summaryrefslogtreecommitdiff
path: root/gcc/ada/exp_ch5.adb
blob: 2a3ecbfe39bc5a0fa949089ee14a5c369b38a60f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              E X P _ C H 5                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2016, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Aspects;  use Aspects;
with Atree;    use Atree;
with Checks;   use Checks;
with Debug;    use Debug;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Errout;   use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch6;  use Exp_Ch6;
with Exp_Ch7;  use Exp_Ch7;
with Exp_Ch11; use Exp_Ch11;
with Exp_Dbug; use Exp_Dbug;
with Exp_Pakd; use Exp_Pakd;
with Exp_Tss;  use Exp_Tss;
with Exp_Util; use Exp_Util;
with Ghost;    use Ghost;
with Inline;   use Inline;
with Namet;    use Namet;
with Nlists;   use Nlists;
with Nmake;    use Nmake;
with Opt;      use Opt;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sinfo;    use Sinfo;
with Sem;      use Sem;
with Sem_Aux;  use Sem_Aux;
with Sem_Ch3;  use Sem_Ch3;
with Sem_Ch8;  use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Res;  use Sem_Res;
with Sem_Util; use Sem_Util;
with Snames;   use Snames;
with Stand;    use Stand;
with Stringt;  use Stringt;
with Tbuild;   use Tbuild;
with Uintp;    use Uintp;
with Validsw;  use Validsw;

package body Exp_Ch5 is

   procedure Build_Formal_Container_Iteration
     (N         : Node_Id;
      Container : Entity_Id;
      Cursor    : Entity_Id;
      Init      : out Node_Id;
      Advance   : out Node_Id;
      New_Loop  : out Node_Id);
   --  Utility to create declarations and loop statement for both forms
   --  of formal container iterators.

   function Change_Of_Representation (N : Node_Id) return Boolean;
   --  Determine if the right hand side of assignment N is a type conversion
   --  which requires a change of representation. Called only for the array
   --  and record cases.

   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
   --  N is an assignment which assigns an array value. This routine process
   --  the various special cases and checks required for such assignments,
   --  including change of representation. Rhs is normally simply the right
   --  hand side of the assignment, except that if the right hand side is a
   --  type conversion or a qualified expression, then the RHS is the actual
   --  expression inside any such type conversions or qualifications.

   function Expand_Assign_Array_Loop
     (N      : Node_Id;
      Larray : Entity_Id;
      Rarray : Entity_Id;
      L_Type : Entity_Id;
      R_Type : Entity_Id;
      Ndim   : Pos;
      Rev    : Boolean) return Node_Id;
   --  N is an assignment statement which assigns an array value. This routine
   --  expands the assignment into a loop (or nested loops for the case of a
   --  multi-dimensional array) to do the assignment component by component.
   --  Larray and Rarray are the entities of the actual arrays on the left
   --  hand and right hand sides. L_Type and R_Type are the types of these
   --  arrays (which may not be the same, due to either sliding, or to a
   --  change of representation case). Ndim is the number of dimensions and
   --  the parameter Rev indicates if the loops run normally (Rev = False),
   --  or reversed (Rev = True). The value returned is the constructed
   --  loop statement. Auxiliary declarations are inserted before node N
   --  using the standard Insert_Actions mechanism.

   procedure Expand_Assign_Record (N : Node_Id);
   --  N is an assignment of an untagged record value. This routine handles
   --  the case where the assignment must be made component by component,
   --  either because the target is not byte aligned, or there is a change
   --  of representation, or when we have a tagged type with a representation
   --  clause (this last case is required because holes in the tagged type
   --  might be filled with components from child types).

   procedure Expand_Formal_Container_Loop (N : Node_Id);
   --  Use the primitives specified in an Iterable aspect to expand a loop
   --  over a so-called formal container, primarily for SPARK usage.

   procedure Expand_Formal_Container_Element_Loop (N : Node_Id);
   --  Same, for an iterator of the form " For E of C". In this case the
   --  iterator provides the name of the element, and the cursor is generated
   --  internally.

   procedure Expand_Iterator_Loop (N : Node_Id);
   --  Expand loop over arrays and containers that uses the form "for X of C"
   --  with an optional subtype mark, or "for Y in C".

   procedure Expand_Iterator_Loop_Over_Container
     (N             : Node_Id;
      Isc           : Node_Id;
      I_Spec        : Node_Id;
      Container     : Node_Id;
      Container_Typ : Entity_Id);
   --  Expand loop over containers that uses the form "for X of C" with an
   --  optional subtype mark, or "for Y in C". Isc is the iteration scheme.
   --  I_Spec is the iterator specification and Container is either the
   --  Container (for OF) or the iterator (for IN).

   procedure Expand_Predicated_Loop (N : Node_Id);
   --  Expand for loop over predicated subtype

   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
   --  Generate the necessary code for controlled and tagged assignment, that
   --  is to say, finalization of the target before, adjustment of the target
   --  after and save and restore of the tag and finalization pointers which
   --  are not 'part of the value' and must not be changed upon assignment. N
   --  is the original Assignment node.

   --------------------------------------
   -- Build_Formal_Container_iteration --
   --------------------------------------

   procedure Build_Formal_Container_Iteration
     (N         : Node_Id;
      Container : Entity_Id;
      Cursor    : Entity_Id;
      Init      : out Node_Id;
      Advance   : out Node_Id;
      New_Loop  : out Node_Id)
   is
      Loc      : constant Source_Ptr := Sloc (N);
      Stats    : constant List_Id    := Statements (N);
      Typ      : constant Entity_Id  := Base_Type (Etype (Container));
      First_Op : constant Entity_Id  :=
                   Get_Iterable_Type_Primitive (Typ, Name_First);
      Next_Op  : constant Entity_Id  :=
                   Get_Iterable_Type_Primitive (Typ, Name_Next);

      Has_Element_Op : constant Entity_Id :=
                   Get_Iterable_Type_Primitive (Typ, Name_Has_Element);
   begin
      --  Declaration for Cursor

      Init :=
        Make_Object_Declaration (Loc,
          Defining_Identifier => Cursor,
          Object_Definition   => New_Occurrence_Of (Etype (First_Op),  Loc),
          Expression          =>
            Make_Function_Call (Loc,
              Name                   => New_Occurrence_Of (First_Op, Loc),
              Parameter_Associations => New_List (
                New_Occurrence_Of (Container, Loc))));

      --  Statement that advances cursor in loop

      Advance :=
        Make_Assignment_Statement (Loc,
          Name       => New_Occurrence_Of (Cursor, Loc),
          Expression =>
            Make_Function_Call (Loc,
              Name                   => New_Occurrence_Of (Next_Op, Loc),
              Parameter_Associations => New_List (
                New_Occurrence_Of (Container, Loc),
                New_Occurrence_Of (Cursor, Loc))));

      --  Iterator is rewritten as a while_loop

      New_Loop :=
        Make_Loop_Statement (Loc,
          Iteration_Scheme =>
            Make_Iteration_Scheme (Loc,
              Condition =>
                Make_Function_Call (Loc,
                  Name => New_Occurrence_Of (Has_Element_Op, Loc),
                  Parameter_Associations => New_List (
                    New_Occurrence_Of (Container, Loc),
                    New_Occurrence_Of (Cursor, Loc)))),
          Statements       => Stats,
          End_Label        => Empty);
   end Build_Formal_Container_Iteration;

   ------------------------------
   -- Change_Of_Representation --
   ------------------------------

   function Change_Of_Representation (N : Node_Id) return Boolean is
      Rhs : constant Node_Id := Expression (N);
   begin
      return
        Nkind (Rhs) = N_Type_Conversion
          and then
            not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
   end Change_Of_Representation;

   -------------------------
   -- Expand_Assign_Array --
   -------------------------

   --  There are two issues here. First, do we let Gigi do a block move, or
   --  do we expand out into a loop? Second, we need to set the two flags
   --  Forwards_OK and Backwards_OK which show whether the block move (or
   --  corresponding loops) can be legitimately done in a forwards (low to
   --  high) or backwards (high to low) manner.

   procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
      Loc : constant Source_Ptr := Sloc (N);

      Lhs : constant Node_Id := Name (N);

      Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
      Act_Rhs : Node_Id          := Get_Referenced_Object (Rhs);

      L_Type : constant Entity_Id :=
                 Underlying_Type (Get_Actual_Subtype (Act_Lhs));
      R_Type : Entity_Id :=
                 Underlying_Type (Get_Actual_Subtype (Act_Rhs));

      L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
      R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;

      Crep : constant Boolean := Change_Of_Representation (N);

      Larray  : Node_Id;
      Rarray  : Node_Id;

      Ndim : constant Pos := Number_Dimensions (L_Type);

      Loop_Required : Boolean := False;
      --  This switch is set to True if the array move must be done using
      --  an explicit front end generated loop.

      procedure Apply_Dereference (Arg : Node_Id);
      --  If the argument is an access to an array, and the assignment is
      --  converted into a procedure call, apply explicit dereference.

      function Has_Address_Clause (Exp : Node_Id) return Boolean;
      --  Test if Exp is a reference to an array whose declaration has
      --  an address clause, or it is a slice of such an array.

      function Is_Formal_Array (Exp : Node_Id) return Boolean;
      --  Test if Exp is a reference to an array which is either a formal
      --  parameter or a slice of a formal parameter. These are the cases
      --  where hidden aliasing can occur.

      function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
      --  Determine if Exp is a reference to an array variable which is other
      --  than an object defined in the current scope, or a slice of such
      --  an object. Such objects can be aliased to parameters (unlike local
      --  array references).

      -----------------------
      -- Apply_Dereference --
      -----------------------

      procedure Apply_Dereference (Arg : Node_Id) is
         Typ : constant Entity_Id := Etype (Arg);
      begin
         if Is_Access_Type (Typ) then
            Rewrite (Arg, Make_Explicit_Dereference (Loc,
              Prefix => Relocate_Node (Arg)));
            Analyze_And_Resolve (Arg, Designated_Type (Typ));
         end if;
      end Apply_Dereference;

      ------------------------
      -- Has_Address_Clause --
      ------------------------

      function Has_Address_Clause (Exp : Node_Id) return Boolean is
      begin
         return
           (Is_Entity_Name (Exp) and then
                              Present (Address_Clause (Entity (Exp))))
             or else
           (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
      end Has_Address_Clause;

      ---------------------
      -- Is_Formal_Array --
      ---------------------

      function Is_Formal_Array (Exp : Node_Id) return Boolean is
      begin
         return
           (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
             or else
           (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
      end Is_Formal_Array;

      ------------------------
      -- Is_Non_Local_Array --
      ------------------------

      function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
      begin
         return (Is_Entity_Name (Exp)
                   and then Scope (Entity (Exp)) /= Current_Scope)
            or else (Nkind (Exp) = N_Slice
                       and then Is_Non_Local_Array (Prefix (Exp)));
      end Is_Non_Local_Array;

      --  Determine if Lhs, Rhs are formal arrays or nonlocal arrays

      Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
      Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);

      Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
      Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);

   --  Start of processing for Expand_Assign_Array

   begin
      --  Deal with length check. Note that the length check is done with
      --  respect to the right hand side as given, not a possible underlying
      --  renamed object, since this would generate incorrect extra checks.

      Apply_Length_Check (Rhs, L_Type);

      --  We start by assuming that the move can be done in either direction,
      --  i.e. that the two sides are completely disjoint.

      Set_Forwards_OK  (N, True);
      Set_Backwards_OK (N, True);

      --  Normally it is only the slice case that can lead to overlap, and
      --  explicit checks for slices are made below. But there is one case
      --  where the slice can be implicit and invisible to us: when we have a
      --  one dimensional array, and either both operands are parameters, or
      --  one is a parameter (which can be a slice passed by reference) and the
      --  other is a non-local variable. In this case the parameter could be a
      --  slice that overlaps with the other operand.

      --  However, if the array subtype is a constrained first subtype in the
      --  parameter case, then we don't have to worry about overlap, since
      --  slice assignments aren't possible (other than for a slice denoting
      --  the whole array).

      --  Note: No overlap is possible if there is a change of representation,
      --  so we can exclude this case.

      if Ndim = 1
        and then not Crep
        and then
           ((Lhs_Formal and Rhs_Formal)
              or else
            (Lhs_Formal and Rhs_Non_Local_Var)
              or else
            (Rhs_Formal and Lhs_Non_Local_Var))
        and then
           (not Is_Constrained (Etype (Lhs))
             or else not Is_First_Subtype (Etype (Lhs)))
      then
         Set_Forwards_OK  (N, False);
         Set_Backwards_OK (N, False);

         --  Note: the bit-packed case is not worrisome here, since if we have
         --  a slice passed as a parameter, it is always aligned on a byte
         --  boundary, and if there are no explicit slices, the assignment
         --  can be performed directly.
      end if;

      --  If either operand has an address clause clear Backwards_OK and
      --  Forwards_OK, since we cannot tell if the operands overlap. We
      --  exclude this treatment when Rhs is an aggregate, since we know
      --  that overlap can't occur.

      if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
        or else Has_Address_Clause (Rhs)
      then
         Set_Forwards_OK  (N, False);
         Set_Backwards_OK (N, False);
      end if;

      --  We certainly must use a loop for change of representation and also
      --  we use the operand of the conversion on the right hand side as the
      --  effective right hand side (the component types must match in this
      --  situation).

      if Crep then
         Act_Rhs := Get_Referenced_Object (Rhs);
         R_Type  := Get_Actual_Subtype (Act_Rhs);
         Loop_Required := True;

      --  We require a loop if the left side is possibly bit unaligned

      elsif Possible_Bit_Aligned_Component (Lhs)
              or else
            Possible_Bit_Aligned_Component (Rhs)
      then
         Loop_Required := True;

      --  Arrays with controlled components are expanded into a loop to force
      --  calls to Adjust at the component level.

      elsif Has_Controlled_Component (L_Type) then
         Loop_Required := True;

      --  If object is atomic/VFA, we cannot tolerate a loop

      elsif Is_Atomic_Or_VFA_Object (Act_Lhs)
              or else
            Is_Atomic_Or_VFA_Object (Act_Rhs)
      then
         return;

      --  Loop is required if we have atomic components since we have to
      --  be sure to do any accesses on an element by element basis.

      elsif Has_Atomic_Components (L_Type)
        or else Has_Atomic_Components (R_Type)
        or else Is_Atomic_Or_VFA (Component_Type (L_Type))
        or else Is_Atomic_Or_VFA (Component_Type (R_Type))
      then
         Loop_Required := True;

      --  Case where no slice is involved

      elsif not L_Slice and not R_Slice then

         --  The following code deals with the case of unconstrained bit packed
         --  arrays. The problem is that the template for such arrays contains
         --  the bounds of the actual source level array, but the copy of an
         --  entire array requires the bounds of the underlying array. It would
         --  be nice if the back end could take care of this, but right now it
         --  does not know how, so if we have such a type, then we expand out
         --  into a loop, which is inefficient but works correctly. If we don't
         --  do this, we get the wrong length computed for the array to be
         --  moved. The two cases we need to worry about are:

         --  Explicit dereference of an unconstrained packed array type as in
         --  the following example:

         --    procedure C52 is
         --       type BITS is array(INTEGER range <>) of BOOLEAN;
         --       pragma PACK(BITS);
         --       type A is access BITS;
         --       P1,P2 : A;
         --    begin
         --       P1 := new BITS (1 .. 65_535);
         --       P2 := new BITS (1 .. 65_535);
         --       P2.ALL := P1.ALL;
         --    end C52;

         --  A formal parameter reference with an unconstrained bit array type
         --  is the other case we need to worry about (here we assume the same
         --  BITS type declared above):

         --    procedure Write_All (File : out BITS; Contents : BITS);
         --    begin
         --       File.Storage := Contents;
         --    end Write_All;

         --  We expand to a loop in either of these two cases

         --  Question for future thought. Another potentially more efficient
         --  approach would be to create the actual subtype, and then do an
         --  unchecked conversion to this actual subtype ???

         Check_Unconstrained_Bit_Packed_Array : declare

            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
            --  Function to perform required test for the first case, above
            --  (dereference of an unconstrained bit packed array).

            -----------------------
            -- Is_UBPA_Reference --
            -----------------------

            function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
               Typ      : constant Entity_Id := Underlying_Type (Etype (Opnd));
               P_Type   : Entity_Id;
               Des_Type : Entity_Id;

            begin
               if Present (Packed_Array_Impl_Type (Typ))
                 and then Is_Array_Type (Packed_Array_Impl_Type (Typ))
                 and then not Is_Constrained (Packed_Array_Impl_Type (Typ))
               then
                  return True;

               elsif Nkind (Opnd) = N_Explicit_Dereference then
                  P_Type := Underlying_Type (Etype (Prefix (Opnd)));

                  if not Is_Access_Type (P_Type) then
                     return False;

                  else
                     Des_Type := Designated_Type (P_Type);
                     return
                       Is_Bit_Packed_Array (Des_Type)
                         and then not Is_Constrained (Des_Type);
                  end if;

               else
                  return False;
               end if;
            end Is_UBPA_Reference;

         --  Start of processing for Check_Unconstrained_Bit_Packed_Array

         begin
            if Is_UBPA_Reference (Lhs)
                 or else
               Is_UBPA_Reference (Rhs)
            then
               Loop_Required := True;

            --  Here if we do not have the case of a reference to a bit packed
            --  unconstrained array case. In this case gigi can most certainly
            --  handle the assignment if a forwards move is allowed.

            --  (could it handle the backwards case also???)

            elsif Forwards_OK (N) then
               return;
            end if;
         end Check_Unconstrained_Bit_Packed_Array;

      --  The back end can always handle the assignment if the right side is a
      --  string literal (note that overlap is definitely impossible in this
      --  case). If the type is packed, a string literal is always converted
      --  into an aggregate, except in the case of a null slice, for which no
      --  aggregate can be written. In that case, rewrite the assignment as a
      --  null statement, a length check has already been emitted to verify
      --  that the range of the left-hand side is empty.

      --  Note that this code is not executed if we have an assignment of a
      --  string literal to a non-bit aligned component of a record, a case
      --  which cannot be handled by the backend.

      elsif Nkind (Rhs) = N_String_Literal then
         if String_Length (Strval (Rhs)) = 0
           and then Is_Bit_Packed_Array (L_Type)
         then
            Rewrite (N, Make_Null_Statement (Loc));
            Analyze (N);
         end if;

         return;

      --  If either operand is bit packed, then we need a loop, since we can't
      --  be sure that the slice is byte aligned. Similarly, if either operand
      --  is a possibly unaligned slice, then we need a loop (since the back
      --  end cannot handle unaligned slices).

      elsif Is_Bit_Packed_Array (L_Type)
        or else Is_Bit_Packed_Array (R_Type)
        or else Is_Possibly_Unaligned_Slice (Lhs)
        or else Is_Possibly_Unaligned_Slice (Rhs)
      then
         Loop_Required := True;

      --  If we are not bit-packed, and we have only one slice, then no overlap
      --  is possible except in the parameter case, so we can let the back end
      --  handle things.

      elsif not (L_Slice and R_Slice) then
         if Forwards_OK (N) then
            return;
         end if;
      end if;

      --  If the right-hand side is a string literal, introduce a temporary for
      --  it, for use in the generated loop that will follow.

      if Nkind (Rhs) = N_String_Literal then
         declare
            Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Rhs);
            Decl : Node_Id;

         begin
            Decl :=
              Make_Object_Declaration (Loc,
                 Defining_Identifier => Temp,
                 Object_Definition => New_Occurrence_Of (L_Type, Loc),
                 Expression => Relocate_Node (Rhs));

            Insert_Action (N, Decl);
            Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
            R_Type := Etype (Temp);
         end;
      end if;

      --  Come here to complete the analysis

      --    Loop_Required: Set to True if we know that a loop is required
      --                   regardless of overlap considerations.

      --    Forwards_OK:   Set to False if we already know that a forwards
      --                   move is not safe, else set to True.

      --    Backwards_OK:  Set to False if we already know that a backwards
      --                   move is not safe, else set to True

      --  Our task at this stage is to complete the overlap analysis, which can
      --  result in possibly setting Forwards_OK or Backwards_OK to False, and
      --  then generating the final code, either by deciding that it is OK
      --  after all to let Gigi handle it, or by generating appropriate code
      --  in the front end.

      declare
         L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
         R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));

         Left_Lo  : constant Node_Id := Type_Low_Bound  (L_Index_Typ);
         Left_Hi  : constant Node_Id := Type_High_Bound (L_Index_Typ);
         Right_Lo : constant Node_Id := Type_Low_Bound  (R_Index_Typ);
         Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);

         Act_L_Array : Node_Id;
         Act_R_Array : Node_Id;

         Cleft_Lo  : Node_Id;
         Cright_Lo : Node_Id;
         Condition : Node_Id;

         Cresult : Compare_Result;

      begin
         --  Get the expressions for the arrays. If we are dealing with a
         --  private type, then convert to the underlying type. We can do
         --  direct assignments to an array that is a private type, but we
         --  cannot assign to elements of the array without this extra
         --  unchecked conversion.

         --  Note: We propagate Parent to the conversion nodes to generate
         --  a well-formed subtree.

         if Nkind (Act_Lhs) = N_Slice then
            Larray := Prefix (Act_Lhs);
         else
            Larray := Act_Lhs;

            if Is_Private_Type (Etype (Larray)) then
               declare
                  Par : constant Node_Id := Parent (Larray);
               begin
                  Larray :=
                    Unchecked_Convert_To
                      (Underlying_Type (Etype (Larray)), Larray);
                  Set_Parent (Larray, Par);
               end;
            end if;
         end if;

         if Nkind (Act_Rhs) = N_Slice then
            Rarray := Prefix (Act_Rhs);
         else
            Rarray := Act_Rhs;

            if Is_Private_Type (Etype (Rarray)) then
               declare
                  Par : constant Node_Id := Parent (Rarray);
               begin
                  Rarray :=
                    Unchecked_Convert_To
                      (Underlying_Type (Etype (Rarray)), Rarray);
                  Set_Parent (Rarray, Par);
               end;
            end if;
         end if;

         --  If both sides are slices, we must figure out whether it is safe
         --  to do the move in one direction or the other. It is always safe
         --  if there is a change of representation since obviously two arrays
         --  with different representations cannot possibly overlap.

         if (not Crep) and L_Slice and R_Slice then
            Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
            Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));

            --  If both left and right hand arrays are entity names, and refer
            --  to different entities, then we know that the move is safe (the
            --  two storage areas are completely disjoint).

            if Is_Entity_Name (Act_L_Array)
              and then Is_Entity_Name (Act_R_Array)
              and then Entity (Act_L_Array) /= Entity (Act_R_Array)
            then
               null;

            --  Otherwise, we assume the worst, which is that the two arrays
            --  are the same array. There is no need to check if we know that
            --  is the case, because if we don't know it, we still have to
            --  assume it.

            --  Generally if the same array is involved, then we have an
            --  overlapping case. We will have to really assume the worst (i.e.
            --  set neither of the OK flags) unless we can determine the lower
            --  or upper bounds at compile time and compare them.

            else
               Cresult :=
                 Compile_Time_Compare
                   (Left_Lo, Right_Lo, Assume_Valid => True);

               if Cresult = Unknown then
                  Cresult :=
                    Compile_Time_Compare
                      (Left_Hi, Right_Hi, Assume_Valid => True);
               end if;

               case Cresult is
                  when LT | LE | EQ => Set_Backwards_OK (N, False);
                  when GT | GE      => Set_Forwards_OK  (N, False);
                  when NE | Unknown => Set_Backwards_OK (N, False);
                                       Set_Forwards_OK  (N, False);
               end case;
            end if;
         end if;

         --  If after that analysis Loop_Required is False, meaning that we
         --  have not discovered some non-overlap reason for requiring a loop,
         --  then the outcome depends on the capabilities of the back end.

         if not Loop_Required then
            --  Assume the back end can deal with all cases of overlap by
            --  falling back to memmove if it cannot use a more efficient
            --  approach.

            return;
         end if;

         --  At this stage we have to generate an explicit loop, and we have
         --  the following cases:

         --  Forwards_OK = True

         --    Rnn : right_index := right_index'First;
         --    for Lnn in left-index loop
         --       left (Lnn) := right (Rnn);
         --       Rnn := right_index'Succ (Rnn);
         --    end loop;

         --    Note: the above code MUST be analyzed with checks off, because
         --    otherwise the Succ could overflow. But in any case this is more
         --    efficient.

         --  Forwards_OK = False, Backwards_OK = True

         --    Rnn : right_index := right_index'Last;
         --    for Lnn in reverse left-index loop
         --       left (Lnn) := right (Rnn);
         --       Rnn := right_index'Pred (Rnn);
         --    end loop;

         --    Note: the above code MUST be analyzed with checks off, because
         --    otherwise the Pred could overflow. But in any case this is more
         --    efficient.

         --  Forwards_OK = Backwards_OK = False

         --    This only happens if we have the same array on each side. It is
         --    possible to create situations using overlays that violate this,
         --    but we simply do not promise to get this "right" in this case.

         --    There are two possible subcases. If the No_Implicit_Conditionals
         --    restriction is set, then we generate the following code:

         --      declare
         --        T : constant <operand-type> := rhs;
         --      begin
         --        lhs := T;
         --      end;

         --    If implicit conditionals are permitted, then we generate:

         --      if Left_Lo <= Right_Lo then
         --         <code for Forwards_OK = True above>
         --      else
         --         <code for Backwards_OK = True above>
         --      end if;

         --  In order to detect possible aliasing, we examine the renamed
         --  expression when the source or target is a renaming. However,
         --  the renaming may be intended to capture an address that may be
         --  affected by subsequent code, and therefore we must recover
         --  the actual entity for the expansion that follows, not the
         --  object it renames. In particular, if source or target designate
         --  a portion of a dynamically allocated object, the pointer to it
         --  may be reassigned but the renaming preserves the proper location.

         if Is_Entity_Name (Rhs)
           and then
             Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
           and then Nkind (Act_Rhs) = N_Slice
         then
            Rarray := Rhs;
         end if;

         if Is_Entity_Name (Lhs)
           and then
             Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
           and then Nkind (Act_Lhs) = N_Slice
         then
            Larray := Lhs;
         end if;

         --  Cases where either Forwards_OK or Backwards_OK is true

         if Forwards_OK (N) or else Backwards_OK (N) then
            if Needs_Finalization (Component_Type (L_Type))
              and then Base_Type (L_Type) = Base_Type (R_Type)
              and then Ndim = 1
              and then not No_Ctrl_Actions (N)
            then
               declare
                  Proc    : constant Entity_Id :=
                              TSS (Base_Type (L_Type), TSS_Slice_Assign);
                  Actuals : List_Id;

               begin
                  Apply_Dereference (Larray);
                  Apply_Dereference (Rarray);
                  Actuals := New_List (
                    Duplicate_Subexpr (Larray,   Name_Req => True),
                    Duplicate_Subexpr (Rarray,   Name_Req => True),
                    Duplicate_Subexpr (Left_Lo,  Name_Req => True),
                    Duplicate_Subexpr (Left_Hi,  Name_Req => True),
                    Duplicate_Subexpr (Right_Lo, Name_Req => True),
                    Duplicate_Subexpr (Right_Hi, Name_Req => True));

                  Append_To (Actuals,
                    New_Occurrence_Of (
                      Boolean_Literals (not Forwards_OK (N)), Loc));

                  Rewrite (N,
                    Make_Procedure_Call_Statement (Loc,
                      Name => New_Occurrence_Of (Proc, Loc),
                      Parameter_Associations => Actuals));
               end;

            else
               Rewrite (N,
                 Expand_Assign_Array_Loop
                   (N, Larray, Rarray, L_Type, R_Type, Ndim,
                    Rev => not Forwards_OK (N)));
            end if;

         --  Case of both are false with No_Implicit_Conditionals

         elsif Restriction_Active (No_Implicit_Conditionals) then
            declare
                  T : constant Entity_Id :=
                        Make_Defining_Identifier (Loc, Chars => Name_T);

            begin
               Rewrite (N,
                 Make_Block_Statement (Loc,
                  Declarations => New_List (
                    Make_Object_Declaration (Loc,
                      Defining_Identifier => T,
                      Constant_Present  => True,
                      Object_Definition =>
                        New_Occurrence_Of (Etype (Rhs), Loc),
                      Expression        => Relocate_Node (Rhs))),

                    Handled_Statement_Sequence =>
                      Make_Handled_Sequence_Of_Statements (Loc,
                        Statements => New_List (
                          Make_Assignment_Statement (Loc,
                            Name       => Relocate_Node (Lhs),
                            Expression => New_Occurrence_Of (T, Loc))))));
            end;

         --  Case of both are false with implicit conditionals allowed

         else
            --  Before we generate this code, we must ensure that the left and
            --  right side array types are defined. They may be itypes, and we
            --  cannot let them be defined inside the if, since the first use
            --  in the then may not be executed.

            Ensure_Defined (L_Type, N);
            Ensure_Defined (R_Type, N);

            --  We normally compare addresses to find out which way round to
            --  do the loop, since this is reliable, and handles the cases of
            --  parameters, conversions etc. But we can't do that in the bit
            --  packed case, because addresses don't work there.

            if not Is_Bit_Packed_Array (L_Type) then
               Condition :=
                 Make_Op_Le (Loc,
                   Left_Opnd =>
                     Unchecked_Convert_To (RTE (RE_Integer_Address),
                       Make_Attribute_Reference (Loc,
                         Prefix =>
                           Make_Indexed_Component (Loc,
                             Prefix =>
                               Duplicate_Subexpr_Move_Checks (Larray, True),
                             Expressions => New_List (
                               Make_Attribute_Reference (Loc,
                                 Prefix =>
                                   New_Occurrence_Of
                                     (L_Index_Typ, Loc),
                                 Attribute_Name => Name_First))),
                         Attribute_Name => Name_Address)),

                   Right_Opnd =>
                     Unchecked_Convert_To (RTE (RE_Integer_Address),
                       Make_Attribute_Reference (Loc,
                         Prefix =>
                           Make_Indexed_Component (Loc,
                             Prefix =>
                               Duplicate_Subexpr_Move_Checks (Rarray, True),
                             Expressions => New_List (
                               Make_Attribute_Reference (Loc,
                                 Prefix =>
                                   New_Occurrence_Of
                                     (R_Index_Typ, Loc),
                                 Attribute_Name => Name_First))),
                         Attribute_Name => Name_Address)));

            --  For the bit packed and VM cases we use the bounds. That's OK,
            --  because we don't have to worry about parameters, since they
            --  cannot cause overlap. Perhaps we should worry about weird slice
            --  conversions ???

            else
               --  Copy the bounds

               Cleft_Lo  := New_Copy_Tree (Left_Lo);
               Cright_Lo := New_Copy_Tree (Right_Lo);

               --  If the types do not match we add an implicit conversion
               --  here to ensure proper match

               if Etype (Left_Lo) /= Etype (Right_Lo) then
                  Cright_Lo :=
                    Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
               end if;

               --  Reset the Analyzed flag, because the bounds of the index
               --  type itself may be universal, and must must be reanalyzed
               --  to acquire the proper type for the back end.

               Set_Analyzed (Cleft_Lo, False);
               Set_Analyzed (Cright_Lo, False);

               Condition :=
                 Make_Op_Le (Loc,
                   Left_Opnd  => Cleft_Lo,
                   Right_Opnd => Cright_Lo);
            end if;

            if Needs_Finalization (Component_Type (L_Type))
              and then Base_Type (L_Type) = Base_Type (R_Type)
              and then Ndim = 1
              and then not No_Ctrl_Actions (N)
            then

               --  Call TSS procedure for array assignment, passing the
               --  explicit bounds of right and left hand sides.

               declare
                  Proc    : constant Entity_Id :=
                              TSS (Base_Type (L_Type), TSS_Slice_Assign);
                  Actuals : List_Id;

               begin
                  Apply_Dereference (Larray);
                  Apply_Dereference (Rarray);
                  Actuals := New_List (
                    Duplicate_Subexpr (Larray,   Name_Req => True),
                    Duplicate_Subexpr (Rarray,   Name_Req => True),
                    Duplicate_Subexpr (Left_Lo,  Name_Req => True),
                    Duplicate_Subexpr (Left_Hi,  Name_Req => True),
                    Duplicate_Subexpr (Right_Lo, Name_Req => True),
                    Duplicate_Subexpr (Right_Hi, Name_Req => True));

                  Append_To (Actuals,
                     Make_Op_Not (Loc,
                       Right_Opnd => Condition));

                  Rewrite (N,
                    Make_Procedure_Call_Statement (Loc,
                      Name => New_Occurrence_Of (Proc, Loc),
                      Parameter_Associations => Actuals));
               end;

            else
               Rewrite (N,
                 Make_Implicit_If_Statement (N,
                   Condition => Condition,

                   Then_Statements => New_List (
                     Expand_Assign_Array_Loop
                      (N, Larray, Rarray, L_Type, R_Type, Ndim,
                       Rev => False)),

                   Else_Statements => New_List (
                     Expand_Assign_Array_Loop
                      (N, Larray, Rarray, L_Type, R_Type, Ndim,
                       Rev => True))));
            end if;
         end if;

         Analyze (N, Suppress => All_Checks);
      end;

   exception
      when RE_Not_Available =>
         return;
   end Expand_Assign_Array;

   ------------------------------
   -- Expand_Assign_Array_Loop --
   ------------------------------

   --  The following is an example of the loop generated for the case of a
   --  two-dimensional array:

   --    declare
   --       R2b : Tm1X1 := 1;
   --    begin
   --       for L1b in 1 .. 100 loop
   --          declare
   --             R4b : Tm1X2 := 1;
   --          begin
   --             for L3b in 1 .. 100 loop
   --                vm1 (L1b, L3b) := vm2 (R2b, R4b);
   --                R4b := Tm1X2'succ(R4b);
   --             end loop;
   --          end;
   --          R2b := Tm1X1'succ(R2b);
   --       end loop;
   --    end;

   --  Here Rev is False, and Tm1Xn are the subscript types for the right hand
   --  side. The declarations of R2b and R4b are inserted before the original
   --  assignment statement.

   function Expand_Assign_Array_Loop
     (N      : Node_Id;
      Larray : Entity_Id;
      Rarray : Entity_Id;
      L_Type : Entity_Id;
      R_Type : Entity_Id;
      Ndim   : Pos;
      Rev    : Boolean) return Node_Id
   is
      Loc  : constant Source_Ptr := Sloc (N);

      Lnn : array (1 .. Ndim) of Entity_Id;
      Rnn : array (1 .. Ndim) of Entity_Id;
      --  Entities used as subscripts on left and right sides

      L_Index_Type : array (1 .. Ndim) of Entity_Id;
      R_Index_Type : array (1 .. Ndim) of Entity_Id;
      --  Left and right index types

      Assign : Node_Id;

      F_Or_L : Name_Id;
      S_Or_P : Name_Id;

      function Build_Step (J : Nat) return Node_Id;
      --  The increment step for the index of the right-hand side is written
      --  as an attribute reference (Succ or Pred). This function returns
      --  the corresponding node, which is placed at the end of the loop body.

      ----------------
      -- Build_Step --
      ----------------

      function Build_Step (J : Nat) return Node_Id is
         Step : Node_Id;
         Lim  : Name_Id;

      begin
         if Rev then
            Lim := Name_First;
         else
            Lim := Name_Last;
         end if;

         Step :=
            Make_Assignment_Statement (Loc,
               Name => New_Occurrence_Of (Rnn (J), Loc),
               Expression =>
                 Make_Attribute_Reference (Loc,
                   Prefix =>
                     New_Occurrence_Of (R_Index_Type (J), Loc),
                   Attribute_Name => S_Or_P,
                   Expressions => New_List (
                     New_Occurrence_Of (Rnn (J), Loc))));

      --  Note that on the last iteration of the loop, the index is increased
      --  (or decreased) past the corresponding bound. This is consistent with
      --  the C semantics of the back-end, where such an off-by-one value on a
      --  dead index variable is OK. However, in CodePeer mode this leads to
      --  spurious warnings, and thus we place a guard around the attribute
      --  reference. For obvious reasons we only do this for CodePeer.

         if CodePeer_Mode then
            Step :=
              Make_If_Statement (Loc,
                 Condition =>
                    Make_Op_Ne (Loc,
                       Left_Opnd  => New_Occurrence_Of (Lnn (J), Loc),
                       Right_Opnd =>
                         Make_Attribute_Reference (Loc,
                           Prefix => New_Occurrence_Of (L_Index_Type (J), Loc),
                           Attribute_Name => Lim)),
                 Then_Statements => New_List (Step));
         end if;

         return Step;
      end Build_Step;

   --  Start of processing for Expand_Assign_Array_Loop

   begin
      if Rev then
         F_Or_L := Name_Last;
         S_Or_P := Name_Pred;
      else
         F_Or_L := Name_First;
         S_Or_P := Name_Succ;
      end if;

      --  Setup index types and subscript entities

      declare
         L_Index : Node_Id;
         R_Index : Node_Id;

      begin
         L_Index := First_Index (L_Type);
         R_Index := First_Index (R_Type);

         for J in 1 .. Ndim loop
            Lnn (J) := Make_Temporary (Loc, 'L');
            Rnn (J) := Make_Temporary (Loc, 'R');

            L_Index_Type (J) := Etype (L_Index);
            R_Index_Type (J) := Etype (R_Index);

            Next_Index (L_Index);
            Next_Index (R_Index);
         end loop;
      end;

      --  Now construct the assignment statement

      declare
         ExprL : constant List_Id := New_List;
         ExprR : constant List_Id := New_List;

      begin
         for J in 1 .. Ndim loop
            Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
            Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
         end loop;

         Assign :=
           Make_Assignment_Statement (Loc,
             Name =>
               Make_Indexed_Component (Loc,
                 Prefix      => Duplicate_Subexpr (Larray, Name_Req => True),
                 Expressions => ExprL),
             Expression =>
               Make_Indexed_Component (Loc,
                 Prefix      => Duplicate_Subexpr (Rarray, Name_Req => True),
                 Expressions => ExprR));

         --  We set assignment OK, since there are some cases, e.g. in object
         --  declarations, where we are actually assigning into a constant.
         --  If there really is an illegality, it was caught long before now,
         --  and was flagged when the original assignment was analyzed.

         Set_Assignment_OK (Name (Assign));

         --  Propagate the No_Ctrl_Actions flag to individual assignments

         Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
      end;

      --  Now construct the loop from the inside out, with the last subscript
      --  varying most rapidly. Note that Assign is first the raw assignment
      --  statement, and then subsequently the loop that wraps it up.

      for J in reverse 1 .. Ndim loop
         Assign :=
           Make_Block_Statement (Loc,
             Declarations => New_List (
              Make_Object_Declaration (Loc,
                Defining_Identifier => Rnn (J),
                Object_Definition =>
                  New_Occurrence_Of (R_Index_Type (J), Loc),
                Expression =>
                  Make_Attribute_Reference (Loc,
                    Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
                    Attribute_Name => F_Or_L))),

           Handled_Statement_Sequence =>
             Make_Handled_Sequence_Of_Statements (Loc,
               Statements => New_List (
                 Make_Implicit_Loop_Statement (N,
                   Iteration_Scheme =>
                     Make_Iteration_Scheme (Loc,
                       Loop_Parameter_Specification =>
                         Make_Loop_Parameter_Specification (Loc,
                           Defining_Identifier => Lnn (J),
                           Reverse_Present => Rev,
                           Discrete_Subtype_Definition =>
                             New_Occurrence_Of (L_Index_Type (J), Loc))),

                   Statements => New_List (Assign, Build_Step (J))))));
      end loop;

      return Assign;
   end Expand_Assign_Array_Loop;

   --------------------------
   -- Expand_Assign_Record --
   --------------------------

   procedure Expand_Assign_Record (N : Node_Id) is
      Lhs   : constant Node_Id    := Name (N);
      Rhs   : Node_Id             := Expression (N);
      L_Typ : constant Entity_Id  := Base_Type (Etype (Lhs));

   begin
      --  If change of representation, then extract the real right hand side
      --  from the type conversion, and proceed with component-wise assignment,
      --  since the two types are not the same as far as the back end is
      --  concerned.

      if Change_Of_Representation (N) then
         Rhs := Expression (Rhs);

      --  If this may be a case of a large bit aligned component, then proceed
      --  with component-wise assignment, to avoid possible clobbering of other
      --  components sharing bits in the first or last byte of the component to
      --  be assigned.

      elsif Possible_Bit_Aligned_Component (Lhs)
              or
            Possible_Bit_Aligned_Component (Rhs)
      then
         null;

      --  If we have a tagged type that has a complete record representation
      --  clause, we must do we must do component-wise assignments, since child
      --  types may have used gaps for their components, and we might be
      --  dealing with a view conversion.

      elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
         null;

      --  If neither condition met, then nothing special to do, the back end
      --  can handle assignment of the entire component as a single entity.

      else
         return;
      end if;

      --  At this stage we know that we must do a component wise assignment

      declare
         Loc   : constant Source_Ptr := Sloc (N);
         R_Typ : constant Entity_Id  := Base_Type (Etype (Rhs));
         Decl  : constant Node_Id    := Declaration_Node (R_Typ);
         RDef  : Node_Id;
         F     : Entity_Id;

         function Find_Component
           (Typ  : Entity_Id;
            Comp : Entity_Id) return Entity_Id;
         --  Find the component with the given name in the underlying record
         --  declaration for Typ. We need to use the actual entity because the
         --  type may be private and resolution by identifier alone would fail.

         function Make_Component_List_Assign
           (CL  : Node_Id;
            U_U : Boolean := False) return List_Id;
         --  Returns a sequence of statements to assign the components that
         --  are referenced in the given component list. The flag U_U is
         --  used to force the usage of the inferred value of the variant
         --  part expression as the switch for the generated case statement.

         function Make_Field_Assign
           (C   : Entity_Id;
            U_U : Boolean := False) return Node_Id;
         --  Given C, the entity for a discriminant or component, build an
         --  assignment for the corresponding field values. The flag U_U
         --  signals the presence of an Unchecked_Union and forces the usage
         --  of the inferred discriminant value of C as the right hand side
         --  of the assignment.

         function Make_Field_Assigns (CI : List_Id) return List_Id;
         --  Given CI, a component items list, construct series of statements
         --  for fieldwise assignment of the corresponding components.

         --------------------
         -- Find_Component --
         --------------------

         function Find_Component
           (Typ  : Entity_Id;
            Comp : Entity_Id) return Entity_Id
         is
            Utyp : constant Entity_Id := Underlying_Type (Typ);
            C    : Entity_Id;

         begin
            C := First_Entity (Utyp);
            while Present (C) loop
               if Chars (C) = Chars (Comp) then
                  return C;
               end if;

               Next_Entity (C);
            end loop;

            raise Program_Error;
         end Find_Component;

         --------------------------------
         -- Make_Component_List_Assign --
         --------------------------------

         function Make_Component_List_Assign
           (CL  : Node_Id;
            U_U : Boolean := False) return List_Id
         is
            CI : constant List_Id := Component_Items (CL);
            VP : constant Node_Id := Variant_Part (CL);

            Alts   : List_Id;
            DC     : Node_Id;
            DCH    : List_Id;
            Expr   : Node_Id;
            Result : List_Id;
            V      : Node_Id;

         begin
            Result := Make_Field_Assigns (CI);

            if Present (VP) then
               V := First_Non_Pragma (Variants (VP));
               Alts := New_List;
               while Present (V) loop
                  DCH := New_List;
                  DC := First (Discrete_Choices (V));
                  while Present (DC) loop
                     Append_To (DCH, New_Copy_Tree (DC));
                     Next (DC);
                  end loop;

                  Append_To (Alts,
                    Make_Case_Statement_Alternative (Loc,
                      Discrete_Choices => DCH,
                      Statements =>
                        Make_Component_List_Assign (Component_List (V))));
                  Next_Non_Pragma (V);
               end loop;

               --  If we have an Unchecked_Union, use the value of the inferred
               --  discriminant of the variant part expression as the switch
               --  for the case statement. The case statement may later be
               --  folded.

               if U_U then
                  Expr :=
                    New_Copy (Get_Discriminant_Value (
                      Entity (Name (VP)),
                      Etype (Rhs),
                      Discriminant_Constraint (Etype (Rhs))));
               else
                  Expr :=
                    Make_Selected_Component (Loc,
                      Prefix        => Duplicate_Subexpr (Rhs),
                      Selector_Name =>
                        Make_Identifier (Loc, Chars (Name (VP))));
               end if;

               Append_To (Result,
                 Make_Case_Statement (Loc,
                   Expression => Expr,
                   Alternatives => Alts));
            end if;

            return Result;
         end Make_Component_List_Assign;

         -----------------------
         -- Make_Field_Assign --
         -----------------------

         function Make_Field_Assign
           (C   : Entity_Id;
            U_U : Boolean := False) return Node_Id
         is
            A    : Node_Id;
            Expr : Node_Id;

         begin
            --  In the case of an Unchecked_Union, use the discriminant
            --  constraint value as on the right hand side of the assignment.

            if U_U then
               Expr :=
                 New_Copy (Get_Discriminant_Value (C,
                   Etype (Rhs),
                   Discriminant_Constraint (Etype (Rhs))));
            else
               Expr :=
                 Make_Selected_Component (Loc,
                   Prefix        => Duplicate_Subexpr (Rhs),
                   Selector_Name => New_Occurrence_Of (C, Loc));
            end if;

            A :=
              Make_Assignment_Statement (Loc,
                Name =>
                  Make_Selected_Component (Loc,
                    Prefix        => Duplicate_Subexpr (Lhs),
                    Selector_Name =>
                      New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
                Expression => Expr);

            --  Set Assignment_OK, so discriminants can be assigned

            Set_Assignment_OK (Name (A), True);

            if Componentwise_Assignment (N)
              and then Nkind (Name (A)) = N_Selected_Component
              and then Chars (Selector_Name (Name (A))) = Name_uParent
            then
               Set_Componentwise_Assignment (A);
            end if;

            return A;
         end Make_Field_Assign;

         ------------------------
         -- Make_Field_Assigns --
         ------------------------

         function Make_Field_Assigns (CI : List_Id) return List_Id is
            Item   : Node_Id;
            Result : List_Id;

         begin
            Item := First (CI);
            Result := New_List;

            while Present (Item) loop

               --  Look for components, but exclude _tag field assignment if
               --  the special Componentwise_Assignment flag is set.

               if Nkind (Item) = N_Component_Declaration
                 and then not (Is_Tag (Defining_Identifier (Item))
                                 and then Componentwise_Assignment (N))
               then
                  Append_To
                    (Result, Make_Field_Assign (Defining_Identifier (Item)));
               end if;

               Next (Item);
            end loop;

            return Result;
         end Make_Field_Assigns;

      --  Start of processing for Expand_Assign_Record

      begin
         --  Note that we use the base types for this processing. This results
         --  in some extra work in the constrained case, but the change of
         --  representation case is so unusual that it is not worth the effort.

         --  First copy the discriminants. This is done unconditionally. It
         --  is required in the unconstrained left side case, and also in the
         --  case where this assignment was constructed during the expansion
         --  of a type conversion (since initialization of discriminants is
         --  suppressed in this case). It is unnecessary but harmless in
         --  other cases.

         if Has_Discriminants (L_Typ) then
            F := First_Discriminant (R_Typ);
            while Present (F) loop

               --  If we are expanding the initialization of a derived record
               --  that constrains or renames discriminants of the parent, we
               --  must use the corresponding discriminant in the parent.

               declare
                  CF : Entity_Id;

               begin
                  if Inside_Init_Proc
                    and then Present (Corresponding_Discriminant (F))
                  then
                     CF := Corresponding_Discriminant (F);
                  else
                     CF := F;
                  end if;

                  if Is_Unchecked_Union (Base_Type (R_Typ)) then

                     --  Within an initialization procedure this is the
                     --  assignment to an unchecked union component, in which
                     --  case there is no discriminant to initialize.

                     if Inside_Init_Proc then
                        null;

                     else
                        --  The assignment is part of a conversion from a
                        --  derived unchecked union type with an inferable
                        --  discriminant, to a parent type.

                        Insert_Action (N, Make_Field_Assign (CF, True));
                     end if;

                  else
                     Insert_Action (N, Make_Field_Assign (CF));
                  end if;

                  Next_Discriminant (F);
               end;
            end loop;
         end if;

         --  We know the underlying type is a record, but its current view
         --  may be private. We must retrieve the usable record declaration.

         if Nkind_In (Decl, N_Private_Type_Declaration,
                            N_Private_Extension_Declaration)
           and then Present (Full_View (R_Typ))
         then
            RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
         else
            RDef := Type_Definition (Decl);
         end if;

         if Nkind (RDef) = N_Derived_Type_Definition then
            RDef := Record_Extension_Part (RDef);
         end if;

         if Nkind (RDef) = N_Record_Definition
           and then Present (Component_List (RDef))
         then
            if Is_Unchecked_Union (R_Typ) then
               Insert_Actions (N,
                 Make_Component_List_Assign (Component_List (RDef), True));
            else
               Insert_Actions
                 (N, Make_Component_List_Assign (Component_List (RDef)));
            end if;

            Rewrite (N, Make_Null_Statement (Loc));
         end if;
      end;
   end Expand_Assign_Record;

   -----------------------------------
   -- Expand_N_Assignment_Statement --
   -----------------------------------

   --  This procedure implements various cases where an assignment statement
   --  cannot just be passed on to the back end in untransformed state.

   procedure Expand_N_Assignment_Statement (N : Node_Id) is
      Crep : constant Boolean    := Change_Of_Representation (N);
      Lhs  : constant Node_Id    := Name (N);
      Loc  : constant Source_Ptr := Sloc (N);
      Rhs  : constant Node_Id    := Expression (N);
      Typ  : constant Entity_Id  := Underlying_Type (Etype (Lhs));
      Exp  : Node_Id;

      Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;

   begin
      --  The assignment statement is Ghost when the left hand side is Ghost.
      --  Set the mode now to ensure that any nodes generated during expansion
      --  are properly marked as Ghost.

      Set_Ghost_Mode (N);

      --  Special case to check right away, if the Componentwise_Assignment
      --  flag is set, this is a reanalysis from the expansion of the primitive
      --  assignment procedure for a tagged type, and all we need to do is to
      --  expand to assignment of components, because otherwise, we would get
      --  infinite recursion (since this looks like a tagged assignment which
      --  would normally try to *call* the primitive assignment procedure).

      if Componentwise_Assignment (N) then
         Expand_Assign_Record (N);
         Ghost_Mode := Save_Ghost_Mode;
         return;
      end if;

      --  Defend against invalid subscripts on left side if we are in standard
      --  validity checking mode. No need to do this if we are checking all
      --  subscripts.

      --  Note that we do this right away, because there are some early return
      --  paths in this procedure, and this is required on all paths.

      if Validity_Checks_On
        and then Validity_Check_Default
        and then not Validity_Check_Subscripts
      then
         Check_Valid_Lvalue_Subscripts (Lhs);
      end if;

      --  Ada 2005 (AI-327): Handle assignment to priority of protected object

      --  Rewrite an assignment to X'Priority into a run-time call

      --   For example:         X'Priority := New_Prio_Expr;
      --   ...is expanded into  Set_Ceiling (X._Object, New_Prio_Expr);

      --  Note that although X'Priority is notionally an object, it is quite
      --  deliberately not defined as an aliased object in the RM. This means
      --  that it works fine to rewrite it as a call, without having to worry
      --  about complications that would other arise from X'Priority'Access,
      --  which is illegal, because of the lack of aliasing.

      if Ada_Version >= Ada_2005 then
         declare
            Call           : Node_Id;
            Conctyp        : Entity_Id;
            Ent            : Entity_Id;
            Subprg         : Entity_Id;
            RT_Subprg_Name : Node_Id;

         begin
            --  Handle chains of renamings

            Ent := Name (N);
            while Nkind (Ent) in N_Has_Entity
              and then Present (Entity (Ent))
              and then Present (Renamed_Object (Entity (Ent)))
            loop
               Ent := Renamed_Object (Entity (Ent));
            end loop;

            --  The attribute Priority applied to protected objects has been
            --  previously expanded into a call to the Get_Ceiling run-time
            --  subprogram. In restricted profiles this is not available.

            if Is_Expanded_Priority_Attribute (Ent) then

               --  Look for the enclosing concurrent type

               Conctyp := Current_Scope;
               while not Is_Concurrent_Type (Conctyp) loop
                  Conctyp := Scope (Conctyp);
               end loop;

               pragma Assert (Is_Protected_Type (Conctyp));

               --  Generate the first actual of the call

               Subprg := Current_Scope;
               while not Present (Protected_Body_Subprogram (Subprg)) loop
                  Subprg := Scope (Subprg);
               end loop;

               --  Select the appropriate run-time call

               if Number_Entries (Conctyp) = 0 then
                  RT_Subprg_Name :=
                    New_Occurrence_Of (RTE (RE_Set_Ceiling), Loc);
               else
                  RT_Subprg_Name :=
                    New_Occurrence_Of (RTE (RO_PE_Set_Ceiling), Loc);
               end if;

               Call :=
                 Make_Procedure_Call_Statement (Loc,
                   Name => RT_Subprg_Name,
                   Parameter_Associations => New_List (
                     New_Copy_Tree (First (Parameter_Associations (Ent))),
                     Relocate_Node (Expression (N))));

               Rewrite (N, Call);
               Analyze (N);

               Ghost_Mode := Save_Ghost_Mode;
               return;
            end if;
         end;
      end if;

      --  Deal with assignment checks unless suppressed

      if not Suppress_Assignment_Checks (N) then

         --  First deal with generation of range check if required

         if Do_Range_Check (Rhs) then
            Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
         end if;

         --  Then generate predicate check if required

         Apply_Predicate_Check (Rhs, Typ);
      end if;

      --  Check for a special case where a high level transformation is
      --  required. If we have either of:

      --    P.field := rhs;
      --    P (sub) := rhs;

      --  where P is a reference to a bit packed array, then we have to unwind
      --  the assignment. The exact meaning of being a reference to a bit
      --  packed array is as follows:

      --    An indexed component whose prefix is a bit packed array is a
      --    reference to a bit packed array.

      --    An indexed component or selected component whose prefix is a
      --    reference to a bit packed array is itself a reference ot a
      --    bit packed array.

      --  The required transformation is

      --     Tnn : prefix_type := P;
      --     Tnn.field := rhs;
      --     P := Tnn;

      --  or

      --     Tnn : prefix_type := P;
      --     Tnn (subscr) := rhs;
      --     P := Tnn;

      --  Since P is going to be evaluated more than once, any subscripts
      --  in P must have their evaluation forced.

      if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
        and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
      then
         declare
            BPAR_Expr : constant Node_Id   := Relocate_Node (Prefix (Lhs));
            BPAR_Typ  : constant Entity_Id := Etype (BPAR_Expr);
            Tnn       : constant Entity_Id :=
                          Make_Temporary (Loc, 'T', BPAR_Expr);

         begin
            --  Insert the post assignment first, because we want to copy the
            --  BPAR_Expr tree before it gets analyzed in the context of the
            --  pre assignment. Note that we do not analyze the post assignment
            --  yet (we cannot till we have completed the analysis of the pre
            --  assignment). As usual, the analysis of this post assignment
            --  will happen on its own when we "run into" it after finishing
            --  the current assignment.

            Insert_After (N,
              Make_Assignment_Statement (Loc,
                Name       => New_Copy_Tree (BPAR_Expr),
                Expression => New_Occurrence_Of (Tnn, Loc)));

            --  At this stage BPAR_Expr is a reference to a bit packed array
            --  where the reference was not expanded in the original tree,
            --  since it was on the left side of an assignment. But in the
            --  pre-assignment statement (the object definition), BPAR_Expr
            --  will end up on the right hand side, and must be reexpanded. To
            --  achieve this, we reset the analyzed flag of all selected and
            --  indexed components down to the actual indexed component for
            --  the packed array.

            Exp := BPAR_Expr;
            loop
               Set_Analyzed (Exp, False);

               if Nkind_In
                   (Exp, N_Selected_Component, N_Indexed_Component)
               then
                  Exp := Prefix (Exp);
               else
                  exit;
               end if;
            end loop;

            --  Now we can insert and analyze the pre-assignment

            --  If the right-hand side requires a transient scope, it has
            --  already been placed on the stack. However, the declaration is
            --  inserted in the tree outside of this scope, and must reflect
            --  the proper scope for its variable. This awkward bit is forced
            --  by the stricter scope discipline imposed by GCC 2.97.

            declare
               Uses_Transient_Scope : constant Boolean :=
                                        Scope_Is_Transient
                                          and then N = Node_To_Be_Wrapped;

            begin
               if Uses_Transient_Scope then
                  Push_Scope (Scope (Current_Scope));
               end if;

               Insert_Before_And_Analyze (N,
                 Make_Object_Declaration (Loc,
                   Defining_Identifier => Tnn,
                   Object_Definition   => New_Occurrence_Of (BPAR_Typ, Loc),
                   Expression          => BPAR_Expr));

               if Uses_Transient_Scope then
                  Pop_Scope;
               end if;
            end;

            --  Now fix up the original assignment and continue processing

            Rewrite (Prefix (Lhs),
              New_Occurrence_Of (Tnn, Loc));

            --  We do not need to reanalyze that assignment, and we do not need
            --  to worry about references to the temporary, but we do need to
            --  make sure that the temporary is not marked as a true constant
            --  since we now have a generated assignment to it.

            Set_Is_True_Constant (Tnn, False);
         end;
      end if;

      --  When we have the appropriate type of aggregate in the expression (it
      --  has been determined during analysis of the aggregate by setting the
      --  delay flag), let's perform in place assignment and thus avoid
      --  creating a temporary.

      if Is_Delayed_Aggregate (Rhs) then
         Convert_Aggr_In_Assignment (N);
         Rewrite (N, Make_Null_Statement (Loc));
         Analyze (N);

         Ghost_Mode := Save_Ghost_Mode;
         return;
      end if;

      --  Apply discriminant check if required. If Lhs is an access type to a
      --  designated type with discriminants, we must always check. If the
      --  type has unknown discriminants, more elaborate processing below.

      if Has_Discriminants (Etype (Lhs))
        and then not Has_Unknown_Discriminants (Etype (Lhs))
      then
         --  Skip discriminant check if change of representation. Will be
         --  done when the change of representation is expanded out.

         if not Crep then
            Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
         end if;

      --  If the type is private without discriminants, and the full type
      --  has discriminants (necessarily with defaults) a check may still be
      --  necessary if the Lhs is aliased. The private discriminants must be
      --  visible to build the discriminant constraints.

      --  Only an explicit dereference that comes from source indicates
      --  aliasing. Access to formals of protected operations and entries
      --  create dereferences but are not semantic aliasings.

      elsif Is_Private_Type (Etype (Lhs))
        and then Has_Discriminants (Typ)
        and then Nkind (Lhs) = N_Explicit_Dereference
        and then Comes_From_Source (Lhs)
      then
         declare
            Lt  : constant Entity_Id := Etype (Lhs);
            Ubt : Entity_Id          := Base_Type (Typ);

         begin
            --  In the case of an expander-generated record subtype whose base
            --  type still appears private, Typ will have been set to that
            --  private type rather than the underlying record type (because
            --  Underlying type will have returned the record subtype), so it's
            --  necessary to apply Underlying_Type again to the base type to
            --  get the record type we need for the discriminant check. Such
            --  subtypes can be created for assignments in certain cases, such
            --  as within an instantiation passed this kind of private type.
            --  It would be good to avoid this special test, but making changes
            --  to prevent this odd form of record subtype seems difficult. ???

            if Is_Private_Type (Ubt) then
               Ubt := Underlying_Type (Ubt);
            end if;

            Set_Etype (Lhs, Ubt);
            Rewrite (Rhs, OK_Convert_To (Base_Type (Ubt), Rhs));
            Apply_Discriminant_Check (Rhs, Ubt, Lhs);
            Set_Etype (Lhs, Lt);
         end;

      --  If the Lhs has a private type with unknown discriminants, it may
      --  have a full view with discriminants, but those are nameable only
      --  in the underlying type, so convert the Rhs to it before potential
      --  checking. Convert Lhs as well, otherwise the actual subtype might
      --  not be constructible. If the discriminants have defaults the type
      --  is unconstrained and there is nothing to check.

      elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
        and then Has_Discriminants (Typ)
        and then not Has_Defaulted_Discriminants (Typ)
      then
         Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
         Rewrite (Lhs, OK_Convert_To (Base_Type (Typ), Lhs));
         Apply_Discriminant_Check (Rhs, Typ, Lhs);

      --  In the access type case, we need the same discriminant check, and
      --  also range checks if we have an access to constrained array.

      elsif Is_Access_Type (Etype (Lhs))
        and then Is_Constrained (Designated_Type (Etype (Lhs)))
      then
         if Has_Discriminants (Designated_Type (Etype (Lhs))) then

            --  Skip discriminant check if change of representation. Will be
            --  done when the change of representation is expanded out.

            if not Crep then
               Apply_Discriminant_Check (Rhs, Etype (Lhs));
            end if;

         elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
            Apply_Range_Check (Rhs, Etype (Lhs));

            if Is_Constrained (Etype (Lhs)) then
               Apply_Length_Check (Rhs, Etype (Lhs));
            end if;

            if Nkind (Rhs) = N_Allocator then
               declare
                  Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
                  C_Es       : Check_Result;

               begin
                  C_Es :=
                    Get_Range_Checks
                      (Lhs,
                       Target_Typ,
                       Etype (Designated_Type (Etype (Lhs))));

                  Insert_Range_Checks
                    (C_Es,
                     N,
                     Target_Typ,
                     Sloc (Lhs),
                     Lhs);
               end;
            end if;
         end if;

      --  Apply range check for access type case

      elsif Is_Access_Type (Etype (Lhs))
        and then Nkind (Rhs) = N_Allocator
        and then Nkind (Expression (Rhs)) = N_Qualified_Expression
      then
         Analyze_And_Resolve (Expression (Rhs));
         Apply_Range_Check
           (Expression (Rhs), Designated_Type (Etype (Lhs)));
      end if;

      --  Ada 2005 (AI-231): Generate the run-time check

      if Is_Access_Type (Typ)
        and then Can_Never_Be_Null (Etype (Lhs))
        and then not Can_Never_Be_Null (Etype (Rhs))

        --  If an actual is an out parameter of a null-excluding access
        --  type, there is access check on entry, so we set the flag
        --  Suppress_Assignment_Checks on the generated statement to
        --  assign the actual to the parameter block, and we do not want
        --  to generate an additional check at this point.

        and then not Suppress_Assignment_Checks (N)
      then
         Apply_Constraint_Check (Rhs, Etype (Lhs));
      end if;

      --  Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
      --  stand-alone obj of an anonymous access type. Do not install the check
      --  when the Lhs denotes a container cursor and the Next function employs
      --  an access type, because this can never result in a dangling pointer.

      if Is_Access_Type (Typ)
        and then Is_Entity_Name (Lhs)
        and then Ekind (Entity (Lhs)) /= E_Loop_Parameter
        and then Present (Effective_Extra_Accessibility (Entity (Lhs)))
      then
         declare
            function Lhs_Entity return Entity_Id;
            --  Look through renames to find the underlying entity.
            --  For assignment to a rename, we don't care about the
            --  Enclosing_Dynamic_Scope of the rename declaration.

            ----------------
            -- Lhs_Entity --
            ----------------

            function Lhs_Entity return Entity_Id is
               Result : Entity_Id := Entity (Lhs);

            begin
               while Present (Renamed_Object (Result)) loop

                  --  Renamed_Object must return an Entity_Name here
                  --  because of preceding "Present (E_E_A (...))" test.

                  Result := Entity (Renamed_Object (Result));
               end loop;

               return Result;
            end Lhs_Entity;

            --  Local Declarations

            Access_Check : constant Node_Id :=
                             Make_Raise_Program_Error (Loc,
                               Condition =>
                                 Make_Op_Gt (Loc,
                                   Left_Opnd  =>
                                     Dynamic_Accessibility_Level (Rhs),
                                   Right_Opnd =>
                                     Make_Integer_Literal (Loc,
                                       Intval =>
                                         Scope_Depth
                                           (Enclosing_Dynamic_Scope
                                             (Lhs_Entity)))),
                               Reason => PE_Accessibility_Check_Failed);

            Access_Level_Update : constant Node_Id :=
                                    Make_Assignment_Statement (Loc,
                                     Name       =>
                                       New_Occurrence_Of
                                         (Effective_Extra_Accessibility
                                            (Entity (Lhs)), Loc),
                                     Expression =>
                                        Dynamic_Accessibility_Level (Rhs));

         begin
            if not Accessibility_Checks_Suppressed (Entity (Lhs)) then
               Insert_Action (N, Access_Check);
            end if;

            Insert_Action (N, Access_Level_Update);
         end;
      end if;

      --  Case of assignment to a bit packed array element. If there is a
      --  change of representation this must be expanded into components,
      --  otherwise this is a bit-field assignment.

      if Nkind (Lhs) = N_Indexed_Component
        and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
      then
         --  Normal case, no change of representation

         if not Crep then
            Expand_Bit_Packed_Element_Set (N);
            Ghost_Mode := Save_Ghost_Mode;
            return;

         --  Change of representation case

         else
            --  Generate the following, to force component-by-component
            --  assignments in an efficient way. Otherwise each component
            --  will require a temporary and two bit-field manipulations.

            --  T1 : Elmt_Type;
            --  T1 := RhS;
            --  Lhs := T1;

            declare
               Tnn : constant Entity_Id := Make_Temporary (Loc, 'T');
               Stats : List_Id;

            begin
               Stats :=
                 New_List (
                   Make_Object_Declaration (Loc,
                     Defining_Identifier => Tnn,
                     Object_Definition   =>
                       New_Occurrence_Of (Etype (Lhs), Loc)),
                   Make_Assignment_Statement (Loc,
                     Name       => New_Occurrence_Of (Tnn, Loc),
                     Expression => Relocate_Node (Rhs)),
                   Make_Assignment_Statement (Loc,
                     Name       => Relocate_Node (Lhs),
                     Expression => New_Occurrence_Of (Tnn, Loc)));

               Insert_Actions (N, Stats);
               Rewrite (N, Make_Null_Statement (Loc));
               Analyze (N);
            end;
         end if;

      --  Build-in-place function call case. Note that we're not yet doing
      --  build-in-place for user-written assignment statements (the assignment
      --  here came from an aggregate.)

      elsif Ada_Version >= Ada_2005
        and then Is_Build_In_Place_Function_Call (Rhs)
      then
         Make_Build_In_Place_Call_In_Assignment (N, Rhs);

      elsif Is_Tagged_Type (Typ)
        or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
      then
         Tagged_Case : declare
            L                   : List_Id := No_List;
            Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);

         begin
            --  In the controlled case, we ensure that function calls are
            --  evaluated before finalizing the target. In all cases, it makes
            --  the expansion easier if the side-effects are removed first.

            Remove_Side_Effects (Lhs);
            Remove_Side_Effects (Rhs);

            --  Avoid recursion in the mechanism

            Set_Analyzed (N);

            --  If dispatching assignment, we need to dispatch to _assign

            if Is_Class_Wide_Type (Typ)

               --  If the type is tagged, we may as well use the predefined
               --  primitive assignment. This avoids inlining a lot of code
               --  and in the class-wide case, the assignment is replaced
               --  by a dispatching call to _assign. It is suppressed in the
               --  case of assignments created by the expander that correspond
               --  to initializations, where we do want to copy the tag
               --  (Expand_Ctrl_Actions flag is set False in this case). It is
               --  also suppressed if restriction No_Dispatching_Calls is in
               --  force because in that case predefined primitives are not
               --  generated.

               or else (Is_Tagged_Type (Typ)
                         and then Chars (Current_Scope) /= Name_uAssign
                         and then Expand_Ctrl_Actions
                         and then
                           not Restriction_Active (No_Dispatching_Calls))
            then
               if Is_Limited_Type (Typ) then

                  --  This can happen in an instance when the formal is an
                  --  extension of a limited interface, and the actual is
                  --  limited. This is an error according to AI05-0087, but
                  --  is not caught at the point of instantiation in earlier
                  --  versions.

                  --  This is wrong, error messages cannot be issued during
                  --  expansion, since they would be missed in -gnatc mode ???

                  Error_Msg_N ("assignment not available on limited type", N);
                  Ghost_Mode := Save_Ghost_Mode;
                  return;
               end if;

               --  Fetch the primitive op _assign and proper type to call it.
               --  Because of possible conflicts between private and full view,
               --  fetch the proper type directly from the operation profile.

               declare
                  Op    : constant Entity_Id :=
                            Find_Prim_Op (Typ, Name_uAssign);
                  F_Typ : Entity_Id := Etype (First_Formal (Op));

               begin
                  --  If the assignment is dispatching, make sure to use the
                  --  proper type.

                  if Is_Class_Wide_Type (Typ) then
                     F_Typ := Class_Wide_Type (F_Typ);
                  end if;

                  L := New_List;

                  --  In case of assignment to a class-wide tagged type, before
                  --  the assignment we generate run-time check to ensure that
                  --  the tags of source and target match.

                  if not Tag_Checks_Suppressed (Typ)
                    and then Is_Class_Wide_Type (Typ)
                    and then Is_Tagged_Type (Typ)
                    and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
                  then
                     declare
                        Lhs_Tag : Node_Id;
                        Rhs_Tag : Node_Id;

                     begin
                        if not Is_Interface (Typ) then
                           Lhs_Tag :=
                             Make_Selected_Component (Loc,
                               Prefix        => Duplicate_Subexpr (Lhs),
                               Selector_Name =>
                                 Make_Identifier (Loc, Name_uTag));
                           Rhs_Tag :=
                             Make_Selected_Component (Loc,
                               Prefix        => Duplicate_Subexpr (Rhs),
                               Selector_Name =>
                                 Make_Identifier (Loc, Name_uTag));
                        else
                           --  Displace the pointer to the base of the objects
                           --  applying 'Address, which is later expanded into
                           --  a call to RE_Base_Address.

                           Lhs_Tag :=
                             Make_Explicit_Dereference (Loc,
                               Prefix =>
                                 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
                                   Make_Attribute_Reference (Loc,
                                     Prefix         => Duplicate_Subexpr (Lhs),
                                     Attribute_Name => Name_Address)));
                           Rhs_Tag :=
                             Make_Explicit_Dereference (Loc,
                               Prefix =>
                                 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
                                   Make_Attribute_Reference (Loc,
                                     Prefix         => Duplicate_Subexpr (Rhs),
                                     Attribute_Name => Name_Address)));
                        end if;

                        Append_To (L,
                          Make_Raise_Constraint_Error (Loc,
                            Condition =>
                              Make_Op_Ne (Loc,
                                Left_Opnd  => Lhs_Tag,
                                Right_Opnd => Rhs_Tag),
                            Reason    => CE_Tag_Check_Failed));
                     end;
                  end if;

                  declare
                     Left_N  : Node_Id := Duplicate_Subexpr (Lhs);
                     Right_N : Node_Id := Duplicate_Subexpr (Rhs);

                  begin
                     --  In order to dispatch the call to _assign the type of
                     --  the actuals must match. Add conversion (if required).

                     if Etype (Lhs) /= F_Typ then
                        Left_N := Unchecked_Convert_To (F_Typ, Left_N);
                     end if;

                     if Etype (Rhs) /= F_Typ then
                        Right_N := Unchecked_Convert_To (F_Typ, Right_N);
                     end if;

                     Append_To (L,
                       Make_Procedure_Call_Statement (Loc,
                         Name => New_Occurrence_Of (Op, Loc),
                         Parameter_Associations => New_List (
                           Node1 => Left_N,
                           Node2 => Right_N)));
                  end;
               end;

            else
               L := Make_Tag_Ctrl_Assignment (N);

               --  We can't afford to have destructive Finalization Actions in
               --  the Self assignment case, so if the target and the source
               --  are not obviously different, code is generated to avoid the
               --  self assignment case:

               --    if lhs'address /= rhs'address then
               --       <code for controlled and/or tagged assignment>
               --    end if;

               --  Skip this if Restriction (No_Finalization) is active

               if not Statically_Different (Lhs, Rhs)
                 and then Expand_Ctrl_Actions
                 and then not Restriction_Active (No_Finalization)
               then
                  L := New_List (
                    Make_Implicit_If_Statement (N,
                      Condition =>
                        Make_Op_Ne (Loc,
                          Left_Opnd =>
                            Make_Attribute_Reference (Loc,
                              Prefix         => Duplicate_Subexpr (Lhs),
                              Attribute_Name => Name_Address),

                           Right_Opnd =>
                            Make_Attribute_Reference (Loc,
                              Prefix         => Duplicate_Subexpr (Rhs),
                              Attribute_Name => Name_Address)),

                      Then_Statements => L));
               end if;

               --  We need to set up an exception handler for implementing
               --  7.6.1(18). The remaining adjustments are tackled by the
               --  implementation of adjust for record_controllers (see
               --  s-finimp.adb).

               --  This is skipped if we have no finalization

               if Expand_Ctrl_Actions
                 and then not Restriction_Active (No_Finalization)
               then
                  L := New_List (
                    Make_Block_Statement (Loc,
                      Handled_Statement_Sequence =>
                        Make_Handled_Sequence_Of_Statements (Loc,
                          Statements => L,
                          Exception_Handlers => New_List (
                            Make_Handler_For_Ctrl_Operation (Loc)))));
               end if;
            end if;

            Rewrite (N,
              Make_Block_Statement (Loc,
                Handled_Statement_Sequence =>
                  Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));

            --  If no restrictions on aborts, protect the whole assignment
            --  for controlled objects as per 9.8(11).

            if Needs_Finalization (Typ)
              and then Expand_Ctrl_Actions
              and then Abort_Allowed
            then
               declare
                  Blk : constant Entity_Id :=
                          New_Internal_Entity
                            (E_Block, Current_Scope, Sloc (N), 'B');
                  AUD : constant Entity_Id := RTE (RE_Abort_Undefer_Direct);

               begin
                  Set_Scope (Blk, Current_Scope);
                  Set_Etype (Blk, Standard_Void_Type);
                  Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));

                  Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
                  Set_At_End_Proc (Handled_Statement_Sequence (N),
                    New_Occurrence_Of (AUD, Loc));

                  --  Present the Abort_Undefer_Direct function to the backend
                  --  so that it can inline the call to the function.

                  Add_Inlined_Body (AUD, N);

                  Expand_At_End_Handler
                    (Handled_Statement_Sequence (N), Blk);
               end;
            end if;

            --  N has been rewritten to a block statement for which it is
            --  known by construction that no checks are necessary: analyze
            --  it with all checks suppressed.

            Analyze (N, Suppress => All_Checks);
            Ghost_Mode := Save_Ghost_Mode;
            return;
         end Tagged_Case;

      --  Array types

      elsif Is_Array_Type (Typ) then
         declare
            Actual_Rhs : Node_Id := Rhs;

         begin
            while Nkind_In (Actual_Rhs, N_Type_Conversion,
                                        N_Qualified_Expression)
            loop
               Actual_Rhs := Expression (Actual_Rhs);
            end loop;

            Expand_Assign_Array (N, Actual_Rhs);
            Ghost_Mode := Save_Ghost_Mode;
            return;
         end;

      --  Record types

      elsif Is_Record_Type (Typ) then
         Expand_Assign_Record (N);
         Ghost_Mode := Save_Ghost_Mode;
         return;

      --  Scalar types. This is where we perform the processing related to the
      --  requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
      --  scalar values.

      elsif Is_Scalar_Type (Typ) then

         --  Case where right side is known valid

         if Expr_Known_Valid (Rhs) then

            --  Here the right side is valid, so it is fine. The case to deal
            --  with is when the left side is a local variable reference whose
            --  value is not currently known to be valid. If this is the case,
            --  and the assignment appears in an unconditional context, then
            --  we can mark the left side as now being valid if one of these
            --  conditions holds:

            --    The expression of the right side has Do_Range_Check set so
            --    that we know a range check will be performed. Note that it
            --    can be the case that a range check is omitted because we
            --    make the assumption that we can assume validity for operands
            --    appearing in the right side in determining whether a range
            --    check is required

            --    The subtype of the right side matches the subtype of the
            --    left side. In this case, even though we have not checked
            --    the range of the right side, we know it is in range of its
            --    subtype if the expression is valid.

            if Is_Local_Variable_Reference (Lhs)
              and then not Is_Known_Valid (Entity (Lhs))
              and then In_Unconditional_Context (N)
            then
               if Do_Range_Check (Rhs)
                 or else Etype (Lhs) = Etype (Rhs)
               then
                  Set_Is_Known_Valid (Entity (Lhs), True);
               end if;
            end if;

         --  Case where right side may be invalid in the sense of the RM
         --  reference above. The RM does not require that we check for the
         --  validity on an assignment, but it does require that the assignment
         --  of an invalid value not cause erroneous behavior.

         --  The general approach in GNAT is to use the Is_Known_Valid flag
         --  to avoid the need for validity checking on assignments. However
         --  in some cases, we have to do validity checking in order to make
         --  sure that the setting of this flag is correct.

         else
            --  Validate right side if we are validating copies

            if Validity_Checks_On
              and then Validity_Check_Copies
            then
               --  Skip this if left hand side is an array or record component
               --  and elementary component validity checks are suppressed.

               if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
                 and then not Validity_Check_Components
               then
                  null;
               else
                  Ensure_Valid (Rhs);
               end if;

               --  We can propagate this to the left side where appropriate

               if Is_Local_Variable_Reference (Lhs)
                 and then not Is_Known_Valid (Entity (Lhs))
                 and then In_Unconditional_Context (N)
               then
                  Set_Is_Known_Valid (Entity (Lhs), True);
               end if;

            --  Otherwise check to see what should be done

            --  If left side is a local variable, then we just set its flag to
            --  indicate that its value may no longer be valid, since we are
            --  copying a potentially invalid value.

            elsif Is_Local_Variable_Reference (Lhs) then
               Set_Is_Known_Valid (Entity (Lhs), False);

            --  Check for case of a nonlocal variable on the left side which
            --  is currently known to be valid. In this case, we simply ensure
            --  that the right side is valid. We only play the game of copying
            --  validity status for local variables, since we are doing this
            --  statically, not by tracing the full flow graph.

            elsif Is_Entity_Name (Lhs)
              and then Is_Known_Valid (Entity (Lhs))
            then
               --  Note: If Validity_Checking mode is set to none, we ignore
               --  the Ensure_Valid call so don't worry about that case here.

               Ensure_Valid (Rhs);

            --  In all other cases, we can safely copy an invalid value without
            --  worrying about the status of the left side. Since it is not a
            --  variable reference it will not be considered
            --  as being known to be valid in any case.

            else
               null;
            end if;
         end if;
      end if;

      Ghost_Mode := Save_Ghost_Mode;

   exception
      when RE_Not_Available =>
         Ghost_Mode := Save_Ghost_Mode;
         return;
   end Expand_N_Assignment_Statement;

   ------------------------------
   -- Expand_N_Block_Statement --
   ------------------------------

   --  Encode entity names defined in block statement

   procedure Expand_N_Block_Statement (N : Node_Id) is
   begin
      Qualify_Entity_Names (N);
   end Expand_N_Block_Statement;

   -----------------------------
   -- Expand_N_Case_Statement --
   -----------------------------

   procedure Expand_N_Case_Statement (N : Node_Id) is
      Loc    : constant Source_Ptr := Sloc (N);
      Expr   : constant Node_Id    := Expression (N);
      Alt    : Node_Id;
      Len    : Nat;
      Cond   : Node_Id;
      Choice : Node_Id;
      Chlist : List_Id;

   begin
      --  Check for the situation where we know at compile time which branch
      --  will be taken.

      --  If the value is static but its subtype is predicated and the value
      --  does not obey the predicate, the value is marked non-static, and
      --  there can be no corresponding static alternative. In that case we
      --  replace the case statement with an exception, regardless of whether
      --  assertions are enabled or not, unless predicates are ignored.

      if Compile_Time_Known_Value (Expr)
        and then Has_Predicates (Etype (Expr))
        and then not Predicates_Ignored (Etype (Expr))
        and then not Is_OK_Static_Expression (Expr)
      then
         Rewrite (N,
           Make_Raise_Constraint_Error (Loc, Reason => CE_Invalid_Data));
         Analyze (N);
         return;

      elsif Compile_Time_Known_Value (Expr)
        and then (not Has_Predicates (Etype (Expr))
                   or else Is_Static_Expression (Expr))
      then
         Alt := Find_Static_Alternative (N);

         --  Do not consider controlled objects found in a case statement which
         --  actually models a case expression because their early finalization
         --  will affect the result of the expression.

         if not From_Conditional_Expression (N) then
            Process_Statements_For_Controlled_Objects (Alt);
         end if;

         --  Move statements from this alternative after the case statement.
         --  They are already analyzed, so will be skipped by the analyzer.

         Insert_List_After (N, Statements (Alt));

         --  That leaves the case statement as a shell. So now we can kill all
         --  other alternatives in the case statement.

         Kill_Dead_Code (Expression (N));

         declare
            Dead_Alt : Node_Id;

         begin
            --  Loop through case alternatives, skipping pragmas, and skipping
            --  the one alternative that we select (and therefore retain).

            Dead_Alt := First (Alternatives (N));
            while Present (Dead_Alt) loop
               if Dead_Alt /= Alt
                 and then Nkind (Dead_Alt) = N_Case_Statement_Alternative
               then
                  Kill_Dead_Code (Statements (Dead_Alt), Warn_On_Deleted_Code);
               end if;

               Next (Dead_Alt);
            end loop;
         end;

         Rewrite (N, Make_Null_Statement (Loc));
         return;
      end if;

      --  Here if the choice is not determined at compile time

      declare
         Last_Alt : constant Node_Id := Last (Alternatives (N));

         Others_Present : Boolean;
         Others_Node    : Node_Id;

         Then_Stms : List_Id;
         Else_Stms : List_Id;

      begin
         if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
            Others_Present := True;
            Others_Node    := Last_Alt;
         else
            Others_Present := False;
         end if;

         --  First step is to worry about possible invalid argument. The RM
         --  requires (RM 5.4(13)) that if the result is invalid (e.g. it is
         --  outside the base range), then Constraint_Error must be raised.

         --  Case of validity check required (validity checks are on, the
         --  expression is not known to be valid, and the case statement
         --  comes from source -- no need to validity check internally
         --  generated case statements).

         if Validity_Check_Default
           and then not Predicates_Ignored (Etype (Expr))
         then
            Ensure_Valid (Expr);
         end if;

         --  If there is only a single alternative, just replace it with the
         --  sequence of statements since obviously that is what is going to
         --  be executed in all cases.

         Len := List_Length (Alternatives (N));

         if Len = 1 then

            --  We still need to evaluate the expression if it has any side
            --  effects.

            Remove_Side_Effects (Expression (N));
            Alt := First (Alternatives (N));

            --  Do not consider controlled objects found in a case statement
            --  which actually models a case expression because their early
            --  finalization will affect the result of the expression.

            if not From_Conditional_Expression (N) then
               Process_Statements_For_Controlled_Objects (Alt);
            end if;

            Insert_List_After (N, Statements (Alt));

            --  That leaves the case statement as a shell. The alternative that
            --  will be executed is reset to a null list. So now we can kill
            --  the entire case statement.

            Kill_Dead_Code (Expression (N));
            Rewrite (N, Make_Null_Statement (Loc));
            return;

         --  An optimization. If there are only two alternatives, and only
         --  a single choice, then rewrite the whole case statement as an
         --  if statement, since this can result in subsequent optimizations.
         --  This helps not only with case statements in the source of a
         --  simple form, but also with generated code (discriminant check
         --  functions in particular).

         --  Note: it is OK to do this before expanding out choices for any
         --  static predicates, since the if statement processing will handle
         --  the static predicate case fine.

         elsif Len = 2 then
            Chlist := Discrete_Choices (First (Alternatives (N)));

            if List_Length (Chlist) = 1 then
               Choice := First (Chlist);

               Then_Stms := Statements (First (Alternatives (N)));
               Else_Stms := Statements (Last  (Alternatives (N)));

               --  For TRUE, generate "expression", not expression = true

               if Nkind (Choice) = N_Identifier
                 and then Entity (Choice) = Standard_True
               then
                  Cond := Expression (N);

               --  For FALSE, generate "expression" and switch then/else

               elsif Nkind (Choice) = N_Identifier
                 and then Entity (Choice) = Standard_False
               then
                  Cond := Expression (N);
                  Else_Stms := Statements (First (Alternatives (N)));
                  Then_Stms := Statements (Last  (Alternatives (N)));

               --  For a range, generate "expression in range"

               elsif Nkind (Choice) = N_Range
                 or else (Nkind (Choice) = N_Attribute_Reference
                           and then Attribute_Name (Choice) = Name_Range)
                 or else (Is_Entity_Name (Choice)
                           and then Is_Type (Entity (Choice)))
               then
                  Cond :=
                    Make_In (Loc,
                      Left_Opnd  => Expression (N),
                      Right_Opnd => Relocate_Node (Choice));

               --  A subtype indication is not a legal operator in a membership
               --  test, so retrieve its range.

               elsif Nkind (Choice) = N_Subtype_Indication then
                  Cond :=
                    Make_In (Loc,
                      Left_Opnd  => Expression (N),
                      Right_Opnd =>
                        Relocate_Node
                          (Range_Expression (Constraint (Choice))));

               --  For any other subexpression "expression = value"

               else
                  Cond :=
                    Make_Op_Eq (Loc,
                      Left_Opnd  => Expression (N),
                      Right_Opnd => Relocate_Node (Choice));
               end if;

               --  Now rewrite the case as an IF

               Rewrite (N,
                 Make_If_Statement (Loc,
                   Condition => Cond,
                   Then_Statements => Then_Stms,
                   Else_Statements => Else_Stms));
               Analyze (N);
               return;
            end if;
         end if;

         --  If the last alternative is not an Others choice, replace it with
         --  an N_Others_Choice. Note that we do not bother to call Analyze on
         --  the modified case statement, since it's only effect would be to
         --  compute the contents of the Others_Discrete_Choices which is not
         --  needed by the back end anyway.

         --  The reason for this is that the back end always needs some default
         --  for a switch, so if we have not supplied one in the processing
         --  above for validity checking, then we need to supply one here.

         if not Others_Present then
            Others_Node := Make_Others_Choice (Sloc (Last_Alt));

            --  If Predicates_Ignored is true the value does not satisfy the
            --  predicate, and there is no Others choice, Constraint_Error
            --  must be raised (4.5.7 (21/3)).

            if Predicates_Ignored (Etype (Expr)) then
               declare
                  Except  : constant Node_Id :=
                              Make_Raise_Constraint_Error (Loc,
                                Reason => CE_Invalid_Data);
                  New_Alt : constant Node_Id :=
                              Make_Case_Statement_Alternative (Loc,
                                Discrete_Choices => New_List (
                                  Make_Others_Choice (Loc)),
                                Statements       => New_List (Except));

               begin
                  Append (New_Alt, Alternatives (N));
                  Analyze_And_Resolve (Except);
               end;

            else
               Set_Others_Discrete_Choices
                 (Others_Node, Discrete_Choices (Last_Alt));
               Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
            end if;

         end if;

         --  Deal with possible declarations of controlled objects, and also
         --  with rewriting choice sequences for static predicate references.

         Alt := First_Non_Pragma (Alternatives (N));
         while Present (Alt) loop

            --  Do not consider controlled objects found in a case statement
            --  which actually models a case expression because their early
            --  finalization will affect the result of the expression.

            if not From_Conditional_Expression (N) then
               Process_Statements_For_Controlled_Objects (Alt);
            end if;

            if Has_SP_Choice (Alt) then
               Expand_Static_Predicates_In_Choices (Alt);
            end if;

            Next_Non_Pragma (Alt);
         end loop;
      end;
   end Expand_N_Case_Statement;

   -----------------------------
   -- Expand_N_Exit_Statement --
   -----------------------------

   --  The only processing required is to deal with a possible C/Fortran
   --  boolean value used as the condition for the exit statement.

   procedure Expand_N_Exit_Statement (N : Node_Id) is
   begin
      Adjust_Condition (Condition (N));
   end Expand_N_Exit_Statement;

   ----------------------------------
   -- Expand_Formal_Container_Loop --
   ----------------------------------

   procedure Expand_Formal_Container_Loop (N : Node_Id) is
      Loc       : constant Source_Ptr := Sloc (N);
      Isc       : constant Node_Id    := Iteration_Scheme (N);
      I_Spec    : constant Node_Id    := Iterator_Specification (Isc);
      Cursor    : constant Entity_Id  := Defining_Identifier (I_Spec);
      Container : constant Node_Id    := Entity (Name (I_Spec));
      Stats     : constant List_Id    := Statements (N);

      Advance  : Node_Id;
      Blk_Nod  : Node_Id;
      Init     : Node_Id;
      New_Loop : Node_Id;

   begin
      --  The expansion resembles the one for Ada containers, but the
      --  primitives mention the domain of iteration explicitly, and
      --  function First applied to the container yields a cursor directly.

      --    Cursor : Cursor_type := First (Container);
      --    while Has_Element (Cursor, Container) loop
      --          <original loop statements>
      --       Cursor := Next (Container, Cursor);
      --    end loop;

      Build_Formal_Container_Iteration
        (N, Container, Cursor, Init, Advance, New_Loop);

      Set_Ekind (Cursor, E_Variable);
      Append_To (Stats, Advance);

      --  Build block to capture declaration of cursor entity.

      Blk_Nod :=
        Make_Block_Statement (Loc,
          Declarations               => New_List (Init),
          Handled_Statement_Sequence =>
            Make_Handled_Sequence_Of_Statements (Loc,
              Statements => New_List (New_Loop)));

      Rewrite (N, Blk_Nod);
      Analyze (N);
   end Expand_Formal_Container_Loop;

   ------------------------------------------
   -- Expand_Formal_Container_Element_Loop --
   ------------------------------------------

   procedure Expand_Formal_Container_Element_Loop (N : Node_Id) is
      Loc           : constant Source_Ptr := Sloc (N);
      Isc           : constant Node_Id    := Iteration_Scheme (N);
      I_Spec        : constant Node_Id    := Iterator_Specification (Isc);
      Element       : constant Entity_Id  := Defining_Identifier (I_Spec);
      Container     : constant Node_Id    := Entity (Name (I_Spec));
      Container_Typ : constant Entity_Id  := Base_Type (Etype (Container));
      Stats         : constant List_Id    := Statements (N);

      Cursor    : constant Entity_Id :=
                    Make_Defining_Identifier (Loc,
                      Chars => New_External_Name (Chars (Element), 'C'));
      Elmt_Decl : Node_Id;
      Elmt_Ref  : Node_Id;

      Element_Op : constant Entity_Id :=
                     Get_Iterable_Type_Primitive (Container_Typ, Name_Element);

      Advance   : Node_Id;
      Init      : Node_Id;
      New_Loop  : Node_Id;

   begin
      --  For an element iterator, the Element aspect must be present,
      --  (this is checked during analysis) and the expansion takes the form:

      --    Cursor : Cursor_type := First (Container);
      --    Elmt : Element_Type;
      --    while Has_Element (Cursor, Container) loop
      --       Elmt := Element (Container, Cursor);
      --          <original loop statements>
      --       Cursor := Next (Container, Cursor);
      --    end loop;

      --   However this expansion is not legal if the element is indefinite.
      --   In that case we create a block to hold a variable declaration
      --   initialized with a call to Element, and generate:

      --    Cursor : Cursor_type := First (Container);
      --    while Has_Element (Cursor, Container) loop
      --       declare
      --          Elmt : Element-Type := Element (Container, Cursor);
      --       begin
      --          <original loop statements>
      --          Cursor := Next (Container, Cursor);
      --       end;
      --    end loop;

      Build_Formal_Container_Iteration
        (N, Container, Cursor, Init, Advance, New_Loop);
      Append_To (Stats, Advance);

      Set_Ekind (Cursor, E_Variable);
      Insert_Action (N, Init);

      --  Declaration for Element.

      Elmt_Decl :=
        Make_Object_Declaration (Loc,
          Defining_Identifier => Element,
          Object_Definition   => New_Occurrence_Of (Etype (Element_Op), Loc));

      if not Is_Constrained (Etype (Element_Op)) then
         Set_Expression (Elmt_Decl,
           Make_Function_Call (Loc,
             Name                   => New_Occurrence_Of (Element_Op, Loc),
             Parameter_Associations => New_List (
               New_Occurrence_Of (Container, Loc),
               New_Occurrence_Of (Cursor, Loc))));

         Set_Statements (New_Loop,
           New_List
             (Make_Block_Statement (Loc,
                Declarations => New_List (Elmt_Decl),
                Handled_Statement_Sequence =>
                  Make_Handled_Sequence_Of_Statements (Loc,
                    Statements =>  Stats))));

      else
         Elmt_Ref :=
           Make_Assignment_Statement (Loc,
             Name       => New_Occurrence_Of (Element, Loc),
             Expression =>
               Make_Function_Call (Loc,
                 Name                   => New_Occurrence_Of (Element_Op, Loc),
                 Parameter_Associations => New_List (
                   New_Occurrence_Of (Container, Loc),
                   New_Occurrence_Of (Cursor, Loc))));

         Prepend (Elmt_Ref, Stats);

         --  The element is assignable in the expanded code

         Set_Assignment_OK (Name (Elmt_Ref));

         --  The loop is rewritten as a block, to hold the element declaration

         New_Loop :=
           Make_Block_Statement (Loc,
             Declarations               => New_List (Elmt_Decl),
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
                 Statements =>  New_List (New_Loop)));
      end if;

      --  The element is only modified in expanded code, so it appears as
      --  unassigned to the warning machinery. We must suppress this spurious
      --  warning explicitly.

      Set_Warnings_Off (Element);

      Rewrite (N, New_Loop);

      --  The loop parameter is declared by an object declaration, but within
      --  the loop we must prevent user assignments to it, so we analyze the
      --  declaration and reset the entity kind, before analyzing the rest of
      --  the loop;

      Analyze (Elmt_Decl);
      Set_Ekind (Defining_Identifier (Elmt_Decl), E_Loop_Parameter);

      Analyze (N);
   end Expand_Formal_Container_Element_Loop;

   -----------------------------
   -- Expand_N_Goto_Statement --
   -----------------------------

   --  Add poll before goto if polling active

   procedure Expand_N_Goto_Statement (N : Node_Id) is
   begin
      Generate_Poll_Call (N);
   end Expand_N_Goto_Statement;

   ---------------------------
   -- Expand_N_If_Statement --
   ---------------------------

   --  First we deal with the case of C and Fortran convention boolean values,
   --  with zero/non-zero semantics.

   --  Second, we deal with the obvious rewriting for the cases where the
   --  condition of the IF is known at compile time to be True or False.

   --  Third, we remove elsif parts which have non-empty Condition_Actions and
   --  rewrite as independent if statements. For example:

   --     if x then xs
   --     elsif y then ys
   --     ...
   --     end if;

   --  becomes
   --
   --     if x then xs
   --     else
   --        <<condition actions of y>>
   --        if y then ys
   --        ...
   --        end if;
   --     end if;

   --  This rewriting is needed if at least one elsif part has a non-empty
   --  Condition_Actions list. We also do the same processing if there is a
   --  constant condition in an elsif part (in conjunction with the first
   --  processing step mentioned above, for the recursive call made to deal
   --  with the created inner if, this deals with properly optimizing the
   --  cases of constant elsif conditions).

   procedure Expand_N_If_Statement (N : Node_Id) is
      Loc    : constant Source_Ptr := Sloc (N);
      Hed    : Node_Id;
      E      : Node_Id;
      New_If : Node_Id;

      Warn_If_Deleted : constant Boolean :=
                          Warn_On_Deleted_Code and then Comes_From_Source (N);
      --  Indicates whether we want warnings when we delete branches of the
      --  if statement based on constant condition analysis. We never want
      --  these warnings for expander generated code.

   begin
      --  Do not consider controlled objects found in an if statement which
      --  actually models an if expression because their early finalization
      --  will affect the result of the expression.

      if not From_Conditional_Expression (N) then
         Process_Statements_For_Controlled_Objects (N);
      end if;

      Adjust_Condition (Condition (N));

      --  The following loop deals with constant conditions for the IF. We
      --  need a loop because as we eliminate False conditions, we grab the
      --  first elsif condition and use it as the primary condition.

      while Compile_Time_Known_Value (Condition (N)) loop

         --  If condition is True, we can simply rewrite the if statement now
         --  by replacing it by the series of then statements.

         if Is_True (Expr_Value (Condition (N))) then

            --  All the else parts can be killed

            Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
            Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);

            Hed := Remove_Head (Then_Statements (N));
            Insert_List_After (N, Then_Statements (N));
            Rewrite (N, Hed);
            return;

         --  If condition is False, then we can delete the condition and
         --  the Then statements

         else
            --  We do not delete the condition if constant condition warnings
            --  are enabled, since otherwise we end up deleting the desired
            --  warning. Of course the backend will get rid of this True/False
            --  test anyway, so nothing is lost here.

            if not Constant_Condition_Warnings then
               Kill_Dead_Code (Condition (N));
            end if;

            Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);

            --  If there are no elsif statements, then we simply replace the
            --  entire if statement by the sequence of else statements.

            if No (Elsif_Parts (N)) then
               if No (Else_Statements (N))
                 or else Is_Empty_List (Else_Statements (N))
               then
                  Rewrite (N,
                    Make_Null_Statement (Sloc (N)));
               else
                  Hed := Remove_Head (Else_Statements (N));
                  Insert_List_After (N, Else_Statements (N));
                  Rewrite (N, Hed);
               end if;

               return;

            --  If there are elsif statements, the first of them becomes the
            --  if/then section of the rebuilt if statement This is the case
            --  where we loop to reprocess this copied condition.

            else
               Hed := Remove_Head (Elsif_Parts (N));
               Insert_Actions      (N, Condition_Actions (Hed));
               Set_Condition       (N, Condition (Hed));
               Set_Then_Statements (N, Then_Statements (Hed));

               --  Hed might have been captured as the condition determining
               --  the current value for an entity. Now it is detached from
               --  the tree, so a Current_Value pointer in the condition might
               --  need to be updated.

               Set_Current_Value_Condition (N);

               if Is_Empty_List (Elsif_Parts (N)) then
                  Set_Elsif_Parts (N, No_List);
               end if;
            end if;
         end if;
      end loop;

      --  Loop through elsif parts, dealing with constant conditions and
      --  possible condition actions that are present.

      if Present (Elsif_Parts (N)) then
         E := First (Elsif_Parts (N));
         while Present (E) loop

            --  Do not consider controlled objects found in an if statement
            --  which actually models an if expression because their early
            --  finalization will affect the result of the expression.

            if not From_Conditional_Expression (N) then
               Process_Statements_For_Controlled_Objects (E);
            end if;

            Adjust_Condition (Condition (E));

            --  If there are condition actions, then rewrite the if statement
            --  as indicated above. We also do the same rewrite for a True or
            --  False condition. The further processing of this constant
            --  condition is then done by the recursive call to expand the
            --  newly created if statement

            if Present (Condition_Actions (E))
              or else Compile_Time_Known_Value (Condition (E))
            then
               --  Note this is not an implicit if statement, since it is part
               --  of an explicit if statement in the source (or of an implicit
               --  if statement that has already been tested).

               New_If :=
                 Make_If_Statement (Sloc (E),
                   Condition       => Condition (E),
                   Then_Statements => Then_Statements (E),
                   Elsif_Parts     => No_List,
                   Else_Statements => Else_Statements (N));

               --  Elsif parts for new if come from remaining elsif's of parent

               while Present (Next (E)) loop
                  if No (Elsif_Parts (New_If)) then
                     Set_Elsif_Parts (New_If, New_List);
                  end if;

                  Append (Remove_Next (E), Elsif_Parts (New_If));
               end loop;

               Set_Else_Statements (N, New_List (New_If));

               if Present (Condition_Actions (E)) then
                  Insert_List_Before (New_If, Condition_Actions (E));
               end if;

               Remove (E);

               if Is_Empty_List (Elsif_Parts (N)) then
                  Set_Elsif_Parts (N, No_List);
               end if;

               Analyze (New_If);
               return;

            --  No special processing for that elsif part, move to next

            else
               Next (E);
            end if;
         end loop;
      end if;

      --  Some more optimizations applicable if we still have an IF statement

      if Nkind (N) /= N_If_Statement then
         return;
      end if;

      --  Another optimization, special cases that can be simplified

      --     if expression then
      --        return true;
      --     else
      --        return false;
      --     end if;

      --  can be changed to:

      --     return expression;

      --  and

      --     if expression then
      --        return false;
      --     else
      --        return true;
      --     end if;

      --  can be changed to:

      --     return not (expression);

      --  Only do these optimizations if we are at least at -O1 level and
      --  do not do them if control flow optimizations are suppressed.

      if Optimization_Level > 0
        and then not Opt.Suppress_Control_Flow_Optimizations
      then
         if Nkind (N) = N_If_Statement
           and then No (Elsif_Parts (N))
           and then Present (Else_Statements (N))
           and then List_Length (Then_Statements (N)) = 1
           and then List_Length (Else_Statements (N)) = 1
         then
            declare
               Then_Stm : constant Node_Id := First (Then_Statements (N));
               Else_Stm : constant Node_Id := First (Else_Statements (N));

            begin
               if Nkind (Then_Stm) = N_Simple_Return_Statement
                    and then
                  Nkind (Else_Stm) = N_Simple_Return_Statement
               then
                  declare
                     Then_Expr : constant Node_Id := Expression (Then_Stm);
                     Else_Expr : constant Node_Id := Expression (Else_Stm);

                  begin
                     if Nkind (Then_Expr) = N_Identifier
                          and then
                        Nkind (Else_Expr) = N_Identifier
                     then
                        if Entity (Then_Expr) = Standard_True
                          and then Entity (Else_Expr) = Standard_False
                        then
                           Rewrite (N,
                             Make_Simple_Return_Statement (Loc,
                               Expression => Relocate_Node (Condition (N))));
                           Analyze (N);
                           return;

                        elsif Entity (Then_Expr) = Standard_False
                          and then Entity (Else_Expr) = Standard_True
                        then
                           Rewrite (N,
                             Make_Simple_Return_Statement (Loc,
                               Expression =>
                                 Make_Op_Not (Loc,
                                   Right_Opnd =>
                                     Relocate_Node (Condition (N)))));
                           Analyze (N);
                           return;
                        end if;
                     end if;
                  end;
               end if;
            end;
         end if;
      end if;
   end Expand_N_If_Statement;

   --------------------------
   -- Expand_Iterator_Loop --
   --------------------------

   procedure Expand_Iterator_Loop (N : Node_Id) is
      Isc    : constant Node_Id    := Iteration_Scheme (N);
      I_Spec : constant Node_Id    := Iterator_Specification (Isc);

      Container     : constant Node_Id     := Name (I_Spec);
      Container_Typ : constant Entity_Id   := Base_Type (Etype (Container));

   begin
      --  Processing for arrays

      if Is_Array_Type (Container_Typ) then
         pragma Assert (Of_Present (I_Spec));
         Expand_Iterator_Loop_Over_Array (N);

      elsif Has_Aspect (Container_Typ, Aspect_Iterable) then
         if Of_Present (I_Spec) then
            Expand_Formal_Container_Element_Loop (N);
         else
            Expand_Formal_Container_Loop (N);
         end if;

      --  Processing for containers

      else
         Expand_Iterator_Loop_Over_Container
           (N, Isc, I_Spec, Container, Container_Typ);
      end if;
   end Expand_Iterator_Loop;

   -------------------------------------
   -- Expand_Iterator_Loop_Over_Array --
   -------------------------------------

   procedure Expand_Iterator_Loop_Over_Array (N : Node_Id) is
      Isc        : constant Node_Id    := Iteration_Scheme (N);
      I_Spec     : constant Node_Id    := Iterator_Specification (Isc);
      Array_Node : constant Node_Id    := Name (I_Spec);
      Array_Typ  : constant Entity_Id  := Base_Type (Etype (Array_Node));
      Array_Dim  : constant Pos        := Number_Dimensions (Array_Typ);
      Id         : constant Entity_Id  := Defining_Identifier (I_Spec);
      Loc        : constant Source_Ptr := Sloc (N);
      Stats      : constant List_Id    := Statements (N);
      Core_Loop  : Node_Id;
      Dim1       : Int;
      Ind_Comp   : Node_Id;
      Iterator   : Entity_Id;

   --  Start of processing for Expand_Iterator_Loop_Over_Array

   begin
      --  for Element of Array loop

      --  It requires an internally generated cursor to iterate over the array

      pragma Assert (Of_Present (I_Spec));

      Iterator := Make_Temporary (Loc, 'C');

      --  Generate:
      --    Element : Component_Type renames Array (Iterator);
      --    Iterator is the index value, or a list of index values
      --    in the case of a multidimensional array.

      Ind_Comp :=
        Make_Indexed_Component (Loc,
          Prefix      => Relocate_Node (Array_Node),
          Expressions => New_List (New_Occurrence_Of (Iterator, Loc)));

      Prepend_To (Stats,
        Make_Object_Renaming_Declaration (Loc,
          Defining_Identifier => Id,
          Subtype_Mark        =>
            New_Occurrence_Of (Component_Type (Array_Typ), Loc),
          Name                => Ind_Comp));

      --  Mark the loop variable as needing debug info, so that expansion
      --  of the renaming will result in Materialize_Entity getting set via
      --  Debug_Renaming_Declaration. (This setting is needed here because
      --  the setting in Freeze_Entity comes after the expansion, which is
      --  too late. ???)

      Set_Debug_Info_Needed (Id);

      --  Generate:

      --    for Iterator in [reverse] Array'Range (Array_Dim) loop
      --       Element : Component_Type renames Array (Iterator);
      --       <original loop statements>
      --    end loop;

      --  If this is an iteration over a multidimensional array, the
      --  innermost loop is over the last dimension in Ada, and over
      --  the first dimension in Fortran.

      if Convention (Array_Typ) = Convention_Fortran then
         Dim1 := 1;
      else
         Dim1 := Array_Dim;
      end if;

      Core_Loop :=
        Make_Loop_Statement (Loc,
          Iteration_Scheme =>
            Make_Iteration_Scheme (Loc,
              Loop_Parameter_Specification =>
                Make_Loop_Parameter_Specification (Loc,
                  Defining_Identifier         => Iterator,
                  Discrete_Subtype_Definition =>
                    Make_Attribute_Reference (Loc,
                      Prefix         => Relocate_Node (Array_Node),
                      Attribute_Name => Name_Range,
                      Expressions    => New_List (
                        Make_Integer_Literal (Loc, Dim1))),
                  Reverse_Present             => Reverse_Present (I_Spec))),
           Statements      => Stats,
           End_Label       => Empty);

      --  Processing for multidimensional array. The body of each loop is
      --  a loop over a previous dimension, going in decreasing order in Ada
      --  and in increasing order in Fortran.

      if Array_Dim > 1 then
         for Dim in 1 .. Array_Dim - 1 loop
            if Convention (Array_Typ) = Convention_Fortran then
               Dim1 := Dim + 1;
            else
               Dim1 := Array_Dim - Dim;
            end if;

            Iterator := Make_Temporary (Loc, 'C');

            --  Generate the dimension loops starting from the innermost one

            --    for Iterator in [reverse] Array'Range (Array_Dim - Dim) loop
            --       <core loop>
            --    end loop;

            Core_Loop :=
              Make_Loop_Statement (Loc,
                Iteration_Scheme =>
                  Make_Iteration_Scheme (Loc,
                    Loop_Parameter_Specification =>
                      Make_Loop_Parameter_Specification (Loc,
                        Defining_Identifier         => Iterator,
                        Discrete_Subtype_Definition =>
                          Make_Attribute_Reference (Loc,
                            Prefix         => Relocate_Node (Array_Node),
                            Attribute_Name => Name_Range,
                            Expressions    => New_List (
                              Make_Integer_Literal (Loc, Dim1))),
                    Reverse_Present              => Reverse_Present (I_Spec))),
                Statements       => New_List (Core_Loop),
                End_Label        => Empty);

            --  Update the previously created object renaming declaration with
            --  the new iterator, by adding the index of the next loop to the
            --  indexed component, in the order that corresponds to the
            --  convention.

            if Convention (Array_Typ) = Convention_Fortran then
               Append_To (Expressions (Ind_Comp),
                 New_Occurrence_Of (Iterator, Loc));
            else
               Prepend_To (Expressions (Ind_Comp),
                 New_Occurrence_Of (Iterator, Loc));
            end if;
         end loop;
      end if;

      --  Inherit the loop identifier from the original loop. This ensures that
      --  the scope stack is consistent after the rewriting.

      if Present (Identifier (N)) then
         Set_Identifier (Core_Loop, Relocate_Node (Identifier (N)));
      end if;

      Rewrite (N, Core_Loop);
      Analyze (N);
   end Expand_Iterator_Loop_Over_Array;

   -----------------------------------------
   -- Expand_Iterator_Loop_Over_Container --
   -----------------------------------------

   --  For a 'for ... in' loop, such as:

   --      for Cursor in Iterator_Function (...) loop
   --          ...
   --      end loop;

   --  we generate:

   --    Iter : Iterator_Type := Iterator_Function (...);
   --    Cursor : Cursor_type := First (Iter); -- or Last for "reverse"
   --    while Has_Element (Cursor) loop
   --       ...
   --
   --       Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
   --    end loop;

   --  For a 'for ... of' loop, such as:

   --      for X of Container loop
   --          ...
   --      end loop;

   --  the RM implies the generation of:

   --    Iter : Iterator_Type := Container.Iterate; -- the Default_Iterator
   --    Cursor : Cursor_Type := First (Iter); -- or Last for "reverse"
   --    while Has_Element (Cursor) loop
   --       declare
   --          X : Element_Type renames Element (Cursor).Element.all;
   --          --  or Constant_Element
   --       begin
   --          ...
   --       end;
   --       Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
   --    end loop;

   --  In the general case, we do what the RM says. However, the operations
   --  Element and Iter.Next are slow, which is bad inside a loop, because they
   --  involve dispatching via interfaces, secondary stack manipulation,
   --  Busy/Lock incr/decr, and adjust/finalization/at-end handling. So for the
   --  predefined containers, we use an equivalent but optimized expansion.

   --  In the optimized case, we make use of these:

   --     procedure Next (Position : in out Cursor); -- instead of Iter.Next

   --     function Pseudo_Reference
   --       (Container : aliased Vector'Class) return Reference_Control_Type;

   --     type Element_Access is access all Element_Type;

   --     function Get_Element_Access
   --       (Position : Cursor) return not null Element_Access;

   --  Next is declared in the visible part of the container packages.
   --  The other three are added in the private part. (We're not supposed to
   --  pollute the namespace for clients. The compiler has no trouble breaking
   --  privacy to call things in the private part of an instance.)

   --  Source:

   --      for X of My_Vector loop
   --          X.Count := X.Count + 1;
   --          ...
   --      end loop;

   --  The compiler will generate:

   --      Iter : Reversible_Iterator'Class := Iterate (My_Vector);
   --      --  Reversible_Iterator is an interface. Iterate is the
   --      --  Default_Iterator aspect of Vector. This increments Lock,
   --      --  disallowing tampering with cursors. Unfortunately, it does not
   --      --  increment Busy. The result of Iterate is Limited_Controlled;
   --      --  finalization will decrement Lock.  This is a build-in-place
   --      --  dispatching call to Iterate.

   --      Cur : Cursor := First (Iter); -- or Last
   --      --  Dispatching call via interface.

   --      Control : Reference_Control_Type := Pseudo_Reference (My_Vector);
   --      --  Pseudo_Reference increments Busy, to detect tampering with
   --      --  elements, as required by RM. Also redundantly increment
   --      --  Lock. Finalization of Control will decrement both Busy and
   --      --  Lock. Pseudo_Reference returns a record containing a pointer to
   --      --  My_Vector, used by Finalize.
   --      --
   --      --  Control is not used below, except to finalize it -- it's purely
   --      --  an RAII thing. This is needed because we are eliminating the
   --      --  call to Reference within the loop.

   --      while Has_Element (Cur) loop
   --          declare
   --              X : My_Element renames Get_Element_Access (Cur).all;
   --              --  Get_Element_Access returns a pointer to the element
   --              --  designated by Cur. No dispatching here, and no horsing
   --              --  around with access discriminants. This is instead of the
   --              --  existing
   --              --
   --              --    X : My_Element renames Reference (Cur).Element.all;
   --              --
   --              --  which creates a controlled object.
   --          begin
   --              --  Any attempt to tamper with My_Vector here in the loop
   --              --  will correctly raise Program_Error, because of the
   --              --  Control.
   --
   --              X.Count := X.Count + 1;
   --              ...
   --
   --              Next (Cur); -- or Prev
   --              --  This is instead of "Cur := Next (Iter, Cur);"
   --          end;
   --          --  No finalization here
   --      end loop;
   --      Finalize Iter and Control here, decrementing Lock twice and Busy
   --      once.

   --  This optimization makes "for ... of" loops over 30 times faster in cases
   --  measured.

   procedure Expand_Iterator_Loop_Over_Container
     (N             : Node_Id;
      Isc           : Node_Id;
      I_Spec        : Node_Id;
      Container     : Node_Id;
      Container_Typ : Entity_Id)
   is
      Id       : constant Entity_Id   := Defining_Identifier (I_Spec);
      Elem_Typ : constant Entity_Id   := Etype (Id);
      Id_Kind  : constant Entity_Kind := Ekind (Id);
      Loc      : constant Source_Ptr  := Sloc (N);
      Stats    : constant List_Id     := Statements (N);

      Cursor    : Entity_Id;
      Decl      : Node_Id;
      Iter_Type : Entity_Id;
      Iterator  : Entity_Id;
      Name_Init : Name_Id;
      Name_Step : Name_Id;
      New_Loop  : Node_Id;

      Fast_Element_Access_Op : Entity_Id := Empty;
      Fast_Step_Op           : Entity_Id := Empty;
      --  Only for optimized version of "for ... of"

      Iter_Pack : Entity_Id;
      --  The package in which the iterator interface is instantiated. This is
      --  typically an instance within the container package.

      Pack : Entity_Id;
      --  The package in which the container type is declared

   begin
      --  Determine the advancement and initialization steps for the cursor.
      --  Analysis of the expanded loop will verify that the container has a
      --  reverse iterator.

      if Reverse_Present (I_Spec) then
         Name_Init := Name_Last;
         Name_Step := Name_Previous;
      else
         Name_Init := Name_First;
         Name_Step := Name_Next;
      end if;

      --  The type of the iterator is the return type of the Iterate function
      --  used. For the "of" form this is the default iterator for the type,
      --  otherwise it is the type of the explicit function used in the
      --  iterator specification. The most common case will be an Iterate
      --  function in the container package.

      --  The Iterator type is declared in an instance within the container
      --  package itself, for example:

      --    package Vector_Iterator_Interfaces is new
      --      Ada.Iterator_Interfaces (Cursor, Has_Element);

      --  If the container type is a derived type, the cursor type is found in
      --  the package of the ultimate ancestor type.

      if Is_Derived_Type (Container_Typ) then
         Pack := Scope (Root_Type (Container_Typ));
      else
         Pack := Scope (Container_Typ);
      end if;

      if Of_Present (I_Spec) then
         Handle_Of : declare
            Container_Arg : Node_Id;

            function Get_Default_Iterator
              (T : Entity_Id) return Entity_Id;
            --  If the container is a derived type, the aspect holds the parent
            --  operation. The required one is a primitive of the derived type
            --  and is either inherited or overridden. Also sets Container_Arg.

            --------------------------
            -- Get_Default_Iterator --
            --------------------------

            function Get_Default_Iterator
              (T : Entity_Id) return Entity_Id
            is
               Iter : constant Entity_Id :=
                 Entity (Find_Value_Of_Aspect (T, Aspect_Default_Iterator));
               Prim : Elmt_Id;
               Op   : Entity_Id;

            begin
               Container_Arg := New_Copy_Tree (Container);

               --  A previous version of GNAT allowed indexing aspects to
               --  be redefined on derived container types, while the
               --  default iterator was inherited from the parent type.
               --  This non-standard extension is preserved temporarily for
               --  use by the modelling project under debug flag d.X.

               if Debug_Flag_Dot_XX then
                  if Base_Type (Etype (Container)) /=
                     Base_Type (Etype (First_Formal (Iter)))
                  then
                     Container_Arg :=
                       Make_Type_Conversion (Loc,
                         Subtype_Mark =>
                           New_Occurrence_Of
                             (Etype (First_Formal (Iter)), Loc),
                         Expression   => Container_Arg);
                  end if;

                  return Iter;

               elsif Is_Derived_Type (T) then

                  --  The default iterator must be a primitive operation of the
                  --  type, at the same dispatch slot position.

                  Prim := First_Elmt (Primitive_Operations (T));
                  while Present (Prim) loop
                     Op := Node (Prim);

                     if Chars (Op) = Chars (Iter)
                       and then DT_Position (Op) = DT_Position (Iter)
                     then
                        return Op;
                     end if;

                     Next_Elmt (Prim);
                  end loop;

                  --  Default iterator must exist

                  pragma Assert (False);

               --  Otherwise not a derived type

               else
                  return Iter;
               end if;
            end Get_Default_Iterator;

            --  Local variables

            Default_Iter : Entity_Id;
            Ent          : Entity_Id;

            Reference_Control_Type : Entity_Id := Empty;
            Pseudo_Reference       : Entity_Id := Empty;

         --  Start of processing for Handle_Of

         begin
            if Is_Class_Wide_Type (Container_Typ) then
               Default_Iter :=
                 Get_Default_Iterator (Etype (Base_Type (Container_Typ)));
            else
               Default_Iter := Get_Default_Iterator (Etype (Container));
            end if;

            Cursor := Make_Temporary (Loc, 'C');

            --  For a container element iterator, the iterator type is obtained
            --  from the corresponding aspect, whose return type is descended
            --  from the corresponding interface type in some instance of
            --  Ada.Iterator_Interfaces. The actuals of that instantiation
            --  are Cursor and Has_Element.

            Iter_Type := Etype (Default_Iter);

            --  The iterator type, which is a class-wide type, may itself be
            --  derived locally, so the desired instantiation is the scope of
            --  the root type of the iterator type.

            Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));

            --  Find declarations needed for "for ... of" optimization

            Ent := First_Entity (Pack);
            while Present (Ent) loop
               if Chars (Ent) = Name_Get_Element_Access then
                  Fast_Element_Access_Op := Ent;

               elsif Chars (Ent) = Name_Step
                 and then Ekind (Ent) = E_Procedure
               then
                  Fast_Step_Op := Ent;

               elsif Chars (Ent) = Name_Reference_Control_Type then
                  Reference_Control_Type := Ent;

               elsif Chars (Ent) = Name_Pseudo_Reference then
                  Pseudo_Reference := Ent;
               end if;

               Next_Entity (Ent);
            end loop;

            if Present (Reference_Control_Type)
              and then Present (Pseudo_Reference)
            then
               Insert_Action (N,
                 Make_Object_Declaration (Loc,
                   Defining_Identifier => Make_Temporary (Loc, 'D'),
                   Object_Definition   =>
                     New_Occurrence_Of (Reference_Control_Type, Loc),
                   Expression          =>
                     Make_Function_Call (Loc,
                       Name                   =>
                         New_Occurrence_Of (Pseudo_Reference, Loc),
                       Parameter_Associations =>
                         New_List (New_Copy_Tree (Container_Arg)))));
            end if;

            --  Rewrite domain of iteration as a call to the default iterator
            --  for the container type. The formal may be an access parameter
            --  in which case we must build a reference to the container.

            declare
               Arg : Node_Id;
            begin
               if Is_Access_Type (Etype (First_Entity (Default_Iter))) then
                  Arg :=
                    Make_Attribute_Reference (Loc,
                      Prefix         => Container_Arg,
                      Attribute_Name => Name_Unrestricted_Access);
               else
                  Arg := Container_Arg;
               end if;

               Rewrite (Name (I_Spec),
                 Make_Function_Call (Loc,
                   Name                   =>
                     New_Occurrence_Of (Default_Iter, Loc),
                   Parameter_Associations => New_List (Arg)));
            end;

            Analyze_And_Resolve (Name (I_Spec));

            --  Find cursor type in proper iterator package, which is an
            --  instantiation of Iterator_Interfaces.

            Ent := First_Entity (Iter_Pack);
            while Present (Ent) loop
               if Chars (Ent) = Name_Cursor then
                  Set_Etype (Cursor, Etype (Ent));
                  exit;
               end if;

               Next_Entity (Ent);
            end loop;

            if Present (Fast_Element_Access_Op) then
               Decl :=
                 Make_Object_Renaming_Declaration (Loc,
                   Defining_Identifier => Id,
                   Subtype_Mark        =>
                     New_Occurrence_Of (Elem_Typ, Loc),
                   Name                =>
                     Make_Explicit_Dereference (Loc,
                       Prefix =>
                         Make_Function_Call (Loc,
                           Name                   =>
                             New_Occurrence_Of (Fast_Element_Access_Op, Loc),
                           Parameter_Associations =>
                             New_List (New_Occurrence_Of (Cursor, Loc)))));

            else
               Decl :=
                 Make_Object_Renaming_Declaration (Loc,
                   Defining_Identifier => Id,
                   Subtype_Mark        =>
                     New_Occurrence_Of (Elem_Typ, Loc),
                   Name                =>
                     Make_Indexed_Component (Loc,
                       Prefix      => Relocate_Node (Container_Arg),
                       Expressions =>
                         New_List (New_Occurrence_Of (Cursor, Loc))));
            end if;

            --  The defining identifier in the iterator is user-visible and
            --  must be visible in the debugger.

            Set_Debug_Info_Needed (Id);

            --  If the container does not have a variable indexing aspect,
            --  the element is a constant in the loop. The container itself
            --  may be constant, in which case the element is a constant as
            --  well. The container has been rewritten as a call to Iterate,
            --  so examine original node.

            if No (Find_Value_Of_Aspect
                     (Container_Typ, Aspect_Variable_Indexing))
              or else not Is_Variable (Original_Node (Container))
            then
               Set_Ekind (Id, E_Constant);
            end if;

            Prepend_To (Stats, Decl);
         end Handle_Of;

      --  X in Iterate (S) : type of iterator is type of explicitly given
      --  Iterate function, and the loop variable is the cursor. It will be
      --  assigned in the loop and must be a variable.

      else
         Iter_Type := Etype (Name (I_Spec));

         --  The iterator type, which is a class-wide type, may itself be
         --  derived locally, so the desired instantiation is the scope of
         --  the root type of the iterator type, as in the "of" case.

         Iter_Pack := Scope (Root_Type (Etype (Iter_Type)));
         Cursor := Id;
      end if;

      Iterator := Make_Temporary (Loc, 'I');

      --  For both iterator forms, add a call to the step operation to advance
      --  the cursor. Generate:

      --     Cursor := Iterator.Next (Cursor);

      --   or else

      --     Cursor := Next (Cursor);

      if Present (Fast_Element_Access_Op) and then Present (Fast_Step_Op) then
         declare
            Curs_Name : constant Node_Id := New_Occurrence_Of (Cursor, Loc);
            Step_Call : Node_Id;

         begin
            Step_Call :=
              Make_Procedure_Call_Statement (Loc,
                Name                   =>
                  New_Occurrence_Of (Fast_Step_Op, Loc),
                Parameter_Associations => New_List (Curs_Name));

            Append_To (Stats, Step_Call);
            Set_Assignment_OK (Curs_Name);
         end;

      else
         declare
            Rhs : Node_Id;

         begin
            Rhs :=
              Make_Function_Call (Loc,
                Name                   =>
                  Make_Selected_Component (Loc,
                    Prefix        => New_Occurrence_Of (Iterator, Loc),
                    Selector_Name => Make_Identifier (Loc, Name_Step)),
                Parameter_Associations => New_List (
                   New_Occurrence_Of (Cursor, Loc)));

            Append_To (Stats,
              Make_Assignment_Statement (Loc,
                 Name       => New_Occurrence_Of (Cursor, Loc),
                 Expression => Rhs));
            Set_Assignment_OK (Name (Last (Stats)));
         end;
      end if;

      --  Generate:
      --    while Has_Element (Cursor) loop
      --       <Stats>
      --    end loop;

      --   Has_Element is the second actual in the iterator package

      New_Loop :=
        Make_Loop_Statement (Loc,
          Iteration_Scheme =>
            Make_Iteration_Scheme (Loc,
              Condition =>
                Make_Function_Call (Loc,
                  Name                   =>
                    New_Occurrence_Of
                      (Next_Entity (First_Entity (Iter_Pack)), Loc),
                  Parameter_Associations => New_List (
                    New_Occurrence_Of (Cursor, Loc)))),

          Statements => Stats,
          End_Label  => Empty);

      --  If present, preserve identifier of loop, which can be used in an exit
      --  statement in the body.

      if Present (Identifier (N)) then
         Set_Identifier (New_Loop, Relocate_Node (Identifier (N)));
      end if;

      --  Create the declarations for Iterator and cursor and insert them
      --  before the source loop. Given that the domain of iteration is already
      --  an entity, the iterator is just a renaming of that entity. Possible
      --  optimization ???

      Insert_Action (N,
        Make_Object_Renaming_Declaration (Loc,
          Defining_Identifier => Iterator,
          Subtype_Mark        => New_Occurrence_Of (Iter_Type, Loc),
          Name                => Relocate_Node (Name (I_Spec))));

      --  Create declaration for cursor

      declare
         Cursor_Decl : constant Node_Id :=
                         Make_Object_Declaration (Loc,
                           Defining_Identifier => Cursor,
                           Object_Definition   =>
                             New_Occurrence_Of (Etype (Cursor), Loc),
                           Expression          =>
                             Make_Selected_Component (Loc,
                               Prefix        =>
                                 New_Occurrence_Of (Iterator, Loc),
                               Selector_Name =>
                                 Make_Identifier (Loc, Name_Init)));

      begin
         --  The cursor is only modified in expanded code, so it appears
         --  as unassigned to the warning machinery. We must suppress this
         --  spurious warning explicitly. The cursor's kind is that of the
         --  original loop parameter (it is a constant if the domain of
         --  iteration is constant).

         Set_Warnings_Off (Cursor);
         Set_Assignment_OK (Cursor_Decl);

         Insert_Action (N, Cursor_Decl);
         Set_Ekind (Cursor, Id_Kind);
      end;

      --  If the range of iteration is given by a function call that returns
      --  a container, the finalization actions have been saved in the
      --  Condition_Actions of the iterator. Insert them now at the head of
      --  the loop.

      if Present (Condition_Actions (Isc)) then
         Insert_List_Before (N, Condition_Actions (Isc));
      end if;

      Rewrite (N, New_Loop);
      Analyze (N);
   end Expand_Iterator_Loop_Over_Container;

   -----------------------------
   -- Expand_N_Loop_Statement --
   -----------------------------

   --  1. Remove null loop entirely
   --  2. Deal with while condition for C/Fortran boolean
   --  3. Deal with loops with a non-standard enumeration type range
   --  4. Deal with while loops where Condition_Actions is set
   --  5. Deal with loops over predicated subtypes
   --  6. Deal with loops with iterators over arrays and containers
   --  7. Insert polling call if required

   procedure Expand_N_Loop_Statement (N : Node_Id) is
      Loc    : constant Source_Ptr := Sloc (N);
      Scheme : constant Node_Id    := Iteration_Scheme (N);
      Stmt   : Node_Id;

   begin
      --  Delete null loop

      if Is_Null_Loop (N) then
         Rewrite (N, Make_Null_Statement (Loc));
         return;
      end if;

      --  Deal with condition for C/Fortran Boolean

      if Present (Scheme) then
         Adjust_Condition (Condition (Scheme));
      end if;

      --  Generate polling call

      if Is_Non_Empty_List (Statements (N)) then
         Generate_Poll_Call (First (Statements (N)));
      end if;

      --  Nothing more to do for plain loop with no iteration scheme

      if No (Scheme) then
         null;

      --  Case of for loop (Loop_Parameter_Specification present)

      --  Note: we do not have to worry about validity checking of the for loop
      --  range bounds here, since they were frozen with constant declarations
      --  and it is during that process that the validity checking is done.

      elsif Present (Loop_Parameter_Specification (Scheme)) then
         declare
            LPS     : constant Node_Id   :=
                        Loop_Parameter_Specification (Scheme);
            Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
            Ltype   : constant Entity_Id := Etype (Loop_Id);
            Btype   : constant Entity_Id := Base_Type (Ltype);
            Expr    : Node_Id;
            Decls   : List_Id;
            New_Id  : Entity_Id;

         begin
            --  Deal with loop over predicates

            if Is_Discrete_Type (Ltype)
              and then Present (Predicate_Function (Ltype))
            then
               Expand_Predicated_Loop (N);

            --  Handle the case where we have a for loop with the range type
            --  being an enumeration type with non-standard representation.
            --  In this case we expand:

            --    for x in [reverse] a .. b loop
            --       ...
            --    end loop;

            --  to

            --    for xP in [reverse] integer
            --      range etype'Pos (a) .. etype'Pos (b)
            --    loop
            --       declare
            --          x : constant etype := Pos_To_Rep (xP);
            --       begin
            --          ...
            --       end;
            --    end loop;

            elsif Is_Enumeration_Type (Btype)
              and then Present (Enum_Pos_To_Rep (Btype))
            then
               New_Id :=
                 Make_Defining_Identifier (Loc,
                   Chars => New_External_Name (Chars (Loop_Id), 'P'));

               --  If the type has a contiguous representation, successive
               --  values can be generated as offsets from the first literal.

               if Has_Contiguous_Rep (Btype) then
                  Expr :=
                     Unchecked_Convert_To (Btype,
                       Make_Op_Add (Loc,
                         Left_Opnd =>
                            Make_Integer_Literal (Loc,
                              Enumeration_Rep (First_Literal (Btype))),
                         Right_Opnd => New_Occurrence_Of (New_Id, Loc)));
               else
                  --  Use the constructed array Enum_Pos_To_Rep

                  Expr :=
                    Make_Indexed_Component (Loc,
                      Prefix      =>
                        New_Occurrence_Of (Enum_Pos_To_Rep (Btype), Loc),
                      Expressions =>
                        New_List (New_Occurrence_Of (New_Id, Loc)));
               end if;

               --  Build declaration for loop identifier

               Decls :=
                 New_List (
                   Make_Object_Declaration (Loc,
                     Defining_Identifier => Loop_Id,
                     Constant_Present    => True,
                     Object_Definition   => New_Occurrence_Of (Ltype, Loc),
                     Expression          => Expr));

               Rewrite (N,
                 Make_Loop_Statement (Loc,
                   Identifier => Identifier (N),

                   Iteration_Scheme =>
                     Make_Iteration_Scheme (Loc,
                       Loop_Parameter_Specification =>
                         Make_Loop_Parameter_Specification (Loc,
                           Defining_Identifier => New_Id,
                           Reverse_Present => Reverse_Present (LPS),

                           Discrete_Subtype_Definition =>
                             Make_Subtype_Indication (Loc,

                               Subtype_Mark =>
                                 New_Occurrence_Of (Standard_Natural, Loc),

                               Constraint =>
                                 Make_Range_Constraint (Loc,
                                   Range_Expression =>
                                     Make_Range (Loc,

                                       Low_Bound =>
                                         Make_Attribute_Reference (Loc,
                                           Prefix =>
                                             New_Occurrence_Of (Btype, Loc),

                                           Attribute_Name => Name_Pos,

                                           Expressions => New_List (
                                             Relocate_Node
                                               (Type_Low_Bound (Ltype)))),

                                       High_Bound =>
                                         Make_Attribute_Reference (Loc,
                                           Prefix =>
                                             New_Occurrence_Of (Btype, Loc),

                                           Attribute_Name => Name_Pos,

                                           Expressions => New_List (
                                             Relocate_Node
                                               (Type_High_Bound
                                                  (Ltype))))))))),

                   Statements => New_List (
                     Make_Block_Statement (Loc,
                       Declarations => Decls,
                       Handled_Statement_Sequence =>
                         Make_Handled_Sequence_Of_Statements (Loc,
                           Statements => Statements (N)))),

                   End_Label => End_Label (N)));

               --  The loop parameter's entity must be removed from the loop
               --  scope's entity list and rendered invisible, since it will
               --  now be located in the new block scope. Any other entities
               --  already associated with the loop scope, such as the loop
               --  parameter's subtype, will remain there.

               --  In an element loop, the loop will contain a declaration for
               --  a cursor variable; otherwise the loop id is the first entity
               --  in the scope constructed for the loop.

               if Comes_From_Source (Loop_Id) then
                  pragma Assert (First_Entity (Scope (Loop_Id)) = Loop_Id);
                  null;
               end if;

               Set_First_Entity (Scope (Loop_Id), Next_Entity (Loop_Id));
               Remove_Homonym (Loop_Id);

               if Last_Entity (Scope (Loop_Id)) = Loop_Id then
                  Set_Last_Entity (Scope (Loop_Id), Empty);
               end if;

               Analyze (N);

            --  Nothing to do with other cases of for loops

            else
               null;
            end if;
         end;

      --  Second case, if we have a while loop with Condition_Actions set, then
      --  we change it into a plain loop:

      --    while C loop
      --       ...
      --    end loop;

      --  changed to:

      --    loop
      --       <<condition actions>>
      --       exit when not C;
      --       ...
      --    end loop

      elsif Present (Scheme)
        and then Present (Condition_Actions (Scheme))
        and then Present (Condition (Scheme))
      then
         declare
            ES : Node_Id;

         begin
            ES :=
              Make_Exit_Statement (Sloc (Condition (Scheme)),
                Condition =>
                  Make_Op_Not (Sloc (Condition (Scheme)),
                    Right_Opnd => Condition (Scheme)));

            Prepend (ES, Statements (N));
            Insert_List_Before (ES, Condition_Actions (Scheme));

            --  This is not an implicit loop, since it is generated in response
            --  to the loop statement being processed. If this is itself
            --  implicit, the restriction has already been checked. If not,
            --  it is an explicit loop.

            Rewrite (N,
              Make_Loop_Statement (Sloc (N),
                Identifier => Identifier (N),
                Statements => Statements (N),
                End_Label  => End_Label  (N)));

            Analyze (N);
         end;

      --  Here to deal with iterator case

      elsif Present (Scheme)
        and then Present (Iterator_Specification (Scheme))
      then
         Expand_Iterator_Loop (N);

         --  An iterator loop may generate renaming declarations for elements
         --  that require debug information. This is the case in particular
         --  with element iterators, where debug information must be generated
         --  for the temporary that holds the element value. These temporaries
         --  are created within a transient block whose local declarations are
         --  transferred to the loop, which now has nontrivial local objects.

         if Nkind (N) = N_Loop_Statement
           and then Present (Identifier (N))
         then
            Qualify_Entity_Names (N);
         end if;
      end if;

      --  When the iteration scheme mentiones attribute 'Loop_Entry, the loop
      --  is transformed into a conditional block where the original loop is
      --  the sole statement. Inspect the statements of the nested loop for
      --  controlled objects.

      Stmt := N;

      if Subject_To_Loop_Entry_Attributes (Stmt) then
         Stmt := Find_Loop_In_Conditional_Block (Stmt);
      end if;

      Process_Statements_For_Controlled_Objects (Stmt);
   end Expand_N_Loop_Statement;

   ----------------------------
   -- Expand_Predicated_Loop --
   ----------------------------

   --  Note: the expander can handle generation of loops over predicated
   --  subtypes for both the dynamic and static cases. Depending on what
   --  we decide is allowed in Ada 2012 mode and/or extensions allowed
   --  mode, the semantic analyzer may disallow one or both forms.

   procedure Expand_Predicated_Loop (N : Node_Id) is
      Loc     : constant Source_Ptr := Sloc (N);
      Isc     : constant Node_Id    := Iteration_Scheme (N);
      LPS     : constant Node_Id    := Loop_Parameter_Specification (Isc);
      Loop_Id : constant Entity_Id  := Defining_Identifier (LPS);
      Ltype   : constant Entity_Id  := Etype (Loop_Id);
      Stat    : constant List_Id    := Static_Discrete_Predicate (Ltype);
      Stmts   : constant List_Id    := Statements (N);

   begin
      --  Case of iteration over non-static predicate, should not be possible
      --  since this is not allowed by the semantics and should have been
      --  caught during analysis of the loop statement.

      if No (Stat) then
         raise Program_Error;

      --  If the predicate list is empty, that corresponds to a predicate of
      --  False, in which case the loop won't run at all, and we rewrite the
      --  entire loop as a null statement.

      elsif Is_Empty_List (Stat) then
         Rewrite (N, Make_Null_Statement (Loc));
         Analyze (N);

      --  For expansion over a static predicate we generate the following

      --     declare
      --        J : Ltype := min-val;
      --     begin
      --        loop
      --           body
      --           case J is
      --              when endpoint => J := startpoint;
      --              when endpoint => J := startpoint;
      --              ...
      --              when max-val  => exit;
      --              when others   => J := Lval'Succ (J);
      --           end case;
      --        end loop;
      --     end;

      --  with min-val replaced by max-val and Succ replaced by Pred if the
      --  loop parameter specification carries a Reverse indicator.

      --  To make this a little clearer, let's take a specific example:

      --        type Int is range 1 .. 10;
      --        subtype StaticP is Int with
      --          predicate => StaticP in 3 | 10 | 5 .. 7;
      --          ...
      --        for L in StaticP loop
      --           Put_Line ("static:" & J'Img);
      --        end loop;

      --  In this case, the loop is transformed into

      --     begin
      --        J : L := 3;
      --        loop
      --           body
      --           case J is
      --              when 3  => J := 5;
      --              when 7  => J := 10;
      --              when 10 => exit;
      --              when others  => J := L'Succ (J);
      --           end case;
      --        end loop;
      --     end;

      else
         Static_Predicate : declare
            S    : Node_Id;
            D    : Node_Id;
            P    : Node_Id;
            Alts : List_Id;
            Cstm : Node_Id;

            function Lo_Val (N : Node_Id) return Node_Id;
            --  Given static expression or static range, returns an identifier
            --  whose value is the low bound of the expression value or range.

            function Hi_Val (N : Node_Id) return Node_Id;
            --  Given static expression or static range, returns an identifier
            --  whose value is the high bound of the expression value or range.

            ------------
            -- Hi_Val --
            ------------

            function Hi_Val (N : Node_Id) return Node_Id is
            begin
               if Is_OK_Static_Expression (N) then
                  return New_Copy (N);
               else
                  pragma Assert (Nkind (N) = N_Range);
                  return New_Copy (High_Bound (N));
               end if;
            end Hi_Val;

            ------------
            -- Lo_Val --
            ------------

            function Lo_Val (N : Node_Id) return Node_Id is
            begin
               if Is_OK_Static_Expression (N) then
                  return New_Copy (N);
               else
                  pragma Assert (Nkind (N) = N_Range);
                  return New_Copy (Low_Bound (N));
               end if;
            end Lo_Val;

         --  Start of processing for Static_Predicate

         begin
            --  Convert loop identifier to normal variable and reanalyze it so
            --  that this conversion works. We have to use the same defining
            --  identifier, since there may be references in the loop body.

            Set_Analyzed (Loop_Id, False);
            Set_Ekind    (Loop_Id, E_Variable);

            --  In most loops the loop variable is assigned in various
            --  alternatives in the body. However, in the rare case when
            --  the range specifies a single element, the loop variable
            --  may trigger a spurious warning that is could be constant.
            --  This warning might as well be suppressed.

            Set_Warnings_Off (Loop_Id);

            --  Loop to create branches of case statement

            Alts := New_List;

            if Reverse_Present (LPS) then

               --  Initial value is largest value in predicate.

               D :=
                 Make_Object_Declaration (Loc,
                   Defining_Identifier => Loop_Id,
                   Object_Definition   => New_Occurrence_Of (Ltype, Loc),
                   Expression          => Hi_Val (Last (Stat)));

               P := Last (Stat);
               while Present (P) loop
                  if No (Prev (P)) then
                     S := Make_Exit_Statement (Loc);
                  else
                     S :=
                       Make_Assignment_Statement (Loc,
                         Name       => New_Occurrence_Of (Loop_Id, Loc),
                         Expression => Hi_Val (Prev (P)));
                     Set_Suppress_Assignment_Checks (S);
                  end if;

                  Append_To (Alts,
                    Make_Case_Statement_Alternative (Loc,
                      Statements       => New_List (S),
                      Discrete_Choices => New_List (Lo_Val (P))));

                  Prev (P);
               end loop;

            else

               --  Initial value is smallest value in predicate.

               D :=
                 Make_Object_Declaration (Loc,
                   Defining_Identifier => Loop_Id,
                   Object_Definition   => New_Occurrence_Of (Ltype, Loc),
                   Expression          => Lo_Val (First (Stat)));

               P := First (Stat);
               while Present (P) loop
                  if No (Next (P)) then
                     S := Make_Exit_Statement (Loc);
                  else
                     S :=
                       Make_Assignment_Statement (Loc,
                         Name       => New_Occurrence_Of (Loop_Id, Loc),
                         Expression => Lo_Val (Next (P)));
                     Set_Suppress_Assignment_Checks (S);
                  end if;

                  Append_To (Alts,
                    Make_Case_Statement_Alternative (Loc,
                      Statements       => New_List (S),
                      Discrete_Choices => New_List (Hi_Val (P))));

                  Next (P);
               end loop;
            end if;

            --  Add others choice

            declare
               Name_Next : Name_Id;

            begin
               if Reverse_Present (LPS) then
                  Name_Next := Name_Pred;
               else
                  Name_Next := Name_Succ;
               end if;

               S :=
                  Make_Assignment_Statement (Loc,
                    Name       => New_Occurrence_Of (Loop_Id, Loc),
                    Expression =>
                      Make_Attribute_Reference (Loc,
                        Prefix => New_Occurrence_Of (Ltype, Loc),
                        Attribute_Name => Name_Next,
                        Expressions    => New_List (
                          New_Occurrence_Of (Loop_Id, Loc))));
               Set_Suppress_Assignment_Checks (S);
            end;

            Append_To (Alts,
              Make_Case_Statement_Alternative (Loc,
                Discrete_Choices => New_List (Make_Others_Choice (Loc)),
                Statements       => New_List (S)));

            --  Construct case statement and append to body statements

            Cstm :=
              Make_Case_Statement (Loc,
                Expression   => New_Occurrence_Of (Loop_Id, Loc),
                Alternatives => Alts);
            Append_To (Stmts, Cstm);

            --  Rewrite the loop

            Set_Suppress_Assignment_Checks (D);

            Rewrite (N,
              Make_Block_Statement (Loc,
                Declarations               => New_List (D),
                Handled_Statement_Sequence =>
                  Make_Handled_Sequence_Of_Statements (Loc,
                    Statements => New_List (
                      Make_Loop_Statement (Loc,
                        Statements => Stmts,
                        End_Label  => Empty)))));

            Analyze (N);
         end Static_Predicate;
      end if;
   end Expand_Predicated_Loop;

   ------------------------------
   -- Make_Tag_Ctrl_Assignment --
   ------------------------------

   function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
      Asn : constant Node_Id    := Relocate_Node (N);
      L   : constant Node_Id    := Name (N);
      Loc : constant Source_Ptr := Sloc (N);
      Res : constant List_Id    := New_List;
      T   : constant Entity_Id  := Underlying_Type (Etype (L));

      Comp_Asn : constant Boolean := Is_Fully_Repped_Tagged_Type (T);
      Ctrl_Act : constant Boolean := Needs_Finalization (T)
                                       and then not No_Ctrl_Actions (N);
      Save_Tag : constant Boolean := Is_Tagged_Type (T)
                                       and then not Comp_Asn
                                       and then not No_Ctrl_Actions (N)
                                       and then Tagged_Type_Expansion;
      Tag_Id  : Entity_Id;

   begin
      --  Finalize the target of the assignment when controlled

      --  We have two exceptions here:

      --   1. If we are in an init proc since it is an initialization more
      --      than an assignment.

      --   2. If the left-hand side is a temporary that was not initialized
      --      (or the parent part of a temporary since it is the case in
      --      extension aggregates). Such a temporary does not come from
      --      source. We must examine the original node for the prefix, because
      --      it may be a component of an entry formal, in which case it has
      --      been rewritten and does not appear to come from source either.

      --  Case of init proc

      if not Ctrl_Act then
         null;

      --  The left hand side is an uninitialized temporary object

      elsif Nkind (L) = N_Type_Conversion
        and then Is_Entity_Name (Expression (L))
        and then Nkind (Parent (Entity (Expression (L)))) =
                                              N_Object_Declaration
        and then No_Initialization (Parent (Entity (Expression (L))))
      then
         null;

      else
         Append_To (Res,
           Make_Final_Call
             (Obj_Ref => Duplicate_Subexpr_No_Checks (L),
              Typ     => Etype (L)));
      end if;

      --  Save the Tag in a local variable Tag_Id

      if Save_Tag then
         Tag_Id := Make_Temporary (Loc, 'A');

         Append_To (Res,
           Make_Object_Declaration (Loc,
             Defining_Identifier => Tag_Id,
             Object_Definition   => New_Occurrence_Of (RTE (RE_Tag), Loc),
             Expression          =>
               Make_Selected_Component (Loc,
                 Prefix        => Duplicate_Subexpr_No_Checks (L),
                 Selector_Name =>
                   New_Occurrence_Of (First_Tag_Component (T), Loc))));

      --  Otherwise Tag_Id is not used

      else
         Tag_Id := Empty;
      end if;

      --  If the tagged type has a full rep clause, expand the assignment into
      --  component-wise assignments. Mark the node as unanalyzed in order to
      --  generate the proper code and propagate this scenario by setting a
      --  flag to avoid infinite recursion.

      if Comp_Asn then
         Set_Analyzed (Asn, False);
         Set_Componentwise_Assignment (Asn, True);
      end if;

      Append_To (Res, Asn);

      --  Restore the tag

      if Save_Tag then
         Append_To (Res,
           Make_Assignment_Statement (Loc,
             Name       =>
               Make_Selected_Component (Loc,
                 Prefix        => Duplicate_Subexpr_No_Checks (L),
                 Selector_Name =>
                   New_Occurrence_Of (First_Tag_Component (T), Loc)),
             Expression => New_Occurrence_Of (Tag_Id, Loc)));
      end if;

      --  Adjust the target after the assignment when controlled (not in the
      --  init proc since it is an initialization more than an assignment).

      if Ctrl_Act then
         Append_To (Res,
           Make_Adjust_Call
             (Obj_Ref => Duplicate_Subexpr_Move_Checks (L),
              Typ     => Etype (L)));
      end if;

      return Res;

   exception

      --  Could use comment here ???

      when RE_Not_Available =>
         return Empty_List;
   end Make_Tag_Ctrl_Assignment;

end Exp_Ch5;