body;
-----------------------------------------
-- Has_Public_Visibility_Of_Subprogram --
-----------------------------------------
function Has_Public_Visibility_Of_Subprogram return Boolean is
Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
Vis_Decls : constant List_Id :=
Visible_Declarations (Specification
(Unit_Declaration_Node (Scope (Typ))));
begin
-- An Initialization procedure must be considered visible even
-- though it is internally generated.
if Is_Init_Proc (Defining_Entity (Subp_Decl)) then
return True;
-- Internally generated code is never publicly visible except
-- for a subprogram that is the implementation of an expression
-- function. In that case the visibility is determined by the
-- last check.
elsif not Comes_From_Source (Subp_Decl)
and then
(Nkind (Original_Node (Subp_Decl)) /= N_Expression_Function
or else not
Comes_From_Source (Defining_Entity (Subp_Decl)))
then
return False;
-- Determine whether the subprogram is declared in the visible
-- declarations of the package containing the type.
else
return List_Containing (Subp_Decl) = Vis_Decls;
end if;
end Has_Public_Visibility_Of_Subprogram;
-- Start of processing for Invariant_Checks_OK
begin
return
Has_Invariants (Typ)
and then Present (Invariant_Procedure (Typ))
and then not Has_Null_Body (Invariant_Procedure (Typ))
and then Has_Public_Visibility_Of_Subprogram;
end Invariant_Checks_OK;
-------------------------
-- Predicate_Checks_OK --
-------------------------
function Predicate_Checks_OK (Typ : Entity_Id) return Boolean is
function Has_Checked_Predicate return Boolean;
-- Determine whether type Typ has or inherits at least one
-- predicate aspect or pragma, for which the applicable policy is
-- Checked.
---------------------------
-- Has_Checked_Predicate --
---------------------------
function Has_Checked_Predicate return Boolean is
Anc : Entity_Id;
Pred : Node_Id;
begin
-- Climb the ancestor type chain staring from the input. This
-- is done because the input type may lack aspect/pragma
-- predicate and simply inherit those from its ancestor.
-- Note that predicate pragmas include all three cases of
-- predicate aspects (Predicate, Dynamic_Predicate,
-- Static_Predicate), so this routine checks for all three
-- cases.
Anc := Typ;
while Present (Anc) loop
Pred := Get_Pragma (Anc, Pragma_Predicate);
if Present (Pred) and then not Is_Ignored (Pred) then
return True;
end if;
Anc := Nearest_Ancestor (Anc);
end loop;
return False;
end Has_Checked_Predicate;
-- Start of processing for Predicate_Checks_OK
begin
return
Has_Predicates (Typ)
and then Present (Predicate_Function (Typ))
and then Has_Checked_Predicate;
end Predicate_Checks_OK;
-- Local variables
Loc : constant Source_Ptr := Sloc (N);
Formal : Entity_Id;
Typ : Entity_Id;
-- Start of processing for Add_Invariant_And_Predicate_Checks
begin
Result := Empty;
-- Do not generate any checks if no code is being generated
if not Expander_Active then
return;
end if;
-- Process the result of a function
if Ekind_In (Subp_Id, E_Function, E_Generic_Function) then
Typ := Etype (Subp_Id);
-- Generate _Result which is used in procedure _Postconditions to
-- verify the return value.
Result := Make_Defining_Identifier (Loc, Name_uResult);
Set_Etype (Result, Typ);
-- Add an invariant check when the return type has invariants and
-- the related function is visible to the outside.
if Invariant_Checks_OK (Typ) then
Append_Enabled_Item
(Item =>
Make_Invariant_Call (New_Occurrence_Of (Result, Loc)),
List => Stmts);
end if;
-- Add an invariant check when the return type is an access to a
-- type with invariants.
Add_Invariant_Access_Checks (Result);
end if;
-- Add invariant and predicates for all formals that qualify
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Typ := Etype (Formal);
if Ekind (Formal) /= E_In_Parameter
or else Is_Access_Type (Typ)
then
if Invariant_Checks_OK (Typ) then
Append_Enabled_Item
(Item =>
Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
List => Stmts);
end if;
Add_Invariant_Access_Checks (Formal);
if Predicate_Checks_OK (Typ) then
Append_Enabled_Item
(Item =>
Make_Predicate_Check
(Typ, New_Reference_To (Formal, Loc)),
List => Stmts);
end if;
end if;
Next_Formal (Formal);
end loop;
end Add_Invariant_And_Predicate_Checks;
-------------------------
-- Append_Enabled_Item --
-------------------------
procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
begin
-- Do not chain ignored or disabled pragmas
if Nkind (Item) = N_Pragma
and then (Is_Ignored (Item) or else Is_Disabled (Item))
then
null;
-- Add the item
else
if No (List) then
List := New_List;
end if;
Append (Item, List);
end if;
end Append_Enabled_Item;
------------------------------------
-- Build_Postconditions_Procedure --
------------------------------------
procedure Build_Postconditions_Procedure
(Subp_Id : Entity_Id;
Stmts : List_Id;
Result : Entity_Id)
is
procedure Insert_After_Last_Declaration (Stmt : Node_Id);
-- Insert node Stmt after the last declaration of the subprogram body
-----------------------------------
-- Insert_After_Last_Declaration --
-----------------------------------
procedure Insert_After_Last_Declaration (Stmt : Node_Id) is
Decls : List_Id := Declarations (N);
begin
-- Ensure that the body has a declaration list
if No (Decls) then
Decls := New_List;
Set_Declarations (N, Decls);
end if;
Append_To (Decls, Stmt);
end Insert_After_Last_Declaration;
-- Local variables
Loc : constant Source_Ptr := Sloc (N);
Params : List_Id := No_List;
Proc_Id : Entity_Id;
-- Start of processing for Build_Postconditions_Procedure
begin
-- Do not create the routine if no code is being generated
if not Expander_Active then
return;
-- Nothing to do if there are no actions to check on exit
elsif No (Stmts) then
return;
end if;
Proc_Id := Make_Defining_Identifier (Loc, Name_uPostconditions);
-- The related subprogram is a function, create the specification of
-- parameter _Result.
if Present (Result) then
Params := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Result,
Parameter_Type =>
New_Reference_To (Etype (Result), Loc)));
end if;
-- Insert _Postconditions after the last declaration of the body.
-- This ensures that the body will not cause any premature freezing
-- as it may mention types:
-- procedure Proc (Obj : Array_Typ) is
-- procedure _postconditions is
-- begin
-- ... Obj ...
-- end _postconditions;
-- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
-- begin
-- In the example above, Obj is of type T but the incorrect placement
-- of _Postconditions will cause a crash in gigi due to an out of
-- order reference. The body of _Postconditions must be placed after
-- the declaration of Temp to preserve correct visibility.
Insert_After_Last_Declaration (
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Params),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, Stmts)));
-- Set the attributes of the related subprogram to capture the
-- generated procedure.
if Ekind_In (Subp_Id, E_Generic_Procedure, E_Procedure) then
Set_Postcondition_Proc (Subp_Id, Proc_Id);
end if;
Set_Has_Postconditions (Subp_Id);
end Build_Postconditions_Procedure;
-----------------------------------
-- Build_Pragma_Check_Equivalent --
-----------------------------------
function Build_Pragma_Check_Equivalent
(Prag : Node_Id;
Subp_Id : Entity_Id := Empty;
Inher_Id : Entity_Id := Empty) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Prag);
Prag_Nam : constant Name_Id := Pragma_Name (Prag);
Check_Prag : Node_Id;
Formals_Map : Elist_Id;
Inher_Formal : Entity_Id;
Msg_Arg : Node_Id;
Nam : Name_Id;
Subp_Formal : Entity_Id;
begin
Formals_Map := No_Elist;
-- When the pre- or postcondition is inherited, map the formals of
-- the inherited subprogram to those of the current subprogram.
if Present (Inher_Id) then
pragma Assert (Present (Subp_Id));
Formals_Map := New_Elmt_List;
-- Create a relation <inherited formal> => <subprogram formal>
Inher_Formal := First_Formal (Inher_Id);
Subp_Formal := First_Formal (Subp_Id);
while Present (Inher_Formal) and then Present (Subp_Formal) loop
Append_Elmt (Inher_Formal, Formals_Map);
Append_Elmt (Subp_Formal, Formals_Map);
Next_Formal (Inher_Formal);
Next_Formal (Subp_Formal);
end loop;
end if;
-- Copy the original pragma while performing substitutions (if
-- applicable).
Check_Prag :=
New_Copy_Tree
(Source => Prag,
Map => Formals_Map,
New_Scope => Current_Scope);
-- Mark the pragma as being internally generated and reset the
-- Analyzed flag.
Set_Comes_From_Source (Check_Prag, False);
Set_Analyzed (Check_Prag, False);
-- For a postcondition pragma within a generic, preserve the pragma
-- for later expansion. This is also used when an error was detected,
-- thus setting Expander_Active to False.
if Prag_Nam = Name_Postcondition and then not Expander_Active then
return Check_Prag;
end if;
if Present (Corresponding_Aspect (Prag)) then
Nam := Chars (Identifier (Corresponding_Aspect (Prag)));
else
Nam := Prag_Nam;
end if;
-- Convert the copy into pragma Check by correcting the name and
-- adding a check_kind argument.
Set_Pragma_Identifier
(Check_Prag, Make_Identifier (Loc, Name_Check));
Prepend_To (Pragma_Argument_Associations (Check_Prag),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam)));
-- Update the error message when the pragma is inherited
if Present (Inher_Id) then
Msg_Arg := Last (Pragma_Argument_Associations (Check_Prag));
if Chars (Msg_Arg) = Name_Message then
String_To_Name_Buffer (Strval (Expression (Msg_Arg)));
-- Insert "inherited" to improve the error message
if Name_Buffer (1 .. 8) = "failed p" then
Insert_Str_In_Name_Buffer ("inherited ", 8);
Set_Strval (Expression (Msg_Arg), String_From_Name_Buffer);
end if;
end if;
end if;
return Check_Prag;
end Build_Pragma_Check_Equivalent;
---------------------------------
-- Collect_Body_Postconditions --
---------------------------------
procedure Collect_Body_Postconditions (Stmts : in out List_Id) is
procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id);
-- Process postconditions of a particular kind denoted by Post_Nam
-----------------------------------------
-- Collect_Body_Postconditions_Of_Kind --
-----------------------------------------
procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id) is
Check_Prag : Node_Id;
Decl : Node_Id;
begin
pragma Assert (Nam_In (Post_Nam, Name_Postcondition,
Name_Refined_Post));
-- Inspect the declarations of the subprogram body looking for a
-- pragma that matches the desired name.
Decl := First (Declarations (N));
while Present (Decl) loop
if Nkind (Decl) = N_Pragma then
if Pragma_Name (Decl) = Post_Nam then
Analyze (Decl);
Check_Prag := Build_Pragma_Check_Equivalent (Decl);
if Expander_Active then
Append_Enabled_Item
(Item => Check_Prag,
List => Stmts);
-- When analyzing a generic unit, save the pragma for
-- later.
else
Prepend_To_Declarations (Check_Prag);
end if;
end if;
-- Skip internally generated code
elsif not Comes_From_Source (Decl) then
null;
-- Postconditions in bodies are usually grouped at the top of
-- the declarations. There is no point in inspecting the whole
-- source list.
else
exit;
end if;
Next (Decl);
end loop;
end Collect_Body_Postconditions_Of_Kind;
-- Start of processing for Collect_Body_Postconditions
begin
Collect_Body_Postconditions_Of_Kind (Name_Refined_Post);
Collect_Body_Postconditions_Of_Kind (Name_Postcondition);
end Collect_Body_Postconditions;
---------------------------------
-- Collect_Spec_Postconditions --
---------------------------------
procedure Collect_Spec_Postconditions
(Subp_Id : Entity_Id;
Stmts : in out List_Id)
is
Inher_Subps : constant Subprogram_List :=
Inherited_Subprograms (Subp_Id);
Check_Prag : Node_Id;
Prag : Node_Id;
Inher_Subp_Id : Entity_Id;
begin
-- Process the contract of the spec
Prag := Pre_Post_Conditions (Contract (Subp_Id));
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Postcondition then
Check_Prag := Build_Pragma_Check_Equivalent (Prag);
if Expander_Active then
Append_Enabled_Item
(Item => Check_Prag,
List => Stmts);
-- When analyzing a generic unit, save the pragma for later
else
Prepend_To_Declarations (Check_Prag);
end if;
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Process the contracts of all inherited subprograms, looking for
-- class-wide postconditions.
for Index in Inher_Subps'Range loop
Inher_Subp_Id := Inher_Subps (Index);
Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Postcondition
and then Class_Present (Prag)
then
Check_Prag :=
Build_Pragma_Check_Equivalent
(Prag => Prag,
Subp_Id => Subp_Id,
Inher_Id => Inher_Subp_Id);
if Expander_Active then
Append_Enabled_Item
(Item => Check_Prag,
List => Stmts);
-- When analyzing a generic unit, save the pragma for later
else
Prepend_To_Declarations (Check_Prag);
end if;
end if;
Prag := Next_Pragma (Prag);
end loop;
end loop;
end Collect_Spec_Postconditions;
--------------------------------
-- Collect_Spec_Preconditions --
--------------------------------
procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id) is
procedure Merge_Preconditions (From : Node_Id; Into : Node_Id);
-- Merge two class-wide preconditions by "or else"-ing them. The
-- changes are accumulated in parameter Into. Update the error
-- message of Into.
-------------------------
-- Merge_Preconditions --
-------------------------
procedure Merge_Preconditions (From : Node_Id; Into : Node_Id) is
function Expression_Arg (Prag : Node_Id) return Node_Id;
-- Return the boolean expression argument of a precondition while
-- updating its parenteses count for the subsequent merge.
function Message_Arg (Prag : Node_Id) return Node_Id;
-- Return the message argument of a precondition
--------------------
-- Expression_Arg --
--------------------
function Expression_Arg (Prag : Node_Id) return Node_Id is
Args : constant List_Id := Pragma_Argument_Associations (Prag);
Arg : constant Node_Id := Get_Pragma_Arg (Next (First (Args)));
begin
if Paren_Count (Arg) = 0 then
Set_Paren_Count (Arg, 1);
end if;
return Arg;
end Expression_Arg;
-----------------
-- Message_Arg --
-----------------
function Message_Arg (Prag : Node_Id) return Node_Id is
Args : constant List_Id := Pragma_Argument_Associations (Prag);
begin
return Get_Pragma_Arg (Last (Args));
end Message_Arg;
-- Local variables
From_Expr : constant Node_Id := Expression_Arg (From);
From_Msg : constant Node_Id := Message_Arg (From);
Into_Expr : constant Node_Id := Expression_Arg (Into);
Into_Msg : constant Node_Id := Message_Arg (Into);
Loc : constant Source_Ptr := Sloc (Into);
-- Start of processing for Merge_Preconditions
begin
-- Merge the two preconditions by "or else"-ing them
Rewrite (Into_Expr,
Make_Or_Else (Loc,
Right_Opnd => Relocate_Node (Into_Expr),
Left_Opnd => From_Expr));
-- Merge the two error messages to produce a single message of the
-- form:
-- failed precondition from ...
-- also failed inherited precondition from ...
if not Exception_Locations_Suppressed then
Start_String (Strval (Into_Msg));
Store_String_Char (ASCII.LF);
Store_String_Chars (" also ");
Store_String_Chars (Strval (From_Msg));
Set_Strval (Into_Msg, End_String);
end if;
end Merge_Preconditions;
-- Local variables
Inher_Subps : constant Subprogram_List :=
Inherited_Subprograms (Subp_Id);
Check_Prag : Node_Id;
Class_Pre : Node_Id := Empty;
Inher_Subp_Id : Entity_Id;
Prag : Node_Id;
-- Start of processing for Collect_Spec_Preconditions
begin
-- Process the contract of the spec
Prag := Pre_Post_Conditions (Contract (Subp_Id));
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Precondition then
Check_Prag := Build_Pragma_Check_Equivalent (Prag);
-- Save the sole class-wide precondition (if any) for the next
-- step where it will be merged with inherited preconditions.
if Class_Present (Prag) then
Class_Pre := Check_Prag;
-- Accumulate the corresponding Check pragmas to the top of the
-- declarations. Prepending the items ensures that they will
-- be evaluated in their original order.
else
Prepend_To_Declarations (Check_Prag);
end if;
end if;
Prag := Next_Pragma (Prag);
end loop;
-- Process the contracts of all inherited subprograms, looking for
-- class-wide preconditions.
for Index in Inher_Subps'Range loop
Inher_Subp_Id := Inher_Subps (Index);
Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Precondition
and then Class_Present (Prag)
then
Check_Prag :=
Build_Pragma_Check_Equivalent
(Prag => Prag,
Subp_Id => Subp_Id,
Inher_Id => Inher_Subp_Id);
-- The spec or an inherited subprogram already yielded a
-- class-wide precondition. Merge the existing precondition
-- with the current one using "or else".
if Present (Class_Pre) then
Merge_Preconditions (Check_Prag, Class_Pre);
else
Class_Pre := Check_Prag;
end if;
end if;
Prag := Next_Pragma (Prag);
end loop;
end loop;
-- Add the merged class-wide preconditions (if any)
if Present (Class_Pre) then
Prepend_To_Declarations (Class_Pre);
end if;
end Collect_Spec_Preconditions;
-----------------------------
-- Prepend_To_Declarations --
-----------------------------
procedure Prepend_To_Declarations (Item : Node_Id) is
Decls : List_Id := Declarations (N);
begin
-- Ensure that the body has a declarative list
if No (Decls) then
Decls := New_List;
Set_Declarations (N, Decls);
end if;
Prepend_To (Decls, Item);
end Prepend_To_Declarations;
----------------------------
-- Process_Contract_Cases --
----------------------------
procedure Process_Contract_Cases
(Subp_Id : Entity_Id;
Stmts : in out List_Id)
is
Prag : Node_Id;
begin
-- Do not build the Contract_Cases circuitry if no code is being
-- generated.
if not Expander_Active then
return;
end if;
Prag := Contract_Test_Cases (Contract (Subp_Id));
while Present (Prag) loop
if Pragma_Name (Prag) = Name_Contract_Cases then
Expand_Contract_Cases
(CCs => Prag,
Subp_Id => Subp_Id,
Decls => Declarations (N),
Stmts => Stmts);
end if;
Prag := Next_Pragma (Prag);
end loop;
end Process_Contract_Cases;
-- Local variables
Post_Stmts : List_Id := No_List;
Result : Entity_Id;
Subp_Id : Entity_Id;
-- Start of processing for Expand_Subprogram_Contract
begin
if Present (Spec_Id) then
Subp_Id := Spec_Id;
else
Subp_Id := Body_Id;
end if;
-- Do not process a predicate function as its body will end up with a
-- recursive call to itself and blow up the stack.
if Ekind (Subp_Id) = E_Function
and then Is_Predicate_Function (Subp_Id)
then
return;
-- Do not process TSS subprograms
elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
return;
end if;
-- The expansion of a subprogram contract involves the relocation of
-- various contract assertions to the declarations of the body in a
-- particular order. The order is as follows:
-- function Example (...) return ... is
-- procedure _Postconditions (...) is
-- begin
-- <refined postconditions from body>
-- <postconditions from body>
-- <postconditions from spec>
-- <inherited postconditions>
-- <contract cases>
-- <invariant check of function result (if applicable)>
-- <invariant and predicate checks of parameters>
-- end _Postconditions;
-- <inherited preconditions>
-- <preconditions from spec>
-- <preconditions from body>
-- <refined preconditions from body>
-- <source declarations>
-- begin
-- <source statements>
-- _Preconditions (Result);
-- return Result;
-- end Example;
-- Routine _Postconditions holds all contract assertions that must be
-- verified on exit from the related routine.
-- Collect all [inherited] preconditions from the spec, transform them
-- into Check pragmas and add them to the declarations of the body in
-- the order outlined above.
if Present (Spec_Id) then
Collect_Spec_Preconditions (Spec_Id);
end if;
-- Transform all [refined] postconditions of the body into Check
-- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
Collect_Body_Postconditions (Post_Stmts);
-- Transform all [inherited] postconditions from the spec into Check
-- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
if Present (Spec_Id) then
Collect_Spec_Postconditions (Spec_Id, Post_Stmts);
-- Transform pragma Contract_Cases from the spec into its circuitry
Process_Contract_Cases (Spec_Id, Post_Stmts);
end if;
-- Apply invariant and predicate checks on the result of a function (if
-- applicable) and all formals. The resulting checks are accumulated in
-- list Post_Stmts.
Add_Invariant_And_Predicate_Checks (Subp_Id, Post_Stmts, Result);
-- Construct procedure _Postconditions
Build_Postconditions_Procedure (Subp_Id, Post_Stmts, Result);
end Expand_Subprogram_Contract;
--------------------------------
-- Is_Build_In_Place_Function --
--------------------------------
function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
begin
-- This function is called from Expand_Subtype_From_Expr during
-- semantic analysis, even when expansion is off. In those cases
-- the build_in_place expansion will not take place.
if not Expander_Active then
return False;
end if;
-- For now we test whether E denotes a function or access-to-function
-- type whose result subtype is inherently limited. Later this test may
-- be revised to allow composite nonlimited types. Functions with a
-- foreign convention or whose result type has a foreign convention
-- never qualify.
if Ekind_In (E, E_Function, E_Generic_Function)
or else (Ekind (E) = E_Subprogram_Type
and then Etype (E) /= Standard_Void_Type)
then
-- Note: If you have Convention (C) on an inherently limited type,
-- you're on your own. That is, the C code will have to be carefully
-- written to know about the Ada conventions.
if Has_Foreign_Convention (E)
or else Has_Foreign_Convention (Etype (E))
then
return False;
-- In Ada 2005 all functions with an inherently limited return type
-- must be handled using a build-in-place profile, including the case
-- of a function with a limited interface result, where the function
-- may return objects of nonlimited descendants.
else
return Is_Limited_View (Etype (E))
and then Ada_Version >= Ada_2005
and then not Debug_Flag_Dot_L;
end if;
else
return False;
end if;
end Is_Build_In_Place_Function;
-------------------------------------
-- Is_Build_In_Place_Function_Call --
-------------------------------------
function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
Exp_Node : Node_Id := N;
Function_Id : Entity_Id;
begin
-- Return False when the expander is inactive, since awareness of
-- build-in-place treatment is only relevant during expansion. Note that
-- Is_Build_In_Place_Function, which is called as part of this function,
-- is also conditioned this way, but we need to check here as well to
-- avoid blowing up on processing protected calls when expansion is
-- disabled (such as with -gnatc) since those would trip over the raise
-- of Program_Error below.
-- In SPARK mode, build-in-place calls are not expanded, so that we
-- may end up with a call that is neither resolved to an entity, nor
-- an indirect call.
if not Full_Expander_Active then
return False;
end if;
-- Step past qualification or unchecked conversion (the latter can occur
-- in cases of calls to 'Input).
if Nkind_In (Exp_Node, N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Exp_Node := Expression (N);
end if;
if Nkind (Exp_Node) /= N_Function_Call then
return False;
else
if Is_Entity_Name (Name (Exp_Node)) then
Function_Id := Entity (Name (Exp_Node));
-- In the case of an explicitly dereferenced call, use the subprogram
-- type generated for the dereference.
elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
Function_Id := Etype (Name (Exp_Node));
-- This may be a call to a protected function.
elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
else
raise Program_Error;
end if;
return Is_Build_In_Place_Function (Function_Id);
end if;
end Is_Build_In_Place_Function_Call;
-----------------------
-- Freeze_Subprogram --
-----------------------
procedure Freeze_Subprogram (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
-- (Ada 2005): Register a predefined primitive in all the secondary
-- dispatch tables of its primitive type.
----------------------------------
-- Register_Predefined_DT_Entry --
----------------------------------
procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
Iface_DT_Ptr : Elmt_Id;
Tagged_Typ : Entity_Id;
Thunk_Id : Entity_Id;
Thunk_Code : Node_Id;
begin
Tagged_Typ := Find_Dispatching_Type (Prim);
if No (Access_Disp_Table (Tagged_Typ))
or else not Has_Interfaces (Tagged_Typ)
or else not RTE_Available (RE_Interface_Tag)
or else Restriction_Active (No_Dispatching_Calls)
then
return;
end if;
-- Skip the first two access-to-dispatch-table pointers since they
-- leads to the primary dispatch table (predefined DT and user
-- defined DT). We are only concerned with the secondary dispatch
-- table pointers. Note that the access-to- dispatch-table pointer
-- corresponds to the first implemented interface retrieved below.
Iface_DT_Ptr :=
Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
while Present (Iface_DT_Ptr)
and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
loop
pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
if Present (Thunk_Code) then
Insert_Actions_After (N, New_List (
Thunk_Code,
Build_Set_Predefined_Prim_Op_Address (Loc,
Tag_Node =>
New_Reference_To (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
Position => DT_Position (Prim),
Address_Node =>
Unchecked_Convert_To (RTE (RE_Prim_Ptr),
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Thunk_Id, Loc),
Attribute_Name => Name_Unrestricted_Access))),
Build_Set_Predefined_Prim_Op_Address (Loc,
Tag_Node =>
New_Reference_To
(Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
Loc),
Position => DT_Position (Prim),
Address_Node =>
Unchecked_Convert_To (RTE (RE_Prim_Ptr),
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Prim, Loc),
Attribute_Name => Name_Unrestricted_Access)))));
end if;
-- Skip the tag of the predefined primitives dispatch table
Next_Elmt (Iface_DT_Ptr);
pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
-- Skip tag of the no-thunks dispatch table
Next_Elmt (Iface_DT_Ptr);
pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
-- Skip tag of predefined primitives no-thunks dispatch table
Next_Elmt (Iface_DT_Ptr);
pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
Next_Elmt (Iface_DT_Ptr);
end loop;
end Register_Predefined_DT_Entry;
-- Local variables
Subp : constant Entity_Id := Entity (N);
-- Start of processing for Freeze_Subprogram
begin
-- We suppress the initialization of the dispatch table entry when
-- VM_Target because the dispatching mechanism is handled internally
-- by the VM.
if Is_Dispatching_Operation (Subp)
and then not Is_Abstract_Subprogram (Subp)
and then Present (DTC_Entity (Subp))
and then Present (Scope (DTC_Entity (Subp)))
and then Tagged_Type_Expansion
and then not Restriction_Active (No_Dispatching_Calls)
and then RTE_Available (RE_Tag)
then
declare
Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
begin
-- Handle private overridden primitives
if not Is_CPP_Class (Typ) then
Check_Overriding_Operation (Subp);
end if;
-- We assume that imported CPP primitives correspond with objects
-- whose constructor is in the CPP side; therefore we don't need
-- to generate code to register them in the dispatch table.
if Is_CPP_Class (Typ) then
null;
-- Handle CPP primitives found in derivations of CPP_Class types.
-- These primitives must have been inherited from some parent, and
-- there is no need to register them in the dispatch table because
-- Build_Inherit_Prims takes care of the initialization of these
-- slots.
elsif Is_Imported (Subp)
and then (Convention (Subp) = Convention_CPP
or else Convention (Subp) = Convention_C)
then
null;
-- Generate code to register the primitive in non statically
-- allocated dispatch tables
elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
-- When a primitive is frozen, enter its name in its dispatch
-- table slot.
if not Is_Interface (Typ)
or else Present (Interface_Alias (Subp))
then
if Is_Predefined_Dispatching_Operation (Subp) then
Register_Predefined_DT_Entry (Subp);
end if;
Insert_Actions_After (N,
Register_Primitive (Loc, Prim => Subp));
end if;
end if;
end;
end if;
-- Mark functions that return by reference. Note that it cannot be part
-- of the normal semantic analysis of the spec since the underlying
-- returned type may not be known yet (for private types).
declare
Typ : constant Entity_Id := Etype (Subp);
Utyp : constant Entity_Id := Underlying_Type (Typ);
begin
if Is_Limited_View (Typ) then
Set_Returns_By_Ref (Subp);
elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
Set_Returns_By_Ref (Subp);
end if;
end;
-- Wnen freezing a null procedure, analyze its delayed aspects now
-- because we may not have reached the end of the declarative list when
-- delayed aspects are normally analyzed. This ensures that dispatching
-- calls are properly rewritten when the generated _Postcondition
-- procedure is analyzed in the null procedure body.
if Nkind (Parent (Subp)) = N_Procedure_Specification
and then Null_Present (Parent (Subp))
then
Analyze_Subprogram_Contract (Subp);
end if;
end Freeze_Subprogram;
-----------------------
-- Is_Null_Procedure --
-----------------------
function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
begin
if Ekind (Subp) /= E_Procedure then
return False;
-- Check if this is a declared null procedure
elsif Nkind (Decl) = N_Subprogram_Declaration then
if not Null_Present (Specification (Decl)) then
return False;
elsif No (Body_To_Inline (Decl)) then
return False;
-- Check if the body contains only a null statement, followed by
-- the return statement added during expansion.
else
declare
Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
Stat : Node_Id;
Stat2 : Node_Id;
begin
if Nkind (Orig_Bod) /= N_Subprogram_Body then
return False;
else
-- We must skip SCIL nodes because they are currently
-- implemented as special N_Null_Statement nodes.
Stat :=
First_Non_SCIL_Node
(Statements (Handled_Statement_Sequence (Orig_Bod)));
Stat2 := Next_Non_SCIL_Node (Stat);
return
Is_Empty_List (Declarations (Orig_Bod))
and then Nkind (Stat) = N_Null_Statement
and then
(No (Stat2)
or else
(Nkind (Stat2) = N_Simple_Return_Statement
and then No (Next (Stat2))));
end if;
end;
end if;
else
return False;
end if;
end Is_Null_Procedure;
-------------------------------------------
-- Make_Build_In_Place_Call_In_Allocator --
-------------------------------------------
procedure Make_Build_In_Place_Call_In_Allocator
(Allocator : Node_Id;
Function_Call : Node_Id)
is
Acc_Type : constant Entity_Id := Etype (Allocator);
Loc : Source_Ptr;
Func_Call : Node_Id := Function_Call;
Function_Id : Entity_Id;
Result_Subt : Entity_Id;
New_Allocator : Node_Id;
Return_Obj_Access : Entity_Id;
begin
-- Step past qualification or unchecked conversion (the latter can occur
-- in cases of calls to 'Input).
if Nkind_In (Func_Call,
N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Func_Call := Expression (Func_Call);
end if;
-- If the call has already been processed to add build-in-place actuals
-- then return. This should not normally occur in an allocator context,
-- but we add the protection as a defensive measure.
if Is_Expanded_Build_In_Place_Call (Func_Call) then
return;
end if;
-- Mark the call as processed as a build-in-place call
Set_Is_Expanded_Build_In_Place_Call (Func_Call);
Loc := Sloc (Function_Call);
if Is_Entity_Name (Name (Func_Call)) then
Function_Id := Entity (Name (Func_Call));
elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
Function_Id := Etype (Name (Func_Call));
else
raise Program_Error;
end if;
Result_Subt := Available_View (Etype (Function_Id));
-- Check whether return type includes tasks. This may not have been done
-- previously, if the type was a limited view.
if Has_Task (Result_Subt) then
Build_Activation_Chain_Entity (Allocator);
end if;
-- When the result subtype is constrained, the return object must be
-- allocated on the caller side, and access to it is passed to the
-- function.
-- Here and in related routines, we must examine the full view of the
-- type, because the view at the point of call may differ from that
-- that in the function body, and the expansion mechanism depends on
-- the characteristics of the full view.
if Is_Constrained (Underlying_Type (Result_Subt)) then
-- Replace the initialized allocator of form "new T'(Func (...))"
-- with an uninitialized allocator of form "new T", where T is the
-- result subtype of the called function. The call to the function
-- is handled separately further below.
New_Allocator :=
Make_Allocator (Loc,
Expression => New_Reference_To (Result_Subt, Loc));
Set_No_Initialization (New_Allocator);
-- Copy attributes to new allocator. Note that the new allocator
-- logically comes from source if the original one did, so copy the
-- relevant flag. This ensures proper treatment of the restriction
-- No_Implicit_Heap_Allocations in this case.
Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
Rewrite (Allocator, New_Allocator);
-- Create a new access object and initialize it to the result of the
-- new uninitialized allocator. Note: we do not use Allocator as the
-- Related_Node of Return_Obj_Access in call to Make_Temporary below
-- as this would create a sort of infinite "recursion".
Return_Obj_Access := Make_Temporary (Loc, 'R');
Set_Etype (Return_Obj_Access, Acc_Type);
Insert_Action (Allocator,
Make_Object_Declaration (Loc,
Defining_Identifier => Return_Obj_Access,
Object_Definition => New_Reference_To (Acc_Type, Loc),
Expression => Relocate_Node (Allocator)));
-- When the function has a controlling result, an allocation-form
-- parameter must be passed indicating that the caller is allocating
-- the result object. This is needed because such a function can be
-- called as a dispatching operation and must be treated similarly
-- to functions with unconstrained result subtypes.
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
Add_Finalization_Master_Actual_To_Build_In_Place_Call
(Func_Call, Function_Id, Acc_Type);
Add_Task_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
-- Add an implicit actual to the function call that provides access
-- to the allocated object. An unchecked conversion to the (specific)
-- result subtype of the function is inserted to handle cases where
-- the access type of the allocator has a class-wide designated type.
Add_Access_Actual_To_Build_In_Place_Call
(Func_Call,
Function_Id,
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Reference_To (Result_Subt, Loc),
Expression =>
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (Return_Obj_Access, Loc))));
-- When the result subtype is unconstrained, the function itself must
-- perform the allocation of the return object, so we pass parameters
-- indicating that. We don't yet handle the case where the allocation
-- must be done in a user-defined storage pool, which will require
-- passing another actual or two to provide allocation/deallocation
-- operations. ???
else
-- Case of a user-defined storage pool. Pass an allocation parameter
-- indicating that the function should allocate its result in the
-- pool, and pass the pool. Use 'Unrestricted_Access because the
-- pool may not be aliased.
if VM_Target = No_VM
and then Present (Associated_Storage_Pool (Acc_Type))
then
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Alloc_Form => User_Storage_Pool,
Pool_Actual =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Reference_To
(Associated_Storage_Pool (Acc_Type), Loc),
Attribute_Name => Name_Unrestricted_Access));
-- No user-defined pool; pass an allocation parameter indicating that
-- the function should allocate its result on the heap.
else
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Alloc_Form => Global_Heap);
end if;
Add_Finalization_Master_Actual_To_Build_In_Place_Call
(Func_Call, Function_Id, Acc_Type);
Add_Task_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
-- The caller does not provide the return object in this case, so we
-- have to pass null for the object access actual.
Add_Access_Actual_To_Build_In_Place_Call
(Func_Call, Function_Id, Return_Object => Empty);
end if;
-- If the build-in-place function call returns a controlled object,
-- the finalization master will require a reference to routine
-- Finalize_Address of the designated type. Setting this attribute
-- is done in the same manner to expansion of allocators.
if Needs_Finalization (Result_Subt) then
-- Controlled types with supressed finalization do not need to
-- associate the address of their Finalize_Address primitives with
-- a master since they do not need a master to begin with.
if Is_Library_Level_Entity (Acc_Type)
and then Finalize_Storage_Only (Result_Subt)
then
null;
-- Do not generate the call to Set_Finalize_Address in CodePeer mode
-- because Finalize_Address is never built.
elsif not CodePeer_Mode then
Insert_Action (Allocator,
Make_Set_Finalize_Address_Call (Loc,
Typ => Etype (Function_Id),
Ptr_Typ => Acc_Type));
end if;
end if;
-- Finally, replace the allocator node with a reference to the result
-- of the function call itself (which will effectively be an access
-- to the object created by the allocator).
Rewrite (Allocator, Make_Reference (Loc, Relocate_Node (Function_Call)));
-- Ada 2005 (AI-251): If the type of the allocator is an interface then
-- generate an implicit conversion to force displacement of the "this"
-- pointer.
if Is_Interface (Designated_Type (Acc_Type)) then
Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
end if;
Analyze_And_Resolve (Allocator, Acc_Type);
end Make_Build_In_Place_Call_In_Allocator;
---------------------------------------------------
-- Make_Build_In_Place_Call_In_Anonymous_Context --
---------------------------------------------------
procedure Make_Build_In_Place_Call_In_Anonymous_Context
(Function_Call : Node_Id)
is
Loc : Source_Ptr;
Func_Call : Node_Id := Function_Call;
Function_Id : Entity_Id;
Result_Subt : Entity_Id;
Return_Obj_Id : Entity_Id;
Return_Obj_Decl : Entity_Id;
begin
-- Step past qualification or unchecked conversion (the latter can occur
-- in cases of calls to 'Input).
if Nkind_In (Func_Call, N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Func_Call := Expression (Func_Call);
end if;
-- If the call has already been processed to add build-in-place actuals
-- then return. One place this can occur is for calls to build-in-place
-- functions that occur within a call to a protected operation, where
-- due to rewriting and expansion of the protected call there can be
-- more than one call to Expand_Actuals for the same set of actuals.
if Is_Expanded_Build_In_Place_Call (Func_Call) then
return;
end if;
-- Mark the call as processed as a build-in-place call
Set_Is_Expanded_Build_In_Place_Call (Func_Call);
Loc := Sloc (Function_Call);
if Is_Entity_Name (Name (Func_Call)) then
Function_Id := Entity (Name (Func_Call));
elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
Function_Id := Etype (Name (Func_Call));
else
raise Program_Error;
end if;
Result_Subt := Etype (Function_Id);
-- If the build-in-place function returns a controlled object, then the
-- object needs to be finalized immediately after the context. Since
-- this case produces a transient scope, the servicing finalizer needs
-- to name the returned object. Create a temporary which is initialized
-- with the function call:
--
-- Temp_Id : Func_Type := BIP_Func_Call;
--
-- The initialization expression of the temporary will be rewritten by
-- the expander using the appropriate mechanism in Make_Build_In_Place_
-- Call_In_Object_Declaration.
if Needs_Finalization (Result_Subt) then
declare
Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
Temp_Decl : Node_Id;
begin
-- Reset the guard on the function call since the following does
-- not perform actual call expansion.
Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Id,
Object_Definition =>
New_Reference_To (Result_Subt, Loc),
Expression =>
New_Copy_Tree (Function_Call));
Insert_Action (Function_Call, Temp_Decl);
Rewrite (Function_Call, New_Reference_To (Temp_Id, Loc));
Analyze (Function_Call);
end;
-- When the result subtype is constrained, an object of the subtype is
-- declared and an access value designating it is passed as an actual.
elsif Is_Constrained (Underlying_Type (Result_Subt)) then
-- Create a temporary object to hold the function result
Return_Obj_Id := Make_Temporary (Loc, 'R');
Set_Etype (Return_Obj_Id, Result_Subt);
Return_Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Return_Obj_Id,
Aliased_Present => True,
Object_Definition => New_Reference_To (Result_Subt, Loc));
Set_No_Initialization (Return_Obj_Decl);
Insert_Action (Func_Call, Return_Obj_Decl);
-- When the function has a controlling result, an allocation-form
-- parameter must be passed indicating that the caller is allocating
-- the result object. This is needed because such a function can be
-- called as a dispatching operation and must be treated similarly
-- to functions with unconstrained result subtypes.
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
Add_Finalization_Master_Actual_To_Build_In_Place_Call
(Func_Call, Function_Id);
Add_Task_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
-- Add an implicit actual to the function call that provides access
-- to the caller's return object.
Add_Access_Actual_To_Build_In_Place_Call
(Func_Call, Function_Id, New_Reference_To (Return_Obj_Id, Loc));
-- When the result subtype is unconstrained, the function must allocate
-- the return object in the secondary stack, so appropriate implicit
-- parameters are added to the call to indicate that. A transient
-- scope is established to ensure eventual cleanup of the result.
else
-- Pass an allocation parameter indicating that the function should
-- allocate its result on the secondary stack.
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
Add_Finalization_Master_Actual_To_Build_In_Place_Call
(Func_Call, Function_Id);
Add_Task_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
-- Pass a null value to the function since no return object is
-- available on the caller side.
Add_Access_Actual_To_Build_In_Place_Call
(Func_Call, Function_Id, Empty);
end if;
end Make_Build_In_Place_Call_In_Anonymous_Context;
--------------------------------------------
-- Make_Build_In_Place_Call_In_Assignment --
--------------------------------------------
procedure Make_Build_In_Place_Call_In_Assignment
(Assign : Node_Id;
Function_Call : Node_Id)
is
Lhs : constant Node_Id := Name (Assign);
Func_Call : Node_Id := Function_Call;
Func_Id : Entity_Id;
Loc : Source_Ptr;
Obj_Decl : Node_Id;
Obj_Id : Entity_Id;
Ptr_Typ : Entity_Id;
Ptr_Typ_Decl : Node_Id;
New_Expr : Node_Id;
Result_Subt : Entity_Id;
Target : Node_Id;
begin
-- Step past qualification or unchecked conversion (the latter can occur
-- in cases of calls to 'Input).
if Nkind_In (Func_Call, N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Func_Call := Expression (Func_Call);
end if;
-- If the call has already been processed to add build-in-place actuals
-- then return. This should not normally occur in an assignment context,
-- but we add the protection as a defensive measure.
if Is_Expanded_Build_In_Place_Call (Func_Call) then
return;
end if;
-- Mark the call as processed as a build-in-place call
Set_Is_Expanded_Build_In_Place_Call (Func_Call);
Loc := Sloc (Function_Call);
if Is_Entity_Name (Name (Func_Call)) then
Func_Id := Entity (Name (Func_Call));
elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
Func_Id := Etype (Name (Func_Call));
else
raise Program_Error;
end if;
Result_Subt := Etype (Func_Id);
-- When the result subtype is unconstrained, an additional actual must
-- be passed to indicate that the caller is providing the return object.
-- This parameter must also be passed when the called function has a
-- controlling result, because dispatching calls to the function needs
-- to be treated effectively the same as calls to class-wide functions.
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
Add_Finalization_Master_Actual_To_Build_In_Place_Call
(Func_Call, Func_Id);
Add_Task_Actuals_To_Build_In_Place_Call
(Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
-- Add an implicit actual to the function call that provides access to
-- the caller's return object.
Add_Access_Actual_To_Build_In_Place_Call
(Func_Call,
Func_Id,
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Reference_To (Result_Subt, Loc),
Expression => Relocate_Node (Lhs)));
-- Create an access type designating the function's result subtype
Ptr_Typ := Make_Temporary (Loc, 'A');
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Reference_To (Result_Subt, Loc)));
Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
-- Finally, create an access object initialized to a reference to the
-- function call. We know this access value is non-null, so mark the
-- entity accordingly to suppress junk access checks.
New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
Set_Etype (Obj_Id, Ptr_Typ);
Set_Is_Known_Non_Null (Obj_Id);
Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Obj_Id,
Object_Definition => New_Reference_To (Ptr_Typ, Loc),
Expression => New_Expr);
Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
Rewrite (Assign, Make_Null_Statement (Loc));
-- Retrieve the target of the assignment
if Nkind (Lhs) = N_Selected_Component then
Target := Selector_Name (Lhs);
elsif Nkind (Lhs) = N_Type_Conversion then
Target := Expression (Lhs);
else
Target := Lhs;
end if;
-- If we are assigning to a return object or this is an expression of
-- an extension aggregate, the target should either be an identifier
-- or a simple expression. All other cases imply a different scenario.
if Nkind (Target) in N_Has_Entity then
Target := Entity (Target);
else
return;
end if;
end Make_Build_In_Place_Call_In_Assignment;
----------------------------------------------------
-- Make_Build_In_Place_Call_In_Object_Declaration --
----------------------------------------------------
procedure Make_Build_In_Place_Call_In_Object_Declaration
(Object_Decl : Node_Id;
Function_Call : Node_Id)
is
Loc : Source_Ptr;
Obj_Def_Id : constant Entity_Id :=
Defining_Identifier (Object_Decl);
Enclosing_Func : constant Entity_Id :=
Enclosing_Subprogram (Obj_Def_Id);
Call_Deref : Node_Id;
Caller_Object : Node_Id;
Def_Id : Entity_Id;
Fmaster_Actual : Node_Id := Empty;
Func_Call : Node_Id := Function_Call;
Function_Id : Entity_Id;
Pool_Actual : Node_Id;
Ptr_Typ_Decl : Node_Id;
Pass_Caller_Acc : Boolean := False;
New_Expr : Node_Id;
Ref_Type : Entity_Id;
Result_Subt : Entity_Id;
begin
-- Step past qualification or unchecked conversion (the latter can occur
-- in cases of calls to 'Input).
if Nkind_In (Func_Call, N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Func_Call := Expression (Func_Call);
end if;
-- If the call has already been processed to add build-in-place actuals
-- then return. This should not normally occur in an object declaration,
-- but we add the protection as a defensive measure.
if Is_Expanded_Build_In_Place_Call (Func_Call) then
return;
end if;
-- Mark the call as processed as a build-in-place call
Set_Is_Expanded_Build_In_Place_Call (Func_Call);
Loc := Sloc (Function_Call);
if Is_Entity_Name (Name (Func_Call)) then
Function_Id := Entity (Name (Func_Call));
elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
Function_Id := Etype (Name (Func_Call));
else
raise Program_Error;
end if;
Result_Subt := Etype (Function_Id);
-- If the the object is a return object of an enclosing build-in-place
-- function, then the implicit build-in-place parameters of the
-- enclosing function are simply passed along to the called function.
-- (Unfortunately, this won't cover the case of extension aggregates
-- where the ancestor part is a build-in-place unconstrained function
-- call that should be passed along the caller's parameters. Currently
-- those get mishandled by reassigning the result of the call to the
-- aggregate return object, when the call result should really be
-- directly built in place in the aggregate and not in a temporary. ???)
if Is_Return_Object (Defining_Identifier (Object_Decl)) then
Pass_Caller_Acc := True;
-- When the enclosing function has a BIP_Alloc_Form formal then we
-- pass it along to the callee (such as when the enclosing function
-- has an unconstrained or tagged result type).
if Needs_BIP_Alloc_Form (Enclosing_Func) then
if VM_Target = No_VM and then
RTE_Available (RE_Root_Storage_Pool_Ptr)
then
Pool_Actual :=
New_Reference_To (Build_In_Place_Formal
(Enclosing_Func, BIP_Storage_Pool), Loc);
-- The build-in-place pool formal is not built on .NET/JVM
else
Pool_Actual := Empty;
end if;
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call,
Function_Id,
Alloc_Form_Exp =>
New_Reference_To
(Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
Loc),
Pool_Actual => Pool_Actual);
-- Otherwise, if enclosing function has a constrained result subtype,
-- then caller allocation will be used.
else
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
end if;
if Needs_BIP_Finalization_Master (Enclosing_Func) then
Fmaster_Actual :=
New_Reference_To
(Build_In_Place_Formal
(Enclosing_Func, BIP_Finalization_Master), Loc);
end if;
-- Retrieve the BIPacc formal from the enclosing function and convert
-- it to the access type of the callee's BIP_Object_Access formal.
Caller_Object :=
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark =>
New_Reference_To
(Etype
(Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
Loc),
Expression =>
New_Reference_To
(Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
Loc));
-- In the constrained case, add an implicit actual to the function call
-- that provides access to the declared object. An unchecked conversion
-- to the (specific) result type of the function is inserted to handle
-- the case where the object is declared with a class-wide type.
elsif Is_Constrained (Underlying_Type (Result_Subt)) then
Caller_Object :=
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Reference_To (Result_Subt, Loc),
Expression => New_Reference_To (Obj_Def_Id, Loc));
-- When the function has a controlling result, an allocation-form
-- parameter must be passed indicating that the caller is allocating
-- the result object. This is needed because such a function can be
-- called as a dispatching operation and must be treated similarly
-- to functions with unconstrained result subtypes.
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
-- In other unconstrained cases, pass an indication to do the allocation
-- on the secondary stack and set Caller_Object to Empty so that a null
-- value will be passed for the caller's object address. A transient
-- scope is established to ensure eventual cleanup of the result.
else
Add_Unconstrained_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
Caller_Object := Empty;
Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
end if;
-- Pass along any finalization master actual, which is needed in the
-- case where the called function initializes a return object of an
-- enclosing build-in-place function.
Add_Finalization_Master_Actual_To_Build_In_Place_Call
(Func_Call => Func_Call,
Func_Id => Function_Id,
Master_Exp => Fmaster_Actual);
if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
and then Has_Task (Result_Subt)
then
-- Here we're passing along the master that was passed in to this
-- function.
Add_Task_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id,
Master_Actual =>
New_Reference_To (Build_In_Place_Formal
(Enclosing_Func, BIP_Task_Master), Loc));
else
Add_Task_Actuals_To_Build_In_Place_Call
(Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
end if;
Add_Access_Actual_To_Build_In_Place_Call
(Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
-- Create an access type designating the function's result subtype. We
-- use the type of the original expression because it may be a call to
-- an inherited operation, which the expansion has replaced with the
-- parent operation that yields the parent type.
Ref_Type := Make_Temporary (Loc, 'A');
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ref_Type,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Reference_To (Etype (Function_Call), Loc)));
-- The access type and its accompanying object must be inserted after
-- the object declaration in the constrained case, so that the function
-- call can be passed access to the object. In the unconstrained case,
-- or if the object declaration is for a return object, the access type
-- and object must be inserted before the object, since the object
-- declaration is rewritten to be a renaming of a dereference of the
-- access object.
if Is_Constrained (Underlying_Type (Result_Subt))
and then not Is_Return_Object (Defining_Identifier (Object_Decl))
then
Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
else
Insert_Action (Object_Decl, Ptr_Typ_Decl);
end if;
-- Finally, create an access object initialized to a reference to the
-- function call. We know this access value cannot be null, so mark the
-- entity accordingly to suppress the access check.
New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
Def_Id := Make_Temporary (Loc, 'R', New_Expr);
Set_Etype (Def_Id, Ref_Type);
Set_Is_Known_Non_Null (Def_Id);
Insert_After_And_Analyze (Ptr_Typ_Decl,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Reference_To (Ref_Type, Loc),
Expression => New_Expr));
-- If the result subtype of the called function is constrained and
-- is not itself the return expression of an enclosing BIP function,
-- then mark the object as having no initialization.
if Is_Constrained (Underlying_Type (Result_Subt))
and then not Is_Return_Object (Defining_Identifier (Object_Decl))
then
Set_Expression (Object_Decl, Empty);
Set_No_Initialization (Object_Decl);
-- In case of an unconstrained result subtype, or if the call is the
-- return expression of an enclosing BIP function, rewrite the object
-- declaration as an object renaming where the renamed object is a
-- dereference of <function_Call>'reference:
--
-- Obj : Subt renames <function_call>'Ref.all;
else
Call_Deref :=
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (Def_Id, Loc));
Loc := Sloc (Object_Decl);
Rewrite (Object_Decl,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'D'),
Access_Definition => Empty,
Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
Name => Call_Deref));
Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
Analyze (Object_Decl);
-- Replace the internal identifier of the renaming declaration's
-- entity with identifier of the original object entity. We also have
-- to exchange the entities containing their defining identifiers to
-- ensure the correct replacement of the object declaration by the
-- object renaming declaration to avoid homograph conflicts (since
-- the object declaration's defining identifier was already entered
-- in current scope). The Next_Entity links of the two entities also
-- have to be swapped since the entities are part of the return
-- scope's entity list and the list structure would otherwise be
-- corrupted. Finally, the homonym chain must be preserved as well.
declare
Renaming_Def_Id : constant Entity_Id :=
Defining_Identifier (Object_Decl);
Next_Entity_Temp : constant Entity_Id :=
Next_Entity (Renaming_Def_Id);
begin
Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
-- Swap next entity links in preparation for exchanging entities
Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
-- Preserve source indication of original declaration, so that
-- xref information is properly generated for the right entity.
Preserve_Comes_From_Source
(Object_Decl, Original_Node (Object_Decl));
Preserve_Comes_From_Source
(Obj_Def_Id, Original_Node (Object_Decl));
Set_Comes_From_Source (Renaming_Def_Id, False);
end;
end if;
-- If the object entity has a class-wide Etype, then we need to change
-- it to the result subtype of the function call, because otherwise the
-- object will be class-wide without an explicit initialization and
-- won't be allocated properly by the back end. It seems unclean to make
-- such a revision to the type at this point, and we should try to
-- improve this treatment when build-in-place functions with class-wide
-- results are implemented. ???
if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
end if;
end Make_Build_In_Place_Call_In_Object_Declaration;
--------------------------------------------
-- Make_CPP_Constructor_Call_In_Allocator --
--------------------------------------------
procedure Make_CPP_Constructor_Call_In_Allocator
(Allocator : Node_Id;
Function_Call : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Function_Call);
Acc_Type : constant Entity_Id := Etype (Allocator);
Function_Id : constant Entity_Id := Entity (Name (Function_Call));
Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
New_Allocator : Node_Id;
Return_Obj_Access : Entity_Id;
Tmp_Obj : Node_Id;
begin
pragma Assert (Nkind (Allocator) = N_Allocator
and then Nkind (Function_Call) = N_Function_Call);
pragma Assert (Convention (Function_Id) = Convention_CPP
and then Is_Constructor (Function_Id));
pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
-- Replace the initialized allocator of form "new T'(Func (...))" with
-- an uninitialized allocator of form "new T", where T is the result
-- subtype of the called function. The call to the function is handled
-- separately further below.
New_Allocator :=
Make_Allocator (Loc,
Expression => New_Reference_To (Result_Subt, Loc));
Set_No_Initialization (New_Allocator);
-- Copy attributes to new allocator. Note that the new allocator
-- logically comes from source if the original one did, so copy the
-- relevant flag. This ensures proper treatment of the restriction
-- No_Implicit_Heap_Allocations in this case.
Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
Rewrite (Allocator, New_Allocator);
-- Create a new access object and initialize it to the result of the
-- new uninitialized allocator. Note: we do not use Allocator as the
-- Related_Node of Return_Obj_Access in call to Make_Temporary below
-- as this would create a sort of infinite "recursion".
Return_Obj_Access := Make_Temporary (Loc, 'R');
Set_Etype (Return_Obj_Access, Acc_Type);
-- Generate:
-- Rnnn : constant ptr_T := new (T);
-- Init (Rnn.all,...);
Tmp_Obj :=
Make_Object_Declaration (Loc,
Defining_Identifier => Return_Obj_Access,
Constant_Present => True,
Object_Definition => New_Reference_To (Acc_Type, Loc),
Expression => Relocate_Node (Allocator));
Insert_Action (Allocator, Tmp_Obj);
Insert_List_After_And_Analyze (Tmp_Obj,
Build_Initialization_Call (Loc,
Id_Ref =>
Make_Explicit_Dereference (Loc,
Prefix => New_Reference_To (Return_Obj_Access, Loc)),
Typ => Etype (Function_Id),
Constructor_Ref => Function_Call));
-- Finally, replace the allocator node with a reference to the result of
-- the function call itself (which will effectively be an access to the
-- object created by the allocator).
Rewrite (Allocator, New_Reference_To (Return_Obj_Access, Loc));
-- Ada 2005 (AI-251): If the type of the allocator is an interface then
-- generate an implicit conversion to force displacement of the "this"
-- pointer.
if Is_Interface (Designated_Type (Acc_Type)) then
Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
end if;
Analyze_And_Resolve (Allocator, Acc_Type);
end Make_CPP_Constructor_Call_In_Allocator;
-----------------------------------
-- Needs_BIP_Finalization_Master --
-----------------------------------
function Needs_BIP_Finalization_Master
(Func_Id : Entity_Id) return Boolean
is
pragma Assert (Is_Build_In_Place_Function (Func_Id));
Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
begin
return
not Restriction_Active (No_Finalization)
and then Needs_Finalization (Func_Typ);
end Needs_BIP_Finalization_Master;
--------------------------
-- Needs_BIP_Alloc_Form --
--------------------------
function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
pragma Assert (Is_Build_In_Place_Function (Func_Id));
Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
begin
return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
end Needs_BIP_Alloc_Form;
--------------------------------------
-- Needs_Result_Accessibility_Level --
--------------------------------------
function Needs_Result_Accessibility_Level
(Func_Id : Entity_Id) return Boolean
is
Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
function Has_Unconstrained_Access_Discriminant_Component
(Comp_Typ : Entity_Id) return Boolean;
-- Returns True if any component of the type has an unconstrained access
-- discriminant.
-----------------------------------------------------
-- Has_Unconstrained_Access_Discriminant_Component --
-----------------------------------------------------
function Has_Unconstrained_Access_Discriminant_Component
(Comp_Typ : Entity_Id) return Boolean
is
begin
if not Is_Limited_Type (Comp_Typ) then
return False;
-- Only limited types can have access discriminants with
-- defaults.
elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
return True;
elsif Is_Array_Type (Comp_Typ) then
return Has_Unconstrained_Access_Discriminant_Component
(Underlying_Type (Component_Type (Comp_Typ)));
elsif Is_Record_Type (Comp_Typ) then
declare
Comp : Entity_Id;
begin
Comp := First_Component (Comp_Typ);
while Present (Comp) loop
if Has_Unconstrained_Access_Discriminant_Component
(Underlying_Type (Etype (Comp)))
then
return True;
end if;
Next_Component (Comp);
end loop;
end;
end if;
return False;
end Has_Unconstrained_Access_Discriminant_Component;
Feature_Disabled : constant Boolean := True;
-- Temporary
-- Start of processing for Needs_Result_Accessibility_Level
begin
-- False if completion unavailable (how does this happen???)
if not Present (Func_Typ) then
return False;
elsif Feature_Disabled then
return False;
-- False if not a function, also handle enum-lit renames case
elsif Func_Typ = Standard_Void_Type
or else Is_Scalar_Type (Func_Typ)
then
return False;
-- Handle a corner case, a cross-dialect subp renaming. For example,
-- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
-- an Ada 2005 (or earlier) unit references predefined run-time units.
elsif Present (Alias (Func_Id)) then
-- Unimplemented: a cross-dialect subp renaming which does not set
-- the Alias attribute (e.g., a rename of a dereference of an access
-- to subprogram value). ???
return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
-- Remaining cases require Ada 2012 mode
elsif Ada_Version < Ada_2012 then
return False;
elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
or else Is_Tagged_Type (Func_Typ)
then
-- In the case of, say, a null tagged record result type, the need
-- for this extra parameter might not be obvious. This function
-- returns True for all tagged types for compatibility reasons.
-- A function with, say, a tagged null controlling result type might
-- be overridden by a primitive of an extension having an access
-- discriminant and the overrider and overridden must have compatible
-- calling conventions (including implicitly declared parameters).
-- Similarly, values of one access-to-subprogram type might designate
-- both a primitive subprogram of a given type and a function
-- which is, for example, not a primitive subprogram of any type.
-- Again, this requires calling convention compatibility.
-- It might be possible to solve these issues by introducing
-- wrappers, but that is not the approach that was chosen.
return True;
elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
return True;
elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
return True;
-- False for all other cases
else
return False;
end if;
end Needs_Result_Accessibility_Level;
------------------------
-- List_Inlining_Info --
------------------------
procedure List_Inlining_Info is
Elmt : Elmt_Id;
Nod : Node_Id;
Count : Nat;
begin
if not Debug_Flag_Dot_J then
return;
end if;
-- Generate listing of calls inlined by the frontend
if Present (Inlined_Calls) then
Count := 0;
Elmt := First_Elmt (Inlined_Calls);
while Present (Elmt) loop
Nod := Node (Elmt);
if In_Extended_Main_Code_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str ("Listing of frontend inlined calls");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Location (Sloc (Nod));
Write_Str (":");
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
-- Generate listing of calls passed to the backend
if Present (Backend_Calls) then
Count := 0;
Elmt := First_Elmt (Backend_Calls);
while Present (Elmt) loop
Nod := Node (Elmt);
if In_Extended_Main_Code_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str ("Listing of inlined calls passed to the backend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Location (Sloc (Nod));
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
end List_Inlining_Info;
end Exp_Ch6;
|