1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ C H 4 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Atag; use Exp_Atag;
with Exp_Ch2; use Exp_Ch2;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Disp; use Exp_Disp;
with Exp_Fixd; use Exp_Fixd;
with Exp_Intr; use Exp_Intr;
with Exp_Pakd; use Exp_Pakd;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Inline; use Inline;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Par_SCO; use Par_SCO;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with SCIL_LL; use SCIL_LL;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Validsw; use Validsw;
package body Exp_Ch4 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Binary_Op_Validity_Checks (N : Node_Id);
pragma Inline (Binary_Op_Validity_Checks);
-- Performs validity checks for a binary operator
procedure Build_Boolean_Array_Proc_Call
(N : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id);
-- If a boolean array assignment can be done in place, build call to
-- corresponding library procedure.
function Current_Anonymous_Master return Entity_Id;
-- Return the entity of the heterogeneous finalization master belonging to
-- the current unit (either function, package or procedure). This master
-- services all anonymous access-to-controlled types. If the current unit
-- does not have such master, create one.
procedure Displace_Allocator_Pointer (N : Node_Id);
-- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
-- Expand_Allocator_Expression. Allocating class-wide interface objects
-- this routine displaces the pointer to the allocated object to reference
-- the component referencing the corresponding secondary dispatch table.
procedure Expand_Allocator_Expression (N : Node_Id);
-- Subsidiary to Expand_N_Allocator, for the case when the expression
-- is a qualified expression or an aggregate.
procedure Expand_Array_Comparison (N : Node_Id);
-- This routine handles expansion of the comparison operators (N_Op_Lt,
-- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
-- code for these operators is similar, differing only in the details of
-- the actual comparison call that is made. Special processing (call a
-- run-time routine)
function Expand_Array_Equality
(Nod : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
Bodies : List_Id;
Typ : Entity_Id) return Node_Id;
-- Expand an array equality into a call to a function implementing this
-- equality, and a call to it. Loc is the location for the generated nodes.
-- Lhs and Rhs are the array expressions to be compared. Bodies is a list
-- on which to attach bodies of local functions that are created in the
-- process. It is the responsibility of the caller to insert those bodies
-- at the right place. Nod provides the Sloc value for the generated code.
-- Normally the types used for the generated equality routine are taken
-- from Lhs and Rhs. However, in some situations of generated code, the
-- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
-- the type to be used for the formal parameters.
procedure Expand_Boolean_Operator (N : Node_Id);
-- Common expansion processing for Boolean operators (And, Or, Xor) for the
-- case of array type arguments.
procedure Expand_Short_Circuit_Operator (N : Node_Id);
-- Common expansion processing for short-circuit boolean operators
procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
-- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
-- where we allow comparison of "out of range" values.
function Expand_Composite_Equality
(Nod : Node_Id;
Typ : Entity_Id;
Lhs : Node_Id;
Rhs : Node_Id;
Bodies : List_Id) return Node_Id;
-- Local recursive function used to expand equality for nested composite
-- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
-- to attach bodies of local functions that are created in the process. It
-- is the responsibility of the caller to insert those bodies at the right
-- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
-- the left and right sides for the comparison, and Typ is the type of the
-- objects to compare.
procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
-- Routine to expand concatenation of a sequence of two or more operands
-- (in the list Operands) and replace node Cnode with the result of the
-- concatenation. The operands can be of any appropriate type, and can
-- include both arrays and singleton elements.
procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
-- N is an N_In membership test mode, with the overflow check mode set to
-- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
-- integer type. This is a case where top level processing is required to
-- handle overflow checks in subtrees.
procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
-- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
-- fixed. We do not have such a type at runtime, so the purpose of this
-- routine is to find the real type by looking up the tree. We also
-- determine if the operation must be rounded.
function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
-- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
-- discriminants if it has a constrained nominal type, unless the object
-- is a component of an enclosing Unchecked_Union object that is subject
-- to a per-object constraint and the enclosing object lacks inferable
-- discriminants.
--
-- An expression of an Unchecked_Union type has inferable discriminants
-- if it is either a name of an object with inferable discriminants or a
-- qualified expression whose subtype mark denotes a constrained subtype.
procedure Insert_Dereference_Action (N : Node_Id);
-- N is an expression whose type is an access. When the type of the
-- associated storage pool is derived from Checked_Pool, generate a
-- call to the 'Dereference' primitive operation.
function Make_Array_Comparison_Op
(Typ : Entity_Id;
Nod : Node_Id) return Node_Id;
-- Comparisons between arrays are expanded in line. This function produces
-- the body of the implementation of (a > b), where a and b are one-
-- dimensional arrays of some discrete type. The original node is then
-- expanded into the appropriate call to this function. Nod provides the
-- Sloc value for the generated code.
function Make_Boolean_Array_Op
(Typ : Entity_Id;
N : Node_Id) return Node_Id;
-- Boolean operations on boolean arrays are expanded in line. This function
-- produce the body for the node N, which is (a and b), (a or b), or (a xor
-- b). It is used only the normal case and not the packed case. The type
-- involved, Typ, is the Boolean array type, and the logical operations in
-- the body are simple boolean operations. Note that Typ is always a
-- constrained type (the caller has ensured this by using
-- Convert_To_Actual_Subtype if necessary).
function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
-- For signed arithmetic operations when the current overflow mode is
-- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
-- as the first thing we do. We then return. We count on the recursive
-- apparatus for overflow checks to call us back with an equivalent
-- operation that is in CHECKED mode, avoiding a recursive entry into this
-- routine, and that is when we will proceed with the expansion of the
-- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
-- these optimizations without first making this check, since there may be
-- operands further down the tree that are relying on the recursive calls
-- triggered by the top level nodes to properly process overflow checking
-- and remaining expansion on these nodes. Note that this call back may be
-- skipped if the operation is done in Bignum mode but that's fine, since
-- the Bignum call takes care of everything.
procedure Optimize_Length_Comparison (N : Node_Id);
-- Given an expression, if it is of the form X'Length op N (or the other
-- way round), where N is known at compile time to be 0 or 1, and X is a
-- simple entity, and op is a comparison operator, optimizes it into a
-- comparison of First and Last.
procedure Process_Transient_Object
(Decl : Node_Id;
Rel_Node : Node_Id);
-- Subsidiary routine to the expansion of expression_with_actions and if
-- expressions. Generate all the necessary code to finalize a transient
-- controlled object when the enclosing context is elaborated or evaluated.
-- Decl denotes the declaration of the transient controlled object which is
-- usually the result of a controlled function call. Rel_Node denotes the
-- context, either an expression_with_actions or an if expression.
procedure Rewrite_Comparison (N : Node_Id);
-- If N is the node for a comparison whose outcome can be determined at
-- compile time, then the node N can be rewritten with True or False. If
-- the outcome cannot be determined at compile time, the call has no
-- effect. If N is a type conversion, then this processing is applied to
-- its expression. If N is neither comparison nor a type conversion, the
-- call has no effect.
procedure Tagged_Membership
(N : Node_Id;
SCIL_Node : out Node_Id;
Result : out Node_Id);
-- Construct the expression corresponding to the tagged membership test.
-- Deals with a second operand being (or not) a class-wide type.
function Safe_In_Place_Array_Op
(Lhs : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id) return Boolean;
-- In the context of an assignment, where the right-hand side is a boolean
-- operation on arrays, check whether operation can be performed in place.
procedure Unary_Op_Validity_Checks (N : Node_Id);
pragma Inline (Unary_Op_Validity_Checks);
-- Performs validity checks for a unary operator
-------------------------------
-- Binary_Op_Validity_Checks --
-------------------------------
procedure Binary_Op_Validity_Checks (N : Node_Id) is
begin
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Left_Opnd (N));
Ensure_Valid (Right_Opnd (N));
end if;
end Binary_Op_Validity_Checks;
------------------------------------
-- Build_Boolean_Array_Proc_Call --
------------------------------------
procedure Build_Boolean_Array_Proc_Call
(N : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Kind : constant Node_Kind := Nkind (Expression (N));
Target : constant Node_Id :=
Make_Attribute_Reference (Loc,
Prefix => Name (N),
Attribute_Name => Name_Address);
Arg1 : Node_Id := Op1;
Arg2 : Node_Id := Op2;
Call_Node : Node_Id;
Proc_Name : Entity_Id;
begin
if Kind = N_Op_Not then
if Nkind (Op1) in N_Binary_Op then
-- Use negated version of the binary operators
if Nkind (Op1) = N_Op_And then
Proc_Name := RTE (RE_Vector_Nand);
elsif Nkind (Op1) = N_Op_Or then
Proc_Name := RTE (RE_Vector_Nor);
else pragma Assert (Nkind (Op1) = N_Op_Xor);
Proc_Name := RTE (RE_Vector_Xor);
end if;
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Name, Loc),
Parameter_Associations => New_List (
Target,
Make_Attribute_Reference (Loc,
Prefix => Left_Opnd (Op1),
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Right_Opnd (Op1),
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Left_Opnd (Op1),
Attribute_Name => Name_Length)));
else
Proc_Name := RTE (RE_Vector_Not);
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Name, Loc),
Parameter_Associations => New_List (
Target,
Make_Attribute_Reference (Loc,
Prefix => Op1,
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Op1,
Attribute_Name => Name_Length)));
end if;
else
-- We use the following equivalences:
-- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
-- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
-- (not X) xor (not Y) = X xor Y
-- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
if Nkind (Op1) = N_Op_Not then
Arg1 := Right_Opnd (Op1);
Arg2 := Right_Opnd (Op2);
if Kind = N_Op_And then
Proc_Name := RTE (RE_Vector_Nor);
elsif Kind = N_Op_Or then
Proc_Name := RTE (RE_Vector_Nand);
else
Proc_Name := RTE (RE_Vector_Xor);
end if;
else
if Kind = N_Op_And then
Proc_Name := RTE (RE_Vector_And);
elsif Kind = N_Op_Or then
Proc_Name := RTE (RE_Vector_Or);
elsif Nkind (Op2) = N_Op_Not then
Proc_Name := RTE (RE_Vector_Nxor);
Arg2 := Right_Opnd (Op2);
else
Proc_Name := RTE (RE_Vector_Xor);
end if;
end if;
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Name, Loc),
Parameter_Associations => New_List (
Target,
Make_Attribute_Reference (Loc,
Prefix => Arg1,
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Arg2,
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Arg1,
Attribute_Name => Name_Length)));
end if;
Rewrite (N, Call_Node);
Analyze (N);
exception
when RE_Not_Available =>
return;
end Build_Boolean_Array_Proc_Call;
------------------------------
-- Current_Anonymous_Master --
------------------------------
function Current_Anonymous_Master return Entity_Id is
Decls : List_Id;
Loc : Source_Ptr;
Subp_Body : Node_Id;
Unit_Decl : Node_Id;
Unit_Id : Entity_Id;
begin
Unit_Id := Cunit_Entity (Current_Sem_Unit);
-- Find the entity of the current unit
if Ekind (Unit_Id) = E_Subprogram_Body then
-- When processing subprogram bodies, the proper scope is always that
-- of the spec.
Subp_Body := Unit_Id;
while Present (Subp_Body)
and then Nkind (Subp_Body) /= N_Subprogram_Body
loop
Subp_Body := Parent (Subp_Body);
end loop;
Unit_Id := Corresponding_Spec (Subp_Body);
end if;
Loc := Sloc (Unit_Id);
Unit_Decl := Unit (Cunit (Current_Sem_Unit));
-- Find the declarations list of the current unit
if Nkind (Unit_Decl) = N_Package_Declaration then
Unit_Decl := Specification (Unit_Decl);
Decls := Visible_Declarations (Unit_Decl);
if No (Decls) then
Decls := New_List (Make_Null_Statement (Loc));
Set_Visible_Declarations (Unit_Decl, Decls);
elsif Is_Empty_List (Decls) then
Append_To (Decls, Make_Null_Statement (Loc));
end if;
else
Decls := Declarations (Unit_Decl);
if No (Decls) then
Decls := New_List (Make_Null_Statement (Loc));
Set_Declarations (Unit_Decl, Decls);
elsif Is_Empty_List (Decls) then
Append_To (Decls, Make_Null_Statement (Loc));
end if;
end if;
-- The current unit has an existing anonymous master, traverse its
-- declarations and locate the entity.
if Has_Anonymous_Master (Unit_Id) then
declare
Decl : Node_Id;
Fin_Mas_Id : Entity_Id;
begin
Decl := First (Decls);
while Present (Decl) loop
-- Look for the first variable in the declarations whole type
-- is Finalization_Master.
if Nkind (Decl) = N_Object_Declaration then
Fin_Mas_Id := Defining_Identifier (Decl);
if Ekind (Fin_Mas_Id) = E_Variable
and then Etype (Fin_Mas_Id) = RTE (RE_Finalization_Master)
then
return Fin_Mas_Id;
end if;
end if;
Next (Decl);
end loop;
-- The master was not found even though the unit was labeled as
-- having one.
raise Program_Error;
end;
-- Create a new anonymous master
else
declare
First_Decl : constant Node_Id := First (Decls);
Action : Node_Id;
Fin_Mas_Id : Entity_Id;
begin
-- Since the master and its associated initialization is inserted
-- at top level, use the scope of the unit when analyzing.
Push_Scope (Unit_Id);
-- Create the finalization master
Fin_Mas_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Unit_Id), "AM"));
-- Generate:
-- <Fin_Mas_Id> : Finalization_Master;
Action :=
Make_Object_Declaration (Loc,
Defining_Identifier => Fin_Mas_Id,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Finalization_Master), Loc));
Insert_Before_And_Analyze (First_Decl, Action);
-- Mark the unit to prevent the generation of multiple masters
Set_Has_Anonymous_Master (Unit_Id);
-- Do not set the base pool and mode of operation on .NET/JVM
-- since those targets do not support pools and all VM masters
-- are heterogeneous by default.
if VM_Target = No_VM then
-- Generate:
-- Set_Base_Pool
-- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
Action :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Set_Base_Pool), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Fin_Mas_Id, Loc),
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (RTE (RE_Global_Pool_Object), Loc),
Attribute_Name => Name_Unrestricted_Access)));
Insert_Before_And_Analyze (First_Decl, Action);
-- Generate:
-- Set_Is_Heterogeneous (<Fin_Mas_Id>);
Action :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Set_Is_Heterogeneous), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Fin_Mas_Id, Loc)));
Insert_Before_And_Analyze (First_Decl, Action);
end if;
-- Restore the original state of the scope stack
Pop_Scope;
return Fin_Mas_Id;
end;
end if;
end Current_Anonymous_Master;
--------------------------------
-- Displace_Allocator_Pointer --
--------------------------------
procedure Displace_Allocator_Pointer (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Orig_Node : constant Node_Id := Original_Node (N);
Dtyp : Entity_Id;
Etyp : Entity_Id;
PtrT : Entity_Id;
begin
-- Do nothing in case of VM targets: the virtual machine will handle
-- interfaces directly.
if not Tagged_Type_Expansion then
return;
end if;
pragma Assert (Nkind (N) = N_Identifier
and then Nkind (Orig_Node) = N_Allocator);
PtrT := Etype (Orig_Node);
Dtyp := Available_View (Designated_Type (PtrT));
Etyp := Etype (Expression (Orig_Node));
if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
-- If the type of the allocator expression is not an interface type
-- we can generate code to reference the record component containing
-- the pointer to the secondary dispatch table.
if not Is_Interface (Etyp) then
declare
Saved_Typ : constant Entity_Id := Etype (Orig_Node);
begin
-- 1) Get access to the allocated object
Rewrite (N,
Make_Explicit_Dereference (Loc, Relocate_Node (N)));
Set_Etype (N, Etyp);
Set_Analyzed (N);
-- 2) Add the conversion to displace the pointer to reference
-- the secondary dispatch table.
Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
Analyze_And_Resolve (N, Dtyp);
-- 3) The 'access to the secondary dispatch table will be used
-- as the value returned by the allocator.
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (N),
Attribute_Name => Name_Access));
Set_Etype (N, Saved_Typ);
Set_Analyzed (N);
end;
-- If the type of the allocator expression is an interface type we
-- generate a run-time call to displace "this" to reference the
-- component containing the pointer to the secondary dispatch table
-- or else raise Constraint_Error if the actual object does not
-- implement the target interface. This case corresponds to the
-- following example:
-- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
-- begin
-- return new Iface_2'Class'(Obj);
-- end Op;
else
Rewrite (N,
Unchecked_Convert_To (PtrT,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To (RTE (RE_Address),
Relocate_Node (N)),
New_Occurrence_Of
(Elists.Node
(First_Elmt
(Access_Disp_Table (Etype (Base_Type (Dtyp))))),
Loc)))));
Analyze_And_Resolve (N, PtrT);
end if;
end if;
end Displace_Allocator_Pointer;
---------------------------------
-- Expand_Allocator_Expression --
---------------------------------
procedure Expand_Allocator_Expression (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Exp : constant Node_Id := Expression (Expression (N));
PtrT : constant Entity_Id := Etype (N);
DesigT : constant Entity_Id := Designated_Type (PtrT);
procedure Apply_Accessibility_Check
(Ref : Node_Id;
Built_In_Place : Boolean := False);
-- Ada 2005 (AI-344): For an allocator with a class-wide designated
-- type, generate an accessibility check to verify that the level of the
-- type of the created object is not deeper than the level of the access
-- type. If the type of the qualified expression is class-wide, then
-- always generate the check (except in the case where it is known to be
-- unnecessary, see comment below). Otherwise, only generate the check
-- if the level of the qualified expression type is statically deeper
-- than the access type.
--
-- Although the static accessibility will generally have been performed
-- as a legality check, it won't have been done in cases where the
-- allocator appears in generic body, so a run-time check is needed in
-- general. One special case is when the access type is declared in the
-- same scope as the class-wide allocator, in which case the check can
-- never fail, so it need not be generated.
--
-- As an open issue, there seem to be cases where the static level
-- associated with the class-wide object's underlying type is not
-- sufficient to perform the proper accessibility check, such as for
-- allocators in nested subprograms or accept statements initialized by
-- class-wide formals when the actual originates outside at a deeper
-- static level. The nested subprogram case might require passing
-- accessibility levels along with class-wide parameters, and the task
-- case seems to be an actual gap in the language rules that needs to
-- be fixed by the ARG. ???
-------------------------------
-- Apply_Accessibility_Check --
-------------------------------
procedure Apply_Accessibility_Check
(Ref : Node_Id;
Built_In_Place : Boolean := False)
is
Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
Cond : Node_Id;
Fin_Call : Node_Id;
Free_Stmt : Node_Id;
Obj_Ref : Node_Id;
Stmts : List_Id;
begin
if Ada_Version >= Ada_2005
and then Is_Class_Wide_Type (DesigT)
and then (Tagged_Type_Expansion or else VM_Target /= No_VM)
and then not Scope_Suppress.Suppress (Accessibility_Check)
and then
(Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
or else
(Is_Class_Wide_Type (Etype (Exp))
and then Scope (PtrT) /= Current_Scope))
then
-- If the allocator was built in place, Ref is already a reference
-- to the access object initialized to the result of the allocator
-- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
-- Remove_Side_Effects for cases where the build-in-place call may
-- still be the prefix of the reference (to avoid generating
-- duplicate calls). Otherwise, it is the entity associated with
-- the object containing the address of the allocated object.
if Built_In_Place then
Remove_Side_Effects (Ref);
Obj_Ref := New_Copy_Tree (Ref);
else
Obj_Ref := New_Occurrence_Of (Ref, Loc);
end if;
-- For access to interface types we must generate code to displace
-- the pointer to the base of the object since the subsequent code
-- references components located in the TSD of the object (which
-- is associated with the primary dispatch table --see a-tags.ads)
-- and also generates code invoking Free, which requires also a
-- reference to the base of the unallocated object.
if Is_Interface (DesigT) and then Tagged_Type_Expansion then
Obj_Ref :=
Unchecked_Convert_To (Etype (Obj_Ref),
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Base_Address), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To (RTE (RE_Address),
New_Copy_Tree (Obj_Ref)))));
end if;
-- Step 1: Create the object clean up code
Stmts := New_List;
-- Deallocate the object if the accessibility check fails. This
-- is done only on targets or profiles that support deallocation.
-- Free (Obj_Ref);
if RTE_Available (RE_Free) then
Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
Set_Storage_Pool (Free_Stmt, Pool_Id);
Append_To (Stmts, Free_Stmt);
-- The target or profile cannot deallocate objects
else
Free_Stmt := Empty;
end if;
-- Finalize the object if applicable. Generate:
-- [Deep_]Finalize (Obj_Ref.all);
if Needs_Finalization (DesigT) then
Fin_Call :=
Make_Final_Call
(Obj_Ref =>
Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
Typ => DesigT);
-- When the target or profile supports deallocation, wrap the
-- finalization call in a block to ensure proper deallocation
-- even if finalization fails. Generate:
-- begin
-- <Fin_Call>
-- exception
-- when others =>
-- <Free_Stmt>
-- raise;
-- end;
if Present (Free_Stmt) then
Fin_Call :=
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Fin_Call),
Exception_Handlers => New_List (
Make_Exception_Handler (Loc,
Exception_Choices => New_List (
Make_Others_Choice (Loc)),
Statements => New_List (
New_Copy_Tree (Free_Stmt),
Make_Raise_Statement (Loc))))));
end if;
Prepend_To (Stmts, Fin_Call);
end if;
-- Signal the accessibility failure through a Program_Error
Append_To (Stmts,
Make_Raise_Program_Error (Loc,
Condition => New_Occurrence_Of (Standard_True, Loc),
Reason => PE_Accessibility_Check_Failed));
-- Step 2: Create the accessibility comparison
-- Generate:
-- Ref'Tag
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix => Obj_Ref,
Attribute_Name => Name_Tag);
-- For tagged types, determine the accessibility level by looking
-- at the type specific data of the dispatch table. Generate:
-- Type_Specific_Data (Address (Ref'Tag)).Access_Level
if Tagged_Type_Expansion then
Cond := Build_Get_Access_Level (Loc, Obj_Ref);
-- Use a runtime call to determine the accessibility level when
-- compiling on virtual machine targets. Generate:
-- Get_Access_Level (Ref'Tag)
else
Cond :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
Parameter_Associations => New_List (Obj_Ref));
end if;
Cond :=
Make_Op_Gt (Loc,
Left_Opnd => Cond,
Right_Opnd =>
Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
-- Due to the complexity and side effects of the check, utilize an
-- if statement instead of the regular Program_Error circuitry.
Insert_Action (N,
Make_Implicit_If_Statement (N,
Condition => Cond,
Then_Statements => Stmts));
end if;
end Apply_Accessibility_Check;
-- Local variables
Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
Indic : constant Node_Id := Subtype_Mark (Expression (N));
T : constant Entity_Id := Entity (Indic);
Node : Node_Id;
Tag_Assign : Node_Id;
Temp : Entity_Id;
Temp_Decl : Node_Id;
TagT : Entity_Id := Empty;
-- Type used as source for tag assignment
TagR : Node_Id := Empty;
-- Target reference for tag assignment
-- Start of processing for Expand_Allocator_Expression
begin
-- Handle call to C++ constructor
if Is_CPP_Constructor_Call (Exp) then
Make_CPP_Constructor_Call_In_Allocator
(Allocator => N,
Function_Call => Exp);
return;
end if;
-- In the case of an Ada 2012 allocator whose initial value comes from a
-- function call, pass "the accessibility level determined by the point
-- of call" (AI05-0234) to the function. Conceptually, this belongs in
-- Expand_Call but it couldn't be done there (because the Etype of the
-- allocator wasn't set then) so we generate the parameter here. See
-- the Boolean variable Defer in (a block within) Expand_Call.
if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
declare
Subp : Entity_Id;
begin
if Nkind (Name (Exp)) = N_Explicit_Dereference then
Subp := Designated_Type (Etype (Prefix (Name (Exp))));
else
Subp := Entity (Name (Exp));
end if;
Subp := Ultimate_Alias (Subp);
if Present (Extra_Accessibility_Of_Result (Subp)) then
Add_Extra_Actual_To_Call
(Subprogram_Call => Exp,
Extra_Formal => Extra_Accessibility_Of_Result (Subp),
Extra_Actual => Dynamic_Accessibility_Level (PtrT));
end if;
end;
end if;
-- Case of tagged type or type requiring finalization
if Is_Tagged_Type (T) or else Needs_Finalization (T) then
-- Ada 2005 (AI-318-02): If the initialization expression is a call
-- to a build-in-place function, then access to the allocated object
-- must be passed to the function. Currently we limit such functions
-- to those with constrained limited result subtypes, but eventually
-- we plan to expand the allowed forms of functions that are treated
-- as build-in-place.
if Ada_Version >= Ada_2005
and then Is_Build_In_Place_Function_Call (Exp)
then
Make_Build_In_Place_Call_In_Allocator (N, Exp);
Apply_Accessibility_Check (N, Built_In_Place => True);
return;
end if;
-- Actions inserted before:
-- Temp : constant ptr_T := new T'(Expression);
-- Temp._tag = T'tag; -- when not class-wide
-- [Deep_]Adjust (Temp.all);
-- We analyze by hand the new internal allocator to avoid any
-- recursion and inappropriate call to Initialize.
-- We don't want to remove side effects when the expression must be
-- built in place. In the case of a build-in-place function call,
-- that could lead to a duplication of the call, which was already
-- substituted for the allocator.
if not Aggr_In_Place then
Remove_Side_Effects (Exp);
end if;
Temp := Make_Temporary (Loc, 'P', N);
-- For a class wide allocation generate the following code:
-- type Equiv_Record is record ... end record;
-- implicit subtype CW is <Class_Wide_Subytpe>;
-- temp : PtrT := new CW'(CW!(expr));
if Is_Class_Wide_Type (T) then
Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
-- Ada 2005 (AI-251): If the expression is a class-wide interface
-- object we generate code to move up "this" to reference the
-- base of the object before allocating the new object.
-- Note that Exp'Address is recursively expanded into a call
-- to Base_Address (Exp.Tag)
if Is_Class_Wide_Type (Etype (Exp))
and then Is_Interface (Etype (Exp))
and then Tagged_Type_Expansion
then
Set_Expression
(Expression (N),
Unchecked_Convert_To (Entity (Indic),
Make_Explicit_Dereference (Loc,
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
Make_Attribute_Reference (Loc,
Prefix => Exp,
Attribute_Name => Name_Address)))));
else
Set_Expression
(Expression (N),
Unchecked_Convert_To (Entity (Indic), Exp));
end if;
Analyze_And_Resolve (Expression (N), Entity (Indic));
end if;
-- Processing for allocators returning non-interface types
if not Is_Interface (Directly_Designated_Type (PtrT)) then
if Aggr_In_Place then
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression =>
Make_Allocator (Loc,
Expression =>
New_Occurrence_Of (Etype (Exp), Loc)));
-- Copy the Comes_From_Source flag for the allocator we just
-- built, since logically this allocator is a replacement of
-- the original allocator node. This is for proper handling of
-- restriction No_Implicit_Heap_Allocations.
Set_Comes_From_Source
(Expression (Temp_Decl), Comes_From_Source (N));
Set_No_Initialization (Expression (Temp_Decl));
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
-- Attach the object to the associated finalization master.
-- This is done manually on .NET/JVM since those compilers do
-- no support pools and can't benefit from internally generated
-- Allocate / Deallocate procedures.
if VM_Target /= No_VM
and then Is_Controlled (DesigT)
and then Present (Finalization_Master (PtrT))
then
Insert_Action (N,
Make_Attach_Call
(Obj_Ref => New_Occurrence_Of (Temp, Loc),
Ptr_Typ => PtrT));
end if;
else
Node := Relocate_Node (N);
Set_Analyzed (Node);
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression => Node);
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
-- Attach the object to the associated finalization master.
-- This is done manually on .NET/JVM since those compilers do
-- no support pools and can't benefit from internally generated
-- Allocate / Deallocate procedures.
if VM_Target /= No_VM
and then Is_Controlled (DesigT)
and then Present (Finalization_Master (PtrT))
then
Insert_Action (N,
Make_Attach_Call
(Obj_Ref => New_Occurrence_Of (Temp, Loc),
Ptr_Typ => PtrT));
end if;
end if;
-- Ada 2005 (AI-251): Handle allocators whose designated type is an
-- interface type. In this case we use the type of the qualified
-- expression to allocate the object.
else
declare
Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
New_Decl : Node_Id;
begin
New_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Def_Id,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Null_Exclusion_Present => False,
Constant_Present =>
Is_Access_Constant (Etype (N)),
Subtype_Indication =>
New_Occurrence_Of (Etype (Exp), Loc)));
Insert_Action (N, New_Decl);
-- Inherit the allocation-related attributes from the original
-- access type.
Set_Finalization_Master
(Def_Id, Finalization_Master (PtrT));
Set_Associated_Storage_Pool
(Def_Id, Associated_Storage_Pool (PtrT));
-- Declare the object using the previous type declaration
if Aggr_In_Place then
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Def_Id, Loc),
Expression =>
Make_Allocator (Loc,
New_Occurrence_Of (Etype (Exp), Loc)));
-- Copy the Comes_From_Source flag for the allocator we just
-- built, since logically this allocator is a replacement of
-- the original allocator node. This is for proper handling
-- of restriction No_Implicit_Heap_Allocations.
Set_Comes_From_Source
(Expression (Temp_Decl), Comes_From_Source (N));
Set_No_Initialization (Expression (Temp_Decl));
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
else
Node := Relocate_Node (N);
Set_Analyzed (Node);
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Def_Id, Loc),
Expression => Node);
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
end if;
-- Generate an additional object containing the address of the
-- returned object. The type of this second object declaration
-- is the correct type required for the common processing that
-- is still performed by this subprogram. The displacement of
-- this pointer to reference the component associated with the
-- interface type will be done at the end of common processing.
New_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'P'),
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression =>
Unchecked_Convert_To (PtrT,
New_Occurrence_Of (Temp, Loc)));
Insert_Action (N, New_Decl);
Temp_Decl := New_Decl;
Temp := Defining_Identifier (New_Decl);
end;
end if;
Apply_Accessibility_Check (Temp);
-- Generate the tag assignment
-- Suppress the tag assignment when VM_Target because VM tags are
-- represented implicitly in objects.
if not Tagged_Type_Expansion then
null;
-- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
-- interface objects because in this case the tag does not change.
elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
pragma Assert (Is_Class_Wide_Type
(Directly_Designated_Type (Etype (N))));
null;
elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
TagT := T;
TagR := New_Occurrence_Of (Temp, Loc);
elsif Is_Private_Type (T)
and then Is_Tagged_Type (Underlying_Type (T))
then
TagT := Underlying_Type (T);
TagR :=
Unchecked_Convert_To (Underlying_Type (T),
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc)));
end if;
if Present (TagT) then
declare
Full_T : constant Entity_Id := Underlying_Type (TagT);
begin
Tag_Assign :=
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => TagR,
Selector_Name =>
New_Occurrence_Of
(First_Tag_Component (Full_T), Loc)),
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Occurrence_Of
(Elists.Node
(First_Elmt (Access_Disp_Table (Full_T))), Loc)));
end;
-- The previous assignment has to be done in any case
Set_Assignment_OK (Name (Tag_Assign));
Insert_Action (N, Tag_Assign);
end if;
if Needs_Finalization (DesigT) and then Needs_Finalization (T) then
-- Generate an Adjust call if the object will be moved. In Ada
-- 2005, the object may be inherently limited, in which case
-- there is no Adjust procedure, and the object is built in
-- place. In Ada 95, the object can be limited but not
-- inherently limited if this allocator came from a return
-- statement (we're allocating the result on the secondary
-- stack). In that case, the object will be moved, so we _do_
-- want to Adjust.
if not Aggr_In_Place
and then not Is_Limited_View (T)
then
Insert_Action (N,
-- An unchecked conversion is needed in the classwide case
-- because the designated type can be an ancestor of the
-- subtype mark of the allocator.
Make_Adjust_Call
(Obj_Ref =>
Unchecked_Convert_To (T,
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc))),
Typ => T));
end if;
-- Generate:
-- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
-- Do not generate this call in the following cases:
-- * .NET/JVM - these targets do not support address arithmetic
-- and unchecked conversion, key elements of Finalize_Address.
-- * CodePeer mode - TSS primitive Finalize_Address is not
-- created in this mode.
if VM_Target = No_VM
and then not CodePeer_Mode
and then Present (Finalization_Master (PtrT))
and then Present (Temp_Decl)
and then Nkind (Expression (Temp_Decl)) = N_Allocator
then
Insert_Action (N,
Make_Set_Finalize_Address_Call
(Loc => Loc,
Typ => T,
Ptr_Typ => PtrT));
end if;
end if;
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, PtrT);
-- Ada 2005 (AI-251): Displace the pointer to reference the record
-- component containing the secondary dispatch table of the interface
-- type.
if Is_Interface (Directly_Designated_Type (PtrT)) then
Displace_Allocator_Pointer (N);
end if;
elsif Aggr_In_Place then
Temp := Make_Temporary (Loc, 'P', N);
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression =>
Make_Allocator (Loc,
Expression => New_Occurrence_Of (Etype (Exp), Loc)));
-- Copy the Comes_From_Source flag for the allocator we just built,
-- since logically this allocator is a replacement of the original
-- allocator node. This is for proper handling of restriction
-- No_Implicit_Heap_Allocations.
Set_Comes_From_Source
(Expression (Temp_Decl), Comes_From_Source (N));
Set_No_Initialization (Expression (Temp_Decl));
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
-- Attach the object to the associated finalization master. Thisis
-- done manually on .NET/JVM since those compilers do no support
-- pools and cannot benefit from internally generated Allocate and
-- Deallocate procedures.
if VM_Target /= No_VM
and then Is_Controlled (DesigT)
and then Present (Finalization_Master (PtrT))
then
Insert_Action (N,
Make_Attach_Call
(Obj_Ref => New_Occurrence_Of (Temp, Loc),
Ptr_Typ => PtrT));
end if;
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, PtrT);
elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
Install_Null_Excluding_Check (Exp);
elsif Is_Access_Type (DesigT)
and then Nkind (Exp) = N_Allocator
and then Nkind (Expression (Exp)) /= N_Qualified_Expression
then
-- Apply constraint to designated subtype indication
Apply_Constraint_Check
(Expression (Exp), Designated_Type (DesigT), No_Sliding => True);
if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
-- Propagate constraint_error to enclosing allocator
Rewrite (Exp, New_Copy (Expression (Exp)));
end if;
else
Build_Allocate_Deallocate_Proc (N, True);
-- If we have:
-- type A is access T1;
-- X : A := new T2'(...);
-- T1 and T2 can be different subtypes, and we might need to check
-- both constraints. First check against the type of the qualified
-- expression.
Apply_Constraint_Check (Exp, T, No_Sliding => True);
if Do_Range_Check (Exp) then
Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
end if;
-- A check is also needed in cases where the designated subtype is
-- constrained and differs from the subtype given in the qualified
-- expression. Note that the check on the qualified expression does
-- not allow sliding, but this check does (a relaxation from Ada 83).
if Is_Constrained (DesigT)
and then not Subtypes_Statically_Match (T, DesigT)
then
Apply_Constraint_Check
(Exp, DesigT, No_Sliding => False);
if Do_Range_Check (Exp) then
Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
end if;
end if;
-- For an access to unconstrained packed array, GIGI needs to see an
-- expression with a constrained subtype in order to compute the
-- proper size for the allocator.
if Is_Array_Type (T)
and then not Is_Constrained (T)
and then Is_Packed (T)
then
declare
ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
Internal_Exp : constant Node_Id := Relocate_Node (Exp);
begin
Insert_Action (Exp,
Make_Subtype_Declaration (Loc,
Defining_Identifier => ConstrT,
Subtype_Indication =>
Make_Subtype_From_Expr (Internal_Exp, T)));
Freeze_Itype (ConstrT, Exp);
Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
end;
end if;
-- Ada 2005 (AI-318-02): If the initialization expression is a call
-- to a build-in-place function, then access to the allocated object
-- must be passed to the function. Currently we limit such functions
-- to those with constrained limited result subtypes, but eventually
-- we plan to expand the allowed forms of functions that are treated
-- as build-in-place.
if Ada_Version >= Ada_2005
and then Is_Build_In_Place_Function_Call (Exp)
then
Make_Build_In_Place_Call_In_Allocator (N, Exp);
end if;
end if;
exception
when RE_Not_Available =>
return;
end Expand_Allocator_Expression;
-----------------------------
-- Expand_Array_Comparison --
-----------------------------
-- Expansion is only required in the case of array types. For the unpacked
-- case, an appropriate runtime routine is called. For packed cases, and
-- also in some other cases where a runtime routine cannot be called, the
-- form of the expansion is:
-- [body for greater_nn; boolean_expression]
-- The body is built by Make_Array_Comparison_Op, and the form of the
-- Boolean expression depends on the operator involved.
procedure Expand_Array_Comparison (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Op1 : Node_Id := Left_Opnd (N);
Op2 : Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
Ctyp : constant Entity_Id := Component_Type (Typ1);
Expr : Node_Id;
Func_Body : Node_Id;
Func_Name : Entity_Id;
Comp : RE_Id;
Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
-- True for byte addressable target
function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
-- Returns True if the length of the given operand is known to be less
-- than 4. Returns False if this length is known to be four or greater
-- or is not known at compile time.
------------------------
-- Length_Less_Than_4 --
------------------------
function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
Otyp : constant Entity_Id := Etype (Opnd);
begin
if Ekind (Otyp) = E_String_Literal_Subtype then
return String_Literal_Length (Otyp) < 4;
else
declare
Ityp : constant Entity_Id := Etype (First_Index (Otyp));
Lo : constant Node_Id := Type_Low_Bound (Ityp);
Hi : constant Node_Id := Type_High_Bound (Ityp);
Lov : Uint;
Hiv : Uint;
begin
if Compile_Time_Known_Value (Lo) then
Lov := Expr_Value (Lo);
else
return False;
end if;
if Compile_Time_Known_Value (Hi) then
Hiv := Expr_Value (Hi);
else
return False;
end if;
return Hiv < Lov + 3;
end;
end if;
end Length_Less_Than_4;
-- Start of processing for Expand_Array_Comparison
begin
-- Deal first with unpacked case, where we can call a runtime routine
-- except that we avoid this for targets for which are not addressable
-- by bytes, and for the JVM/CIL, since they do not support direct
-- addressing of array components.
if not Is_Bit_Packed_Array (Typ1)
and then Byte_Addressable
and then VM_Target = No_VM
then
-- The call we generate is:
-- Compare_Array_xn[_Unaligned]
-- (left'address, right'address, left'length, right'length) <op> 0
-- x = U for unsigned, S for signed
-- n = 8,16,32,64 for component size
-- Add _Unaligned if length < 4 and component size is 8.
-- <op> is the standard comparison operator
if Component_Size (Typ1) = 8 then
if Length_Less_Than_4 (Op1)
or else
Length_Less_Than_4 (Op2)
then
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U8_Unaligned;
else
Comp := RE_Compare_Array_S8_Unaligned;
end if;
else
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U8;
else
Comp := RE_Compare_Array_S8;
end if;
end if;
elsif Component_Size (Typ1) = 16 then
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U16;
else
Comp := RE_Compare_Array_S16;
end if;
elsif Component_Size (Typ1) = 32 then
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U32;
else
Comp := RE_Compare_Array_S32;
end if;
else pragma Assert (Component_Size (Typ1) = 64);
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U64;
else
Comp := RE_Compare_Array_S64;
end if;
end if;
Remove_Side_Effects (Op1, Name_Req => True);
Remove_Side_Effects (Op2, Name_Req => True);
Rewrite (Op1,
Make_Function_Call (Sloc (Op1),
Name => New_Occurrence_Of (RTE (Comp), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Op1),
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Op2),
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Op1),
Attribute_Name => Name_Length),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Op2),
Attribute_Name => Name_Length))));
Rewrite (Op2,
Make_Integer_Literal (Sloc (Op2),
Intval => Uint_0));
Analyze_And_Resolve (Op1, Standard_Integer);
Analyze_And_Resolve (Op2, Standard_Integer);
return;
end if;
-- Cases where we cannot make runtime call
-- For (a <= b) we convert to not (a > b)
if Chars (N) = Name_Op_Le then
Rewrite (N,
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Gt (Loc,
Left_Opnd => Op1,
Right_Opnd => Op2)));
Analyze_And_Resolve (N, Standard_Boolean);
return;
-- For < the Boolean expression is
-- greater__nn (op2, op1)
elsif Chars (N) = Name_Op_Lt then
Func_Body := Make_Array_Comparison_Op (Typ1, N);
-- Switch operands
Op1 := Right_Opnd (N);
Op2 := Left_Opnd (N);
-- For (a >= b) we convert to not (a < b)
elsif Chars (N) = Name_Op_Ge then
Rewrite (N,
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Lt (Loc,
Left_Opnd => Op1,
Right_Opnd => Op2)));
Analyze_And_Resolve (N, Standard_Boolean);
return;
-- For > the Boolean expression is
-- greater__nn (op1, op2)
else
pragma Assert (Chars (N) = Name_Op_Gt);
Func_Body := Make_Array_Comparison_Op (Typ1, N);
end if;
Func_Name := Defining_Unit_Name (Specification (Func_Body));
Expr :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations => New_List (Op1, Op2));
Insert_Action (N, Func_Body);
Rewrite (N, Expr);
Analyze_And_Resolve (N, Standard_Boolean);
exception
when RE_Not_Available =>
return;
end Expand_Array_Comparison;
---------------------------
-- Expand_Array_Equality --
---------------------------
-- Expand an equality function for multi-dimensional arrays. Here is an
-- example of such a function for Nb_Dimension = 2
-- function Enn (A : atyp; B : btyp) return boolean is
-- begin
-- if (A'length (1) = 0 or else A'length (2) = 0)
-- and then
-- (B'length (1) = 0 or else B'length (2) = 0)
-- then
-- return True; -- RM 4.5.2(22)
-- end if;
-- if A'length (1) /= B'length (1)
-- or else
-- A'length (2) /= B'length (2)
-- then
-- return False; -- RM 4.5.2(23)
-- end if;
-- declare
-- A1 : Index_T1 := A'first (1);
-- B1 : Index_T1 := B'first (1);
-- begin
-- loop
-- declare
-- A2 : Index_T2 := A'first (2);
-- B2 : Index_T2 := B'first (2);
-- begin
-- loop
-- if A (A1, A2) /= B (B1, B2) then
-- return False;
-- end if;
-- exit when A2 = A'last (2);
-- A2 := Index_T2'succ (A2);
-- B2 := Index_T2'succ (B2);
-- end loop;
-- end;
-- exit when A1 = A'last (1);
-- A1 := Index_T1'succ (A1);
-- B1 := Index_T1'succ (B1);
-- end loop;
-- end;
-- return true;
-- end Enn;
-- Note on the formal types used (atyp and btyp). If either of the arrays
-- is of a private type, we use the underlying type, and do an unchecked
-- conversion of the actual. If either of the arrays has a bound depending
-- on a discriminant, then we use the base type since otherwise we have an
-- escaped discriminant in the function.
-- If both arrays are constrained and have the same bounds, we can generate
-- a loop with an explicit iteration scheme using a 'Range attribute over
-- the first array.
function Expand_Array_Equality
(Nod : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
Bodies : List_Id;
Typ : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
Decls : constant List_Id := New_List;
Index_List1 : constant List_Id := New_List;
Index_List2 : constant List_Id := New_List;
Actuals : List_Id;
Formals : List_Id;
Func_Name : Entity_Id;
Func_Body : Node_Id;
A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
Ltyp : Entity_Id;
Rtyp : Entity_Id;
-- The parameter types to be used for the formals
function Arr_Attr
(Arr : Entity_Id;
Nam : Name_Id;
Num : Int) return Node_Id;
-- This builds the attribute reference Arr'Nam (Expr)
function Component_Equality (Typ : Entity_Id) return Node_Id;
-- Create one statement to compare corresponding components, designated
-- by a full set of indexes.
function Get_Arg_Type (N : Node_Id) return Entity_Id;
-- Given one of the arguments, computes the appropriate type to be used
-- for that argument in the corresponding function formal
function Handle_One_Dimension
(N : Int;
Index : Node_Id) return Node_Id;
-- This procedure returns the following code
--
-- declare
-- Bn : Index_T := B'First (N);
-- begin
-- loop
-- xxx
-- exit when An = A'Last (N);
-- An := Index_T'Succ (An)
-- Bn := Index_T'Succ (Bn)
-- end loop;
-- end;
--
-- If both indexes are constrained and identical, the procedure
-- returns a simpler loop:
--
-- for An in A'Range (N) loop
-- xxx
-- end loop
--
-- N is the dimension for which we are generating a loop. Index is the
-- N'th index node, whose Etype is Index_Type_n in the above code. The
-- xxx statement is either the loop or declare for the next dimension
-- or if this is the last dimension the comparison of corresponding
-- components of the arrays.
--
-- The actual way the code works is to return the comparison of
-- corresponding components for the N+1 call. That's neater.
function Test_Empty_Arrays return Node_Id;
-- This function constructs the test for both arrays being empty
-- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
-- and then
-- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
function Test_Lengths_Correspond return Node_Id;
-- This function constructs the test for arrays having different lengths
-- in at least one index position, in which case the resulting code is:
-- A'length (1) /= B'length (1)
-- or else
-- A'length (2) /= B'length (2)
-- or else
-- ...
--------------
-- Arr_Attr --
--------------
function Arr_Attr
(Arr : Entity_Id;
Nam : Name_Id;
Num : Int) return Node_Id
is
begin
return
Make_Attribute_Reference (Loc,
Attribute_Name => Nam,
Prefix => New_Occurrence_Of (Arr, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, Num)));
end Arr_Attr;
------------------------
-- Component_Equality --
------------------------
function Component_Equality (Typ : Entity_Id) return Node_Id is
Test : Node_Id;
L, R : Node_Id;
begin
-- if a(i1...) /= b(j1...) then return false; end if;
L :=
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Chars (A)),
Expressions => Index_List1);
R :=
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Chars (B)),
Expressions => Index_List2);
Test := Expand_Composite_Equality
(Nod, Component_Type (Typ), L, R, Decls);
-- If some (sub)component is an unchecked_union, the whole operation
-- will raise program error.
if Nkind (Test) = N_Raise_Program_Error then
-- This node is going to be inserted at a location where a
-- statement is expected: clear its Etype so analysis will set
-- it to the expected Standard_Void_Type.
Set_Etype (Test, Empty);
return Test;
else
return
Make_Implicit_If_Statement (Nod,
Condition => Make_Op_Not (Loc, Right_Opnd => Test),
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))));
end if;
end Component_Equality;
------------------
-- Get_Arg_Type --
------------------
function Get_Arg_Type (N : Node_Id) return Entity_Id is
T : Entity_Id;
X : Node_Id;
begin
T := Etype (N);
if No (T) then
return Typ;
else
T := Underlying_Type (T);
X := First_Index (T);
while Present (X) loop
if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
or else
Denotes_Discriminant (Type_High_Bound (Etype (X)))
then
T := Base_Type (T);
exit;
end if;
Next_Index (X);
end loop;
return T;
end if;
end Get_Arg_Type;
--------------------------
-- Handle_One_Dimension --
---------------------------
function Handle_One_Dimension
(N : Int;
Index : Node_Id) return Node_Id
is
Need_Separate_Indexes : constant Boolean :=
Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
-- If the index types are identical, and we are working with
-- constrained types, then we can use the same index for both
-- of the arrays.
An : constant Entity_Id := Make_Temporary (Loc, 'A');
Bn : Entity_Id;
Index_T : Entity_Id;
Stm_List : List_Id;
Loop_Stm : Node_Id;
begin
if N > Number_Dimensions (Ltyp) then
return Component_Equality (Ltyp);
end if;
-- Case where we generate a loop
Index_T := Base_Type (Etype (Index));
if Need_Separate_Indexes then
Bn := Make_Temporary (Loc, 'B');
else
Bn := An;
end if;
Append (New_Occurrence_Of (An, Loc), Index_List1);
Append (New_Occurrence_Of (Bn, Loc), Index_List2);
Stm_List := New_List (
Handle_One_Dimension (N + 1, Next_Index (Index)));
if Need_Separate_Indexes then
-- Generate guard for loop, followed by increments of indexes
Append_To (Stm_List,
Make_Exit_Statement (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (An, Loc),
Right_Opnd => Arr_Attr (A, Name_Last, N))));
Append_To (Stm_List,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (An, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_T, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (
New_Occurrence_Of (An, Loc)))));
Append_To (Stm_List,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_T, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (
New_Occurrence_Of (Bn, Loc)))));
end if;
-- If separate indexes, we need a declare block for An and Bn, and a
-- loop without an iteration scheme.
if Need_Separate_Indexes then
Loop_Stm :=
Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
return
Make_Block_Statement (Loc,
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => An,
Object_Definition => New_Occurrence_Of (Index_T, Loc),
Expression => Arr_Attr (A, Name_First, N)),
Make_Object_Declaration (Loc,
Defining_Identifier => Bn,
Object_Definition => New_Occurrence_Of (Index_T, Loc),
Expression => Arr_Attr (B, Name_First, N))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Loop_Stm)));
-- If no separate indexes, return loop statement with explicit
-- iteration scheme on its own
else
Loop_Stm :=
Make_Implicit_Loop_Statement (Nod,
Statements => Stm_List,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => An,
Discrete_Subtype_Definition =>
Arr_Attr (A, Name_Range, N))));
return Loop_Stm;
end if;
end Handle_One_Dimension;
-----------------------
-- Test_Empty_Arrays --
-----------------------
function Test_Empty_Arrays return Node_Id is
Alist : Node_Id;
Blist : Node_Id;
Atest : Node_Id;
Btest : Node_Id;
begin
Alist := Empty;
Blist := Empty;
for J in 1 .. Number_Dimensions (Ltyp) loop
Atest :=
Make_Op_Eq (Loc,
Left_Opnd => Arr_Attr (A, Name_Length, J),
Right_Opnd => Make_Integer_Literal (Loc, 0));
Btest :=
Make_Op_Eq (Loc,
Left_Opnd => Arr_Attr (B, Name_Length, J),
Right_Opnd => Make_Integer_Literal (Loc, 0));
if No (Alist) then
Alist := Atest;
Blist := Btest;
else
Alist :=
Make_Or_Else (Loc,
Left_Opnd => Relocate_Node (Alist),
Right_Opnd => Atest);
Blist :=
Make_Or_Else (Loc,
Left_Opnd => Relocate_Node (Blist),
Right_Opnd => Btest);
end if;
end loop;
return
Make_And_Then (Loc,
Left_Opnd => Alist,
Right_Opnd => Blist);
end Test_Empty_Arrays;
-----------------------------
-- Test_Lengths_Correspond --
-----------------------------
function Test_Lengths_Correspond return Node_Id is
Result : Node_Id;
Rtest : Node_Id;
begin
Result := Empty;
for J in 1 .. Number_Dimensions (Ltyp) loop
Rtest :=
Make_Op_Ne (Loc,
Left_Opnd => Arr_Attr (A, Name_Length, J),
Right_Opnd => Arr_Attr (B, Name_Length, J));
if No (Result) then
Result := Rtest;
else
Result :=
Make_Or_Else (Loc,
Left_Opnd => Relocate_Node (Result),
Right_Opnd => Rtest);
end if;
end loop;
return Result;
end Test_Lengths_Correspond;
-- Start of processing for Expand_Array_Equality
begin
Ltyp := Get_Arg_Type (Lhs);
Rtyp := Get_Arg_Type (Rhs);
-- For now, if the argument types are not the same, go to the base type,
-- since the code assumes that the formals have the same type. This is
-- fixable in future ???
if Ltyp /= Rtyp then
Ltyp := Base_Type (Ltyp);
Rtyp := Base_Type (Rtyp);
pragma Assert (Ltyp = Rtyp);
end if;
-- Build list of formals for function
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => B,
Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
Func_Name := Make_Temporary (Loc, 'E');
-- Build statement sequence for function
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => Formals,
Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Implicit_If_Statement (Nod,
Condition => Test_Empty_Arrays,
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
New_Occurrence_Of (Standard_True, Loc)))),
Make_Implicit_If_Statement (Nod,
Condition => Test_Lengths_Correspond,
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc)))),
Handle_One_Dimension (1, First_Index (Ltyp)),
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc)))));
Set_Has_Completion (Func_Name, True);
Set_Is_Inlined (Func_Name);
-- If the array type is distinct from the type of the arguments, it
-- is the full view of a private type. Apply an unchecked conversion
-- to insure that analysis of the call succeeds.
declare
L, R : Node_Id;
begin
L := Lhs;
R := Rhs;
if No (Etype (Lhs))
or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
then
L := OK_Convert_To (Ltyp, Lhs);
end if;
if No (Etype (Rhs))
or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
then
R := OK_Convert_To (Rtyp, Rhs);
end if;
Actuals := New_List (L, R);
end;
Append_To (Bodies, Func_Body);
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations => Actuals);
end Expand_Array_Equality;
-----------------------------
-- Expand_Boolean_Operator --
-----------------------------
-- Note that we first get the actual subtypes of the operands, since we
-- always want to deal with types that have bounds.
procedure Expand_Boolean_Operator (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
-- Special case of bit packed array where both operands are known to be
-- properly aligned. In this case we use an efficient run time routine
-- to carry out the operation (see System.Bit_Ops).
if Is_Bit_Packed_Array (Typ)
and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
then
Expand_Packed_Boolean_Operator (N);
return;
end if;
-- For the normal non-packed case, the general expansion is to build
-- function for carrying out the comparison (use Make_Boolean_Array_Op)
-- and then inserting it into the tree. The original operator node is
-- then rewritten as a call to this function. We also use this in the
-- packed case if either operand is a possibly unaligned object.
declare
Loc : constant Source_Ptr := Sloc (N);
L : constant Node_Id := Relocate_Node (Left_Opnd (N));
R : constant Node_Id := Relocate_Node (Right_Opnd (N));
Func_Body : Node_Id;
Func_Name : Entity_Id;
begin
Convert_To_Actual_Subtype (L);
Convert_To_Actual_Subtype (R);
Ensure_Defined (Etype (L), N);
Ensure_Defined (Etype (R), N);
Apply_Length_Check (R, Etype (L));
if Nkind (N) = N_Op_Xor then
Silly_Boolean_Array_Xor_Test (N, Etype (L));
end if;
if Nkind (Parent (N)) = N_Assignment_Statement
and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
then
Build_Boolean_Array_Proc_Call (Parent (N), L, R);
elsif Nkind (Parent (N)) = N_Op_Not
and then Nkind (N) = N_Op_And
and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
and then Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
then
return;
else
Func_Body := Make_Boolean_Array_Op (Etype (L), N);
Func_Name := Defining_Unit_Name (Specification (Func_Body));
Insert_Action (N, Func_Body);
-- Now rewrite the expression with a call
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations =>
New_List (
L,
Make_Type_Conversion
(Loc, New_Occurrence_Of (Etype (L), Loc), R))));
Analyze_And_Resolve (N, Typ);
end if;
end;
end Expand_Boolean_Operator;
------------------------------------------------
-- Expand_Compare_Minimize_Eliminate_Overflow --
------------------------------------------------
procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Result_Type : constant Entity_Id := Etype (N);
-- Capture result type (could be a derived boolean type)
Llo, Lhi : Uint;
Rlo, Rhi : Uint;
LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
-- Entity for Long_Long_Integer'Base
Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
-- Current overflow checking mode
procedure Set_True;
procedure Set_False;
-- These procedures rewrite N with an occurrence of Standard_True or
-- Standard_False, and then makes a call to Warn_On_Known_Condition.
---------------
-- Set_False --
---------------
procedure Set_False is
begin
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
Warn_On_Known_Condition (N);
end Set_False;
--------------
-- Set_True --
--------------
procedure Set_True is
begin
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
Warn_On_Known_Condition (N);
end Set_True;
-- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
begin
-- Nothing to do unless we have a comparison operator with operands
-- that are signed integer types, and we are operating in either
-- MINIMIZED or ELIMINATED overflow checking mode.
if Nkind (N) not in N_Op_Compare
or else Check not in Minimized_Or_Eliminated
or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
then
return;
end if;
-- OK, this is the case we are interested in. First step is to process
-- our operands using the Minimize_Eliminate circuitry which applies
-- this processing to the two operand subtrees.
Minimize_Eliminate_Overflows
(Left_Opnd (N), Llo, Lhi, Top_Level => False);
Minimize_Eliminate_Overflows
(Right_Opnd (N), Rlo, Rhi, Top_Level => False);
-- See if the range information decides the result of the comparison.
-- We can only do this if we in fact have full range information (which
-- won't be the case if either operand is bignum at this stage).
if Llo /= No_Uint and then Rlo /= No_Uint then
case N_Op_Compare (Nkind (N)) is
when N_Op_Eq =>
if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
Set_True;
elsif Llo > Rhi or else Lhi < Rlo then
Set_False;
end if;
when N_Op_Ge =>
if Llo >= Rhi then
Set_True;
elsif Lhi < Rlo then
Set_False;
end if;
when N_Op_Gt =>
if Llo > Rhi then
Set_True;
elsif Lhi <= Rlo then
Set_False;
end if;
when N_Op_Le =>
if Llo > Rhi then
Set_False;
elsif Lhi <= Rlo then
Set_True;
end if;
when N_Op_Lt =>
if Llo >= Rhi then
Set_False;
elsif Lhi < Rlo then
Set_True;
end if;
when N_Op_Ne =>
if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
Set_False;
elsif Llo > Rhi or else Lhi < Rlo then
Set_True;
end if;
end case;
-- All done if we did the rewrite
if Nkind (N) not in N_Op_Compare then
return;
end if;
end if;
-- Otherwise, time to do the comparison
declare
Ltype : constant Entity_Id := Etype (Left_Opnd (N));
Rtype : constant Entity_Id := Etype (Right_Opnd (N));
begin
-- If the two operands have the same signed integer type we are
-- all set, nothing more to do. This is the case where either
-- both operands were unchanged, or we rewrote both of them to
-- be Long_Long_Integer.
-- Note: Entity for the comparison may be wrong, but it's not worth
-- the effort to change it, since the back end does not use it.
if Is_Signed_Integer_Type (Ltype)
and then Base_Type (Ltype) = Base_Type (Rtype)
then
return;
-- Here if bignums are involved (can only happen in ELIMINATED mode)
elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
declare
Left : Node_Id := Left_Opnd (N);
Right : Node_Id := Right_Opnd (N);
-- Bignum references for left and right operands
begin
if not Is_RTE (Ltype, RE_Bignum) then
Left := Convert_To_Bignum (Left);
elsif not Is_RTE (Rtype, RE_Bignum) then
Right := Convert_To_Bignum (Right);
end if;
-- We rewrite our node with:
-- do
-- Bnn : Result_Type;
-- declare
-- M : Mark_Id := SS_Mark;
-- begin
-- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
-- SS_Release (M);
-- end;
-- in
-- Bnn
-- end
declare
Blk : constant Node_Id := Make_Bignum_Block (Loc);
Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
Ent : RE_Id;
begin
case N_Op_Compare (Nkind (N)) is
when N_Op_Eq => Ent := RE_Big_EQ;
when N_Op_Ge => Ent := RE_Big_GE;
when N_Op_Gt => Ent := RE_Big_GT;
when N_Op_Le => Ent := RE_Big_LE;
when N_Op_Lt => Ent := RE_Big_LT;
when N_Op_Ne => Ent := RE_Big_NE;
end case;
-- Insert assignment to Bnn into the bignum block
Insert_Before
(First (Statements (Handled_Statement_Sequence (Blk))),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (Ent), Loc),
Parameter_Associations => New_List (Left, Right))));
-- Now do the rewrite with expression actions
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Bnn,
Object_Definition =>
New_Occurrence_Of (Result_Type, Loc)),
Blk),
Expression => New_Occurrence_Of (Bnn, Loc)));
Analyze_And_Resolve (N, Result_Type);
end;
end;
-- No bignums involved, but types are different, so we must have
-- rewritten one of the operands as a Long_Long_Integer but not
-- the other one.
-- If left operand is Long_Long_Integer, convert right operand
-- and we are done (with a comparison of two Long_Long_Integers).
elsif Ltype = LLIB then
Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
return;
-- If right operand is Long_Long_Integer, convert left operand
-- and we are done (with a comparison of two Long_Long_Integers).
-- This is the only remaining possibility
else pragma Assert (Rtype = LLIB);
Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
return;
end if;
end;
end Expand_Compare_Minimize_Eliminate_Overflow;
-------------------------------
-- Expand_Composite_Equality --
-------------------------------
-- This function is only called for comparing internal fields of composite
-- types when these fields are themselves composites. This is a special
-- case because it is not possible to respect normal Ada visibility rules.
function Expand_Composite_Equality
(Nod : Node_Id;
Typ : Entity_Id;
Lhs : Node_Id;
Rhs : Node_Id;
Bodies : List_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
Full_Type : Entity_Id;
Prim : Elmt_Id;
Eq_Op : Entity_Id;
function Find_Primitive_Eq return Node_Id;
-- AI05-0123: Locate primitive equality for type if it exists, and
-- build the corresponding call. If operation is abstract, replace
-- call with an explicit raise. Return Empty if there is no primitive.
-----------------------
-- Find_Primitive_Eq --
-----------------------
function Find_Primitive_Eq return Node_Id is
Prim_E : Elmt_Id;
Prim : Node_Id;
begin
Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
while Present (Prim_E) loop
Prim := Node (Prim_E);
-- Locate primitive equality with the right signature
if Chars (Prim) = Name_Op_Eq
and then Etype (First_Formal (Prim)) =
Etype (Next_Formal (First_Formal (Prim)))
and then Etype (Prim) = Standard_Boolean
then
if Is_Abstract_Subprogram (Prim) then
return
Make_Raise_Program_Error (Loc,
Reason => PE_Explicit_Raise);
else
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Prim, Loc),
Parameter_Associations => New_List (Lhs, Rhs));
end if;
end if;
Next_Elmt (Prim_E);
end loop;
-- If not found, predefined operation will be used
return Empty;
end Find_Primitive_Eq;
-- Start of processing for Expand_Composite_Equality
begin
if Is_Private_Type (Typ) then
Full_Type := Underlying_Type (Typ);
else
Full_Type := Typ;
end if;
-- If the private type has no completion the context may be the
-- expansion of a composite equality for a composite type with some
-- still incomplete components. The expression will not be analyzed
-- until the enclosing type is completed, at which point this will be
-- properly expanded, unless there is a bona fide completion error.
if No (Full_Type) then
return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
end if;
Full_Type := Base_Type (Full_Type);
-- When the base type itself is private, use the full view to expand
-- the composite equality.
if Is_Private_Type (Full_Type) then
Full_Type := Underlying_Type (Full_Type);
end if;
-- Case of array types
if Is_Array_Type (Full_Type) then
-- If the operand is an elementary type other than a floating-point
-- type, then we can simply use the built-in block bitwise equality,
-- since the predefined equality operators always apply and bitwise
-- equality is fine for all these cases.
if Is_Elementary_Type (Component_Type (Full_Type))
and then not Is_Floating_Point_Type (Component_Type (Full_Type))
then
return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
-- For composite component types, and floating-point types, use the
-- expansion. This deals with tagged component types (where we use
-- the applicable equality routine) and floating-point, (where we
-- need to worry about negative zeroes), and also the case of any
-- composite type recursively containing such fields.
else
return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Full_Type);
end if;
-- Case of tagged record types
elsif Is_Tagged_Type (Full_Type) then
-- Call the primitive operation "=" of this type
if Is_Class_Wide_Type (Full_Type) then
Full_Type := Root_Type (Full_Type);
end if;
-- If this is derived from an untagged private type completed with a
-- tagged type, it does not have a full view, so we use the primitive
-- operations of the private type. This check should no longer be
-- necessary when these types receive their full views ???
if Is_Private_Type (Typ)
and then not Is_Tagged_Type (Typ)
and then not Is_Controlled (Typ)
and then Is_Derived_Type (Typ)
and then No (Full_View (Typ))
then
Prim := First_Elmt (Collect_Primitive_Operations (Typ));
else
Prim := First_Elmt (Primitive_Operations (Full_Type));
end if;
loop
Eq_Op := Node (Prim);
exit when Chars (Eq_Op) = Name_Op_Eq
and then Etype (First_Formal (Eq_Op)) =
Etype (Next_Formal (First_Formal (Eq_Op)))
and then Base_Type (Etype (Eq_Op)) = Standard_Boolean;
Next_Elmt (Prim);
pragma Assert (Present (Prim));
end loop;
Eq_Op := Node (Prim);
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq_Op, Loc),
Parameter_Associations =>
New_List
(Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
-- Case of untagged record types
elsif Is_Record_Type (Full_Type) then
Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
if Present (Eq_Op) then
if Etype (First_Formal (Eq_Op)) /= Full_Type then
-- Inherited equality from parent type. Convert the actuals to
-- match signature of operation.
declare
T : constant Entity_Id := Etype (First_Formal (Eq_Op));
begin
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq_Op, Loc),
Parameter_Associations => New_List (
OK_Convert_To (T, Lhs),
OK_Convert_To (T, Rhs)));
end;
else
-- Comparison between Unchecked_Union components
if Is_Unchecked_Union (Full_Type) then
declare
Lhs_Type : Node_Id := Full_Type;
Rhs_Type : Node_Id := Full_Type;
Lhs_Discr_Val : Node_Id;
Rhs_Discr_Val : Node_Id;
begin
-- Lhs subtype
if Nkind (Lhs) = N_Selected_Component then
Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
end if;
-- Rhs subtype
if Nkind (Rhs) = N_Selected_Component then
Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
end if;
-- Lhs of the composite equality
if Is_Constrained (Lhs_Type) then
-- Since the enclosing record type can never be an
-- Unchecked_Union (this code is executed for records
-- that do not have variants), we may reference its
-- discriminant(s).
if Nkind (Lhs) = N_Selected_Component
and then Has_Per_Object_Constraint
(Entity (Selector_Name (Lhs)))
then
Lhs_Discr_Val :=
Make_Selected_Component (Loc,
Prefix => Prefix (Lhs),
Selector_Name =>
New_Copy
(Get_Discriminant_Value
(First_Discriminant (Lhs_Type),
Lhs_Type,
Stored_Constraint (Lhs_Type))));
else
Lhs_Discr_Val :=
New_Copy
(Get_Discriminant_Value
(First_Discriminant (Lhs_Type),
Lhs_Type,
Stored_Constraint (Lhs_Type)));
end if;
else
-- It is not possible to infer the discriminant since
-- the subtype is not constrained.
return
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction);
end if;
-- Rhs of the composite equality
if Is_Constrained (Rhs_Type) then
if Nkind (Rhs) = N_Selected_Component
and then Has_Per_Object_Constraint
(Entity (Selector_Name (Rhs)))
then
Rhs_Discr_Val :=
Make_Selected_Component (Loc,
Prefix => Prefix (Rhs),
Selector_Name =>
New_Copy
(Get_Discriminant_Value
(First_Discriminant (Rhs_Type),
Rhs_Type,
Stored_Constraint (Rhs_Type))));
else
Rhs_Discr_Val :=
New_Copy
(Get_Discriminant_Value
(First_Discriminant (Rhs_Type),
Rhs_Type,
Stored_Constraint (Rhs_Type)));
end if;
else
return
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction);
end if;
-- Call the TSS equality function with the inferred
-- discriminant values.
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq_Op, Loc),
Parameter_Associations => New_List (
Lhs,
Rhs,
Lhs_Discr_Val,
Rhs_Discr_Val));
end;
-- All cases other than comparing Unchecked_Union types
else
declare
T : constant Entity_Id := Etype (First_Formal (Eq_Op));
begin
return
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Eq_Op, Loc),
Parameter_Associations => New_List (
OK_Convert_To (T, Lhs),
OK_Convert_To (T, Rhs)));
end;
end if;
end if;
-- Equality composes in Ada 2012 for untagged record types. It also
-- composes for bounded strings, because they are part of the
-- predefined environment. We could make it compose for bounded
-- strings by making them tagged, or by making sure all subcomponents
-- are set to the same value, even when not used. Instead, we have
-- this special case in the compiler, because it's more efficient.
elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
-- If no TSS has been created for the type, check whether there is
-- a primitive equality declared for it.
declare
Op : constant Node_Id := Find_Primitive_Eq;
begin
-- Use user-defined primitive if it exists, otherwise use
-- predefined equality.
if Present (Op) then
return Op;
else
return Make_Op_Eq (Loc, Lhs, Rhs);
end if;
end;
else
return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
end if;
-- Non-composite types (always use predefined equality)
else
return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
end if;
end Expand_Composite_Equality;
------------------------
-- Expand_Concatenate --
------------------------
procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
Loc : constant Source_Ptr := Sloc (Cnode);
Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
-- Result type of concatenation
Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
-- Component type. Elements of this component type can appear as one
-- of the operands of concatenation as well as arrays.
Istyp : constant Entity_Id := Etype (First_Index (Atyp));
-- Index subtype
Ityp : constant Entity_Id := Base_Type (Istyp);
-- Index type. This is the base type of the index subtype, and is used
-- for all computed bounds (which may be out of range of Istyp in the
-- case of null ranges).
Artyp : Entity_Id;
-- This is the type we use to do arithmetic to compute the bounds and
-- lengths of operands. The choice of this type is a little subtle and
-- is discussed in a separate section at the start of the body code.
Concatenation_Error : exception;
-- Raised if concatenation is sure to raise a CE
Result_May_Be_Null : Boolean := True;
-- Reset to False if at least one operand is encountered which is known
-- at compile time to be non-null. Used for handling the special case
-- of setting the high bound to the last operand high bound for a null
-- result, thus ensuring a proper high bound in the super-flat case.
N : constant Nat := List_Length (Opnds);
-- Number of concatenation operands including possibly null operands
NN : Nat := 0;
-- Number of operands excluding any known to be null, except that the
-- last operand is always retained, in case it provides the bounds for
-- a null result.
Opnd : Node_Id;
-- Current operand being processed in the loop through operands. After
-- this loop is complete, always contains the last operand (which is not
-- the same as Operands (NN), since null operands are skipped).
-- Arrays describing the operands, only the first NN entries of each
-- array are set (NN < N when we exclude known null operands).
Is_Fixed_Length : array (1 .. N) of Boolean;
-- True if length of corresponding operand known at compile time
Operands : array (1 .. N) of Node_Id;
-- Set to the corresponding entry in the Opnds list (but note that null
-- operands are excluded, so not all entries in the list are stored).
Fixed_Length : array (1 .. N) of Uint;
-- Set to length of operand. Entries in this array are set only if the
-- corresponding entry in Is_Fixed_Length is True.
Opnd_Low_Bound : array (1 .. N) of Node_Id;
-- Set to lower bound of operand. Either an integer literal in the case
-- where the bound is known at compile time, else actual lower bound.
-- The operand low bound is of type Ityp.
Var_Length : array (1 .. N) of Entity_Id;
-- Set to an entity of type Natural that contains the length of an
-- operand whose length is not known at compile time. Entries in this
-- array are set only if the corresponding entry in Is_Fixed_Length
-- is False. The entity is of type Artyp.
Aggr_Length : array (0 .. N) of Node_Id;
-- The J'th entry in an expression node that represents the total length
-- of operands 1 through J. It is either an integer literal node, or a
-- reference to a constant entity with the right value, so it is fine
-- to just do a Copy_Node to get an appropriate copy. The extra zero'th
-- entry always is set to zero. The length is of type Artyp.
Low_Bound : Node_Id;
-- A tree node representing the low bound of the result (of type Ityp).
-- This is either an integer literal node, or an identifier reference to
-- a constant entity initialized to the appropriate value.
Last_Opnd_Low_Bound : Node_Id;
-- A tree node representing the low bound of the last operand. This
-- need only be set if the result could be null. It is used for the
-- special case of setting the right low bound for a null result.
-- This is of type Ityp.
Last_Opnd_High_Bound : Node_Id;
-- A tree node representing the high bound of the last operand. This
-- need only be set if the result could be null. It is used for the
-- special case of setting the right high bound for a null result.
-- This is of type Ityp.
High_Bound : Node_Id;
-- A tree node representing the high bound of the result (of type Ityp)
Result : Node_Id;
-- Result of the concatenation (of type Ityp)
Actions : constant List_Id := New_List;
-- Collect actions to be inserted
Known_Non_Null_Operand_Seen : Boolean;
-- Set True during generation of the assignments of operands into
-- result once an operand known to be non-null has been seen.
function Make_Artyp_Literal (Val : Nat) return Node_Id;
-- This function makes an N_Integer_Literal node that is returned in
-- analyzed form with the type set to Artyp. Importantly this literal
-- is not flagged as static, so that if we do computations with it that
-- result in statically detected out of range conditions, we will not
-- generate error messages but instead warning messages.
function To_Artyp (X : Node_Id) return Node_Id;
-- Given a node of type Ityp, returns the corresponding value of type
-- Artyp. For non-enumeration types, this is a plain integer conversion.
-- For enum types, the Pos of the value is returned.
function To_Ityp (X : Node_Id) return Node_Id;
-- The inverse function (uses Val in the case of enumeration types)
------------------------
-- Make_Artyp_Literal --
------------------------
function Make_Artyp_Literal (Val : Nat) return Node_Id is
Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
begin
Set_Etype (Result, Artyp);
Set_Analyzed (Result, True);
Set_Is_Static_Expression (Result, False);
return Result;
end Make_Artyp_Literal;
--------------
-- To_Artyp --
--------------
function To_Artyp (X : Node_Id) return Node_Id is
begin
if Ityp = Base_Type (Artyp) then
return X;
elsif Is_Enumeration_Type (Ityp) then
return
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (X));
else
return Convert_To (Artyp, X);
end if;
end To_Artyp;
-------------
-- To_Ityp --
-------------
function To_Ityp (X : Node_Id) return Node_Id is
begin
if Is_Enumeration_Type (Ityp) then
return
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (X));
-- Case where we will do a type conversion
else
if Ityp = Base_Type (Artyp) then
return X;
else
return Convert_To (Ityp, X);
end if;
end if;
end To_Ityp;
-- Local Declarations
Lib_Level_Target : constant Boolean :=
Nkind (Parent (Cnode)) = N_Object_Declaration
and then
Is_Library_Level_Entity (Defining_Identifier (Parent (Cnode)));
-- If the concatenation declares a library level entity, we call the
-- built-in concatenation routines to prevent code bloat, regardless
-- of optimization level. This is space-efficient, and prevent linking
-- problems when units are compiled with different optimizations.
Opnd_Typ : Entity_Id;
Ent : Entity_Id;
Len : Uint;
J : Nat;
Clen : Node_Id;
Set : Boolean;
-- Start of processing for Expand_Concatenate
begin
-- Choose an appropriate computational type
-- We will be doing calculations of lengths and bounds in this routine
-- and computing one from the other in some cases, e.g. getting the high
-- bound by adding the length-1 to the low bound.
-- We can't just use the index type, or even its base type for this
-- purpose for two reasons. First it might be an enumeration type which
-- is not suitable for computations of any kind, and second it may
-- simply not have enough range. For example if the index type is
-- -128..+127 then lengths can be up to 256, which is out of range of
-- the type.
-- For enumeration types, we can simply use Standard_Integer, this is
-- sufficient since the actual number of enumeration literals cannot
-- possibly exceed the range of integer (remember we will be doing the
-- arithmetic with POS values, not representation values).
if Is_Enumeration_Type (Ityp) then
Artyp := Standard_Integer;
-- If index type is Positive, we use the standard unsigned type, to give
-- more room on the top of the range, obviating the need for an overflow
-- check when creating the upper bound. This is needed to avoid junk
-- overflow checks in the common case of String types.
-- ??? Disabled for now
-- elsif Istyp = Standard_Positive then
-- Artyp := Standard_Unsigned;
-- For modular types, we use a 32-bit modular type for types whose size
-- is in the range 1-31 bits. For 32-bit unsigned types, we use the
-- identity type, and for larger unsigned types we use 64-bits.
elsif Is_Modular_Integer_Type (Ityp) then
if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
Artyp := Standard_Unsigned;
elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
Artyp := Ityp;
else
Artyp := RTE (RE_Long_Long_Unsigned);
end if;
-- Similar treatment for signed types
else
if RM_Size (Ityp) < RM_Size (Standard_Integer) then
Artyp := Standard_Integer;
elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
Artyp := Ityp;
else
Artyp := Standard_Long_Long_Integer;
end if;
end if;
-- Supply dummy entry at start of length array
Aggr_Length (0) := Make_Artyp_Literal (0);
-- Go through operands setting up the above arrays
J := 1;
while J <= N loop
Opnd := Remove_Head (Opnds);
Opnd_Typ := Etype (Opnd);
-- The parent got messed up when we put the operands in a list,
-- so now put back the proper parent for the saved operand, that
-- is to say the concatenation node, to make sure that each operand
-- is seen as a subexpression, e.g. if actions must be inserted.
Set_Parent (Opnd, Cnode);
-- Set will be True when we have setup one entry in the array
Set := False;
-- Singleton element (or character literal) case
if Base_Type (Opnd_Typ) = Ctyp then
NN := NN + 1;
Operands (NN) := Opnd;
Is_Fixed_Length (NN) := True;
Fixed_Length (NN) := Uint_1;
Result_May_Be_Null := False;
-- Set low bound of operand (no need to set Last_Opnd_High_Bound
-- since we know that the result cannot be null).
Opnd_Low_Bound (NN) :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Istyp, Loc),
Attribute_Name => Name_First);
Set := True;
-- String literal case (can only occur for strings of course)
elsif Nkind (Opnd) = N_String_Literal then
Len := String_Literal_Length (Opnd_Typ);
if Len /= 0 then
Result_May_Be_Null := False;
end if;
-- Capture last operand low and high bound if result could be null
if J = N and then Result_May_Be_Null then
Last_Opnd_Low_Bound :=
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
Last_Opnd_High_Bound :=
Make_Op_Subtract (Loc,
Left_Opnd =>
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
Right_Opnd => Make_Integer_Literal (Loc, 1));
end if;
-- Skip null string literal
if J < N and then Len = 0 then
goto Continue;
end if;
NN := NN + 1;
Operands (NN) := Opnd;
Is_Fixed_Length (NN) := True;
-- Set length and bounds
Fixed_Length (NN) := Len;
Opnd_Low_Bound (NN) :=
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
Set := True;
-- All other cases
else
-- Check constrained case with known bounds
if Is_Constrained (Opnd_Typ) then
declare
Index : constant Node_Id := First_Index (Opnd_Typ);
Indx_Typ : constant Entity_Id := Etype (Index);
Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
begin
-- Fixed length constrained array type with known at compile
-- time bounds is last case of fixed length operand.
if Compile_Time_Known_Value (Lo)
and then
Compile_Time_Known_Value (Hi)
then
declare
Loval : constant Uint := Expr_Value (Lo);
Hival : constant Uint := Expr_Value (Hi);
Len : constant Uint :=
UI_Max (Hival - Loval + 1, Uint_0);
begin
if Len > 0 then
Result_May_Be_Null := False;
end if;
-- Capture last operand bounds if result could be null
if J = N and then Result_May_Be_Null then
Last_Opnd_Low_Bound :=
Convert_To (Ityp,
Make_Integer_Literal (Loc, Expr_Value (Lo)));
Last_Opnd_High_Bound :=
Convert_To (Ityp,
Make_Integer_Literal (Loc, Expr_Value (Hi)));
end if;
-- Exclude null length case unless last operand
if J < N and then Len = 0 then
goto Continue;
end if;
NN := NN + 1;
Operands (NN) := Opnd;
Is_Fixed_Length (NN) := True;
Fixed_Length (NN) := Len;
Opnd_Low_Bound (NN) :=
To_Ityp
(Make_Integer_Literal (Loc, Expr_Value (Lo)));
Set := True;
end;
end if;
end;
end if;
-- All cases where the length is not known at compile time, or the
-- special case of an operand which is known to be null but has a
-- lower bound other than 1 or is other than a string type.
if not Set then
NN := NN + 1;
-- Capture operand bounds
Opnd_Low_Bound (NN) :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr (Opnd, Name_Req => True),
Attribute_Name => Name_First);
-- Capture last operand bounds if result could be null
if J = N and Result_May_Be_Null then
Last_Opnd_Low_Bound :=
Convert_To (Ityp,
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr (Opnd, Name_Req => True),
Attribute_Name => Name_First));
Last_Opnd_High_Bound :=
Convert_To (Ityp,
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr (Opnd, Name_Req => True),
Attribute_Name => Name_Last));
end if;
-- Capture length of operand in entity
Operands (NN) := Opnd;
Is_Fixed_Length (NN) := False;
Var_Length (NN) := Make_Temporary (Loc, 'L');
Append_To (Actions,
Make_Object_Declaration (Loc,
Defining_Identifier => Var_Length (NN),
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Artyp, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr (Opnd, Name_Req => True),
Attribute_Name => Name_Length)));
end if;
end if;
-- Set next entry in aggregate length array
-- For first entry, make either integer literal for fixed length
-- or a reference to the saved length for variable length.
if NN = 1 then
if Is_Fixed_Length (1) then
Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
else
Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
end if;
-- If entry is fixed length and only fixed lengths so far, make
-- appropriate new integer literal adding new length.
elsif Is_Fixed_Length (NN)
and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
then
Aggr_Length (NN) :=
Make_Integer_Literal (Loc,
Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
-- All other cases, construct an addition node for the length and
-- create an entity initialized to this length.
else
Ent := Make_Temporary (Loc, 'L');
if Is_Fixed_Length (NN) then
Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
else
Clen := New_Occurrence_Of (Var_Length (NN), Loc);
end if;
Append_To (Actions,
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Artyp, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Copy (Aggr_Length (NN - 1)),
Right_Opnd => Clen)));
Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
end if;
<<Continue>>
J := J + 1;
end loop;
-- If we have only skipped null operands, return the last operand
if NN = 0 then
Result := Opnd;
goto Done;
end if;
-- If we have only one non-null operand, return it and we are done.
-- There is one case in which this cannot be done, and that is when
-- the sole operand is of the element type, in which case it must be
-- converted to an array, and the easiest way of doing that is to go
-- through the normal general circuit.
if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
Result := Operands (1);
goto Done;
end if;
-- Cases where we have a real concatenation
-- Next step is to find the low bound for the result array that we
-- will allocate. The rules for this are in (RM 4.5.6(5-7)).
-- If the ultimate ancestor of the index subtype is a constrained array
-- definition, then the lower bound is that of the index subtype as
-- specified by (RM 4.5.3(6)).
-- The right test here is to go to the root type, and then the ultimate
-- ancestor is the first subtype of this root type.
if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
Low_Bound :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
Attribute_Name => Name_First);
-- If the first operand in the list has known length we know that
-- the lower bound of the result is the lower bound of this operand.
elsif Is_Fixed_Length (1) then
Low_Bound := Opnd_Low_Bound (1);
-- OK, we don't know the lower bound, we have to build a horrible
-- if expression node of the form
-- if Cond1'Length /= 0 then
-- Opnd1 low bound
-- else
-- if Opnd2'Length /= 0 then
-- Opnd2 low bound
-- else
-- ...
-- The nesting ends either when we hit an operand whose length is known
-- at compile time, or on reaching the last operand, whose low bound we
-- take unconditionally whether or not it is null. It's easiest to do
-- this with a recursive procedure:
else
declare
function Get_Known_Bound (J : Nat) return Node_Id;
-- Returns the lower bound determined by operands J .. NN
---------------------
-- Get_Known_Bound --
---------------------
function Get_Known_Bound (J : Nat) return Node_Id is
begin
if Is_Fixed_Length (J) or else J = NN then
return New_Copy (Opnd_Low_Bound (J));
else
return
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Ne (Loc,
Left_Opnd =>
New_Occurrence_Of (Var_Length (J), Loc),
Right_Opnd =>
Make_Integer_Literal (Loc, 0)),
New_Copy (Opnd_Low_Bound (J)),
Get_Known_Bound (J + 1)));
end if;
end Get_Known_Bound;
begin
Ent := Make_Temporary (Loc, 'L');
Append_To (Actions,
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Ityp, Loc),
Expression => Get_Known_Bound (1)));
Low_Bound := New_Occurrence_Of (Ent, Loc);
end;
end if;
-- Now we can safely compute the upper bound, normally
-- Low_Bound + Length - 1.
High_Bound :=
To_Ityp
(Make_Op_Add (Loc,
Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => New_Copy (Aggr_Length (NN)),
Right_Opnd => Make_Artyp_Literal (1))));
-- Note that calculation of the high bound may cause overflow in some
-- very weird cases, so in the general case we need an overflow check on
-- the high bound. We can avoid this for the common case of string types
-- and other types whose index is Positive, since we chose a wider range
-- for the arithmetic type.
if Istyp /= Standard_Positive then
Activate_Overflow_Check (High_Bound);
end if;
-- Handle the exceptional case where the result is null, in which case
-- case the bounds come from the last operand (so that we get the proper
-- bounds if the last operand is super-flat).
if Result_May_Be_Null then
Low_Bound :=
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => New_Copy (Aggr_Length (NN)),
Right_Opnd => Make_Artyp_Literal (0)),
Last_Opnd_Low_Bound,
Low_Bound));
High_Bound :=
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => New_Copy (Aggr_Length (NN)),
Right_Opnd => Make_Artyp_Literal (0)),
Last_Opnd_High_Bound,
High_Bound));
end if;
-- Here is where we insert the saved up actions
Insert_Actions (Cnode, Actions, Suppress => All_Checks);
-- Now we construct an array object with appropriate bounds. We mark
-- the target as internal to prevent useless initialization when
-- Initialize_Scalars is enabled. Also since this is the actual result
-- entity, we make sure we have debug information for the result.
Ent := Make_Temporary (Loc, 'S');
Set_Is_Internal (Ent);
Set_Needs_Debug_Info (Ent);
-- If the bound is statically known to be out of range, we do not want
-- to abort, we want a warning and a runtime constraint error. Note that
-- we have arranged that the result will not be treated as a static
-- constant, so we won't get an illegality during this insertion.
Insert_Action (Cnode,
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Range (Loc,
Low_Bound => Low_Bound,
High_Bound => High_Bound))))),
Suppress => All_Checks);
-- If the result of the concatenation appears as the initializing
-- expression of an object declaration, we can just rename the
-- result, rather than copying it.
Set_OK_To_Rename (Ent);
-- Catch the static out of range case now
if Raises_Constraint_Error (High_Bound) then
raise Concatenation_Error;
end if;
-- Now we will generate the assignments to do the actual concatenation
-- There is one case in which we will not do this, namely when all the
-- following conditions are met:
-- The result type is Standard.String
-- There are nine or fewer retained (non-null) operands
-- The optimization level is -O0
-- The corresponding System.Concat_n.Str_Concat_n routine is
-- available in the run time.
-- The debug flag gnatd.c is not set
-- If all these conditions are met then we generate a call to the
-- relevant concatenation routine. The purpose of this is to avoid
-- undesirable code bloat at -O0.
if Atyp = Standard_String
and then NN in 2 .. 9
and then (Lib_Level_Target
or else ((Optimization_Level = 0 or else Debug_Flag_Dot_CC)
and then not Debug_Flag_Dot_C))
then
declare
RR : constant array (Nat range 2 .. 9) of RE_Id :=
(RE_Str_Concat_2,
RE_Str_Concat_3,
RE_Str_Concat_4,
RE_Str_Concat_5,
RE_Str_Concat_6,
RE_Str_Concat_7,
RE_Str_Concat_8,
RE_Str_Concat_9);
begin
if RTE_Available (RR (NN)) then
declare
Opnds : constant List_Id :=
New_List (New_Occurrence_Of (Ent, Loc));
begin
for J in 1 .. NN loop
if Is_List_Member (Operands (J)) then
Remove (Operands (J));
end if;
if Base_Type (Etype (Operands (J))) = Ctyp then
Append_To (Opnds,
Make_Aggregate (Loc,
Component_Associations => New_List (
Make_Component_Association (Loc,
Choices => New_List (
Make_Integer_Literal (Loc, 1)),
Expression => Operands (J)))));
else
Append_To (Opnds, Operands (J));
end if;
end loop;
Insert_Action (Cnode,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
Parameter_Associations => Opnds));
Result := New_Occurrence_Of (Ent, Loc);
goto Done;
end;
end if;
end;
end if;
-- Not special case so generate the assignments
Known_Non_Null_Operand_Seen := False;
for J in 1 .. NN loop
declare
Lo : constant Node_Id :=
Make_Op_Add (Loc,
Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
Right_Opnd => Aggr_Length (J - 1));
Hi : constant Node_Id :=
Make_Op_Add (Loc,
Left_Opnd => To_Artyp (New_Copy (Low_Bound)),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Aggr_Length (J),
Right_Opnd => Make_Artyp_Literal (1)));
begin
-- Singleton case, simple assignment
if Base_Type (Etype (Operands (J))) = Ctyp then
Known_Non_Null_Operand_Seen := True;
Insert_Action (Cnode,
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Expressions => New_List (To_Ityp (Lo))),
Expression => Operands (J)),
Suppress => All_Checks);
-- Array case, slice assignment, skipped when argument is fixed
-- length and known to be null.
elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
declare
Assign : Node_Id :=
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix =>
New_Occurrence_Of (Ent, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => To_Ityp (Lo),
High_Bound => To_Ityp (Hi))),
Expression => Operands (J));
begin
if Is_Fixed_Length (J) then
Known_Non_Null_Operand_Seen := True;
elsif not Known_Non_Null_Operand_Seen then
-- Here if operand length is not statically known and no
-- operand known to be non-null has been processed yet.
-- If operand length is 0, we do not need to perform the
-- assignment, and we must avoid the evaluation of the
-- high bound of the slice, since it may underflow if the
-- low bound is Ityp'First.
Assign :=
Make_Implicit_If_Statement (Cnode,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd =>
New_Occurrence_Of (Var_Length (J), Loc),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Then_Statements => New_List (Assign));
end if;
Insert_Action (Cnode, Assign, Suppress => All_Checks);
end;
end if;
end;
end loop;
-- Finally we build the result, which is a reference to the array object
Result := New_Occurrence_Of (Ent, Loc);
<<Done>>
Rewrite (Cnode, Result);
Analyze_And_Resolve (Cnode, Atyp);
exception
when Concatenation_Error =>
-- Kill warning generated for the declaration of the static out of
-- range high bound, and instead generate a Constraint_Error with
-- an appropriate specific message.
Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
Apply_Compile_Time_Constraint_Error
(N => Cnode,
Msg => "concatenation result upper bound out of range??",
Reason => CE_Range_Check_Failed);
end Expand_Concatenate;
---------------------------------------------------
-- Expand_Membership_Minimize_Eliminate_Overflow --
---------------------------------------------------
procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
pragma Assert (Nkind (N) = N_In);
-- Despite the name, this routine applies only to N_In, not to
-- N_Not_In. The latter is always rewritten as not (X in Y).
Result_Type : constant Entity_Id := Etype (N);
-- Capture result type, may be a derived boolean type
Loc : constant Source_Ptr := Sloc (N);
Lop : constant Node_Id := Left_Opnd (N);
Rop : constant Node_Id := Right_Opnd (N);
-- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
-- is thus tempting to capture these values, but due to the rewrites
-- that occur as a result of overflow checking, these values change
-- as we go along, and it is safe just to always use Etype explicitly.
Restype : constant Entity_Id := Etype (N);
-- Save result type
Lo, Hi : Uint;
-- Bounds in Minimize calls, not used currently
LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
-- Entity for Long_Long_Integer'Base (Standard should export this???)
begin
Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
-- If right operand is a subtype name, and the subtype name has no
-- predicate, then we can just replace the right operand with an
-- explicit range T'First .. T'Last, and use the explicit range code.
if Nkind (Rop) /= N_Range
and then No (Predicate_Function (Etype (Rop)))
then
declare
Rtyp : constant Entity_Id := Etype (Rop);
begin
Rewrite (Rop,
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Rtyp, Loc)),
High_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (Rtyp, Loc))));
Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
end;
end if;
-- Here for the explicit range case. Note that the bounds of the range
-- have not been processed for minimized or eliminated checks.
if Nkind (Rop) = N_Range then
Minimize_Eliminate_Overflows
(Low_Bound (Rop), Lo, Hi, Top_Level => False);
Minimize_Eliminate_Overflows
(High_Bound (Rop), Lo, Hi, Top_Level => False);
-- We have A in B .. C, treated as A >= B and then A <= C
-- Bignum case
if Is_RTE (Etype (Lop), RE_Bignum)
or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
then
declare
Blk : constant Node_Id := Make_Bignum_Block (Loc);
Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
L : constant Entity_Id :=
Make_Defining_Identifier (Loc, Name_uL);
Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
Lbound : constant Node_Id :=
Convert_To_Bignum (Low_Bound (Rop));
Hbound : constant Node_Id :=
Convert_To_Bignum (High_Bound (Rop));
-- Now we rewrite the membership test node to look like
-- do
-- Bnn : Result_Type;
-- declare
-- M : Mark_Id := SS_Mark;
-- L : Bignum := Lopnd;
-- begin
-- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
-- SS_Release (M);
-- end;
-- in
-- Bnn
-- end
begin
-- Insert declaration of L into declarations of bignum block
Insert_After
(Last (Declarations (Blk)),
Make_Object_Declaration (Loc,
Defining_Identifier => L,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Bignum), Loc),
Expression => Lopnd));
-- Insert assignment to Bnn into expressions of bignum block
Insert_Before
(First (Statements (Handled_Statement_Sequence (Blk))),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression =>
Make_And_Then (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Big_GE), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (L, Loc),
Lbound)),
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Big_LE), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (L, Loc),
Hbound)))));
-- Now rewrite the node
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Bnn,
Object_Definition =>
New_Occurrence_Of (Result_Type, Loc)),
Blk),
Expression => New_Occurrence_Of (Bnn, Loc)));
Analyze_And_Resolve (N, Result_Type);
return;
end;
-- Here if no bignums around
else
-- Case where types are all the same
if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
and then
Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
then
null;
-- If types are not all the same, it means that we have rewritten
-- at least one of them to be of type Long_Long_Integer, and we
-- will convert the other operands to Long_Long_Integer.
else
Convert_To_And_Rewrite (LLIB, Lop);
Set_Analyzed (Lop, False);
Analyze_And_Resolve (Lop, LLIB);
-- For the right operand, avoid unnecessary recursion into
-- this routine, we know that overflow is not possible.
Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
Set_Analyzed (Rop, False);
Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
end if;
-- Now the three operands are of the same signed integer type,
-- so we can use the normal expansion routine for membership,
-- setting the flag to prevent recursion into this procedure.
Set_No_Minimize_Eliminate (N);
Expand_N_In (N);
end if;
-- Right operand is a subtype name and the subtype has a predicate. We
-- have to make sure the predicate is checked, and for that we need to
-- use the standard N_In circuitry with appropriate types.
else
pragma Assert (Present (Predicate_Function (Etype (Rop))));
-- If types are "right", just call Expand_N_In preventing recursion
if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
Set_No_Minimize_Eliminate (N);
Expand_N_In (N);
-- Bignum case
elsif Is_RTE (Etype (Lop), RE_Bignum) then
-- For X in T, we want to rewrite our node as
-- do
-- Bnn : Result_Type;
-- declare
-- M : Mark_Id := SS_Mark;
-- Lnn : Long_Long_Integer'Base
-- Nnn : Bignum;
-- begin
-- Nnn := X;
-- if not Bignum_In_LLI_Range (Nnn) then
-- Bnn := False;
-- else
-- Lnn := From_Bignum (Nnn);
-- Bnn :=
-- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
-- and then T'Base (Lnn) in T;
-- end if;
-- SS_Release (M);
-- end
-- in
-- Bnn
-- end
-- A bit gruesome, but there doesn't seem to be a simpler way
declare
Blk : constant Node_Id := Make_Bignum_Block (Loc);
Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
T : constant Entity_Id := Etype (Rop);
TB : constant Entity_Id := Base_Type (T);
Nin : Node_Id;
begin
-- Mark the last membership operation to prevent recursion
Nin :=
Make_In (Loc,
Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
Right_Opnd => New_Occurrence_Of (T, Loc));
Set_No_Minimize_Eliminate (Nin);
-- Now decorate the block
Insert_After
(Last (Declarations (Blk)),
Make_Object_Declaration (Loc,
Defining_Identifier => Lnn,
Object_Definition => New_Occurrence_Of (LLIB, Loc)));
Insert_After
(Last (Declarations (Blk)),
Make_Object_Declaration (Loc,
Defining_Identifier => Nnn,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Bignum), Loc)));
Insert_List_Before
(First (Statements (Handled_Statement_Sequence (Blk))),
New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Nnn, Loc),
Expression => Relocate_Node (Lop)),
Make_Implicit_If_Statement (N,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_Bignum_In_LLI_Range), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Nnn, Loc)))),
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression =>
New_Occurrence_Of (Standard_False, Loc))),
Else_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Nnn, Loc)))),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression =>
Make_And_Then (Loc,
Left_Opnd =>
Make_In (Loc,
Left_Opnd => New_Occurrence_Of (Lnn, Loc),
Right_Opnd =>
Make_Range (Loc,
Low_Bound =>
Convert_To (LLIB,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix =>
New_Occurrence_Of (TB, Loc))),
High_Bound =>
Convert_To (LLIB,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix =>
New_Occurrence_Of (TB, Loc))))),
Right_Opnd => Nin))))));
-- Now we can do the rewrite
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Bnn,
Object_Definition =>
New_Occurrence_Of (Result_Type, Loc)),
Blk),
Expression => New_Occurrence_Of (Bnn, Loc)));
Analyze_And_Resolve (N, Result_Type);
return;
end;
-- Not bignum case, but types don't match (this means we rewrote the
-- left operand to be Long_Long_Integer).
else
pragma Assert (Base_Type (Etype (Lop)) = LLIB);
-- We rewrite the membership test as (where T is the type with
-- the predicate, i.e. the type of the right operand)
-- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
-- and then T'Base (Lop) in T
declare
T : constant Entity_Id := Etype (Rop);
TB : constant Entity_Id := Base_Type (T);
Nin : Node_Id;
begin
-- The last membership test is marked to prevent recursion
Nin :=
Make_In (Loc,
Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
Right_Opnd => New_Occurrence_Of (T, Loc));
Set_No_Minimize_Eliminate (Nin);
-- Now do the rewrite
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd =>
Make_In (Loc,
Left_Opnd => Lop,
Right_Opnd =>
Make_Range (Loc,
Low_Bound =>
Convert_To (LLIB,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix =>
New_Occurrence_Of (TB, Loc))),
High_Bound =>
Convert_To (LLIB,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix =>
New_Occurrence_Of (TB, Loc))))),
Right_Opnd => Nin));
Set_Analyzed (N, False);
Analyze_And_Resolve (N, Restype);
end;
end if;
end if;
end Expand_Membership_Minimize_Eliminate_Overflow;
------------------------
-- Expand_N_Allocator --
------------------------
procedure Expand_N_Allocator (N : Node_Id) is
Etyp : constant Entity_Id := Etype (Expression (N));
Loc : constant Source_Ptr := Sloc (N);
PtrT : constant Entity_Id := Etype (N);
procedure Rewrite_Coextension (N : Node_Id);
-- Static coextensions have the same lifetime as the entity they
-- constrain. Such occurrences can be rewritten as aliased objects
-- and their unrestricted access used instead of the coextension.
function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
-- Given a constrained array type E, returns a node representing the
-- code to compute the size in storage elements for the given type.
-- This is done without using the attribute (which malfunctions for
-- large sizes ???)
-------------------------
-- Rewrite_Coextension --
-------------------------
procedure Rewrite_Coextension (N : Node_Id) is
Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
Temp_Decl : Node_Id;
begin
-- Generate:
-- Cnn : aliased Etyp;
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Id,
Aliased_Present => True,
Object_Definition => New_Occurrence_Of (Etyp, Loc));
if Nkind (Expression (N)) = N_Qualified_Expression then
Set_Expression (Temp_Decl, Expression (Expression (N)));
end if;
Insert_Action (N, Temp_Decl);
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Temp_Id, Loc),
Attribute_Name => Name_Unrestricted_Access));
Analyze_And_Resolve (N, PtrT);
end Rewrite_Coextension;
------------------------------
-- Size_In_Storage_Elements --
------------------------------
function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
begin
-- Logically this just returns E'Max_Size_In_Storage_Elements.
-- However, the reason for the existence of this function is
-- to construct a test for sizes too large, which means near the
-- 32-bit limit on a 32-bit machine, and precisely the trouble
-- is that we get overflows when sizes are greater than 2**31.
-- So what we end up doing for array types is to use the expression:
-- number-of-elements * component_type'Max_Size_In_Storage_Elements
-- which avoids this problem. All this is a bit bogus, but it does
-- mean we catch common cases of trying to allocate arrays that
-- are too large, and which in the absence of a check results in
-- undetected chaos ???
-- Note in particular that this is a pessimistic estimate in the
-- case of packed array types, where an array element might occupy
-- just a fraction of a storage element???
declare
Len : Node_Id;
Res : Node_Id;
begin
for J in 1 .. Number_Dimensions (E) loop
Len :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (E, Loc),
Attribute_Name => Name_Length,
Expressions => New_List (Make_Integer_Literal (Loc, J)));
if J = 1 then
Res := Len;
else
Res :=
Make_Op_Multiply (Loc,
Left_Opnd => Res,
Right_Opnd => Len);
end if;
end loop;
return
Make_Op_Multiply (Loc,
Left_Opnd => Len,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Component_Type (E), Loc),
Attribute_Name => Name_Max_Size_In_Storage_Elements));
end;
end Size_In_Storage_Elements;
-- Local variables
Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
Desig : Entity_Id;
Nod : Node_Id;
Pool : Entity_Id;
Rel_Typ : Entity_Id;
Temp : Entity_Id;
-- Start of processing for Expand_N_Allocator
begin
-- RM E.2.3(22). We enforce that the expected type of an allocator
-- shall not be a remote access-to-class-wide-limited-private type
-- Why is this being done at expansion time, seems clearly wrong ???
Validate_Remote_Access_To_Class_Wide_Type (N);
-- Processing for anonymous access-to-controlled types. These access
-- types receive a special finalization master which appears in the
-- declarations of the enclosing semantic unit. This expansion is done
-- now to ensure that any additional types generated by this routine or
-- Expand_Allocator_Expression inherit the proper type attributes.
if (Ekind (PtrT) = E_Anonymous_Access_Type
or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
and then Needs_Finalization (Dtyp)
then
-- Detect the allocation of an anonymous controlled object where the
-- type of the context is named. For example:
-- procedure Proc (Ptr : Named_Access_Typ);
-- Proc (new Designated_Typ);
-- Regardless of the anonymous-to-named access type conversion, the
-- lifetime of the object must be associated with the named access
-- type. Use the finalization-related attributes of this type.
if Nkind_In (Parent (N), N_Type_Conversion,
N_Unchecked_Type_Conversion)
and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
E_Access_Type,
E_General_Access_Type)
then
Rel_Typ := Etype (Parent (N));
else
Rel_Typ := Empty;
end if;
-- Anonymous access-to-controlled types allocate on the global pool.
-- Do not set this attribute on .NET/JVM since those targets do not
-- support pools. Note that this is a "root type only" attribute.
if No (Associated_Storage_Pool (PtrT)) and then VM_Target = No_VM then
if Present (Rel_Typ) then
Set_Associated_Storage_Pool
(Root_Type (PtrT), Associated_Storage_Pool (Rel_Typ));
else
Set_Associated_Storage_Pool
(Root_Type (PtrT), RTE (RE_Global_Pool_Object));
end if;
end if;
-- The finalization master must be inserted and analyzed as part of
-- the current semantic unit. Note that the master is updated when
-- analysis changes current units. Note that this is a "root type
-- only" attribute.
if Present (Rel_Typ) then
Set_Finalization_Master
(Root_Type (PtrT), Finalization_Master (Rel_Typ));
else
Set_Finalization_Master
(Root_Type (PtrT), Current_Anonymous_Master);
end if;
end if;
-- Set the storage pool and find the appropriate version of Allocate to
-- call. Do not overwrite the storage pool if it is already set, which
-- can happen for build-in-place function returns (see
-- Exp_Ch4.Expand_N_Extended_Return_Statement).
if No (Storage_Pool (N)) then
Pool := Associated_Storage_Pool (Root_Type (PtrT));
if Present (Pool) then
Set_Storage_Pool (N, Pool);
if Is_RTE (Pool, RE_SS_Pool) then
if VM_Target = No_VM then
Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
end if;
-- In the case of an allocator for a simple storage pool, locate
-- and save a reference to the pool type's Allocate routine.
elsif Present (Get_Rep_Pragma
(Etype (Pool), Name_Simple_Storage_Pool_Type))
then
declare
Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
Alloc_Op : Entity_Id;
begin
Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
while Present (Alloc_Op) loop
if Scope (Alloc_Op) = Scope (Pool_Type)
and then Present (First_Formal (Alloc_Op))
and then Etype (First_Formal (Alloc_Op)) = Pool_Type
then
Set_Procedure_To_Call (N, Alloc_Op);
exit;
else
Alloc_Op := Homonym (Alloc_Op);
end if;
end loop;
end;
elsif Is_Class_Wide_Type (Etype (Pool)) then
Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
else
Set_Procedure_To_Call (N,
Find_Prim_Op (Etype (Pool), Name_Allocate));
end if;
end if;
end if;
-- Under certain circumstances we can replace an allocator by an access
-- to statically allocated storage. The conditions, as noted in AARM
-- 3.10 (10c) are as follows:
-- Size and initial value is known at compile time
-- Access type is access-to-constant
-- The allocator is not part of a constraint on a record component,
-- because in that case the inserted actions are delayed until the
-- record declaration is fully analyzed, which is too late for the
-- analysis of the rewritten allocator.
if Is_Access_Constant (PtrT)
and then Nkind (Expression (N)) = N_Qualified_Expression
and then Compile_Time_Known_Value (Expression (Expression (N)))
and then Size_Known_At_Compile_Time
(Etype (Expression (Expression (N))))
and then not Is_Record_Type (Current_Scope)
then
-- Here we can do the optimization. For the allocator
-- new x'(y)
-- We insert an object declaration
-- Tnn : aliased x := y;
-- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
-- marked as requiring static allocation.
Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
Desig := Subtype_Mark (Expression (N));
-- If context is constrained, use constrained subtype directly,
-- so that the constant is not labelled as having a nominally
-- unconstrained subtype.
if Entity (Desig) = Base_Type (Dtyp) then
Desig := New_Occurrence_Of (Dtyp, Loc);
end if;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Aliased_Present => True,
Constant_Present => Is_Access_Constant (PtrT),
Object_Definition => Desig,
Expression => Expression (Expression (N))));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc),
Attribute_Name => Name_Unrestricted_Access));
Analyze_And_Resolve (N, PtrT);
-- We set the variable as statically allocated, since we don't want
-- it going on the stack of the current procedure.
Set_Is_Statically_Allocated (Temp);
return;
end if;
-- Same if the allocator is an access discriminant for a local object:
-- instead of an allocator we create a local value and constrain the
-- enclosing object with the corresponding access attribute.
if Is_Static_Coextension (N) then
Rewrite_Coextension (N);
return;
end if;
-- Check for size too large, we do this because the back end misses
-- proper checks here and can generate rubbish allocation calls when
-- we are near the limit. We only do this for the 32-bit address case
-- since that is from a practical point of view where we see a problem.
if System_Address_Size = 32
and then not Storage_Checks_Suppressed (PtrT)
and then not Storage_Checks_Suppressed (Dtyp)
and then not Storage_Checks_Suppressed (Etyp)
then
-- The check we want to generate should look like
-- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
-- raise Storage_Error;
-- end if;
-- where 3.5 gigabytes is a constant large enough to accommodate any
-- reasonable request for. But we can't do it this way because at
-- least at the moment we don't compute this attribute right, and
-- can silently give wrong results when the result gets large. Since
-- this is all about large results, that's bad, so instead we only
-- apply the check for constrained arrays, and manually compute the
-- value of the attribute ???
if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
Insert_Action (N,
Make_Raise_Storage_Error (Loc,
Condition =>
Make_Op_Gt (Loc,
Left_Opnd => Size_In_Storage_Elements (Etyp),
Right_Opnd =>
Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
Reason => SE_Object_Too_Large));
end if;
end if;
-- If no storage pool has been specified and we have the restriction
-- No_Standard_Allocators_After_Elaboration is present, then generate
-- a call to Elaboration_Allocators.Check_Standard_Allocator.
if Nkind (N) = N_Allocator
and then No (Storage_Pool (N))
and then Restriction_Active (No_Standard_Allocators_After_Elaboration)
then
Insert_Action (N,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Check_Standard_Allocator), Loc)));
end if;
-- Handle case of qualified expression (other than optimization above)
-- First apply constraint checks, because the bounds or discriminants
-- in the aggregate might not match the subtype mark in the allocator.
if Nkind (Expression (N)) = N_Qualified_Expression then
Apply_Constraint_Check
(Expression (Expression (N)), Etype (Expression (N)));
Expand_Allocator_Expression (N);
return;
end if;
-- If the allocator is for a type which requires initialization, and
-- there is no initial value (i.e. operand is a subtype indication
-- rather than a qualified expression), then we must generate a call to
-- the initialization routine using an expressions action node:
-- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
-- Here ptr_T is the pointer type for the allocator, and T is the
-- subtype of the allocator. A special case arises if the designated
-- type of the access type is a task or contains tasks. In this case
-- the call to Init (Temp.all ...) is replaced by code that ensures
-- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
-- for details). In addition, if the type T is a task type, then the
-- first argument to Init must be converted to the task record type.
declare
T : constant Entity_Id := Entity (Expression (N));
Args : List_Id;
Decls : List_Id;
Decl : Node_Id;
Discr : Elmt_Id;
Init : Entity_Id;
Init_Arg1 : Node_Id;
Temp_Decl : Node_Id;
Temp_Type : Entity_Id;
begin
if No_Initialization (N) then
-- Even though this might be a simple allocation, create a custom
-- Allocate if the context requires it. Since .NET/JVM compilers
-- do not support pools, this step is skipped.
if VM_Target = No_VM
and then Present (Finalization_Master (PtrT))
then
Build_Allocate_Deallocate_Proc
(N => N,
Is_Allocate => True);
end if;
-- Case of no initialization procedure present
elsif not Has_Non_Null_Base_Init_Proc (T) then
-- Case of simple initialization required
if Needs_Simple_Initialization (T) then
Check_Restriction (No_Default_Initialization, N);
Rewrite (Expression (N),
Make_Qualified_Expression (Loc,
Subtype_Mark => New_Occurrence_Of (T, Loc),
Expression => Get_Simple_Init_Val (T, N)));
Analyze_And_Resolve (Expression (Expression (N)), T);
Analyze_And_Resolve (Expression (N), T);
Set_Paren_Count (Expression (Expression (N)), 1);
Expand_N_Allocator (N);
-- No initialization required
else
null;
end if;
-- Case of initialization procedure present, must be called
else
Check_Restriction (No_Default_Initialization, N);
if not Restriction_Active (No_Default_Initialization) then
Init := Base_Init_Proc (T);
Nod := N;
Temp := Make_Temporary (Loc, 'P');
-- Construct argument list for the initialization routine call
Init_Arg1 :=
Make_Explicit_Dereference (Loc,
Prefix =>
New_Occurrence_Of (Temp, Loc));
Set_Assignment_OK (Init_Arg1);
Temp_Type := PtrT;
-- The initialization procedure expects a specific type. if the
-- context is access to class wide, indicate that the object
-- being allocated has the right specific type.
if Is_Class_Wide_Type (Dtyp) then
Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
end if;
-- If designated type is a concurrent type or if it is private
-- type whose definition is a concurrent type, the first
-- argument in the Init routine has to be unchecked conversion
-- to the corresponding record type. If the designated type is
-- a derived type, also convert the argument to its root type.
if Is_Concurrent_Type (T) then
Init_Arg1 :=
Unchecked_Convert_To (
Corresponding_Record_Type (T), Init_Arg1);
elsif Is_Private_Type (T)
and then Present (Full_View (T))
and then Is_Concurrent_Type (Full_View (T))
then
Init_Arg1 :=
Unchecked_Convert_To
(Corresponding_Record_Type (Full_View (T)), Init_Arg1);
elsif Etype (First_Formal (Init)) /= Base_Type (T) then
declare
Ftyp : constant Entity_Id := Etype (First_Formal (Init));
begin
Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
Set_Etype (Init_Arg1, Ftyp);
end;
end if;
Args := New_List (Init_Arg1);
-- For the task case, pass the Master_Id of the access type as
-- the value of the _Master parameter, and _Chain as the value
-- of the _Chain parameter (_Chain will be defined as part of
-- the generated code for the allocator).
-- In Ada 2005, the context may be a function that returns an
-- anonymous access type. In that case the Master_Id has been
-- created when expanding the function declaration.
if Has_Task (T) then
if No (Master_Id (Base_Type (PtrT))) then
-- The designated type was an incomplete type, and the
-- access type did not get expanded. Salvage it now.
if not Restriction_Active (No_Task_Hierarchy) then
if Present (Parent (Base_Type (PtrT))) then
Expand_N_Full_Type_Declaration
(Parent (Base_Type (PtrT)));
-- The only other possibility is an itype. For this
-- case, the master must exist in the context. This is
-- the case when the allocator initializes an access
-- component in an init-proc.
else
pragma Assert (Is_Itype (PtrT));
Build_Master_Renaming (PtrT, N);
end if;
end if;
end if;
-- If the context of the allocator is a declaration or an
-- assignment, we can generate a meaningful image for it,
-- even though subsequent assignments might remove the
-- connection between task and entity. We build this image
-- when the left-hand side is a simple variable, a simple
-- indexed assignment or a simple selected component.
if Nkind (Parent (N)) = N_Assignment_Statement then
declare
Nam : constant Node_Id := Name (Parent (N));
begin
if Is_Entity_Name (Nam) then
Decls :=
Build_Task_Image_Decls
(Loc,
New_Occurrence_Of
(Entity (Nam), Sloc (Nam)), T);
elsif Nkind_In (Nam, N_Indexed_Component,
N_Selected_Component)
and then Is_Entity_Name (Prefix (Nam))
then
Decls :=
Build_Task_Image_Decls
(Loc, Nam, Etype (Prefix (Nam)));
else
Decls := Build_Task_Image_Decls (Loc, T, T);
end if;
end;
elsif Nkind (Parent (N)) = N_Object_Declaration then
Decls :=
Build_Task_Image_Decls
(Loc, Defining_Identifier (Parent (N)), T);
else
Decls := Build_Task_Image_Decls (Loc, T, T);
end if;
if Restriction_Active (No_Task_Hierarchy) then
Append_To (Args,
New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
else
Append_To (Args,
New_Occurrence_Of
(Master_Id (Base_Type (Root_Type (PtrT))), Loc));
end if;
Append_To (Args, Make_Identifier (Loc, Name_uChain));
Decl := Last (Decls);
Append_To (Args,
New_Occurrence_Of (Defining_Identifier (Decl), Loc));
-- Has_Task is false, Decls not used
else
Decls := No_List;
end if;
-- Add discriminants if discriminated type
declare
Dis : Boolean := False;
Typ : Entity_Id;
begin
if Has_Discriminants (T) then
Dis := True;
Typ := T;
elsif Is_Private_Type (T)
and then Present (Full_View (T))
and then Has_Discriminants (Full_View (T))
then
Dis := True;
Typ := Full_View (T);
end if;
if Dis then
-- If the allocated object will be constrained by the
-- default values for discriminants, then build a subtype
-- with those defaults, and change the allocated subtype
-- to that. Note that this happens in fewer cases in Ada
-- 2005 (AI-363).
if not Is_Constrained (Typ)
and then Present (Discriminant_Default_Value
(First_Discriminant (Typ)))
and then (Ada_Version < Ada_2005
or else not
Object_Type_Has_Constrained_Partial_View
(Typ, Current_Scope))
then
Typ := Build_Default_Subtype (Typ, N);
Set_Expression (N, New_Occurrence_Of (Typ, Loc));
end if;
Discr := First_Elmt (Discriminant_Constraint (Typ));
while Present (Discr) loop
Nod := Node (Discr);
Append (New_Copy_Tree (Node (Discr)), Args);
-- AI-416: when the discriminant constraint is an
-- anonymous access type make sure an accessibility
-- check is inserted if necessary (3.10.2(22.q/2))
if Ada_Version >= Ada_2005
and then
Ekind (Etype (Nod)) = E_Anonymous_Access_Type
then
Apply_Accessibility_Check
(Nod, Typ, Insert_Node => Nod);
end if;
Next_Elmt (Discr);
end loop;
end if;
end;
-- We set the allocator as analyzed so that when we analyze
-- the if expression node, we do not get an unwanted recursive
-- expansion of the allocator expression.
Set_Analyzed (N, True);
Nod := Relocate_Node (N);
-- Here is the transformation:
-- input: new Ctrl_Typ
-- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
-- Ctrl_TypIP (Temp.all, ...);
-- [Deep_]Initialize (Temp.all);
-- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
-- is the subtype of the allocator.
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
Expression => Nod);
Set_Assignment_OK (Temp_Decl);
Insert_Action (N, Temp_Decl, Suppress => All_Checks);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
-- If the designated type is a task type or contains tasks,
-- create block to activate created tasks, and insert
-- declaration for Task_Image variable ahead of call.
if Has_Task (T) then
declare
L : constant List_Id := New_List;
Blk : Node_Id;
begin
Build_Task_Allocate_Block (L, Nod, Args);
Blk := Last (L);
Insert_List_Before (First (Declarations (Blk)), Decls);
Insert_Actions (N, L);
end;
else
Insert_Action (N,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Init, Loc),
Parameter_Associations => Args));
end if;
if Needs_Finalization (T) then
-- Generate:
-- [Deep_]Initialize (Init_Arg1);
Insert_Action (N,
Make_Init_Call
(Obj_Ref => New_Copy_Tree (Init_Arg1),
Typ => T));
if Present (Finalization_Master (PtrT)) then
-- Special processing for .NET/JVM, the allocated object
-- is attached to the finalization master. Generate:
-- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
-- Types derived from [Limited_]Controlled are the only
-- ones considered since they have fields Prev and Next.
if VM_Target /= No_VM then
if Is_Controlled (T) then
Insert_Action (N,
Make_Attach_Call
(Obj_Ref => New_Copy_Tree (Init_Arg1),
Ptr_Typ => PtrT));
end if;
-- Default case, generate:
-- Set_Finalize_Address
-- (<PtrT>FM, <T>FD'Unrestricted_Access);
-- Do not generate this call in CodePeer mode, as TSS
-- primitive Finalize_Address is not created in this
-- mode.
elsif not CodePeer_Mode then
Insert_Action (N,
Make_Set_Finalize_Address_Call
(Loc => Loc,
Typ => T,
Ptr_Typ => PtrT));
end if;
end if;
end if;
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, PtrT);
end if;
end if;
end;
-- Ada 2005 (AI-251): If the allocator is for a class-wide interface
-- object that has been rewritten as a reference, we displace "this"
-- to reference properly its secondary dispatch table.
if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
Displace_Allocator_Pointer (N);
end if;
exception
when RE_Not_Available =>
return;
end Expand_N_Allocator;
-----------------------
-- Expand_N_And_Then --
-----------------------
procedure Expand_N_And_Then (N : Node_Id)
renames Expand_Short_Circuit_Operator;
------------------------------
-- Expand_N_Case_Expression --
------------------------------
procedure Expand_N_Case_Expression (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Cstmt : Node_Id;
Decl : Node_Id;
Tnn : Entity_Id;
Pnn : Entity_Id;
Actions : List_Id;
Ttyp : Entity_Id;
Alt : Node_Id;
Fexp : Node_Id;
begin
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- If the case expression is a predicate specification, do not
-- expand, because it will be converted to the proper predicate
-- form when building the predicate function.
if Ekind_In (Current_Scope, E_Function, E_Procedure)
and then Is_Predicate_Function (Current_Scope)
then
return;
end if;
-- We expand
-- case X is when A => AX, when B => BX ...
-- to
-- do
-- Tnn : typ;
-- case X is
-- when A =>
-- Tnn := AX;
-- when B =>
-- Tnn := BX;
-- ...
-- end case;
-- in Tnn end;
-- However, this expansion is wrong for limited types, and also
-- wrong for unconstrained types (since the bounds may not be the
-- same in all branches). Furthermore it involves an extra copy
-- for large objects. So we take care of this by using the following
-- modified expansion for non-elementary types:
-- do
-- type Pnn is access all typ;
-- Tnn : Pnn;
-- case X is
-- when A =>
-- T := AX'Unrestricted_Access;
-- when B =>
-- T := BX'Unrestricted_Access;
-- ...
-- end case;
-- in Tnn.all end;
Cstmt :=
Make_Case_Statement (Loc,
Expression => Expression (N),
Alternatives => New_List);
-- Preserve the original context for which the case statement is being
-- generated. This is needed by the finalization machinery to prevent
-- the premature finalization of controlled objects found within the
-- case statement.
Set_From_Conditional_Expression (Cstmt);
Actions := New_List;
-- Scalar case
if Is_Elementary_Type (Typ) then
Ttyp := Typ;
else
Pnn := Make_Temporary (Loc, 'P');
Append_To (Actions,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Pnn,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
Ttyp := Pnn;
end if;
Tnn := Make_Temporary (Loc, 'T');
-- Create declaration for target of expression, and indicate that it
-- does not require initialization.
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Object_Definition => New_Occurrence_Of (Ttyp, Loc));
Set_No_Initialization (Decl);
Append_To (Actions, Decl);
-- Now process the alternatives
Alt := First (Alternatives (N));
while Present (Alt) loop
declare
Aexp : Node_Id := Expression (Alt);
Aloc : constant Source_Ptr := Sloc (Aexp);
Stats : List_Id;
begin
-- As described above, take Unrestricted_Access for case of non-
-- scalar types, to avoid big copies, and special cases.
if not Is_Elementary_Type (Typ) then
Aexp :=
Make_Attribute_Reference (Aloc,
Prefix => Relocate_Node (Aexp),
Attribute_Name => Name_Unrestricted_Access);
end if;
Stats := New_List (
Make_Assignment_Statement (Aloc,
Name => New_Occurrence_Of (Tnn, Loc),
Expression => Aexp));
-- Propagate declarations inserted in the node by Insert_Actions
-- (for example, temporaries generated to remove side effects).
-- These actions must remain attached to the alternative, given
-- that they are generated by the corresponding expression.
if Present (Sinfo.Actions (Alt)) then
Prepend_List (Sinfo.Actions (Alt), Stats);
end if;
Append_To
(Alternatives (Cstmt),
Make_Case_Statement_Alternative (Sloc (Alt),
Discrete_Choices => Discrete_Choices (Alt),
Statements => Stats));
end;
Next (Alt);
end loop;
Append_To (Actions, Cstmt);
-- Construct and return final expression with actions
if Is_Elementary_Type (Typ) then
Fexp := New_Occurrence_Of (Tnn, Loc);
else
Fexp :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Tnn, Loc));
end if;
Rewrite (N,
Make_Expression_With_Actions (Loc,
Expression => Fexp,
Actions => Actions));
Analyze_And_Resolve (N, Typ);
end Expand_N_Case_Expression;
-----------------------------------
-- Expand_N_Explicit_Dereference --
-----------------------------------
procedure Expand_N_Explicit_Dereference (N : Node_Id) is
begin
-- Insert explicit dereference call for the checked storage pool case
Insert_Dereference_Action (Prefix (N));
-- If the type is an Atomic type for which Atomic_Sync is enabled, then
-- we set the atomic sync flag.
if Is_Atomic (Etype (N))
and then not Atomic_Synchronization_Disabled (Etype (N))
then
Activate_Atomic_Synchronization (N);
end if;
end Expand_N_Explicit_Dereference;
--------------------------------------
-- Expand_N_Expression_With_Actions --
--------------------------------------
procedure Expand_N_Expression_With_Actions (N : Node_Id) is
function Process_Action (Act : Node_Id) return Traverse_Result;
-- Inspect and process a single action of an expression_with_actions for
-- transient controlled objects. If such objects are found, the routine
-- generates code to clean them up when the context of the expression is
-- evaluated or elaborated.
--------------------
-- Process_Action --
--------------------
function Process_Action (Act : Node_Id) return Traverse_Result is
begin
if Nkind (Act) = N_Object_Declaration
and then Is_Finalizable_Transient (Act, N)
then
Process_Transient_Object (Act, N);
return Abandon;
-- Avoid processing temporary function results multiple times when
-- dealing with nested expression_with_actions.
elsif Nkind (Act) = N_Expression_With_Actions then
return Abandon;
-- Do not process temporary function results in loops. This is done
-- by Expand_N_Loop_Statement and Build_Finalizer.
elsif Nkind (Act) = N_Loop_Statement then
return Abandon;
end if;
return OK;
end Process_Action;
procedure Process_Single_Action is new Traverse_Proc (Process_Action);
-- Local variables
Act : Node_Id;
-- Start of processing for Expand_N_Expression_With_Actions
begin
-- Process the actions as described above
Act := First (Actions (N));
while Present (Act) loop
Process_Single_Action (Act);
Next (Act);
end loop;
-- Deal with case where there are no actions. In this case we simply
-- rewrite the node with its expression since we don't need the actions
-- and the specification of this node does not allow a null action list.
-- Note: we use Rewrite instead of Replace, because Codepeer is using
-- the expanded tree and relying on being able to retrieve the original
-- tree in cases like this. This raises a whole lot of issues of whether
-- we have problems elsewhere, which will be addressed in the future???
if Is_Empty_List (Actions (N)) then
Rewrite (N, Relocate_Node (Expression (N)));
end if;
end Expand_N_Expression_With_Actions;
----------------------------
-- Expand_N_If_Expression --
----------------------------
-- Deal with limited types and condition actions
procedure Expand_N_If_Expression (N : Node_Id) is
procedure Process_Actions (Actions : List_Id);
-- Inspect and process a single action list of an if expression for
-- transient controlled objects. If such objects are found, the routine
-- generates code to clean them up when the context of the expression is
-- evaluated or elaborated.
---------------------
-- Process_Actions --
---------------------
procedure Process_Actions (Actions : List_Id) is
Act : Node_Id;
begin
Act := First (Actions);
while Present (Act) loop
if Nkind (Act) = N_Object_Declaration
and then Is_Finalizable_Transient (Act, N)
then
Process_Transient_Object (Act, N);
end if;
Next (Act);
end loop;
end Process_Actions;
-- Local variables
Loc : constant Source_Ptr := Sloc (N);
Cond : constant Node_Id := First (Expressions (N));
Thenx : constant Node_Id := Next (Cond);
Elsex : constant Node_Id := Next (Thenx);
Typ : constant Entity_Id := Etype (N);
Actions : List_Id;
Cnn : Entity_Id;
Decl : Node_Id;
Expr : Node_Id;
New_If : Node_Id;
New_N : Node_Id;
Ptr_Typ : Entity_Id;
-- Start of processing for Expand_N_If_Expression
begin
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Fold at compile time if condition known. We have already folded
-- static if expressions, but it is possible to fold any case in which
-- the condition is known at compile time, even though the result is
-- non-static.
-- Note that we don't do the fold of such cases in Sem_Elab because
-- it can cause infinite loops with the expander adding a conditional
-- expression, and Sem_Elab circuitry removing it repeatedly.
if Compile_Time_Known_Value (Cond) then
if Is_True (Expr_Value (Cond)) then
Expr := Thenx;
Actions := Then_Actions (N);
else
Expr := Elsex;
Actions := Else_Actions (N);
end if;
Remove (Expr);
if Present (Actions) then
Rewrite (N,
Make_Expression_With_Actions (Loc,
Expression => Relocate_Node (Expr),
Actions => Actions));
Analyze_And_Resolve (N, Typ);
else
Rewrite (N, Relocate_Node (Expr));
end if;
-- Note that the result is never static (legitimate cases of static
-- if expressions were folded in Sem_Eval).
Set_Is_Static_Expression (N, False);
return;
end if;
-- If the type is limited, and the back end does not handle limited
-- types, then we expand as follows to avoid the possibility of
-- improper copying.
-- type Ptr is access all Typ;
-- Cnn : Ptr;
-- if cond then
-- <<then actions>>
-- Cnn := then-expr'Unrestricted_Access;
-- else
-- <<else actions>>
-- Cnn := else-expr'Unrestricted_Access;
-- end if;
-- and replace the if expression by a reference to Cnn.all.
-- This special case can be skipped if the back end handles limited
-- types properly and ensures that no incorrect copies are made.
if Is_By_Reference_Type (Typ)
and then not Back_End_Handles_Limited_Types
then
-- When the "then" or "else" expressions involve controlled function
-- calls, generated temporaries are chained on the corresponding list
-- of actions. These temporaries need to be finalized after the if
-- expression is evaluated.
Process_Actions (Then_Actions (N));
Process_Actions (Else_Actions (N));
-- Generate:
-- type Ann is access all Typ;
Ptr_Typ := Make_Temporary (Loc, 'A');
Insert_Action (N,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
-- Generate:
-- Cnn : Ann;
Cnn := Make_Temporary (Loc, 'C', N);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Cnn,
Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
-- Generate:
-- if Cond then
-- Cnn := <Thenx>'Unrestricted_Access;
-- else
-- Cnn := <Elsex>'Unrestricted_Access;
-- end if;
New_If :=
Make_Implicit_If_Statement (N,
Condition => Relocate_Node (Cond),
Then_Statements => New_List (
Make_Assignment_Statement (Sloc (Thenx),
Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Thenx),
Attribute_Name => Name_Unrestricted_Access))),
Else_Statements => New_List (
Make_Assignment_Statement (Sloc (Elsex),
Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Elsex),
Attribute_Name => Name_Unrestricted_Access))));
-- Preserve the original context for which the if statement is being
-- generated. This is needed by the finalization machinery to prevent
-- the premature finalization of controlled objects found within the
-- if statement.
Set_From_Conditional_Expression (New_If);
New_N :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Cnn, Loc));
-- If the result is an unconstrained array and the if expression is in a
-- context other than the initializing expression of the declaration of
-- an object, then we pull out the if expression as follows:
-- Cnn : constant typ := if-expression
-- and then replace the if expression with an occurrence of Cnn. This
-- avoids the need in the back end to create on-the-fly variable length
-- temporaries (which it cannot do!)
-- Note that the test for being in an object declaration avoids doing an
-- unnecessary expansion, and also avoids infinite recursion.
elsif Is_Array_Type (Typ) and then not Is_Constrained (Typ)
and then (Nkind (Parent (N)) /= N_Object_Declaration
or else Expression (Parent (N)) /= N)
then
declare
Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
begin
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Cnn,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (N),
Has_Init_Expression => True));
Rewrite (N, New_Occurrence_Of (Cnn, Loc));
return;
end;
-- For other types, we only need to expand if there are other actions
-- associated with either branch.
elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
-- We now wrap the actions into the appropriate expression
if Present (Then_Actions (N)) then
Rewrite (Thenx,
Make_Expression_With_Actions (Sloc (Thenx),
Actions => Then_Actions (N),
Expression => Relocate_Node (Thenx)));
Set_Then_Actions (N, No_List);
Analyze_And_Resolve (Thenx, Typ);
end if;
if Present (Else_Actions (N)) then
Rewrite (Elsex,
Make_Expression_With_Actions (Sloc (Elsex),
Actions => Else_Actions (N),
Expression => Relocate_Node (Elsex)));
Set_Else_Actions (N, No_List);
Analyze_And_Resolve (Elsex, Typ);
end if;
return;
-- If no actions then no expansion needed, gigi will handle it using the
-- same approach as a C conditional expression.
else
return;
end if;
-- Fall through here for either the limited expansion, or the case of
-- inserting actions for non-limited types. In both these cases, we must
-- move the SLOC of the parent If statement to the newly created one and
-- change it to the SLOC of the expression which, after expansion, will
-- correspond to what is being evaluated.
if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
Set_Sloc (New_If, Sloc (Parent (N)));
Set_Sloc (Parent (N), Loc);
end if;
-- Make sure Then_Actions and Else_Actions are appropriately moved
-- to the new if statement.
if Present (Then_Actions (N)) then
Insert_List_Before
(First (Then_Statements (New_If)), Then_Actions (N));
end if;
if Present (Else_Actions (N)) then
Insert_List_Before
(First (Else_Statements (New_If)), Else_Actions (N));
end if;
Insert_Action (N, Decl);
Insert_Action (N, New_If);
Rewrite (N, New_N);
Analyze_And_Resolve (N, Typ);
end Expand_N_If_Expression;
-----------------
-- Expand_N_In --
-----------------
procedure Expand_N_In (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Restyp : constant Entity_Id := Etype (N);
Lop : constant Node_Id := Left_Opnd (N);
Rop : constant Node_Id := Right_Opnd (N);
Static : constant Boolean := Is_OK_Static_Expression (N);
Ltyp : Entity_Id;
Rtyp : Entity_Id;
procedure Substitute_Valid_Check;
-- Replaces node N by Lop'Valid. This is done when we have an explicit
-- test for the left operand being in range of its subtype.
----------------------------
-- Substitute_Valid_Check --
----------------------------
procedure Substitute_Valid_Check is
begin
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Lop),
Attribute_Name => Name_Valid));
Analyze_And_Resolve (N, Restyp);
-- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
-- in which case, this usage makes sense, and in any case, we have
-- actually eliminated the danger of optimization above.
if Overflow_Check_Mode not in Minimized_Or_Eliminated then
Error_Msg_N
("??explicit membership test may be optimized away", N);
Error_Msg_N -- CODEFIX
("\??use ''Valid attribute instead", N);
end if;
return;
end Substitute_Valid_Check;
-- Start of processing for Expand_N_In
begin
-- If set membership case, expand with separate procedure
if Present (Alternatives (N)) then
Expand_Set_Membership (N);
return;
end if;
-- Not set membership, proceed with expansion
Ltyp := Etype (Left_Opnd (N));
Rtyp := Etype (Right_Opnd (N));
-- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
-- type, then expand with a separate procedure. Note the use of the
-- flag No_Minimize_Eliminate to prevent infinite recursion.
if Overflow_Check_Mode in Minimized_Or_Eliminated
and then Is_Signed_Integer_Type (Ltyp)
and then not No_Minimize_Eliminate (N)
then
Expand_Membership_Minimize_Eliminate_Overflow (N);
return;
end if;
-- Check case of explicit test for an expression in range of its
-- subtype. This is suspicious usage and we replace it with a 'Valid
-- test and give a warning for scalar types.
if Is_Scalar_Type (Ltyp)
-- Only relevant for source comparisons
and then Comes_From_Source (N)
-- In floating-point this is a standard way to check for finite values
-- and using 'Valid would typically be a pessimization.
and then not Is_Floating_Point_Type (Ltyp)
-- Don't give the message unless right operand is a type entity and
-- the type of the left operand matches this type. Note that this
-- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
-- checks have changed the type of the left operand.
and then Nkind (Rop) in N_Has_Entity
and then Ltyp = Entity (Rop)
-- Skip in VM mode, where we have no sense of invalid values. The
-- warning still seems relevant, but not important enough to worry.
and then VM_Target = No_VM
-- Skip this for predicated types, where such expressions are a
-- reasonable way of testing if something meets the predicate.
and then not Present (Predicate_Function (Ltyp))
then
Substitute_Valid_Check;
return;
end if;
-- Do validity check on operands
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Left_Opnd (N));
Validity_Check_Range (Right_Opnd (N));
end if;
-- Case of explicit range
if Nkind (Rop) = N_Range then
declare
Lo : constant Node_Id := Low_Bound (Rop);
Hi : constant Node_Id := High_Bound (Rop);
Lo_Orig : constant Node_Id := Original_Node (Lo);
Hi_Orig : constant Node_Id := Original_Node (Hi);
Lcheck : Compare_Result;
Ucheck : Compare_Result;
Warn1 : constant Boolean :=
Constant_Condition_Warnings
and then Comes_From_Source (N)
and then not In_Instance;
-- This must be true for any of the optimization warnings, we
-- clearly want to give them only for source with the flag on. We
-- also skip these warnings in an instance since it may be the
-- case that different instantiations have different ranges.
Warn2 : constant Boolean :=
Warn1
and then Nkind (Original_Node (Rop)) = N_Range
and then Is_Integer_Type (Etype (Lo));
-- For the case where only one bound warning is elided, we also
-- insist on an explicit range and an integer type. The reason is
-- that the use of enumeration ranges including an end point is
-- common, as is the use of a subtype name, one of whose bounds is
-- the same as the type of the expression.
begin
-- If test is explicit x'First .. x'Last, replace by valid check
-- Could use some individual comments for this complex test ???
if Is_Scalar_Type (Ltyp)
-- And left operand is X'First where X matches left operand
-- type (this eliminates cases of type mismatch, including
-- the cases where ELIMINATED/MINIMIZED mode has changed the
-- type of the left operand.
and then Nkind (Lo_Orig) = N_Attribute_Reference
and then Attribute_Name (Lo_Orig) = Name_First
and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
and then Entity (Prefix (Lo_Orig)) = Ltyp
-- Same tests for right operand
and then Nkind (Hi_Orig) = N_Attribute_Reference
and then Attribute_Name (Hi_Orig) = Name_Last
and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
and then Entity (Prefix (Hi_Orig)) = Ltyp
-- Relevant only for source cases
and then Comes_From_Source (N)
-- Omit for VM cases, where we don't have invalid values
and then VM_Target = No_VM
then
Substitute_Valid_Check;
goto Leave;
end if;
-- If bounds of type are known at compile time, and the end points
-- are known at compile time and identical, this is another case
-- for substituting a valid test. We only do this for discrete
-- types, since it won't arise in practice for float types.
if Comes_From_Source (N)
and then Is_Discrete_Type (Ltyp)
and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
and then Compile_Time_Known_Value (Lo)
and then Compile_Time_Known_Value (Hi)
and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
-- Kill warnings in instances, since they may be cases where we
-- have a test in the generic that makes sense with some types
-- and not with other types.
and then not In_Instance
then
Substitute_Valid_Check;
goto Leave;
end if;
-- If we have an explicit range, do a bit of optimization based on
-- range analysis (we may be able to kill one or both checks).
Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
-- If either check is known to fail, replace result by False since
-- the other check does not matter. Preserve the static flag for
-- legality checks, because we are constant-folding beyond RM 4.9.
if Lcheck = LT or else Ucheck = GT then
if Warn1 then
Error_Msg_N ("?c?range test optimized away", N);
Error_Msg_N ("\?c?value is known to be out of range", N);
end if;
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
Analyze_And_Resolve (N, Restyp);
Set_Is_Static_Expression (N, Static);
goto Leave;
-- If both checks are known to succeed, replace result by True,
-- since we know we are in range.
elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
if Warn1 then
Error_Msg_N ("?c?range test optimized away", N);
Error_Msg_N ("\?c?value is known to be in range", N);
end if;
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
Analyze_And_Resolve (N, Restyp);
Set_Is_Static_Expression (N, Static);
goto Leave;
-- If lower bound check succeeds and upper bound check is not
-- known to succeed or fail, then replace the range check with
-- a comparison against the upper bound.
elsif Lcheck in Compare_GE then
if Warn2 and then not In_Instance then
Error_Msg_N ("??lower bound test optimized away", Lo);
Error_Msg_N ("\??value is known to be in range", Lo);
end if;
Rewrite (N,
Make_Op_Le (Loc,
Left_Opnd => Lop,
Right_Opnd => High_Bound (Rop)));
Analyze_And_Resolve (N, Restyp);
goto Leave;
-- If upper bound check succeeds and lower bound check is not
-- known to succeed or fail, then replace the range check with
-- a comparison against the lower bound.
elsif Ucheck in Compare_LE then
if Warn2 and then not In_Instance then
Error_Msg_N ("??upper bound test optimized away", Hi);
Error_Msg_N ("\??value is known to be in range", Hi);
end if;
Rewrite (N,
Make_Op_Ge (Loc,
Left_Opnd => Lop,
Right_Opnd => Low_Bound (Rop)));
Analyze_And_Resolve (N, Restyp);
goto Leave;
end if;
-- We couldn't optimize away the range check, but there is one
-- more issue. If we are checking constant conditionals, then we
-- see if we can determine the outcome assuming everything is
-- valid, and if so give an appropriate warning.
if Warn1 and then not Assume_No_Invalid_Values then
Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
-- Result is out of range for valid value
if Lcheck = LT or else Ucheck = GT then
Error_Msg_N
("?c?value can only be in range if it is invalid", N);
-- Result is in range for valid value
elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
Error_Msg_N
("?c?value can only be out of range if it is invalid", N);
-- Lower bound check succeeds if value is valid
elsif Warn2 and then Lcheck in Compare_GE then
Error_Msg_N
("?c?lower bound check only fails if it is invalid", Lo);
-- Upper bound check succeeds if value is valid
elsif Warn2 and then Ucheck in Compare_LE then
Error_Msg_N
("?c?upper bound check only fails for invalid values", Hi);
end if;
end if;
end;
-- For all other cases of an explicit range, nothing to be done
goto Leave;
-- Here right operand is a subtype mark
else
declare
Typ : Entity_Id := Etype (Rop);
Is_Acc : constant Boolean := Is_Access_Type (Typ);
Cond : Node_Id := Empty;
New_N : Node_Id;
Obj : Node_Id := Lop;
SCIL_Node : Node_Id;
begin
Remove_Side_Effects (Obj);
-- For tagged type, do tagged membership operation
if Is_Tagged_Type (Typ) then
-- No expansion will be performed when VM_Target, as the VM
-- back-ends will handle the membership tests directly (tags
-- are not explicitly represented in Java objects, so the
-- normal tagged membership expansion is not what we want).
if Tagged_Type_Expansion then
Tagged_Membership (N, SCIL_Node, New_N);
Rewrite (N, New_N);
Analyze_And_Resolve (N, Restyp);
-- Update decoration of relocated node referenced by the
-- SCIL node.
if Generate_SCIL and then Present (SCIL_Node) then
Set_SCIL_Node (N, SCIL_Node);
end if;
end if;
goto Leave;
-- If type is scalar type, rewrite as x in t'First .. t'Last.
-- This reason we do this is that the bounds may have the wrong
-- type if they come from the original type definition. Also this
-- way we get all the processing above for an explicit range.
-- Don't do this for predicated types, since in this case we
-- want to check the predicate.
elsif Is_Scalar_Type (Typ) then
if No (Predicate_Function (Typ)) then
Rewrite (Rop,
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Typ, Loc)),
High_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (Typ, Loc))));
Analyze_And_Resolve (N, Restyp);
end if;
goto Leave;
-- Ada 2005 (AI-216): Program_Error is raised when evaluating
-- a membership test if the subtype mark denotes a constrained
-- Unchecked_Union subtype and the expression lacks inferable
-- discriminants.
elsif Is_Unchecked_Union (Base_Type (Typ))
and then Is_Constrained (Typ)
and then not Has_Inferable_Discriminants (Lop)
then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
-- Prevent Gigi from generating incorrect code by rewriting the
-- test as False. What is this undocumented thing about ???
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
goto Leave;
end if;
-- Here we have a non-scalar type
if Is_Acc then
Typ := Designated_Type (Typ);
end if;
if not Is_Constrained (Typ) then
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
Analyze_And_Resolve (N, Restyp);
-- For the constrained array case, we have to check the subscripts
-- for an exact match if the lengths are non-zero (the lengths
-- must match in any case).
elsif Is_Array_Type (Typ) then
Check_Subscripts : declare
function Build_Attribute_Reference
(E : Node_Id;
Nam : Name_Id;
Dim : Nat) return Node_Id;
-- Build attribute reference E'Nam (Dim)
-------------------------------
-- Build_Attribute_Reference --
-------------------------------
function Build_Attribute_Reference
(E : Node_Id;
Nam : Name_Id;
Dim : Nat) return Node_Id
is
begin
return
Make_Attribute_Reference (Loc,
Prefix => E,
Attribute_Name => Nam,
Expressions => New_List (
Make_Integer_Literal (Loc, Dim)));
end Build_Attribute_Reference;
-- Start of processing for Check_Subscripts
begin
for J in 1 .. Number_Dimensions (Typ) loop
Evolve_And_Then (Cond,
Make_Op_Eq (Loc,
Left_Opnd =>
Build_Attribute_Reference
(Duplicate_Subexpr_No_Checks (Obj),
Name_First, J),
Right_Opnd =>
Build_Attribute_Reference
(New_Occurrence_Of (Typ, Loc), Name_First, J)));
Evolve_And_Then (Cond,
Make_Op_Eq (Loc,
Left_Opnd =>
Build_Attribute_Reference
(Duplicate_Subexpr_No_Checks (Obj),
Name_Last, J),
Right_Opnd =>
Build_Attribute_Reference
(New_Occurrence_Of (Typ, Loc), Name_Last, J)));
end loop;
if Is_Acc then
Cond :=
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => Obj,
Right_Opnd => Make_Null (Loc)),
Right_Opnd => Cond);
end if;
Rewrite (N, Cond);
Analyze_And_Resolve (N, Restyp);
end Check_Subscripts;
-- These are the cases where constraint checks may be required,
-- e.g. records with possible discriminants
else
-- Expand the test into a series of discriminant comparisons.
-- The expression that is built is the negation of the one that
-- is used for checking discriminant constraints.
Obj := Relocate_Node (Left_Opnd (N));
if Has_Discriminants (Typ) then
Cond := Make_Op_Not (Loc,
Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
if Is_Acc then
Cond := Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => Obj,
Right_Opnd => Make_Null (Loc)),
Right_Opnd => Cond);
end if;
else
Cond := New_Occurrence_Of (Standard_True, Loc);
end if;
Rewrite (N, Cond);
Analyze_And_Resolve (N, Restyp);
end if;
-- Ada 2012 (AI05-0149): Handle membership tests applied to an
-- expression of an anonymous access type. This can involve an
-- accessibility test and a tagged type membership test in the
-- case of tagged designated types.
if Ada_Version >= Ada_2012
and then Is_Acc
and then Ekind (Ltyp) = E_Anonymous_Access_Type
then
declare
Expr_Entity : Entity_Id := Empty;
New_N : Node_Id;
Param_Level : Node_Id;
Type_Level : Node_Id;
begin
if Is_Entity_Name (Lop) then
Expr_Entity := Param_Entity (Lop);
if not Present (Expr_Entity) then
Expr_Entity := Entity (Lop);
end if;
end if;
-- If a conversion of the anonymous access value to the
-- tested type would be illegal, then the result is False.
if not Valid_Conversion
(Lop, Rtyp, Lop, Report_Errs => False)
then
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
Analyze_And_Resolve (N, Restyp);
-- Apply an accessibility check if the access object has an
-- associated access level and when the level of the type is
-- less deep than the level of the access parameter. This
-- only occur for access parameters and stand-alone objects
-- of an anonymous access type.
else
if Present (Expr_Entity)
and then
Present
(Effective_Extra_Accessibility (Expr_Entity))
and then UI_Gt (Object_Access_Level (Lop),
Type_Access_Level (Rtyp))
then
Param_Level :=
New_Occurrence_Of
(Effective_Extra_Accessibility (Expr_Entity), Loc);
Type_Level :=
Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
-- Return True only if the accessibility level of the
-- expression entity is not deeper than the level of
-- the tested access type.
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd => Make_Op_Le (Loc,
Left_Opnd => Param_Level,
Right_Opnd => Type_Level)));
Analyze_And_Resolve (N);
end if;
-- If the designated type is tagged, do tagged membership
-- operation.
-- *** NOTE: we have to check not null before doing the
-- tagged membership test (but maybe that can be done
-- inside Tagged_Membership?).
if Is_Tagged_Type (Typ) then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Obj,
Right_Opnd => Make_Null (Loc))));
-- No expansion will be performed when VM_Target, as
-- the VM back-ends will handle the membership tests
-- directly (tags are not explicitly represented in
-- Java objects, so the normal tagged membership
-- expansion is not what we want).
if Tagged_Type_Expansion then
-- Note that we have to pass Original_Node, because
-- the membership test might already have been
-- rewritten by earlier parts of membership test.
Tagged_Membership
(Original_Node (N), SCIL_Node, New_N);
-- Update decoration of relocated node referenced
-- by the SCIL node.
if Generate_SCIL and then Present (SCIL_Node) then
Set_SCIL_Node (New_N, SCIL_Node);
end if;
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd => New_N));
Analyze_And_Resolve (N, Restyp);
end if;
end if;
end if;
end;
end if;
end;
end if;
-- At this point, we have done the processing required for the basic
-- membership test, but not yet dealt with the predicate.
<<Leave>>
-- If a predicate is present, then we do the predicate test, but we
-- most certainly want to omit this if we are within the predicate
-- function itself, since otherwise we have an infinite recursion.
-- The check should also not be emitted when testing against a range
-- (the check is only done when the right operand is a subtype; see
-- RM12-4.5.2 (28.1/3-30/3)).
declare
PFunc : constant Entity_Id := Predicate_Function (Rtyp);
begin
if Present (PFunc)
and then Current_Scope /= PFunc
and then Nkind (Rop) /= N_Range
then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd => Make_Predicate_Call (Rtyp, Lop, Mem => True)));
-- Analyze new expression, mark left operand as analyzed to
-- avoid infinite recursion adding predicate calls. Similarly,
-- suppress further range checks on the call.
Set_Analyzed (Left_Opnd (N));
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
-- All done, skip attempt at compile time determination of result
return;
end if;
end;
end Expand_N_In;
--------------------------------
-- Expand_N_Indexed_Component --
--------------------------------
procedure Expand_N_Indexed_Component (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
P : constant Node_Id := Prefix (N);
T : constant Entity_Id := Etype (P);
Atp : Entity_Id;
begin
-- A special optimization, if we have an indexed component that is
-- selecting from a slice, then we can eliminate the slice, since, for
-- example, x (i .. j)(k) is identical to x(k). The only difference is
-- the range check required by the slice. The range check for the slice
-- itself has already been generated. The range check for the
-- subscripting operation is ensured by converting the subject to
-- the subtype of the slice.
-- This optimization not only generates better code, avoiding slice
-- messing especially in the packed case, but more importantly bypasses
-- some problems in handling this peculiar case, for example, the issue
-- of dealing specially with object renamings.
if Nkind (P) = N_Slice
-- This optimization is disabled for CodePeer because it can transform
-- an index-check constraint_error into a range-check constraint_error
-- and CodePeer cares about that distinction.
and then not CodePeer_Mode
then
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix => Prefix (P),
Expressions => New_List (
Convert_To
(Etype (First_Index (Etype (P))),
First (Expressions (N))))));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
-- function, then additional actuals must be passed.
if Ada_Version >= Ada_2005
and then Is_Build_In_Place_Function_Call (P)
then
Make_Build_In_Place_Call_In_Anonymous_Context (P);
end if;
-- If the prefix is an access type, then we unconditionally rewrite if
-- as an explicit dereference. This simplifies processing for several
-- cases, including packed array cases and certain cases in which checks
-- must be generated. We used to try to do this only when it was
-- necessary, but it cleans up the code to do it all the time.
if Is_Access_Type (T) then
Insert_Explicit_Dereference (P);
Analyze_And_Resolve (P, Designated_Type (T));
Atp := Designated_Type (T);
else
Atp := T;
end if;
-- Generate index and validity checks
Generate_Index_Checks (N);
if Validity_Checks_On and then Validity_Check_Subscripts then
Apply_Subscript_Validity_Checks (N);
end if;
-- If selecting from an array with atomic components, and atomic sync
-- is not suppressed for this array type, set atomic sync flag.
if (Has_Atomic_Components (Atp)
and then not Atomic_Synchronization_Disabled (Atp))
or else (Is_Atomic (Typ)
and then not Atomic_Synchronization_Disabled (Typ))
then
Activate_Atomic_Synchronization (N);
end if;
-- All done for the non-packed case
if not Is_Packed (Etype (Prefix (N))) then
return;
end if;
-- For packed arrays that are not bit-packed (i.e. the case of an array
-- with one or more index types with a non-contiguous enumeration type),
-- we can always use the normal packed element get circuit.
if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
Expand_Packed_Element_Reference (N);
return;
end if;
-- For a reference to a component of a bit packed array, we convert it
-- to a reference to the corresponding Packed_Array_Impl_Type. We only
-- want to do this for simple references, and not for:
-- Left side of assignment, or prefix of left side of assignment, or
-- prefix of the prefix, to handle packed arrays of packed arrays,
-- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
-- Renaming objects in renaming associations
-- This case is handled when a use of the renamed variable occurs
-- Actual parameters for a procedure call
-- This case is handled in Exp_Ch6.Expand_Actuals
-- The second expression in a 'Read attribute reference
-- The prefix of an address or bit or size attribute reference
-- The following circuit detects these exceptions
declare
Child : Node_Id := N;
Parnt : Node_Id := Parent (N);
begin
loop
if Nkind (Parnt) = N_Unchecked_Expression then
null;
elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
N_Procedure_Call_Statement)
or else (Nkind (Parnt) = N_Parameter_Association
and then
Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
then
return;
elsif Nkind (Parnt) = N_Attribute_Reference
and then Nam_In (Attribute_Name (Parnt), Name_Address,
Name_Bit,
Name_Size)
and then Prefix (Parnt) = Child
then
return;
elsif Nkind (Parnt) = N_Assignment_Statement
and then Name (Parnt) = Child
then
return;
-- If the expression is an index of an indexed component, it must
-- be expanded regardless of context.
elsif Nkind (Parnt) = N_Indexed_Component
and then Child /= Prefix (Parnt)
then
Expand_Packed_Element_Reference (N);
return;
elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
and then Name (Parent (Parnt)) = Parnt
then
return;
elsif Nkind (Parnt) = N_Attribute_Reference
and then Attribute_Name (Parnt) = Name_Read
and then Next (First (Expressions (Parnt))) = Child
then
return;
elsif Nkind_In (Parnt, N_Indexed_Component, N_Selected_Component)
and then Prefix (Parnt) = Child
then
null;
else
Expand_Packed_Element_Reference (N);
return;
end if;
-- Keep looking up tree for unchecked expression, or if we are the
-- prefix of a possible assignment left side.
Child := Parnt;
Parnt := Parent (Child);
end loop;
end;
end Expand_N_Indexed_Component;
---------------------
-- Expand_N_Not_In --
---------------------
-- Replace a not in b by not (a in b) so that the expansions for (a in b)
-- can be done. This avoids needing to duplicate this expansion code.
procedure Expand_N_Not_In (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Cfs : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N,
Make_Op_Not (Loc,
Right_Opnd =>
Make_In (Loc,
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N))));
-- If this is a set membership, preserve list of alternatives
Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
-- We want this to appear as coming from source if original does (see
-- transformations in Expand_N_In).
Set_Comes_From_Source (N, Cfs);
Set_Comes_From_Source (Right_Opnd (N), Cfs);
-- Now analyze transformed node
Analyze_And_Resolve (N, Typ);
end Expand_N_Not_In;
-------------------
-- Expand_N_Null --
-------------------
-- The only replacement required is for the case of a null of a type that
-- is an access to protected subprogram, or a subtype thereof. We represent
-- such access values as a record, and so we must replace the occurrence of
-- null by the equivalent record (with a null address and a null pointer in
-- it), so that the backend creates the proper value.
procedure Expand_N_Null (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Base_Type (Etype (N));
Agg : Node_Id;
begin
if Is_Access_Protected_Subprogram_Type (Typ) then
Agg :=
Make_Aggregate (Loc,
Expressions => New_List (
New_Occurrence_Of (RTE (RE_Null_Address), Loc),
Make_Null (Loc)));
Rewrite (N, Agg);
Analyze_And_Resolve (N, Equivalent_Type (Typ));
-- For subsequent semantic analysis, the node must retain its type.
-- Gigi in any case replaces this type by the corresponding record
-- type before processing the node.
Set_Etype (N, Typ);
end if;
exception
when RE_Not_Available =>
return;
end Expand_N_Null;
---------------------
-- Expand_N_Op_Abs --
---------------------
procedure Expand_N_Op_Abs (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Expr : constant Node_Id := Right_Opnd (N);
begin
Unary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Deal with software overflow checking
if not Backend_Overflow_Checks_On_Target
and then Is_Signed_Integer_Type (Etype (N))
and then Do_Overflow_Check (N)
then
-- The only case to worry about is when the argument is equal to the
-- largest negative number, so what we do is to insert the check:
-- [constraint_error when Expr = typ'Base'First]
-- with the usual Duplicate_Subexpr use coding for expr
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Expr),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
Attribute_Name => Name_First)),
Reason => CE_Overflow_Check_Failed));
end if;
end Expand_N_Op_Abs;
---------------------
-- Expand_N_Op_Add --
---------------------
procedure Expand_N_Op_Add (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- N + 0 = 0 + N = N for integer types
if Is_Integer_Type (Typ) then
if Compile_Time_Known_Value (Right_Opnd (N))
and then Expr_Value (Right_Opnd (N)) = Uint_0
then
Rewrite (N, Left_Opnd (N));
return;
elsif Compile_Time_Known_Value (Left_Opnd (N))
and then Expr_Value (Left_Opnd (N)) = Uint_0
then
Rewrite (N, Right_Opnd (N));
return;
end if;
end if;
-- Arithmetic overflow checks for signed integer/fixed point types
if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Overflow checks for floating-point if -gnateF mode active
Check_Float_Op_Overflow (N);
end Expand_N_Op_Add;
---------------------
-- Expand_N_Op_And --
---------------------
procedure Expand_N_Op_And (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
if Is_Array_Type (Etype (N)) then
Expand_Boolean_Operator (N);
elsif Is_Boolean_Type (Etype (N)) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
elsif Is_Intrinsic_Subprogram (Entity (N)) then
Expand_Intrinsic_Call (N, Entity (N));
end if;
end Expand_N_Op_And;
------------------------
-- Expand_N_Op_Concat --
------------------------
procedure Expand_N_Op_Concat (N : Node_Id) is
Opnds : List_Id;
-- List of operands to be concatenated
Cnode : Node_Id;
-- Node which is to be replaced by the result of concatenating the nodes
-- in the list Opnds.
begin
-- Ensure validity of both operands
Binary_Op_Validity_Checks (N);
-- If we are the left operand of a concatenation higher up the tree,
-- then do nothing for now, since we want to deal with a series of
-- concatenations as a unit.
if Nkind (Parent (N)) = N_Op_Concat
and then N = Left_Opnd (Parent (N))
then
return;
end if;
-- We get here with a concatenation whose left operand may be a
-- concatenation itself with a consistent type. We need to process
-- these concatenation operands from left to right, which means
-- from the deepest node in the tree to the highest node.
Cnode := N;
while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
Cnode := Left_Opnd (Cnode);
end loop;
-- Now Cnode is the deepest concatenation, and its parents are the
-- concatenation nodes above, so now we process bottom up, doing the
-- operands.
-- The outer loop runs more than once if more than one concatenation
-- type is involved.
Outer : loop
Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
Set_Parent (Opnds, N);
-- The inner loop gathers concatenation operands
Inner : while Cnode /= N
and then Base_Type (Etype (Cnode)) =
Base_Type (Etype (Parent (Cnode)))
loop
Cnode := Parent (Cnode);
Append (Right_Opnd (Cnode), Opnds);
end loop Inner;
-- Note: The following code is a temporary workaround for N731-034
-- and N829-028 and will be kept until the general issue of internal
-- symbol serialization is addressed. The workaround is kept under a
-- debug switch to avoid permiating into the general case.
-- Wrap the node to concatenate into an expression actions node to
-- keep it nicely packaged. This is useful in the case of an assert
-- pragma with a concatenation where we want to be able to delete
-- the concatenation and all its expansion stuff.
if Debug_Flag_Dot_H then
declare
Cnod : constant Node_Id := Relocate_Node (Cnode);
Typ : constant Entity_Id := Base_Type (Etype (Cnode));
begin
-- Note: use Rewrite rather than Replace here, so that for
-- example Why_Not_Static can find the original concatenation
-- node OK!
Rewrite (Cnode,
Make_Expression_With_Actions (Sloc (Cnode),
Actions => New_List (Make_Null_Statement (Sloc (Cnode))),
Expression => Cnod));
Expand_Concatenate (Cnod, Opnds);
Analyze_And_Resolve (Cnode, Typ);
end;
-- Default case
else
Expand_Concatenate (Cnode, Opnds);
end if;
exit Outer when Cnode = N;
Cnode := Parent (Cnode);
end loop Outer;
end Expand_N_Op_Concat;
------------------------
-- Expand_N_Op_Divide --
------------------------
procedure Expand_N_Op_Divide (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Lopnd : constant Node_Id := Left_Opnd (N);
Ropnd : constant Node_Id := Right_Opnd (N);
Ltyp : constant Entity_Id := Etype (Lopnd);
Rtyp : constant Entity_Id := Etype (Ropnd);
Typ : Entity_Id := Etype (N);
Rknow : constant Boolean := Is_Integer_Type (Typ)
and then
Compile_Time_Known_Value (Ropnd);
Rval : Uint;
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Otherwise proceed with expansion of division
if Rknow then
Rval := Expr_Value (Ropnd);
end if;
-- N / 1 = N for integer types
if Rknow and then Rval = Uint_1 then
Rewrite (N, Lopnd);
return;
end if;
-- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
-- Is_Power_Of_2_For_Shift is set means that we know that our left
-- operand is an unsigned integer, as required for this to work.
if Nkind (Ropnd) = N_Op_Expon
and then Is_Power_Of_2_For_Shift (Ropnd)
-- We cannot do this transformation in configurable run time mode if we
-- have 64-bit integers and long shifts are not available.
and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
then
Rewrite (N,
Make_Op_Shift_Right (Loc,
Left_Opnd => Lopnd,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Do required fixup of universal fixed operation
if Typ = Universal_Fixed then
Fixup_Universal_Fixed_Operation (N);
Typ := Etype (N);
end if;
-- Divisions with fixed-point results
if Is_Fixed_Point_Type (Typ) then
-- Deal with divide-by-zero check if back end cannot handle them
-- and the flag is set indicating that we need such a check. Note
-- that we don't need to bother here with the case of mixed-mode
-- (Right operand an integer type), since these will be rewritten
-- with conversions to a divide with a fixed-point right operand.
if Do_Division_Check (N)
and then not Backend_Divide_Checks_On_Target
and then not Is_Integer_Type (Rtyp)
then
Set_Do_Division_Check (N, False);
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Ropnd),
Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
Reason => CE_Divide_By_Zero));
end if;
-- No special processing if Treat_Fixed_As_Integer is set, since
-- from a semantic point of view such operations are simply integer
-- operations and will be treated that way.
if not Treat_Fixed_As_Integer (N) then
if Is_Integer_Type (Rtyp) then
Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
else
Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
end if;
end if;
-- Other cases of division of fixed-point operands. Again we exclude the
-- case where Treat_Fixed_As_Integer is set.
elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
and then not Treat_Fixed_As_Integer (N)
then
if Is_Integer_Type (Typ) then
Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
else
pragma Assert (Is_Floating_Point_Type (Typ));
Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
end if;
-- Mixed-mode operations can appear in a non-static universal context,
-- in which case the integer argument must be converted explicitly.
elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
Rewrite (Ropnd,
Convert_To (Universal_Real, Relocate_Node (Ropnd)));
Analyze_And_Resolve (Ropnd, Universal_Real);
elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
Rewrite (Lopnd,
Convert_To (Universal_Real, Relocate_Node (Lopnd)));
Analyze_And_Resolve (Lopnd, Universal_Real);
-- Non-fixed point cases, do integer zero divide and overflow checks
elsif Is_Integer_Type (Typ) then
Apply_Divide_Checks (N);
end if;
-- Overflow checks for floating-point if -gnateF mode active
Check_Float_Op_Overflow (N);
end Expand_N_Op_Divide;
--------------------
-- Expand_N_Op_Eq --
--------------------
procedure Expand_N_Op_Eq (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Lhs : constant Node_Id := Left_Opnd (N);
Rhs : constant Node_Id := Right_Opnd (N);
Bodies : constant List_Id := New_List;
A_Typ : constant Entity_Id := Etype (Lhs);
Typl : Entity_Id := A_Typ;
Op_Name : Entity_Id;
Prim : Elmt_Id;
procedure Build_Equality_Call (Eq : Entity_Id);
-- If a constructed equality exists for the type or for its parent,
-- build and analyze call, adding conversions if the operation is
-- inherited.
function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
-- Determines whether a type has a subcomponent of an unconstrained
-- Unchecked_Union subtype. Typ is a record type.
-------------------------
-- Build_Equality_Call --
-------------------------
procedure Build_Equality_Call (Eq : Entity_Id) is
Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
L_Exp : Node_Id := Relocate_Node (Lhs);
R_Exp : Node_Id := Relocate_Node (Rhs);
begin
-- Adjust operands if necessary to comparison type
if Base_Type (Op_Type) /= Base_Type (A_Typ)
and then not Is_Class_Wide_Type (A_Typ)
then
L_Exp := OK_Convert_To (Op_Type, L_Exp);
R_Exp := OK_Convert_To (Op_Type, R_Exp);
end if;
-- If we have an Unchecked_Union, we need to add the inferred
-- discriminant values as actuals in the function call. At this
-- point, the expansion has determined that both operands have
-- inferable discriminants.
if Is_Unchecked_Union (Op_Type) then
declare
Lhs_Type : constant Node_Id := Etype (L_Exp);
Rhs_Type : constant Node_Id := Etype (R_Exp);
Lhs_Discr_Vals : Elist_Id;
-- List of inferred discriminant values for left operand.
Rhs_Discr_Vals : Elist_Id;
-- List of inferred discriminant values for right operand.
Discr : Entity_Id;
begin
Lhs_Discr_Vals := New_Elmt_List;
Rhs_Discr_Vals := New_Elmt_List;
-- Per-object constrained selected components require special
-- attention. If the enclosing scope of the component is an
-- Unchecked_Union, we cannot reference its discriminants
-- directly. This is why we use the extra parameters of the
-- equality function of the enclosing Unchecked_Union.
-- type UU_Type (Discr : Integer := 0) is
-- . . .
-- end record;
-- pragma Unchecked_Union (UU_Type);
-- 1. Unchecked_Union enclosing record:
-- type Enclosing_UU_Type (Discr : Integer := 0) is record
-- . . .
-- Comp : UU_Type (Discr);
-- . . .
-- end Enclosing_UU_Type;
-- pragma Unchecked_Union (Enclosing_UU_Type);
-- Obj1 : Enclosing_UU_Type;
-- Obj2 : Enclosing_UU_Type (1);
-- [. . .] Obj1 = Obj2 [. . .]
-- Generated code:
-- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
-- A and B are the formal parameters of the equality function
-- of Enclosing_UU_Type. The function always has two extra
-- formals to capture the inferred discriminant values for
-- each discriminant of the type.
-- 2. Non-Unchecked_Union enclosing record:
-- type
-- Enclosing_Non_UU_Type (Discr : Integer := 0)
-- is record
-- . . .
-- Comp : UU_Type (Discr);
-- . . .
-- end Enclosing_Non_UU_Type;
-- Obj1 : Enclosing_Non_UU_Type;
-- Obj2 : Enclosing_Non_UU_Type (1);
-- ... Obj1 = Obj2 ...
-- Generated code:
-- if not (uu_typeEQ (obj1.comp, obj2.comp,
-- obj1.discr, obj2.discr)) then
-- In this case we can directly reference the discriminants of
-- the enclosing record.
-- Process left operand of equality
if Nkind (Lhs) = N_Selected_Component
and then
Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
then
-- If enclosing record is an Unchecked_Union, use formals
-- corresponding to each discriminant. The name of the
-- formal is that of the discriminant, with added suffix,
-- see Exp_Ch3.Build_Record_Equality for details.
if Is_Unchecked_Union (Scope (Entity (Selector_Name (Lhs))))
then
Discr :=
First_Discriminant
(Scope (Entity (Selector_Name (Lhs))));
while Present (Discr) loop
Append_Elmt
(Make_Identifier (Loc,
Chars => New_External_Name (Chars (Discr), 'A')),
To => Lhs_Discr_Vals);
Next_Discriminant (Discr);
end loop;
-- If enclosing record is of a non-Unchecked_Union type, it
-- is possible to reference its discriminants directly.
else
Discr := First_Discriminant (Lhs_Type);
while Present (Discr) loop
Append_Elmt
(Make_Selected_Component (Loc,
Prefix => Prefix (Lhs),
Selector_Name =>
New_Copy
(Get_Discriminant_Value (Discr,
Lhs_Type,
Stored_Constraint (Lhs_Type)))),
To => Lhs_Discr_Vals);
Next_Discriminant (Discr);
end loop;
end if;
-- Otherwise operand is on object with a constrained type.
-- Infer the discriminant values from the constraint.
else
Discr := First_Discriminant (Lhs_Type);
while Present (Discr) loop
Append_Elmt
(New_Copy
(Get_Discriminant_Value (Discr,
Lhs_Type,
Stored_Constraint (Lhs_Type))),
To => Lhs_Discr_Vals);
Next_Discriminant (Discr);
end loop;
end if;
-- Similar processing for right operand of equality
if Nkind (Rhs) = N_Selected_Component
and then
Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
then
if Is_Unchecked_Union
(Scope (Entity (Selector_Name (Rhs))))
then
Discr :=
First_Discriminant
(Scope (Entity (Selector_Name (Rhs))));
while Present (Discr) loop
Append_Elmt
(Make_Identifier (Loc,
Chars => New_External_Name (Chars (Discr), 'B')),
To => Rhs_Discr_Vals);
Next_Discriminant (Discr);
end loop;
else
Discr := First_Discriminant (Rhs_Type);
while Present (Discr) loop
Append_Elmt
(Make_Selected_Component (Loc,
Prefix => Prefix (Rhs),
Selector_Name =>
New_Copy (Get_Discriminant_Value
(Discr,
Rhs_Type,
Stored_Constraint (Rhs_Type)))),
To => Rhs_Discr_Vals);
Next_Discriminant (Discr);
end loop;
end if;
else
Discr := First_Discriminant (Rhs_Type);
while Present (Discr) loop
Append_Elmt
(New_Copy (Get_Discriminant_Value
(Discr,
Rhs_Type,
Stored_Constraint (Rhs_Type))),
To => Rhs_Discr_Vals);
Next_Discriminant (Discr);
end loop;
end if;
-- Now merge the list of discriminant values so that values
-- of corresponding discriminants are adjacent.
declare
Params : List_Id;
L_Elmt : Elmt_Id;
R_Elmt : Elmt_Id;
begin
Params := New_List (L_Exp, R_Exp);
L_Elmt := First_Elmt (Lhs_Discr_Vals);
R_Elmt := First_Elmt (Rhs_Discr_Vals);
while Present (L_Elmt) loop
Append_To (Params, Node (L_Elmt));
Append_To (Params, Node (R_Elmt));
Next_Elmt (L_Elmt);
Next_Elmt (R_Elmt);
end loop;
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq, Loc),
Parameter_Associations => Params));
end;
end;
-- Normal case, not an unchecked union
else
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq, Loc),
Parameter_Associations => New_List (L_Exp, R_Exp)));
end if;
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end Build_Equality_Call;
------------------------------------
-- Has_Unconstrained_UU_Component --
------------------------------------
function Has_Unconstrained_UU_Component
(Typ : Node_Id) return Boolean
is
Tdef : constant Node_Id :=
Type_Definition (Declaration_Node (Base_Type (Typ)));
Clist : Node_Id;
Vpart : Node_Id;
function Component_Is_Unconstrained_UU
(Comp : Node_Id) return Boolean;
-- Determines whether the subtype of the component is an
-- unconstrained Unchecked_Union.
function Variant_Is_Unconstrained_UU
(Variant : Node_Id) return Boolean;
-- Determines whether a component of the variant has an unconstrained
-- Unchecked_Union subtype.
-----------------------------------
-- Component_Is_Unconstrained_UU --
-----------------------------------
function Component_Is_Unconstrained_UU
(Comp : Node_Id) return Boolean
is
begin
if Nkind (Comp) /= N_Component_Declaration then
return False;
end if;
declare
Sindic : constant Node_Id :=
Subtype_Indication (Component_Definition (Comp));
begin
-- Unconstrained nominal type. In the case of a constraint
-- present, the node kind would have been N_Subtype_Indication.
if Nkind (Sindic) = N_Identifier then
return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
end if;
return False;
end;
end Component_Is_Unconstrained_UU;
---------------------------------
-- Variant_Is_Unconstrained_UU --
---------------------------------
function Variant_Is_Unconstrained_UU
(Variant : Node_Id) return Boolean
is
Clist : constant Node_Id := Component_List (Variant);
begin
if Is_Empty_List (Component_Items (Clist)) then
return False;
end if;
-- We only need to test one component
declare
Comp : Node_Id := First (Component_Items (Clist));
begin
while Present (Comp) loop
if Component_Is_Unconstrained_UU (Comp) then
return True;
end if;
Next (Comp);
end loop;
end;
-- None of the components withing the variant were of
-- unconstrained Unchecked_Union type.
return False;
end Variant_Is_Unconstrained_UU;
-- Start of processing for Has_Unconstrained_UU_Component
begin
if Null_Present (Tdef) then
return False;
end if;
Clist := Component_List (Tdef);
Vpart := Variant_Part (Clist);
-- Inspect available components
if Present (Component_Items (Clist)) then
declare
Comp : Node_Id := First (Component_Items (Clist));
begin
while Present (Comp) loop
-- One component is sufficient
if Component_Is_Unconstrained_UU (Comp) then
return True;
end if;
Next (Comp);
end loop;
end;
end if;
-- Inspect available components withing variants
if Present (Vpart) then
declare
Variant : Node_Id := First (Variants (Vpart));
begin
while Present (Variant) loop
-- One component within a variant is sufficient
if Variant_Is_Unconstrained_UU (Variant) then
return True;
end if;
Next (Variant);
end loop;
end;
end if;
-- Neither the available components, nor the components inside the
-- variant parts were of an unconstrained Unchecked_Union subtype.
return False;
end Has_Unconstrained_UU_Component;
-- Start of processing for Expand_N_Op_Eq
begin
Binary_Op_Validity_Checks (N);
-- Deal with private types
if Ekind (Typl) = E_Private_Type then
Typl := Underlying_Type (Typl);
elsif Ekind (Typl) = E_Private_Subtype then
Typl := Underlying_Type (Base_Type (Typl));
else
null;
end if;
-- It may happen in error situations that the underlying type is not
-- set. The error will be detected later, here we just defend the
-- expander code.
if No (Typl) then
return;
end if;
-- Now get the implementation base type (note that plain Base_Type here
-- might lead us back to the private type, which is not what we want!)
Typl := Implementation_Base_Type (Typl);
-- Equality between variant records results in a call to a routine
-- that has conditional tests of the discriminant value(s), and hence
-- violates the No_Implicit_Conditionals restriction.
if Has_Variant_Part (Typl) then
declare
Msg : Boolean;
begin
Check_Restriction (Msg, No_Implicit_Conditionals, N);
if Msg then
Error_Msg_N
("\comparison of variant records tests discriminants", N);
return;
end if;
end;
end if;
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
Expand_Compare_Minimize_Eliminate_Overflow (N);
if Nkind (N) /= N_Op_Eq then
return;
end if;
-- Boolean types (requiring handling of non-standard case)
if Is_Boolean_Type (Typl) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
-- Array types
elsif Is_Array_Type (Typl) then
-- If we are doing full validity checking, and it is possible for the
-- array elements to be invalid then expand out array comparisons to
-- make sure that we check the array elements.
if Validity_Check_Operands
and then not Is_Known_Valid (Component_Type (Typl))
then
declare
Save_Force_Validity_Checks : constant Boolean :=
Force_Validity_Checks;
begin
Force_Validity_Checks := True;
Rewrite (N,
Expand_Array_Equality
(N,
Relocate_Node (Lhs),
Relocate_Node (Rhs),
Bodies,
Typl));
Insert_Actions (N, Bodies);
Analyze_And_Resolve (N, Standard_Boolean);
Force_Validity_Checks := Save_Force_Validity_Checks;
end;
-- Packed case where both operands are known aligned
elsif Is_Bit_Packed_Array (Typl)
and then not Is_Possibly_Unaligned_Object (Lhs)
and then not Is_Possibly_Unaligned_Object (Rhs)
then
Expand_Packed_Eq (N);
-- Where the component type is elementary we can use a block bit
-- comparison (if supported on the target) exception in the case
-- of floating-point (negative zero issues require element by
-- element comparison), and atomic types (where we must be sure
-- to load elements independently) and possibly unaligned arrays.
elsif Is_Elementary_Type (Component_Type (Typl))
and then not Is_Floating_Point_Type (Component_Type (Typl))
and then not Is_Atomic (Component_Type (Typl))
and then not Is_Possibly_Unaligned_Object (Lhs)
and then not Is_Possibly_Unaligned_Object (Rhs)
and then Support_Composite_Compare_On_Target
then
null;
-- For composite and floating-point cases, expand equality loop to
-- make sure of using proper comparisons for tagged types, and
-- correctly handling the floating-point case.
else
Rewrite (N,
Expand_Array_Equality
(N,
Relocate_Node (Lhs),
Relocate_Node (Rhs),
Bodies,
Typl));
Insert_Actions (N, Bodies, Suppress => All_Checks);
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end if;
-- Record Types
elsif Is_Record_Type (Typl) then
-- For tagged types, use the primitive "="
if Is_Tagged_Type (Typl) then
-- No need to do anything else compiling under restriction
-- No_Dispatching_Calls. During the semantic analysis we
-- already notified such violation.
if Restriction_Active (No_Dispatching_Calls) then
return;
end if;
-- If this is derived from an untagged private type completed with
-- a tagged type, it does not have a full view, so we use the
-- primitive operations of the private type. This check should no
-- longer be necessary when these types get their full views???
if Is_Private_Type (A_Typ)
and then not Is_Tagged_Type (A_Typ)
and then Is_Derived_Type (A_Typ)
and then No (Full_View (A_Typ))
then
-- Search for equality operation, checking that the operands
-- have the same type. Note that we must find a matching entry,
-- or something is very wrong.
Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
while Present (Prim) loop
exit when Chars (Node (Prim)) = Name_Op_Eq
and then Etype (First_Formal (Node (Prim))) =
Etype (Next_Formal (First_Formal (Node (Prim))))
and then
Base_Type (Etype (Node (Prim))) = Standard_Boolean;
Next_Elmt (Prim);
end loop;
pragma Assert (Present (Prim));
Op_Name := Node (Prim);
-- Find the type's predefined equality or an overriding
-- user-defined equality. The reason for not simply calling
-- Find_Prim_Op here is that there may be a user-defined
-- overloaded equality op that precedes the equality that we
-- want, so we have to explicitly search (e.g., there could be
-- an equality with two different parameter types).
else
if Is_Class_Wide_Type (Typl) then
Typl := Find_Specific_Type (Typl);
end if;
Prim := First_Elmt (Primitive_Operations (Typl));
while Present (Prim) loop
exit when Chars (Node (Prim)) = Name_Op_Eq
and then Etype (First_Formal (Node (Prim))) =
Etype (Next_Formal (First_Formal (Node (Prim))))
and then
Base_Type (Etype (Node (Prim))) = Standard_Boolean;
Next_Elmt (Prim);
end loop;
pragma Assert (Present (Prim));
Op_Name := Node (Prim);
end if;
Build_Equality_Call (Op_Name);
-- Ada 2005 (AI-216): Program_Error is raised when evaluating the
-- predefined equality operator for a type which has a subcomponent
-- of an Unchecked_Union type whose nominal subtype is unconstrained.
elsif Has_Unconstrained_UU_Component (Typl) then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
-- Prevent Gigi from generating incorrect code by rewriting the
-- equality as a standard False. (is this documented somewhere???)
Rewrite (N,
New_Occurrence_Of (Standard_False, Loc));
elsif Is_Unchecked_Union (Typl) then
-- If we can infer the discriminants of the operands, we make a
-- call to the TSS equality function.
if Has_Inferable_Discriminants (Lhs)
and then
Has_Inferable_Discriminants (Rhs)
then
Build_Equality_Call
(TSS (Root_Type (Typl), TSS_Composite_Equality));
else
-- Ada 2005 (AI-216): Program_Error is raised when evaluating
-- the predefined equality operator for an Unchecked_Union type
-- if either of the operands lack inferable discriminants.
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
-- Emit a warning on source equalities only, otherwise the
-- message may appear out of place due to internal use. The
-- warning is unconditional because it is required by the
-- language.
if Comes_From_Source (N) then
Error_Msg_N
("Unchecked_Union discriminants cannot be determined??",
N);
Error_Msg_N
("\Program_Error will be raised for equality operation??",
N);
end if;
-- Prevent Gigi from generating incorrect code by rewriting
-- the equality as a standard False (documented where???).
Rewrite (N,
New_Occurrence_Of (Standard_False, Loc));
end if;
-- If a type support function is present (for complex cases), use it
elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
Build_Equality_Call
(TSS (Root_Type (Typl), TSS_Composite_Equality));
-- When comparing two Bounded_Strings, use the primitive equality of
-- the root Super_String type.
elsif Is_Bounded_String (Typl) then
Prim :=
First_Elmt (Collect_Primitive_Operations (Root_Type (Typl)));
while Present (Prim) loop
exit when Chars (Node (Prim)) = Name_Op_Eq
and then Etype (First_Formal (Node (Prim))) =
Etype (Next_Formal (First_Formal (Node (Prim))))
and then Base_Type (Etype (Node (Prim))) = Standard_Boolean;
Next_Elmt (Prim);
end loop;
-- A Super_String type should always have a primitive equality
pragma Assert (Present (Prim));
Build_Equality_Call (Node (Prim));
-- Otherwise expand the component by component equality. Note that
-- we never use block-bit comparisons for records, because of the
-- problems with gaps. The backend will often be able to recombine
-- the separate comparisons that we generate here.
else
Remove_Side_Effects (Lhs);
Remove_Side_Effects (Rhs);
Rewrite (N,
Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
Insert_Actions (N, Bodies, Suppress => All_Checks);
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end if;
end if;
-- Test if result is known at compile time
Rewrite_Comparison (N);
Optimize_Length_Comparison (N);
end Expand_N_Op_Eq;
-----------------------
-- Expand_N_Op_Expon --
-----------------------
procedure Expand_N_Op_Expon (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Rtyp : constant Entity_Id := Root_Type (Typ);
Base : constant Node_Id := Relocate_Node (Left_Opnd (N));
Bastyp : constant Node_Id := Etype (Base);
Exp : constant Node_Id := Relocate_Node (Right_Opnd (N));
Exptyp : constant Entity_Id := Etype (Exp);
Ovflo : constant Boolean := Do_Overflow_Check (N);
Expv : Uint;
Temp : Node_Id;
Rent : RE_Id;
Ent : Entity_Id;
Etyp : Entity_Id;
Xnode : Node_Id;
begin
Binary_Op_Validity_Checks (N);
-- CodePeer wants to see the unexpanded N_Op_Expon node
if CodePeer_Mode then
return;
end if;
-- If either operand is of a private type, then we have the use of an
-- intrinsic operator, and we get rid of the privateness, by using root
-- types of underlying types for the actual operation. Otherwise the
-- private types will cause trouble if we expand multiplications or
-- shifts etc. We also do this transformation if the result type is
-- different from the base type.
if Is_Private_Type (Etype (Base))
or else Is_Private_Type (Typ)
or else Is_Private_Type (Exptyp)
or else Rtyp /= Root_Type (Bastyp)
then
declare
Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
begin
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Op_Expon (Loc,
Left_Opnd => Unchecked_Convert_To (Bt, Base),
Right_Opnd => Unchecked_Convert_To (Et, Exp))));
Analyze_And_Resolve (N, Typ);
return;
end;
end if;
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Test for case of known right argument where we can replace the
-- exponentiation by an equivalent expression using multiplication.
-- Note: use CRT_Safe version of Compile_Time_Known_Value because in
-- configurable run-time mode, we may not have the exponentiation
-- routine available, and we don't want the legality of the program
-- to depend on how clever the compiler is in knowing values.
if CRT_Safe_Compile_Time_Known_Value (Exp) then
Expv := Expr_Value (Exp);
-- We only fold small non-negative exponents. You might think we
-- could fold small negative exponents for the real case, but we
-- can't because we are required to raise Constraint_Error for
-- the case of 0.0 ** (negative) even if Machine_Overflows = False.
-- See ACVC test C4A012B.
if Expv >= 0 and then Expv <= 4 then
-- X ** 0 = 1 (or 1.0)
if Expv = 0 then
-- Call Remove_Side_Effects to ensure that any side effects
-- in the ignored left operand (in particular function calls
-- to user defined functions) are properly executed.
Remove_Side_Effects (Base);
if Ekind (Typ) in Integer_Kind then
Xnode := Make_Integer_Literal (Loc, Intval => 1);
else
Xnode := Make_Real_Literal (Loc, Ureal_1);
end if;
-- X ** 1 = X
elsif Expv = 1 then
Xnode := Base;
-- X ** 2 = X * X
elsif Expv = 2 then
Xnode :=
Make_Op_Multiply (Loc,
Left_Opnd => Duplicate_Subexpr (Base),
Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
-- X ** 3 = X * X * X
elsif Expv = 3 then
Xnode :=
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Op_Multiply (Loc,
Left_Opnd => Duplicate_Subexpr (Base),
Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
Right_Opnd => Duplicate_Subexpr_No_Checks (Base));
-- X ** 4 ->
-- do
-- En : constant base'type := base * base;
-- in
-- En * En
else
pragma Assert (Expv = 4);
Temp := Make_Temporary (Loc, 'E', Base);
Xnode :=
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression =>
Make_Op_Multiply (Loc,
Left_Opnd =>
Duplicate_Subexpr (Base),
Right_Opnd =>
Duplicate_Subexpr_No_Checks (Base)))),
Expression =>
Make_Op_Multiply (Loc,
Left_Opnd => New_Occurrence_Of (Temp, Loc),
Right_Opnd => New_Occurrence_Of (Temp, Loc)));
end if;
Rewrite (N, Xnode);
Analyze_And_Resolve (N, Typ);
return;
end if;
end if;
-- Case of (2 ** expression) appearing as an argument of an integer
-- multiplication, or as the right argument of a division of a non-
-- negative integer. In such cases we leave the node untouched, setting
-- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
-- of the higher level node converts it into a shift.
-- Another case is 2 ** N in any other context. We simply convert
-- this to 1 * 2 ** N, and then the above transformation applies.
-- Note: this transformation is not applicable for a modular type with
-- a non-binary modulus in the multiplication case, since we get a wrong
-- result if the shift causes an overflow before the modular reduction.
-- Note: we used to check that Exptyp was an unsigned type. But that is
-- an unnecessary check, since if Exp is negative, we have a run-time
-- error that is either caught (so we get the right result) or we have
-- suppressed the check, in which case the code is erroneous anyway.
if Nkind (Base) = N_Integer_Literal
and then CRT_Safe_Compile_Time_Known_Value (Base)
and then Expr_Value (Base) = Uint_2
and then Is_Integer_Type (Root_Type (Exptyp))
and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
and then not Ovflo
then
-- First the multiply and divide cases
if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
declare
P : constant Node_Id := Parent (N);
L : constant Node_Id := Left_Opnd (P);
R : constant Node_Id := Right_Opnd (P);
begin
if (Nkind (P) = N_Op_Multiply
and then not Non_Binary_Modulus (Typ)
and then
((Is_Integer_Type (Etype (L)) and then R = N)
or else
(Is_Integer_Type (Etype (R)) and then L = N))
and then not Do_Overflow_Check (P))
or else
(Nkind (P) = N_Op_Divide
and then Is_Integer_Type (Etype (L))
and then Is_Unsigned_Type (Etype (L))
and then R = N
and then not Do_Overflow_Check (P))
then
Set_Is_Power_Of_2_For_Shift (N);
return;
end if;
end;
-- Now the other cases
elsif not Non_Binary_Modulus (Typ) then
Rewrite (N,
Make_Op_Multiply (Loc,
Left_Opnd => Make_Integer_Literal (Loc, 1),
Right_Opnd => Relocate_Node (N)));
Analyze_And_Resolve (N, Typ);
return;
end if;
end if;
-- Fall through if exponentiation must be done using a runtime routine
-- First deal with modular case
if Is_Modular_Integer_Type (Rtyp) then
-- Non-binary case, we call the special exponentiation routine for
-- the non-binary case, converting the argument to Long_Long_Integer
-- and passing the modulus value. Then the result is converted back
-- to the base type.
if Non_Binary_Modulus (Rtyp) then
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
Parameter_Associations => New_List (
Convert_To (RTE (RE_Unsigned), Base),
Make_Integer_Literal (Loc, Modulus (Rtyp)),
Exp))));
-- Binary case, in this case, we call one of two routines, either the
-- unsigned integer case, or the unsigned long long integer case,
-- with a final "and" operation to do the required mod.
else
if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
Ent := RTE (RE_Exp_Unsigned);
else
Ent := RTE (RE_Exp_Long_Long_Unsigned);
end if;
Rewrite (N,
Convert_To (Typ,
Make_Op_And (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Parameter_Associations => New_List (
Convert_To (Etype (First_Formal (Ent)), Base),
Exp)),
Right_Opnd =>
Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
end if;
-- Common exit point for modular type case
Analyze_And_Resolve (N, Typ);
return;
-- Signed integer cases, done using either Integer or Long_Long_Integer.
-- It is not worth having routines for Short_[Short_]Integer, since for
-- most machines it would not help, and it would generate more code that
-- might need certification when a certified run time is required.
-- In the integer cases, we have two routines, one for when overflow
-- checks are required, and one when they are not required, since there
-- is a real gain in omitting checks on many machines.
elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
or else (Rtyp = Base_Type (Standard_Long_Integer)
and then
Esize (Standard_Long_Integer) > Esize (Standard_Integer))
or else Rtyp = Universal_Integer
then
Etyp := Standard_Long_Long_Integer;
-- Overflow checking is the only choice on the AAMP target, where
-- arithmetic instructions check overflow automatically, so only
-- one version of the exponentiation unit is needed.
if Ovflo or AAMP_On_Target then
Rent := RE_Exp_Long_Long_Integer;
else
Rent := RE_Exn_Long_Long_Integer;
end if;
elsif Is_Signed_Integer_Type (Rtyp) then
Etyp := Standard_Integer;
-- Overflow checking is the only choice on the AAMP target, where
-- arithmetic instructions check overflow automatically, so only
-- one version of the exponentiation unit is needed.
if Ovflo or AAMP_On_Target then
Rent := RE_Exp_Integer;
else
Rent := RE_Exn_Integer;
end if;
-- Floating-point cases, always done using Long_Long_Float. We do not
-- need separate routines for the overflow case here, since in the case
-- of floating-point, we generate infinities anyway as a rule (either
-- that or we automatically trap overflow), and if there is an infinity
-- generated and a range check is required, the check will fail anyway.
else
pragma Assert (Is_Floating_Point_Type (Rtyp));
Etyp := Standard_Long_Long_Float;
Rent := RE_Exn_Long_Long_Float;
end if;
-- Common processing for integer cases and floating-point cases.
-- If we are in the right type, we can call runtime routine directly
if Typ = Etyp
and then Rtyp /= Universal_Integer
and then Rtyp /= Universal_Real
then
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Rent), Loc),
Parameter_Associations => New_List (Base, Exp)));
-- Otherwise we have to introduce conversions (conversions are also
-- required in the universal cases, since the runtime routine is
-- typed using one of the standard types).
else
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Rent), Loc),
Parameter_Associations => New_List (
Convert_To (Etyp, Base),
Exp))));
end if;
Analyze_And_Resolve (N, Typ);
return;
exception
when RE_Not_Available =>
return;
end Expand_N_Op_Expon;
--------------------
-- Expand_N_Op_Ge --
--------------------
procedure Expand_N_Op_Ge (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
begin
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
Expand_Compare_Minimize_Eliminate_Overflow (N);
if Nkind (N) /= N_Op_Ge then
return;
end if;
-- Array type case
if Is_Array_Type (Typ1) then
Expand_Array_Comparison (N);
return;
end if;
-- Deal with boolean operands
if Is_Boolean_Type (Typ1) then
Adjust_Condition (Op1);
Adjust_Condition (Op2);
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
Optimize_Length_Comparison (N);
end Expand_N_Op_Ge;
--------------------
-- Expand_N_Op_Gt --
--------------------
procedure Expand_N_Op_Gt (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
begin
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
Expand_Compare_Minimize_Eliminate_Overflow (N);
if Nkind (N) /= N_Op_Gt then
return;
end if;
-- Deal with array type operands
if Is_Array_Type (Typ1) then
Expand_Array_Comparison (N);
return;
end if;
-- Deal with boolean type operands
if Is_Boolean_Type (Typ1) then
Adjust_Condition (Op1);
Adjust_Condition (Op2);
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
Optimize_Length_Comparison (N);
end Expand_N_Op_Gt;
--------------------
-- Expand_N_Op_Le --
--------------------
procedure Expand_N_Op_Le (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
begin
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
Expand_Compare_Minimize_Eliminate_Overflow (N);
if Nkind (N) /= N_Op_Le then
return;
end if;
-- Deal with array type operands
if Is_Array_Type (Typ1) then
Expand_Array_Comparison (N);
return;
end if;
-- Deal with Boolean type operands
if Is_Boolean_Type (Typ1) then
Adjust_Condition (Op1);
Adjust_Condition (Op2);
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
Optimize_Length_Comparison (N);
end Expand_N_Op_Le;
--------------------
-- Expand_N_Op_Lt --
--------------------
procedure Expand_N_Op_Lt (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
begin
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
Expand_Compare_Minimize_Eliminate_Overflow (N);
if Nkind (N) /= N_Op_Lt then
return;
end if;
-- Deal with array type operands
if Is_Array_Type (Typ1) then
Expand_Array_Comparison (N);
return;
end if;
-- Deal with Boolean type operands
if Is_Boolean_Type (Typ1) then
Adjust_Condition (Op1);
Adjust_Condition (Op2);
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
Optimize_Length_Comparison (N);
end Expand_N_Op_Lt;
-----------------------
-- Expand_N_Op_Minus --
-----------------------
procedure Expand_N_Op_Minus (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
begin
Unary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
if not Backend_Overflow_Checks_On_Target
and then Is_Signed_Integer_Type (Etype (N))
and then Do_Overflow_Check (N)
then
-- Software overflow checking expands -expr into (0 - expr)
Rewrite (N,
Make_Op_Subtract (Loc,
Left_Opnd => Make_Integer_Literal (Loc, 0),
Right_Opnd => Right_Opnd (N)));
Analyze_And_Resolve (N, Typ);
end if;
end Expand_N_Op_Minus;
---------------------
-- Expand_N_Op_Mod --
---------------------
procedure Expand_N_Op_Mod (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
DDC : constant Boolean := Do_Division_Check (N);
Left : Node_Id;
Right : Node_Id;
LLB : Uint;
Llo : Uint;
Lhi : Uint;
LOK : Boolean;
Rlo : Uint;
Rhi : Uint;
ROK : Boolean;
pragma Warnings (Off, Lhi);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
if Is_Integer_Type (Etype (N)) then
Apply_Divide_Checks (N);
-- All done if we don't have a MOD any more, which can happen as a
-- result of overflow expansion in MINIMIZED or ELIMINATED modes.
if Nkind (N) /= N_Op_Mod then
return;
end if;
end if;
-- Proceed with expansion of mod operator
Left := Left_Opnd (N);
Right := Right_Opnd (N);
Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
-- Convert mod to rem if operands are both known to be non-negative, or
-- both known to be non-positive (these are the cases in which rem and
-- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
-- likely that this will improve the quality of code, (the operation now
-- corresponds to the hardware remainder), and it does not seem likely
-- that it could be harmful. It also avoids some cases of the elaborate
-- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
if (LOK and ROK)
and then ((Llo >= 0 and then Rlo >= 0)
or else
(Lhi <= 0 and then Rhi <= 0))
then
Rewrite (N,
Make_Op_Rem (Sloc (N),
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N)));
-- Instead of reanalyzing the node we do the analysis manually. This
-- avoids anomalies when the replacement is done in an instance and
-- is epsilon more efficient.
Set_Entity (N, Standard_Entity (S_Op_Rem));
Set_Etype (N, Typ);
Set_Do_Division_Check (N, DDC);
Expand_N_Op_Rem (N);
Set_Analyzed (N);
return;
-- Otherwise, normal mod processing
else
-- Apply optimization x mod 1 = 0. We don't really need that with
-- gcc, but it is useful with other back ends (e.g. AAMP), and is
-- certainly harmless.
if Is_Integer_Type (Etype (N))
and then Compile_Time_Known_Value (Right)
and then Expr_Value (Right) = Uint_1
then
-- Call Remove_Side_Effects to ensure that any side effects in
-- the ignored left operand (in particular function calls to
-- user defined functions) are properly executed.
Remove_Side_Effects (Left);
Rewrite (N, Make_Integer_Literal (Loc, 0));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- If we still have a mod operator and we are in Modify_Tree_For_C
-- mode, and we have a signed integer type, then here is where we do
-- the rewrite in terms of Rem. Note this rewrite bypasses the need
-- for the special handling of the annoying case of largest negative
-- number mod minus one.
if Nkind (N) = N_Op_Mod
and then Is_Signed_Integer_Type (Typ)
and then Modify_Tree_For_C
then
-- In the general case, we expand A mod B as
-- Tnn : constant typ := A rem B;
-- ..
-- (if (A >= 0) = (B >= 0) then Tnn
-- elsif Tnn = 0 then 0
-- else Tnn + B)
-- The comparison can be written simply as A >= 0 if we know that
-- B >= 0 which is a very common case.
-- An important optimization is when B is known at compile time
-- to be 2**K for some constant. In this case we can simply AND
-- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
-- and that works for both the positive and negative cases.
declare
P2 : constant Nat := Power_Of_Two (Right);
begin
if P2 /= 0 then
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Op_And (Loc,
Left_Opnd =>
Unchecked_Convert_To
(Corresponding_Unsigned_Type (Typ), Left),
Right_Opnd =>
Make_Integer_Literal (Loc, 2 ** P2 - 1))));
Analyze_And_Resolve (N, Typ);
return;
end if;
end;
-- Here for the full rewrite
declare
Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
Cmp : Node_Id;
begin
Cmp :=
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
Right_Opnd => Make_Integer_Literal (Loc, 0));
if not LOK or else Rlo < 0 then
Cmp :=
Make_Op_Eq (Loc,
Left_Opnd => Cmp,
Right_Opnd =>
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
Right_Opnd => Make_Integer_Literal (Loc, 0)));
end if;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression =>
Make_Op_Rem (Loc,
Left_Opnd => Left,
Right_Opnd => Right)));
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Cmp,
New_Occurrence_Of (Tnn, Loc),
Make_If_Expression (Loc,
Is_Elsif => True,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Tnn, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Make_Integer_Literal (Loc, 0),
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Tnn, Loc),
Right_Opnd =>
Duplicate_Subexpr_No_Checks (Right)))))));
Analyze_And_Resolve (N, Typ);
return;
end;
end if;
-- Deal with annoying case of largest negative number mod minus one.
-- Gigi may not handle this case correctly, because on some targets,
-- the mod value is computed using a divide instruction which gives
-- an overflow trap for this case.
-- It would be a bit more efficient to figure out which targets
-- this is really needed for, but in practice it is reasonable
-- to do the following special check in all cases, since it means
-- we get a clearer message, and also the overhead is minimal given
-- that division is expensive in any case.
-- In fact the check is quite easy, if the right operand is -1, then
-- the mod value is always 0, and we can just ignore the left operand
-- completely in this case.
-- This only applies if we still have a mod operator. Skip if we
-- have already rewritten this (e.g. in the case of eliminated
-- overflow checks which have driven us into bignum mode).
if Nkind (N) = N_Op_Mod then
-- The operand type may be private (e.g. in the expansion of an
-- intrinsic operation) so we must use the underlying type to get
-- the bounds, and convert the literals explicitly.
LLB :=
Expr_Value
(Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
and then ((not LOK) or else (Llo = LLB))
then
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Right),
Right_Opnd =>
Unchecked_Convert_To (Typ,
Make_Integer_Literal (Loc, -1))),
Unchecked_Convert_To (Typ,
Make_Integer_Literal (Loc, Uint_0)),
Relocate_Node (N))));
Set_Analyzed (Next (Next (First (Expressions (N)))));
Analyze_And_Resolve (N, Typ);
end if;
end if;
end if;
end Expand_N_Op_Mod;
--------------------------
-- Expand_N_Op_Multiply --
--------------------------
procedure Expand_N_Op_Multiply (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Lop : constant Node_Id := Left_Opnd (N);
Rop : constant Node_Id := Right_Opnd (N);
Lp2 : constant Boolean :=
Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
Rp2 : constant Boolean :=
Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
Ltyp : constant Entity_Id := Etype (Lop);
Rtyp : constant Entity_Id := Etype (Rop);
Typ : Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Special optimizations for integer types
if Is_Integer_Type (Typ) then
-- N * 0 = 0 for integer types
if Compile_Time_Known_Value (Rop)
and then Expr_Value (Rop) = Uint_0
then
-- Call Remove_Side_Effects to ensure that any side effects in
-- the ignored left operand (in particular function calls to
-- user defined functions) are properly executed.
Remove_Side_Effects (Lop);
Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Similar handling for 0 * N = 0
if Compile_Time_Known_Value (Lop)
and then Expr_Value (Lop) = Uint_0
then
Remove_Side_Effects (Rop);
Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- N * 1 = 1 * N = N for integer types
-- This optimisation is not done if we are going to
-- rewrite the product 1 * 2 ** N to a shift.
if Compile_Time_Known_Value (Rop)
and then Expr_Value (Rop) = Uint_1
and then not Lp2
then
Rewrite (N, Lop);
return;
elsif Compile_Time_Known_Value (Lop)
and then Expr_Value (Lop) = Uint_1
and then not Rp2
then
Rewrite (N, Rop);
return;
end if;
end if;
-- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
-- Is_Power_Of_2_For_Shift is set means that we know that our left
-- operand is an integer, as required for this to work.
if Rp2 then
if Lp2 then
-- Convert 2 ** A * 2 ** B into 2 ** (A + B)
Rewrite (N,
Make_Op_Expon (Loc,
Left_Opnd => Make_Integer_Literal (Loc, 2),
Right_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => Right_Opnd (Lop),
Right_Opnd => Right_Opnd (Rop))));
Analyze_And_Resolve (N, Typ);
return;
else
-- If the result is modular, perform the reduction of the result
-- appropriately.
if Is_Modular_Integer_Type (Typ)
and then not Non_Binary_Modulus (Typ)
then
Rewrite (N,
Make_Op_And (Loc,
Left_Opnd =>
Make_Op_Shift_Left (Loc,
Left_Opnd => Lop,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Rop))),
Right_Opnd =>
Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
else
Rewrite (N,
Make_Op_Shift_Left (Loc,
Left_Opnd => Lop,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Rop))));
end if;
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Same processing for the operands the other way round
elsif Lp2 then
if Is_Modular_Integer_Type (Typ)
and then not Non_Binary_Modulus (Typ)
then
Rewrite (N,
Make_Op_And (Loc,
Left_Opnd =>
Make_Op_Shift_Left (Loc,
Left_Opnd => Rop,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Lop))),
Right_Opnd =>
Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
else
Rewrite (N,
Make_Op_Shift_Left (Loc,
Left_Opnd => Rop,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Lop))));
end if;
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Do required fixup of universal fixed operation
if Typ = Universal_Fixed then
Fixup_Universal_Fixed_Operation (N);
Typ := Etype (N);
end if;
-- Multiplications with fixed-point results
if Is_Fixed_Point_Type (Typ) then
-- No special processing if Treat_Fixed_As_Integer is set, since from
-- a semantic point of view such operations are simply integer
-- operations and will be treated that way.
if not Treat_Fixed_As_Integer (N) then
-- Case of fixed * integer => fixed
if Is_Integer_Type (Rtyp) then
Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
-- Case of integer * fixed => fixed
elsif Is_Integer_Type (Ltyp) then
Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
-- Case of fixed * fixed => fixed
else
Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
end if;
end if;
-- Other cases of multiplication of fixed-point operands. Again we
-- exclude the cases where Treat_Fixed_As_Integer flag is set.
elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
and then not Treat_Fixed_As_Integer (N)
then
if Is_Integer_Type (Typ) then
Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
else
pragma Assert (Is_Floating_Point_Type (Typ));
Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
end if;
-- Mixed-mode operations can appear in a non-static universal context,
-- in which case the integer argument must be converted explicitly.
elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
Analyze_And_Resolve (Rop, Universal_Real);
elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
Analyze_And_Resolve (Lop, Universal_Real);
-- Non-fixed point cases, check software overflow checking required
elsif Is_Signed_Integer_Type (Etype (N)) then
Apply_Arithmetic_Overflow_Check (N);
end if;
-- Overflow checks for floating-point if -gnateF mode active
Check_Float_Op_Overflow (N);
end Expand_N_Op_Multiply;
--------------------
-- Expand_N_Op_Ne --
--------------------
procedure Expand_N_Op_Ne (N : Node_Id) is
Typ : constant Entity_Id := Etype (Left_Opnd (N));
begin
-- Case of elementary type with standard operator
if Is_Elementary_Type (Typ)
and then Sloc (Entity (N)) = Standard_Location
then
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
-- means we no longer have a /= operation, we are all done.
Expand_Compare_Minimize_Eliminate_Overflow (N);
if Nkind (N) /= N_Op_Ne then
return;
end if;
-- Boolean types (requiring handling of non-standard case)
if Is_Boolean_Type (Typ) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
-- For all cases other than elementary types, we rewrite node as the
-- negation of an equality operation, and reanalyze. The equality to be
-- used is defined in the same scope and has the same signature. This
-- signature must be set explicitly since in an instance it may not have
-- the same visibility as in the generic unit. This avoids duplicating
-- or factoring the complex code for record/array equality tests etc.
else
declare
Loc : constant Source_Ptr := Sloc (N);
Neg : Node_Id;
Ne : constant Entity_Id := Entity (N);
begin
Binary_Op_Validity_Checks (N);
Neg :=
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N)));
Set_Paren_Count (Right_Opnd (Neg), 1);
if Scope (Ne) /= Standard_Standard then
Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
end if;
-- For navigation purposes, we want to treat the inequality as an
-- implicit reference to the corresponding equality. Preserve the
-- Comes_From_ source flag to generate proper Xref entries.
Preserve_Comes_From_Source (Neg, N);
Preserve_Comes_From_Source (Right_Opnd (Neg), N);
Rewrite (N, Neg);
Analyze_And_Resolve (N, Standard_Boolean);
end;
end if;
Optimize_Length_Comparison (N);
end Expand_N_Op_Ne;
---------------------
-- Expand_N_Op_Not --
---------------------
-- If the argument is other than a Boolean array type, there is no special
-- expansion required, except for dealing with validity checks, and non-
-- standard boolean representations.
-- For the packed array case, we call the special routine in Exp_Pakd,
-- except that if the component size is greater than one, we use the
-- standard routine generating a gruesome loop (it is so peculiar to have
-- packed arrays with non-standard Boolean representations anyway, so it
-- does not matter that we do not handle this case efficiently).
-- For the unpacked array case (and for the special packed case where we
-- have non standard Booleans, as discussed above), we generate and insert
-- into the tree the following function definition:
-- function Nnnn (A : arr) is
-- B : arr;
-- begin
-- for J in a'range loop
-- B (J) := not A (J);
-- end loop;
-- return B;
-- end Nnnn;
-- Here arr is the actual subtype of the parameter (and hence always
-- constrained). Then we replace the not with a call to this function.
procedure Expand_N_Op_Not (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Opnd : Node_Id;
Arr : Entity_Id;
A : Entity_Id;
B : Entity_Id;
J : Entity_Id;
A_J : Node_Id;
B_J : Node_Id;
Func_Name : Entity_Id;
Loop_Statement : Node_Id;
begin
Unary_Op_Validity_Checks (N);
-- For boolean operand, deal with non-standard booleans
if Is_Boolean_Type (Typ) then
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
return;
end if;
-- Only array types need any other processing
if not Is_Array_Type (Typ) then
return;
end if;
-- Case of array operand. If bit packed with a component size of 1,
-- handle it in Exp_Pakd if the operand is known to be aligned.
if Is_Bit_Packed_Array (Typ)
and then Component_Size (Typ) = 1
and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
then
Expand_Packed_Not (N);
return;
end if;
-- Case of array operand which is not bit-packed. If the context is
-- a safe assignment, call in-place operation, If context is a larger
-- boolean expression in the context of a safe assignment, expansion is
-- done by enclosing operation.
Opnd := Relocate_Node (Right_Opnd (N));
Convert_To_Actual_Subtype (Opnd);
Arr := Etype (Opnd);
Ensure_Defined (Arr, N);
Silly_Boolean_Array_Not_Test (N, Arr);
if Nkind (Parent (N)) = N_Assignment_Statement then
if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
return;
-- Special case the negation of a binary operation
elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
and then Safe_In_Place_Array_Op
(Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
then
Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
return;
end if;
elsif Nkind (Parent (N)) in N_Binary_Op
and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
then
declare
Op1 : constant Node_Id := Left_Opnd (Parent (N));
Op2 : constant Node_Id := Right_Opnd (Parent (N));
Lhs : constant Node_Id := Name (Parent (Parent (N)));
begin
if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
-- (not A) op (not B) can be reduced to a single call
if N = Op1 and then Nkind (Op2) = N_Op_Not then
return;
elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
return;
-- A xor (not B) can also be special-cased
elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
return;
end if;
end if;
end;
end if;
A := Make_Defining_Identifier (Loc, Name_uA);
B := Make_Defining_Identifier (Loc, Name_uB);
J := Make_Defining_Identifier (Loc, Name_uJ);
A_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (A, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
B_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (B, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
Loop_Statement :=
Make_Implicit_Loop_Statement (N,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => J,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Chars (A)),
Attribute_Name => Name_Range))),
Statements => New_List (
Make_Assignment_Statement (Loc,
Name => B_J,
Expression => Make_Op_Not (Loc, A_J))));
Func_Name := Make_Temporary (Loc, 'N');
Set_Is_Inlined (Func_Name);
Insert_Action (N,
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type => New_Occurrence_Of (Typ, Loc))),
Result_Definition => New_Occurrence_Of (Typ, Loc)),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => B,
Object_Definition => New_Occurrence_Of (Arr, Loc))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Loop_Statement,
Make_Simple_Return_Statement (Loc,
Expression => Make_Identifier (Loc, Chars (B)))))));
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations => New_List (Opnd)));
Analyze_And_Resolve (N, Typ);
end Expand_N_Op_Not;
--------------------
-- Expand_N_Op_Or --
--------------------
procedure Expand_N_Op_Or (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
if Is_Array_Type (Etype (N)) then
Expand_Boolean_Operator (N);
elsif Is_Boolean_Type (Etype (N)) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
elsif Is_Intrinsic_Subprogram (Entity (N)) then
Expand_Intrinsic_Call (N, Entity (N));
end if;
end Expand_N_Op_Or;
----------------------
-- Expand_N_Op_Plus --
----------------------
procedure Expand_N_Op_Plus (N : Node_Id) is
begin
Unary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
end Expand_N_Op_Plus;
---------------------
-- Expand_N_Op_Rem --
---------------------
procedure Expand_N_Op_Rem (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Left : Node_Id;
Right : Node_Id;
Lo : Uint;
Hi : Uint;
OK : Boolean;
Lneg : Boolean;
Rneg : Boolean;
-- Set if corresponding operand can be negative
pragma Unreferenced (Hi);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
if Is_Integer_Type (Etype (N)) then
Apply_Divide_Checks (N);
-- All done if we don't have a REM any more, which can happen as a
-- result of overflow expansion in MINIMIZED or ELIMINATED modes.
if Nkind (N) /= N_Op_Rem then
return;
end if;
end if;
-- Proceed with expansion of REM
Left := Left_Opnd (N);
Right := Right_Opnd (N);
-- Apply optimization x rem 1 = 0. We don't really need that with gcc,
-- but it is useful with other back ends (e.g. AAMP), and is certainly
-- harmless.
if Is_Integer_Type (Etype (N))
and then Compile_Time_Known_Value (Right)
and then Expr_Value (Right) = Uint_1
then
-- Call Remove_Side_Effects to ensure that any side effects in the
-- ignored left operand (in particular function calls to user defined
-- functions) are properly executed.
Remove_Side_Effects (Left);
Rewrite (N, Make_Integer_Literal (Loc, 0));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Deal with annoying case of largest negative number remainder minus
-- one. Gigi may not handle this case correctly, because on some
-- targets, the mod value is computed using a divide instruction
-- which gives an overflow trap for this case.
-- It would be a bit more efficient to figure out which targets this
-- is really needed for, but in practice it is reasonable to do the
-- following special check in all cases, since it means we get a clearer
-- message, and also the overhead is minimal given that division is
-- expensive in any case.
-- In fact the check is quite easy, if the right operand is -1, then
-- the remainder is always 0, and we can just ignore the left operand
-- completely in this case.
Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
Lneg := (not OK) or else Lo < 0;
Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
Rneg := (not OK) or else Lo < 0;
-- We won't mess with trying to find out if the left operand can really
-- be the largest negative number (that's a pain in the case of private
-- types and this is really marginal). We will just assume that we need
-- the test if the left operand can be negative at all.
if Lneg and Rneg then
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Right),
Right_Opnd =>
Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
Unchecked_Convert_To (Typ,
Make_Integer_Literal (Loc, Uint_0)),
Relocate_Node (N))));
Set_Analyzed (Next (Next (First (Expressions (N)))));
Analyze_And_Resolve (N, Typ);
end if;
end Expand_N_Op_Rem;
-----------------------------
-- Expand_N_Op_Rotate_Left --
-----------------------------
procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
begin
Binary_Op_Validity_Checks (N);
-- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
-- so we rewrite in terms of logical shifts
-- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
-- where Bits is the shift count mod Esize (the mod operation here
-- deals with ludicrous large shift counts, which are apparently OK).
-- What about non-binary modulus ???
declare
Loc : constant Source_Ptr := Sloc (N);
Rtp : constant Entity_Id := Etype (Right_Opnd (N));
Typ : constant Entity_Id := Etype (N);
begin
if Modify_Tree_For_C then
Rewrite (Right_Opnd (N),
Make_Op_Rem (Loc,
Left_Opnd => Relocate_Node (Right_Opnd (N)),
Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
Analyze_And_Resolve (Right_Opnd (N), Rtp);
Rewrite (N,
Make_Op_Or (Loc,
Left_Opnd =>
Make_Op_Shift_Left (Loc,
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N)),
Right_Opnd =>
Make_Op_Shift_Right (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
Right_Opnd =>
Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
Analyze_And_Resolve (N, Typ);
end if;
end;
end Expand_N_Op_Rotate_Left;
------------------------------
-- Expand_N_Op_Rotate_Right --
------------------------------
procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
begin
Binary_Op_Validity_Checks (N);
-- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
-- so we rewrite in terms of logical shifts
-- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
-- where Bits is the shift count mod Esize (the mod operation here
-- deals with ludicrous large shift counts, which are apparently OK).
-- What about non-binary modulus ???
declare
Loc : constant Source_Ptr := Sloc (N);
Rtp : constant Entity_Id := Etype (Right_Opnd (N));
Typ : constant Entity_Id := Etype (N);
begin
Rewrite (Right_Opnd (N),
Make_Op_Rem (Loc,
Left_Opnd => Relocate_Node (Right_Opnd (N)),
Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
Analyze_And_Resolve (Right_Opnd (N), Rtp);
if Modify_Tree_For_C then
Rewrite (N,
Make_Op_Or (Loc,
Left_Opnd =>
Make_Op_Shift_Right (Loc,
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N)),
Right_Opnd =>
Make_Op_Shift_Left (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
Right_Opnd =>
Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
Analyze_And_Resolve (N, Typ);
end if;
end;
end Expand_N_Op_Rotate_Right;
----------------------------
-- Expand_N_Op_Shift_Left --
----------------------------
-- Note: nothing in this routine depends on left as opposed to right shifts
-- so we share the routine for expanding shift right operations.
procedure Expand_N_Op_Shift_Left (N : Node_Id) is
begin
Binary_Op_Validity_Checks (N);
-- If we are in Modify_Tree_For_C mode, then ensure that the right
-- operand is not greater than the word size (since that would not
-- be defined properly by the corresponding C shift operator).
if Modify_Tree_For_C then
declare
Right : constant Node_Id := Right_Opnd (N);
Loc : constant Source_Ptr := Sloc (Right);
Typ : constant Entity_Id := Etype (N);
Siz : constant Uint := Esize (Typ);
Orig : Node_Id;
OK : Boolean;
Lo : Uint;
Hi : Uint;
begin
if Compile_Time_Known_Value (Right) then
if Expr_Value (Right) >= Siz then
Rewrite (N, Make_Integer_Literal (Loc, 0));
Analyze_And_Resolve (N, Typ);
end if;
-- Not compile time known, find range
else
Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
-- Nothing to do if known to be OK range, otherwise expand
if not OK or else Hi >= Siz then
-- Prevent recursion on copy of shift node
Orig := Relocate_Node (N);
Set_Analyzed (Orig);
-- Now do the rewrite
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
Right_Opnd => Make_Integer_Literal (Loc, Siz)),
Make_Integer_Literal (Loc, 0),
Orig)));
Analyze_And_Resolve (N, Typ);
end if;
end if;
end;
end if;
end Expand_N_Op_Shift_Left;
-----------------------------
-- Expand_N_Op_Shift_Right --
-----------------------------
procedure Expand_N_Op_Shift_Right (N : Node_Id) is
begin
-- Share shift left circuit
Expand_N_Op_Shift_Left (N);
end Expand_N_Op_Shift_Right;
----------------------------------------
-- Expand_N_Op_Shift_Right_Arithmetic --
----------------------------------------
procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
begin
Binary_Op_Validity_Checks (N);
-- If we are in Modify_Tree_For_C mode, there is no shift right
-- arithmetic in C, so we rewrite in terms of logical shifts.
-- Shift_Right (Num, Bits) or
-- (if Num >= Sign
-- then not (Shift_Right (Mask, bits))
-- else 0)
-- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
-- Note: in almost all C compilers it would work to just shift a
-- signed integer right, but it's undefined and we cannot rely on it.
-- Note: the above works fine for shift counts greater than or equal
-- to the word size, since in this case (not (Shift_Right (Mask, bits)))
-- generates all 1'bits.
-- What about non-binary modulus ???
declare
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Sign : constant Uint := 2 ** (Esize (Typ) - 1);
Mask : constant Uint := (2 ** Esize (Typ)) - 1;
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Maskx : Node_Id;
begin
if Modify_Tree_For_C then
-- Here if not (Shift_Right (Mask, bits)) can be computed at
-- compile time as a single constant.
if Compile_Time_Known_Value (Right) then
declare
Val : constant Uint := Expr_Value (Right);
begin
if Val >= Esize (Typ) then
Maskx := Make_Integer_Literal (Loc, Mask);
else
Maskx :=
Make_Integer_Literal (Loc,
Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
end if;
end;
else
Maskx :=
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Shift_Right (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Mask),
Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
end if;
-- Now do the rewrite
Rewrite (N,
Make_Op_Or (Loc,
Left_Opnd =>
Make_Op_Shift_Right (Loc,
Left_Opnd => Left,
Right_Opnd => Right),
Right_Opnd =>
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
Right_Opnd => Make_Integer_Literal (Loc, Sign)),
Maskx,
Make_Integer_Literal (Loc, 0)))));
Analyze_And_Resolve (N, Typ);
end if;
end;
end Expand_N_Op_Shift_Right_Arithmetic;
--------------------------
-- Expand_N_Op_Subtract --
--------------------------
procedure Expand_N_Op_Subtract (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- N - 0 = N for integer types
if Is_Integer_Type (Typ)
and then Compile_Time_Known_Value (Right_Opnd (N))
and then Expr_Value (Right_Opnd (N)) = 0
then
Rewrite (N, Left_Opnd (N));
return;
end if;
-- Arithmetic overflow checks for signed integer/fixed point types
if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
Apply_Arithmetic_Overflow_Check (N);
end if;
-- Overflow checks for floating-point if -gnateF mode active
Check_Float_Op_Overflow (N);
end Expand_N_Op_Subtract;
---------------------
-- Expand_N_Op_Xor --
---------------------
procedure Expand_N_Op_Xor (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
if Is_Array_Type (Etype (N)) then
Expand_Boolean_Operator (N);
elsif Is_Boolean_Type (Etype (N)) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
elsif Is_Intrinsic_Subprogram (Entity (N)) then
Expand_Intrinsic_Call (N, Entity (N));
end if;
end Expand_N_Op_Xor;
----------------------
-- Expand_N_Or_Else --
----------------------
procedure Expand_N_Or_Else (N : Node_Id)
renames Expand_Short_Circuit_Operator;
-----------------------------------
-- Expand_N_Qualified_Expression --
-----------------------------------
procedure Expand_N_Qualified_Expression (N : Node_Id) is
Operand : constant Node_Id := Expression (N);
Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
begin
-- Do validity check if validity checking operands
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Operand);
end if;
-- Apply possible constraint check
Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
if Do_Range_Check (Operand) then
Set_Do_Range_Check (Operand, False);
Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
end if;
end Expand_N_Qualified_Expression;
------------------------------------
-- Expand_N_Quantified_Expression --
------------------------------------
-- We expand:
-- for all X in range => Cond
-- into:
-- T := True;
-- for X in range loop
-- if not Cond then
-- T := False;
-- exit;
-- end if;
-- end loop;
-- Similarly, an existentially quantified expression:
-- for some X in range => Cond
-- becomes:
-- T := False;
-- for X in range loop
-- if Cond then
-- T := True;
-- exit;
-- end if;
-- end loop;
-- In both cases, the iteration may be over a container in which case it is
-- given by an iterator specification, not a loop parameter specification.
procedure Expand_N_Quantified_Expression (N : Node_Id) is
Actions : constant List_Id := New_List;
For_All : constant Boolean := All_Present (N);
Iter_Spec : constant Node_Id := Iterator_Specification (N);
Loc : constant Source_Ptr := Sloc (N);
Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
Cond : Node_Id;
Flag : Entity_Id;
Scheme : Node_Id;
Stmts : List_Id;
begin
-- Create the declaration of the flag which tracks the status of the
-- quantified expression. Generate:
-- Flag : Boolean := (True | False);
Flag := Make_Temporary (Loc, 'T', N);
Append_To (Actions,
Make_Object_Declaration (Loc,
Defining_Identifier => Flag,
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
Expression =>
New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
-- Construct the circuitry which tracks the status of the quantified
-- expression. Generate:
-- if [not] Cond then
-- Flag := (False | True);
-- exit;
-- end if;
Cond := Relocate_Node (Condition (N));
if For_All then
Cond := Make_Op_Not (Loc, Cond);
end if;
Stmts := New_List (
Make_Implicit_If_Statement (N,
Condition => Cond,
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Flag, Loc),
Expression =>
New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
Make_Exit_Statement (Loc))));
-- Build the loop equivalent of the quantified expression
if Present (Iter_Spec) then
Scheme :=
Make_Iteration_Scheme (Loc,
Iterator_Specification => Iter_Spec);
else
Scheme :=
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification => Loop_Spec);
end if;
Append_To (Actions,
Make_Loop_Statement (Loc,
Iteration_Scheme => Scheme,
Statements => Stmts,
End_Label => Empty));
-- Transform the quantified expression
Rewrite (N,
Make_Expression_With_Actions (Loc,
Expression => New_Occurrence_Of (Flag, Loc),
Actions => Actions));
Analyze_And_Resolve (N, Standard_Boolean);
end Expand_N_Quantified_Expression;
---------------------------------
-- Expand_N_Selected_Component --
---------------------------------
procedure Expand_N_Selected_Component (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Par : constant Node_Id := Parent (N);
P : constant Node_Id := Prefix (N);
S : constant Node_Id := Selector_Name (N);
Ptyp : Entity_Id := Underlying_Type (Etype (P));
Disc : Entity_Id;
New_N : Node_Id;
Dcon : Elmt_Id;
Dval : Node_Id;
function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
-- Gigi needs a temporary for prefixes that depend on a discriminant,
-- unless the context of an assignment can provide size information.
-- Don't we have a general routine that does this???
function Is_Subtype_Declaration return Boolean;
-- The replacement of a discriminant reference by its value is required
-- if this is part of the initialization of an temporary generated by a
-- change of representation. This shows up as the construction of a
-- discriminant constraint for a subtype declared at the same point as
-- the entity in the prefix of the selected component. We recognize this
-- case when the context of the reference is:
-- subtype ST is T(Obj.D);
-- where the entity for Obj comes from source, and ST has the same sloc.
-----------------------
-- In_Left_Hand_Side --
-----------------------
function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
begin
return (Nkind (Parent (Comp)) = N_Assignment_Statement
and then Comp = Name (Parent (Comp)))
or else (Present (Parent (Comp))
and then Nkind (Parent (Comp)) in N_Subexpr
and then In_Left_Hand_Side (Parent (Comp)));
end In_Left_Hand_Side;
-----------------------------
-- Is_Subtype_Declaration --
-----------------------------
function Is_Subtype_Declaration return Boolean is
Par : constant Node_Id := Parent (N);
begin
return
Nkind (Par) = N_Index_Or_Discriminant_Constraint
and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
and then Comes_From_Source (Entity (Prefix (N)))
and then Sloc (Par) = Sloc (Entity (Prefix (N)));
end Is_Subtype_Declaration;
-- Start of processing for Expand_N_Selected_Component
begin
-- Insert explicit dereference if required
if Is_Access_Type (Ptyp) then
-- First set prefix type to proper access type, in case it currently
-- has a private (non-access) view of this type.
Set_Etype (P, Ptyp);
Insert_Explicit_Dereference (P);
Analyze_And_Resolve (P, Designated_Type (Ptyp));
if Ekind (Etype (P)) = E_Private_Subtype
and then Is_For_Access_Subtype (Etype (P))
then
Set_Etype (P, Base_Type (Etype (P)));
end if;
Ptyp := Etype (P);
end if;
-- Deal with discriminant check required
if Do_Discriminant_Check (N) then
if Present (Discriminant_Checking_Func
(Original_Record_Component (Entity (S))))
then
-- Present the discriminant checking function to the backend, so
-- that it can inline the call to the function.
Add_Inlined_Body
(Discriminant_Checking_Func
(Original_Record_Component (Entity (S))));
-- Now reset the flag and generate the call
Set_Do_Discriminant_Check (N, False);
Generate_Discriminant_Check (N);
-- In the case of Unchecked_Union, no discriminant checking is
-- actually performed.
else
Set_Do_Discriminant_Check (N, False);
end if;
end if;
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
-- function, then additional actuals must be passed.
if Ada_Version >= Ada_2005
and then Is_Build_In_Place_Function_Call (P)
then
Make_Build_In_Place_Call_In_Anonymous_Context (P);
end if;
-- Gigi cannot handle unchecked conversions that are the prefix of a
-- selected component with discriminants. This must be checked during
-- expansion, because during analysis the type of the selector is not
-- known at the point the prefix is analyzed. If the conversion is the
-- target of an assignment, then we cannot force the evaluation.
if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
and then Has_Discriminants (Etype (N))
and then not In_Left_Hand_Side (N)
then
Force_Evaluation (Prefix (N));
end if;
-- Remaining processing applies only if selector is a discriminant
if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
-- If the selector is a discriminant of a constrained record type,
-- we may be able to rewrite the expression with the actual value
-- of the discriminant, a useful optimization in some cases.
if Is_Record_Type (Ptyp)
and then Has_Discriminants (Ptyp)
and then Is_Constrained (Ptyp)
then
-- Do this optimization for discrete types only, and not for
-- access types (access discriminants get us into trouble).
if not Is_Discrete_Type (Etype (N)) then
null;
-- Don't do this on the left hand of an assignment statement.
-- Normally one would think that references like this would not
-- occur, but they do in generated code, and mean that we really
-- do want to assign the discriminant.
elsif Nkind (Par) = N_Assignment_Statement
and then Name (Par) = N
then
null;
-- Don't do this optimization for the prefix of an attribute or
-- the name of an object renaming declaration since these are
-- contexts where we do not want the value anyway.
elsif (Nkind (Par) = N_Attribute_Reference
and then Prefix (Par) = N)
or else Is_Renamed_Object (N)
then
null;
-- Don't do this optimization if we are within the code for a
-- discriminant check, since the whole point of such a check may
-- be to verify the condition on which the code below depends.
elsif Is_In_Discriminant_Check (N) then
null;
-- Green light to see if we can do the optimization. There is
-- still one condition that inhibits the optimization below but
-- now is the time to check the particular discriminant.
else
-- Loop through discriminants to find the matching discriminant
-- constraint to see if we can copy it.
Disc := First_Discriminant (Ptyp);
Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
Discr_Loop : while Present (Dcon) loop
Dval := Node (Dcon);
-- Check if this is the matching discriminant and if the
-- discriminant value is simple enough to make sense to
-- copy. We don't want to copy complex expressions, and
-- indeed to do so can cause trouble (before we put in
-- this guard, a discriminant expression containing an
-- AND THEN was copied, causing problems for coverage
-- analysis tools).
-- However, if the reference is part of the initialization
-- code generated for an object declaration, we must use
-- the discriminant value from the subtype constraint,
-- because the selected component may be a reference to the
-- object being initialized, whose discriminant is not yet
-- set. This only happens in complex cases involving changes
-- or representation.
if Disc = Entity (Selector_Name (N))
and then (Is_Entity_Name (Dval)
or else Compile_Time_Known_Value (Dval)
or else Is_Subtype_Declaration)
then
-- Here we have the matching discriminant. Check for
-- the case of a discriminant of a component that is
-- constrained by an outer discriminant, which cannot
-- be optimized away.
if Denotes_Discriminant
(Dval, Check_Concurrent => True)
then
exit Discr_Loop;
elsif Nkind (Original_Node (Dval)) = N_Selected_Component
and then
Denotes_Discriminant
(Selector_Name (Original_Node (Dval)), True)
then
exit Discr_Loop;
-- Do not retrieve value if constraint is not static. It
-- is generally not useful, and the constraint may be a
-- rewritten outer discriminant in which case it is in
-- fact incorrect.
elsif Is_Entity_Name (Dval)
and then
Nkind (Parent (Entity (Dval))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (Dval))))
and then not
Is_OK_Static_Expression
(Expression (Parent (Entity (Dval))))
then
exit Discr_Loop;
-- In the context of a case statement, the expression may
-- have the base type of the discriminant, and we need to
-- preserve the constraint to avoid spurious errors on
-- missing cases.
elsif Nkind (Parent (N)) = N_Case_Statement
and then Etype (Dval) /= Etype (Disc)
then
Rewrite (N,
Make_Qualified_Expression (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Disc), Loc),
Expression =>
New_Copy_Tree (Dval)));
Analyze_And_Resolve (N, Etype (Disc));
-- In case that comes out as a static expression,
-- reset it (a selected component is never static).
Set_Is_Static_Expression (N, False);
return;
-- Otherwise we can just copy the constraint, but the
-- result is certainly not static. In some cases the
-- discriminant constraint has been analyzed in the
-- context of the original subtype indication, but for
-- itypes the constraint might not have been analyzed
-- yet, and this must be done now.
else
Rewrite (N, New_Copy_Tree (Dval));
Analyze_And_Resolve (N);
Set_Is_Static_Expression (N, False);
return;
end if;
end if;
Next_Elmt (Dcon);
Next_Discriminant (Disc);
end loop Discr_Loop;
-- Note: the above loop should always find a matching
-- discriminant, but if it does not, we just missed an
-- optimization due to some glitch (perhaps a previous
-- error), so ignore.
end if;
end if;
-- The only remaining processing is in the case of a discriminant of
-- a concurrent object, where we rewrite the prefix to denote the
-- corresponding record type. If the type is derived and has renamed
-- discriminants, use corresponding discriminant, which is the one
-- that appears in the corresponding record.
if not Is_Concurrent_Type (Ptyp) then
return;
end if;
Disc := Entity (Selector_Name (N));
if Is_Derived_Type (Ptyp)
and then Present (Corresponding_Discriminant (Disc))
then
Disc := Corresponding_Discriminant (Disc);
end if;
New_N :=
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
New_Copy_Tree (P)),
Selector_Name => Make_Identifier (Loc, Chars (Disc)));
Rewrite (N, New_N);
Analyze (N);
end if;
-- Set Atomic_Sync_Required if necessary for atomic component
if Nkind (N) = N_Selected_Component then
declare
E : constant Entity_Id := Entity (Selector_Name (N));
Set : Boolean;
begin
-- If component is atomic, but type is not, setting depends on
-- disable/enable state for the component.
if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
Set := not Atomic_Synchronization_Disabled (E);
-- If component is not atomic, but its type is atomic, setting
-- depends on disable/enable state for the type.
elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
Set := not Atomic_Synchronization_Disabled (Etype (E));
-- If both component and type are atomic, we disable if either
-- component or its type have sync disabled.
elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
Set := (not Atomic_Synchronization_Disabled (E))
and then
(not Atomic_Synchronization_Disabled (Etype (E)));
else
Set := False;
end if;
-- Set flag if required
if Set then
Activate_Atomic_Synchronization (N);
end if;
end;
end if;
end Expand_N_Selected_Component;
--------------------
-- Expand_N_Slice --
--------------------
procedure Expand_N_Slice (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
function Is_Procedure_Actual (N : Node_Id) return Boolean;
-- Check whether the argument is an actual for a procedure call, in
-- which case the expansion of a bit-packed slice is deferred until the
-- call itself is expanded. The reason this is required is that we might
-- have an IN OUT or OUT parameter, and the copy out is essential, and
-- that copy out would be missed if we created a temporary here in
-- Expand_N_Slice. Note that we don't bother to test specifically for an
-- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
-- is harmless to defer expansion in the IN case, since the call
-- processing will still generate the appropriate copy in operation,
-- which will take care of the slice.
procedure Make_Temporary_For_Slice;
-- Create a named variable for the value of the slice, in cases where
-- the back-end cannot handle it properly, e.g. when packed types or
-- unaligned slices are involved.
-------------------------
-- Is_Procedure_Actual --
-------------------------
function Is_Procedure_Actual (N : Node_Id) return Boolean is
Par : Node_Id := Parent (N);
begin
loop
-- If our parent is a procedure call we can return
if Nkind (Par) = N_Procedure_Call_Statement then
return True;
-- If our parent is a type conversion, keep climbing the tree,
-- since a type conversion can be a procedure actual. Also keep
-- climbing if parameter association or a qualified expression,
-- since these are additional cases that do can appear on
-- procedure actuals.
elsif Nkind_In (Par, N_Type_Conversion,
N_Parameter_Association,
N_Qualified_Expression)
then
Par := Parent (Par);
-- Any other case is not what we are looking for
else
return False;
end if;
end loop;
end Is_Procedure_Actual;
------------------------------
-- Make_Temporary_For_Slice --
------------------------------
procedure Make_Temporary_For_Slice is
Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Object_Definition => New_Occurrence_Of (Typ, Loc));
Set_No_Initialization (Decl);
Insert_Actions (N, New_List (
Decl,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Expression => Relocate_Node (N))));
Rewrite (N, New_Occurrence_Of (Ent, Loc));
Analyze_And_Resolve (N, Typ);
end Make_Temporary_For_Slice;
-- Local variables
Pref : constant Node_Id := Prefix (N);
Pref_Typ : Entity_Id := Etype (Pref);
-- Start of processing for Expand_N_Slice
begin
-- Special handling for access types
if Is_Access_Type (Pref_Typ) then
Pref_Typ := Designated_Type (Pref_Typ);
Rewrite (Pref,
Make_Explicit_Dereference (Sloc (N),
Prefix => Relocate_Node (Pref)));
Analyze_And_Resolve (Pref, Pref_Typ);
end if;
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
-- function, then additional actuals must be passed.
if Ada_Version >= Ada_2005
and then Is_Build_In_Place_Function_Call (Pref)
then
Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
end if;
-- The remaining case to be handled is packed slices. We can leave
-- packed slices as they are in the following situations:
-- 1. Right or left side of an assignment (we can handle this
-- situation correctly in the assignment statement expansion).
-- 2. Prefix of indexed component (the slide is optimized away in this
-- case, see the start of Expand_N_Slice.)
-- 3. Object renaming declaration, since we want the name of the
-- slice, not the value.
-- 4. Argument to procedure call, since copy-in/copy-out handling may
-- be required, and this is handled in the expansion of call
-- itself.
-- 5. Prefix of an address attribute (this is an error which is caught
-- elsewhere, and the expansion would interfere with generating the
-- error message).
if not Is_Packed (Typ) then
-- Apply transformation for actuals of a function call, where
-- Expand_Actuals is not used.
if Nkind (Parent (N)) = N_Function_Call
and then Is_Possibly_Unaligned_Slice (N)
then
Make_Temporary_For_Slice;
end if;
elsif Nkind (Parent (N)) = N_Assignment_Statement
or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
and then Parent (N) = Name (Parent (Parent (N))))
then
return;
elsif Nkind (Parent (N)) = N_Indexed_Component
or else Is_Renamed_Object (N)
or else Is_Procedure_Actual (N)
then
return;
elsif Nkind (Parent (N)) = N_Attribute_Reference
and then Attribute_Name (Parent (N)) = Name_Address
then
return;
else
Make_Temporary_For_Slice;
end if;
end Expand_N_Slice;
------------------------------
-- Expand_N_Type_Conversion --
------------------------------
procedure Expand_N_Type_Conversion (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Operand : constant Node_Id := Expression (N);
Target_Type : constant Entity_Id := Etype (N);
Operand_Type : Entity_Id := Etype (Operand);
procedure Handle_Changed_Representation;
-- This is called in the case of record and array type conversions to
-- see if there is a change of representation to be handled. Change of
-- representation is actually handled at the assignment statement level,
-- and what this procedure does is rewrite node N conversion as an
-- assignment to temporary. If there is no change of representation,
-- then the conversion node is unchanged.
procedure Raise_Accessibility_Error;
-- Called when we know that an accessibility check will fail. Rewrites
-- node N to an appropriate raise statement and outputs warning msgs.
-- The Etype of the raise node is set to Target_Type. Note that in this
-- case the rest of the processing should be skipped (i.e. the call to
-- this procedure will be followed by "goto Done").
procedure Real_Range_Check;
-- Handles generation of range check for real target value
function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
-- True iff Present (Effective_Extra_Accessibility (Id)) successfully
-- evaluates to True.
-----------------------------------
-- Handle_Changed_Representation --
-----------------------------------
procedure Handle_Changed_Representation is
Temp : Entity_Id;
Decl : Node_Id;
Odef : Node_Id;
Disc : Node_Id;
N_Ix : Node_Id;
Cons : List_Id;
begin
-- Nothing else to do if no change of representation
if Same_Representation (Operand_Type, Target_Type) then
return;
-- The real change of representation work is done by the assignment
-- statement processing. So if this type conversion is appearing as
-- the expression of an assignment statement, nothing needs to be
-- done to the conversion.
elsif Nkind (Parent (N)) = N_Assignment_Statement then
return;
-- Otherwise we need to generate a temporary variable, and do the
-- change of representation assignment into that temporary variable.
-- The conversion is then replaced by a reference to this variable.
else
Cons := No_List;
-- If type is unconstrained we have to add a constraint, copied
-- from the actual value of the left hand side.
if not Is_Constrained (Target_Type) then
if Has_Discriminants (Operand_Type) then
Disc := First_Discriminant (Operand_Type);
if Disc /= First_Stored_Discriminant (Operand_Type) then
Disc := First_Stored_Discriminant (Operand_Type);
end if;
Cons := New_List;
while Present (Disc) loop
Append_To (Cons,
Make_Selected_Component (Loc,
Prefix =>
Duplicate_Subexpr_Move_Checks (Operand),
Selector_Name =>
Make_Identifier (Loc, Chars (Disc))));
Next_Discriminant (Disc);
end loop;
elsif Is_Array_Type (Operand_Type) then
N_Ix := First_Index (Target_Type);
Cons := New_List;
for J in 1 .. Number_Dimensions (Operand_Type) loop
-- We convert the bounds explicitly. We use an unchecked
-- conversion because bounds checks are done elsewhere.
Append_To (Cons,
Make_Range (Loc,
Low_Bound =>
Unchecked_Convert_To (Etype (N_Ix),
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks
(Operand, Name_Req => True),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))),
High_Bound =>
Unchecked_Convert_To (Etype (N_Ix),
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks
(Operand, Name_Req => True),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J))))));
Next_Index (N_Ix);
end loop;
end if;
end if;
Odef := New_Occurrence_Of (Target_Type, Loc);
if Present (Cons) then
Odef :=
Make_Subtype_Indication (Loc,
Subtype_Mark => Odef,
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Cons));
end if;
Temp := Make_Temporary (Loc, 'C');
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => Odef);
Set_No_Initialization (Decl, True);
-- Insert required actions. It is essential to suppress checks
-- since we have suppressed default initialization, which means
-- that the variable we create may have no discriminants.
Insert_Actions (N,
New_List (
Decl,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp, Loc),
Expression => Relocate_Node (N))),
Suppress => All_Checks);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
return;
end if;
end Handle_Changed_Representation;
-------------------------------
-- Raise_Accessibility_Error --
-------------------------------
procedure Raise_Accessibility_Error is
begin
Error_Msg_Warn := SPARK_Mode /= On;
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Accessibility_Check_Failed));
Set_Etype (N, Target_Type);
Error_Msg_N ("<<accessibility check failure", N);
Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
end Raise_Accessibility_Error;
----------------------
-- Real_Range_Check --
----------------------
-- Case of conversions to floating-point or fixed-point. If range checks
-- are enabled and the target type has a range constraint, we convert:
-- typ (x)
-- to
-- Tnn : typ'Base := typ'Base (x);
-- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
-- Tnn
-- This is necessary when there is a conversion of integer to float or
-- to fixed-point to ensure that the correct checks are made. It is not
-- necessary for float to float where it is enough to simply set the
-- Do_Range_Check flag.
procedure Real_Range_Check is
Btyp : constant Entity_Id := Base_Type (Target_Type);
Lo : constant Node_Id := Type_Low_Bound (Target_Type);
Hi : constant Node_Id := Type_High_Bound (Target_Type);
Xtyp : constant Entity_Id := Etype (Operand);
Conv : Node_Id;
Tnn : Entity_Id;
begin
-- Nothing to do if conversion was rewritten
if Nkind (N) /= N_Type_Conversion then
return;
end if;
-- Nothing to do if range checks suppressed, or target has the same
-- range as the base type (or is the base type).
if Range_Checks_Suppressed (Target_Type)
or else (Lo = Type_Low_Bound (Btyp)
and then
Hi = Type_High_Bound (Btyp))
then
return;
end if;
-- Nothing to do if expression is an entity on which checks have been
-- suppressed.
if Is_Entity_Name (Operand)
and then Range_Checks_Suppressed (Entity (Operand))
then
return;
end if;
-- Nothing to do if bounds are all static and we can tell that the
-- expression is within the bounds of the target. Note that if the
-- operand is of an unconstrained floating-point type, then we do
-- not trust it to be in range (might be infinite)
declare
S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
begin
if (not Is_Floating_Point_Type (Xtyp)
or else Is_Constrained (Xtyp))
and then Compile_Time_Known_Value (S_Lo)
and then Compile_Time_Known_Value (S_Hi)
and then Compile_Time_Known_Value (Hi)
and then Compile_Time_Known_Value (Lo)
then
declare
D_Lov : constant Ureal := Expr_Value_R (Lo);
D_Hiv : constant Ureal := Expr_Value_R (Hi);
S_Lov : Ureal;
S_Hiv : Ureal;
begin
if Is_Real_Type (Xtyp) then
S_Lov := Expr_Value_R (S_Lo);
S_Hiv := Expr_Value_R (S_Hi);
else
S_Lov := UR_From_Uint (Expr_Value (S_Lo));
S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
end if;
if D_Hiv > D_Lov
and then S_Lov >= D_Lov
and then S_Hiv <= D_Hiv
then
-- Unset the range check flag on the current value of
-- Expression (N), since the captured Operand may have
-- been rewritten (such as for the case of a conversion
-- to a fixed-point type).
Set_Do_Range_Check (Expression (N), False);
return;
end if;
end;
end if;
end;
-- For float to float conversions, we are done
if Is_Floating_Point_Type (Xtyp)
and then
Is_Floating_Point_Type (Btyp)
then
return;
end if;
-- Otherwise rewrite the conversion as described above
Conv := Relocate_Node (N);
Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
Set_Etype (Conv, Btyp);
-- Enable overflow except for case of integer to float conversions,
-- where it is never required, since we can never have overflow in
-- this case.
if not Is_Integer_Type (Etype (Operand)) then
Enable_Overflow_Check (Conv);
end if;
Tnn := Make_Temporary (Loc, 'T', Conv);
Insert_Actions (N, New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Object_Definition => New_Occurrence_Of (Btyp, Loc),
Constant_Present => True,
Expression => Conv),
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Lt (Loc,
Left_Opnd => New_Occurrence_Of (Tnn, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix =>
New_Occurrence_Of (Target_Type, Loc))),
Right_Opnd =>
Make_Op_Gt (Loc,
Left_Opnd => New_Occurrence_Of (Tnn, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix =>
New_Occurrence_Of (Target_Type, Loc)))),
Reason => CE_Range_Check_Failed)));
Rewrite (N, New_Occurrence_Of (Tnn, Loc));
Analyze_And_Resolve (N, Btyp);
end Real_Range_Check;
-----------------------------
-- Has_Extra_Accessibility --
-----------------------------
-- Returns true for a formal of an anonymous access type or for
-- an Ada 2012-style stand-alone object of an anonymous access type.
function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
begin
if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
return Present (Effective_Extra_Accessibility (Id));
else
return False;
end if;
end Has_Extra_Accessibility;
-- Start of processing for Expand_N_Type_Conversion
begin
-- First remove check marks put by the semantic analysis on the type
-- conversion between array types. We need these checks, and they will
-- be generated by this expansion routine, but we do not depend on these
-- flags being set, and since we do intend to expand the checks in the
-- front end, we don't want them on the tree passed to the back end.
if Is_Array_Type (Target_Type) then
if Is_Constrained (Target_Type) then
Set_Do_Length_Check (N, False);
else
Set_Do_Range_Check (Operand, False);
end if;
end if;
-- Nothing at all to do if conversion is to the identical type so remove
-- the conversion completely, it is useless, except that it may carry
-- an Assignment_OK attribute, which must be propagated to the operand.
if Operand_Type = Target_Type then
if Assignment_OK (N) then
Set_Assignment_OK (Operand);
end if;
Rewrite (N, Relocate_Node (Operand));
goto Done;
end if;
-- Nothing to do if this is the second argument of read. This is a
-- "backwards" conversion that will be handled by the specialized code
-- in attribute processing.
if Nkind (Parent (N)) = N_Attribute_Reference
and then Attribute_Name (Parent (N)) = Name_Read
and then Next (First (Expressions (Parent (N)))) = N
then
goto Done;
end if;
-- Check for case of converting to a type that has an invariant
-- associated with it. This required an invariant check. We convert
-- typ (expr)
-- into
-- do invariant_check (typ (expr)) in typ (expr);
-- using Duplicate_Subexpr to avoid multiple side effects
-- Note: the Comes_From_Source check, and then the resetting of this
-- flag prevents what would otherwise be an infinite recursion.
if Has_Invariants (Target_Type)
and then Present (Invariant_Procedure (Target_Type))
and then Comes_From_Source (N)
then
Set_Comes_From_Source (N, False);
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Invariant_Call (Duplicate_Subexpr (N))),
Expression => Duplicate_Subexpr_No_Checks (N)));
Analyze_And_Resolve (N, Target_Type);
goto Done;
end if;
-- Here if we may need to expand conversion
-- If the operand of the type conversion is an arithmetic operation on
-- signed integers, and the based type of the signed integer type in
-- question is smaller than Standard.Integer, we promote both of the
-- operands to type Integer.
-- For example, if we have
-- target-type (opnd1 + opnd2)
-- and opnd1 and opnd2 are of type short integer, then we rewrite
-- this as:
-- target-type (integer(opnd1) + integer(opnd2))
-- We do this because we are always allowed to compute in a larger type
-- if we do the right thing with the result, and in this case we are
-- going to do a conversion which will do an appropriate check to make
-- sure that things are in range of the target type in any case. This
-- avoids some unnecessary intermediate overflows.
-- We might consider a similar transformation in the case where the
-- target is a real type or a 64-bit integer type, and the operand
-- is an arithmetic operation using a 32-bit integer type. However,
-- we do not bother with this case, because it could cause significant
-- inefficiencies on 32-bit machines. On a 64-bit machine it would be
-- much cheaper, but we don't want different behavior on 32-bit and
-- 64-bit machines. Note that the exclusion of the 64-bit case also
-- handles the configurable run-time cases where 64-bit arithmetic
-- may simply be unavailable.
-- Note: this circuit is partially redundant with respect to the circuit
-- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
-- the processing here. Also we still need the Checks circuit, since we
-- have to be sure not to generate junk overflow checks in the first
-- place, since it would be trick to remove them here.
if Integer_Promotion_Possible (N) then
-- All conditions met, go ahead with transformation
declare
Opnd : Node_Id;
L, R : Node_Id;
begin
R :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
Expression => Relocate_Node (Right_Opnd (Operand)));
Opnd := New_Op_Node (Nkind (Operand), Loc);
Set_Right_Opnd (Opnd, R);
if Nkind (Operand) in N_Binary_Op then
L :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
Expression => Relocate_Node (Left_Opnd (Operand)));
Set_Left_Opnd (Opnd, L);
end if;
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
Expression => Opnd));
Analyze_And_Resolve (N, Target_Type);
goto Done;
end;
end if;
-- Do validity check if validity checking operands
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Operand);
end if;
-- Special case of converting from non-standard boolean type
if Is_Boolean_Type (Operand_Type)
and then (Nonzero_Is_True (Operand_Type))
then
Adjust_Condition (Operand);
Set_Etype (Operand, Standard_Boolean);
Operand_Type := Standard_Boolean;
end if;
-- Case of converting to an access type
if Is_Access_Type (Target_Type) then
-- Apply an accessibility check when the conversion operand is an
-- access parameter (or a renaming thereof), unless conversion was
-- expanded from an Unchecked_ or Unrestricted_Access attribute.
-- Note that other checks may still need to be applied below (such
-- as tagged type checks).
if Is_Entity_Name (Operand)
and then Has_Extra_Accessibility (Entity (Operand))
and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
or else Attribute_Name (Original_Node (N)) = Name_Access)
then
Apply_Accessibility_Check
(Operand, Target_Type, Insert_Node => Operand);
-- If the level of the operand type is statically deeper than the
-- level of the target type, then force Program_Error. Note that this
-- can only occur for cases where the attribute is within the body of
-- an instantiation, otherwise the conversion will already have been
-- rejected as illegal.
-- Note: warnings are issued by the analyzer for the instance cases
elsif In_Instance_Body
-- The case where the target type is an anonymous access type of
-- a discriminant is excluded, because the level of such a type
-- depends on the context and currently the level returned for such
-- types is zero, resulting in warnings about about check failures
-- in certain legal cases involving class-wide interfaces as the
-- designated type (some cases, such as return statements, are
-- checked at run time, but not clear if these are handled right
-- in general, see 3.10.2(12/2-12.5/3) ???).
and then
not (Ekind (Target_Type) = E_Anonymous_Access_Type
and then Present (Associated_Node_For_Itype (Target_Type))
and then Nkind (Associated_Node_For_Itype (Target_Type)) =
N_Discriminant_Specification)
and then
Type_Access_Level (Operand_Type) > Type_Access_Level (Target_Type)
then
Raise_Accessibility_Error;
goto Done;
-- When the operand is a selected access discriminant the check needs
-- to be made against the level of the object denoted by the prefix
-- of the selected name. Force Program_Error for this case as well
-- (this accessibility violation can only happen if within the body
-- of an instantiation).
elsif In_Instance_Body
and then Ekind (Operand_Type) = E_Anonymous_Access_Type
and then Nkind (Operand) = N_Selected_Component
and then Object_Access_Level (Operand) >
Type_Access_Level (Target_Type)
then
Raise_Accessibility_Error;
goto Done;
end if;
end if;
-- Case of conversions of tagged types and access to tagged types
-- When needed, that is to say when the expression is class-wide, Add
-- runtime a tag check for (strict) downward conversion by using the
-- membership test, generating:
-- [constraint_error when Operand not in Target_Type'Class]
-- or in the access type case
-- [constraint_error
-- when Operand /= null
-- and then Operand.all not in
-- Designated_Type (Target_Type)'Class]
if (Is_Access_Type (Target_Type)
and then Is_Tagged_Type (Designated_Type (Target_Type)))
or else Is_Tagged_Type (Target_Type)
then
-- Do not do any expansion in the access type case if the parent is a
-- renaming, since this is an error situation which will be caught by
-- Sem_Ch8, and the expansion can interfere with this error check.
if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
goto Done;
end if;
-- Otherwise, proceed with processing tagged conversion
Tagged_Conversion : declare
Actual_Op_Typ : Entity_Id;
Actual_Targ_Typ : Entity_Id;
Make_Conversion : Boolean := False;
Root_Op_Typ : Entity_Id;
procedure Make_Tag_Check (Targ_Typ : Entity_Id);
-- Create a membership check to test whether Operand is a member
-- of Targ_Typ. If the original Target_Type is an access, include
-- a test for null value. The check is inserted at N.
--------------------
-- Make_Tag_Check --
--------------------
procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
Cond : Node_Id;
begin
-- Generate:
-- [Constraint_Error
-- when Operand /= null
-- and then Operand.all not in Targ_Typ]
if Is_Access_Type (Target_Type) then
Cond :=
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
Right_Opnd => Make_Null (Loc)),
Right_Opnd =>
Make_Not_In (Loc,
Left_Opnd =>
Make_Explicit_Dereference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (Operand)),
Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
-- Generate:
-- [Constraint_Error when Operand not in Targ_Typ]
else
Cond :=
Make_Not_In (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
end if;
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Tag_Check_Failed));
end Make_Tag_Check;
-- Start of processing for Tagged_Conversion
begin
-- Handle entities from the limited view
if Is_Access_Type (Operand_Type) then
Actual_Op_Typ :=
Available_View (Designated_Type (Operand_Type));
else
Actual_Op_Typ := Operand_Type;
end if;
if Is_Access_Type (Target_Type) then
Actual_Targ_Typ :=
Available_View (Designated_Type (Target_Type));
else
Actual_Targ_Typ := Target_Type;
end if;
Root_Op_Typ := Root_Type (Actual_Op_Typ);
-- Ada 2005 (AI-251): Handle interface type conversion
if Is_Interface (Actual_Op_Typ)
or else
Is_Interface (Actual_Targ_Typ)
then
Expand_Interface_Conversion (N);
goto Done;
end if;
if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
-- Create a runtime tag check for a downward class-wide type
-- conversion.
if Is_Class_Wide_Type (Actual_Op_Typ)
and then Actual_Op_Typ /= Actual_Targ_Typ
and then Root_Op_Typ /= Actual_Targ_Typ
and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
Use_Full_View => True)
then
Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
Make_Conversion := True;
end if;
-- AI05-0073: If the result subtype of the function is defined
-- by an access_definition designating a specific tagged type
-- T, a check is made that the result value is null or the tag
-- of the object designated by the result value identifies T.
-- Constraint_Error is raised if this check fails.
if Nkind (Parent (N)) = N_Simple_Return_Statement then
declare
Func : Entity_Id;
Func_Typ : Entity_Id;
begin
-- Climb scope stack looking for the enclosing function
Func := Current_Scope;
while Present (Func)
and then Ekind (Func) /= E_Function
loop
Func := Scope (Func);
end loop;
-- The function's return subtype must be defined using
-- an access definition.
if Nkind (Result_Definition (Parent (Func))) =
N_Access_Definition
then
Func_Typ := Directly_Designated_Type (Etype (Func));
-- The return subtype denotes a specific tagged type,
-- in other words, a non class-wide type.
if Is_Tagged_Type (Func_Typ)
and then not Is_Class_Wide_Type (Func_Typ)
then
Make_Tag_Check (Actual_Targ_Typ);
Make_Conversion := True;
end if;
end if;
end;
end if;
-- We have generated a tag check for either a class-wide type
-- conversion or for AI05-0073.
if Make_Conversion then
declare
Conv : Node_Id;
begin
Conv :=
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
Expression => Relocate_Node (Expression (N)));
Rewrite (N, Conv);
Analyze_And_Resolve (N, Target_Type);
end;
end if;
end if;
end Tagged_Conversion;
-- Case of other access type conversions
elsif Is_Access_Type (Target_Type) then
Apply_Constraint_Check (Operand, Target_Type);
-- Case of conversions from a fixed-point type
-- These conversions require special expansion and processing, found in
-- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
-- since from a semantic point of view, these are simple integer
-- conversions, which do not need further processing.
elsif Is_Fixed_Point_Type (Operand_Type)
and then not Conversion_OK (N)
then
-- We should never see universal fixed at this case, since the
-- expansion of the constituent divide or multiply should have
-- eliminated the explicit mention of universal fixed.
pragma Assert (Operand_Type /= Universal_Fixed);
-- Check for special case of the conversion to universal real that
-- occurs as a result of the use of a round attribute. In this case,
-- the real type for the conversion is taken from the target type of
-- the Round attribute and the result must be marked as rounded.
if Target_Type = Universal_Real
and then Nkind (Parent (N)) = N_Attribute_Reference
and then Attribute_Name (Parent (N)) = Name_Round
then
Set_Rounded_Result (N);
Set_Etype (N, Etype (Parent (N)));
end if;
-- Otherwise do correct fixed-conversion, but skip these if the
-- Conversion_OK flag is set, because from a semantic point of view
-- these are simple integer conversions needing no further processing
-- (the backend will simply treat them as integers).
if not Conversion_OK (N) then
if Is_Fixed_Point_Type (Etype (N)) then
Expand_Convert_Fixed_To_Fixed (N);
Real_Range_Check;
elsif Is_Integer_Type (Etype (N)) then
Expand_Convert_Fixed_To_Integer (N);
else
pragma Assert (Is_Floating_Point_Type (Etype (N)));
Expand_Convert_Fixed_To_Float (N);
Real_Range_Check;
end if;
end if;
-- Case of conversions to a fixed-point type
-- These conversions require special expansion and processing, found in
-- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
-- since from a semantic point of view, these are simple integer
-- conversions, which do not need further processing.
elsif Is_Fixed_Point_Type (Target_Type)
and then not Conversion_OK (N)
then
if Is_Integer_Type (Operand_Type) then
Expand_Convert_Integer_To_Fixed (N);
Real_Range_Check;
else
pragma Assert (Is_Floating_Point_Type (Operand_Type));
Expand_Convert_Float_To_Fixed (N);
Real_Range_Check;
end if;
-- Case of float-to-integer conversions
-- We also handle float-to-fixed conversions with Conversion_OK set
-- since semantically the fixed-point target is treated as though it
-- were an integer in such cases.
elsif Is_Floating_Point_Type (Operand_Type)
and then
(Is_Integer_Type (Target_Type)
or else
(Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
then
-- One more check here, gcc is still not able to do conversions of
-- this type with proper overflow checking, and so gigi is doing an
-- approximation of what is required by doing floating-point compares
-- with the end-point. But that can lose precision in some cases, and
-- give a wrong result. Converting the operand to Universal_Real is
-- helpful, but still does not catch all cases with 64-bit integers
-- on targets with only 64-bit floats.
-- The above comment seems obsoleted by Apply_Float_Conversion_Check
-- Can this code be removed ???
if Do_Range_Check (Operand) then
Rewrite (Operand,
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Universal_Real, Loc),
Expression =>
Relocate_Node (Operand)));
Set_Etype (Operand, Universal_Real);
Enable_Range_Check (Operand);
Set_Do_Range_Check (Expression (Operand), False);
end if;
-- Case of array conversions
-- Expansion of array conversions, add required length/range checks but
-- only do this if there is no change of representation. For handling of
-- this case, see Handle_Changed_Representation.
elsif Is_Array_Type (Target_Type) then
if Is_Constrained (Target_Type) then
Apply_Length_Check (Operand, Target_Type);
else
Apply_Range_Check (Operand, Target_Type);
end if;
Handle_Changed_Representation;
-- Case of conversions of discriminated types
-- Add required discriminant checks if target is constrained. Again this
-- change is skipped if we have a change of representation.
elsif Has_Discriminants (Target_Type)
and then Is_Constrained (Target_Type)
then
Apply_Discriminant_Check (Operand, Target_Type);
Handle_Changed_Representation;
-- Case of all other record conversions. The only processing required
-- is to check for a change of representation requiring the special
-- assignment processing.
elsif Is_Record_Type (Target_Type) then
-- Ada 2005 (AI-216): Program_Error is raised when converting from
-- a derived Unchecked_Union type to an unconstrained type that is
-- not Unchecked_Union if the operand lacks inferable discriminants.
if Is_Derived_Type (Operand_Type)
and then Is_Unchecked_Union (Base_Type (Operand_Type))
and then not Is_Constrained (Target_Type)
and then not Is_Unchecked_Union (Base_Type (Target_Type))
and then not Has_Inferable_Discriminants (Operand)
then
-- To prevent Gigi from generating illegal code, we generate a
-- Program_Error node, but we give it the target type of the
-- conversion (is this requirement documented somewhere ???)
declare
PE : constant Node_Id := Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction);
begin
Set_Etype (PE, Target_Type);
Rewrite (N, PE);
end;
else
Handle_Changed_Representation;
end if;
-- Case of conversions of enumeration types
elsif Is_Enumeration_Type (Target_Type) then
-- Special processing is required if there is a change of
-- representation (from enumeration representation clauses).
if not Same_Representation (Target_Type, Operand_Type) then
-- Convert: x(y) to x'val (ytyp'val (y))
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Target_Type, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Operand_Type, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (Operand)))));
Analyze_And_Resolve (N, Target_Type);
end if;
-- Case of conversions to floating-point
elsif Is_Floating_Point_Type (Target_Type) then
Real_Range_Check;
end if;
-- At this stage, either the conversion node has been transformed into
-- some other equivalent expression, or left as a conversion that can be
-- handled by Gigi, in the following cases:
-- Conversions with no change of representation or type
-- Numeric conversions involving integer, floating- and fixed-point
-- values. Fixed-point values are allowed only if Conversion_OK is
-- set, i.e. if the fixed-point values are to be treated as integers.
-- No other conversions should be passed to Gigi
-- Check: are these rules stated in sinfo??? if so, why restate here???
-- The only remaining step is to generate a range check if we still have
-- a type conversion at this stage and Do_Range_Check is set. For now we
-- do this only for conversions of discrete types and for float-to-float
-- conversions.
if Nkind (N) = N_Type_Conversion then
-- For now we only support floating-point cases where both source
-- and target are floating-point types. Conversions where the source
-- and target involve integer or fixed-point types are still TBD,
-- though not clear whether those can even happen at this point, due
-- to transformations above. ???
if Is_Floating_Point_Type (Etype (N))
and then Is_Floating_Point_Type (Etype (Expression (N)))
then
if Do_Range_Check (Expression (N))
and then Is_Floating_Point_Type (Target_Type)
then
Generate_Range_Check
(Expression (N), Target_Type, CE_Range_Check_Failed);
end if;
-- Discrete-to-discrete conversions
elsif Is_Discrete_Type (Etype (N)) then
declare
Expr : constant Node_Id := Expression (N);
Ftyp : Entity_Id;
Ityp : Entity_Id;
begin
if Do_Range_Check (Expr)
and then Is_Discrete_Type (Etype (Expr))
then
Set_Do_Range_Check (Expr, False);
-- Before we do a range check, we have to deal with treating
-- a fixed-point operand as an integer. The way we do this
-- is simply to do an unchecked conversion to an appropriate
-- integer type large enough to hold the result.
-- This code is not active yet, because we are only dealing
-- with discrete types so far ???
if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
and then Treat_Fixed_As_Integer (Expr)
then
Ftyp := Base_Type (Etype (Expr));
if Esize (Ftyp) >= Esize (Standard_Integer) then
Ityp := Standard_Long_Long_Integer;
else
Ityp := Standard_Integer;
end if;
Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
end if;
-- Reset overflow flag, since the range check will include
-- dealing with possible overflow, and generate the check.
-- If Address is either a source type or target type,
-- suppress range check to avoid typing anomalies when
-- it is a visible integer type.
Set_Do_Overflow_Check (N, False);
if not Is_Descendent_Of_Address (Etype (Expr))
and then not Is_Descendent_Of_Address (Target_Type)
then
Generate_Range_Check
(Expr, Target_Type, CE_Range_Check_Failed);
end if;
end if;
end;
end if;
end if;
-- Here at end of processing
<<Done>>
-- Apply predicate check if required. Note that we can't just call
-- Apply_Predicate_Check here, because the type looks right after
-- the conversion and it would omit the check. The Comes_From_Source
-- guard is necessary to prevent infinite recursions when we generate
-- internal conversions for the purpose of checking predicates.
if Present (Predicate_Function (Target_Type))
and then Target_Type /= Operand_Type
and then Comes_From_Source (N)
then
declare
New_Expr : constant Node_Id := Duplicate_Subexpr (N);
begin
-- Avoid infinite recursion on the subsequent expansion of
-- of the copy of the original type conversion.
Set_Comes_From_Source (New_Expr, False);
Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
end;
end if;
end Expand_N_Type_Conversion;
-----------------------------------
-- Expand_N_Unchecked_Expression --
-----------------------------------
-- Remove the unchecked expression node from the tree. Its job was simply
-- to make sure that its constituent expression was handled with checks
-- off, and now that that is done, we can remove it from the tree, and
-- indeed must, since Gigi does not expect to see these nodes.
procedure Expand_N_Unchecked_Expression (N : Node_Id) is
Exp : constant Node_Id := Expression (N);
begin
Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
Rewrite (N, Exp);
end Expand_N_Unchecked_Expression;
----------------------------------------
-- Expand_N_Unchecked_Type_Conversion --
----------------------------------------
-- If this cannot be handled by Gigi and we haven't already made a
-- temporary for it, do it now.
procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
Target_Type : constant Entity_Id := Etype (N);
Operand : constant Node_Id := Expression (N);
Operand_Type : constant Entity_Id := Etype (Operand);
begin
-- Nothing at all to do if conversion is to the identical type so remove
-- the conversion completely, it is useless, except that it may carry
-- an Assignment_OK indication which must be propagated to the operand.
if Operand_Type = Target_Type then
-- Code duplicates Expand_N_Unchecked_Expression above, factor???
if Assignment_OK (N) then
Set_Assignment_OK (Operand);
end if;
Rewrite (N, Relocate_Node (Operand));
return;
end if;
-- If we have a conversion of a compile time known value to a target
-- type and the value is in range of the target type, then we can simply
-- replace the construct by an integer literal of the correct type. We
-- only apply this to integer types being converted. Possibly it may
-- apply in other cases, but it is too much trouble to worry about.
-- Note that we do not do this transformation if the Kill_Range_Check
-- flag is set, since then the value may be outside the expected range.
-- This happens in the Normalize_Scalars case.
-- We also skip this if either the target or operand type is biased
-- because in this case, the unchecked conversion is supposed to
-- preserve the bit pattern, not the integer value.
if Is_Integer_Type (Target_Type)
and then not Has_Biased_Representation (Target_Type)
and then Is_Integer_Type (Operand_Type)
and then not Has_Biased_Representation (Operand_Type)
and then Compile_Time_Known_Value (Operand)
and then not Kill_Range_Check (N)
then
declare
Val : constant Uint := Expr_Value (Operand);
begin
if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
and then
Compile_Time_Known_Value (Type_High_Bound (Target_Type))
and then
Val >= Expr_Value (Type_Low_Bound (Target_Type))
and then
Val <= Expr_Value (Type_High_Bound (Target_Type))
then
Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
-- If Address is the target type, just set the type to avoid a
-- spurious type error on the literal when Address is a visible
-- integer type.
if Is_Descendent_Of_Address (Target_Type) then
Set_Etype (N, Target_Type);
else
Analyze_And_Resolve (N, Target_Type);
end if;
return;
end if;
end;
end if;
-- Nothing to do if conversion is safe
if Safe_Unchecked_Type_Conversion (N) then
return;
end if;
-- Otherwise force evaluation unless Assignment_OK flag is set (this
-- flag indicates ??? More comments needed here)
if Assignment_OK (N) then
null;
else
Force_Evaluation (N);
end if;
end Expand_N_Unchecked_Type_Conversion;
----------------------------
-- Expand_Record_Equality --
----------------------------
-- For non-variant records, Equality is expanded when needed into:
-- and then Lhs.Discr1 = Rhs.Discr1
-- and then ...
-- and then Lhs.Discrn = Rhs.Discrn
-- and then Lhs.Cmp1 = Rhs.Cmp1
-- and then ...
-- and then Lhs.Cmpn = Rhs.Cmpn
-- The expression is folded by the back-end for adjacent fields. This
-- function is called for tagged record in only one occasion: for imple-
-- menting predefined primitive equality (see Predefined_Primitives_Bodies)
-- otherwise the primitive "=" is used directly.
function Expand_Record_Equality
(Nod : Node_Id;
Typ : Entity_Id;
Lhs : Node_Id;
Rhs : Node_Id;
Bodies : List_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
Result : Node_Id;
C : Entity_Id;
First_Time : Boolean := True;
function Element_To_Compare (C : Entity_Id) return Entity_Id;
-- Return the next discriminant or component to compare, starting with
-- C, skipping inherited components.
------------------------
-- Element_To_Compare --
------------------------
function Element_To_Compare (C : Entity_Id) return Entity_Id is
Comp : Entity_Id;
begin
Comp := C;
loop
-- Exit loop when the next element to be compared is found, or
-- there is no more such element.
exit when No (Comp);
exit when Ekind_In (Comp, E_Discriminant, E_Component)
and then not (
-- Skip inherited components
-- Note: for a tagged type, we always generate the "=" primitive
-- for the base type (not on the first subtype), so the test for
-- Comp /= Original_Record_Component (Comp) is True for
-- inherited components only.
(Is_Tagged_Type (Typ)
and then Comp /= Original_Record_Component (Comp))
-- Skip _Tag
or else Chars (Comp) = Name_uTag
-- The .NET/JVM version of type Root_Controlled contains two
-- fields which should not be considered part of the object. To
-- achieve proper equiality between two controlled objects on
-- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
or else (Chars (Comp) = Name_uParent
and then VM_Target /= No_VM
and then Etype (Comp) = RTE (RE_Root_Controlled))
-- Skip interface elements (secondary tags???)
or else Is_Interface (Etype (Comp)));
Next_Entity (Comp);
end loop;
return Comp;
end Element_To_Compare;
-- Start of processing for Expand_Record_Equality
begin
-- Generates the following code: (assuming that Typ has one Discr and
-- component C2 is also a record)
-- True
-- and then Lhs.Discr1 = Rhs.Discr1
-- and then Lhs.C1 = Rhs.C1
-- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
-- and then ...
-- and then Lhs.Cmpn = Rhs.Cmpn
Result := New_Occurrence_Of (Standard_True, Loc);
C := Element_To_Compare (First_Entity (Typ));
while Present (C) loop
declare
New_Lhs : Node_Id;
New_Rhs : Node_Id;
Check : Node_Id;
begin
if First_Time then
First_Time := False;
New_Lhs := Lhs;
New_Rhs := Rhs;
else
New_Lhs := New_Copy_Tree (Lhs);
New_Rhs := New_Copy_Tree (Rhs);
end if;
Check :=
Expand_Composite_Equality (Nod, Etype (C),
Lhs =>
Make_Selected_Component (Loc,
Prefix => New_Lhs,
Selector_Name => New_Occurrence_Of (C, Loc)),
Rhs =>
Make_Selected_Component (Loc,
Prefix => New_Rhs,
Selector_Name => New_Occurrence_Of (C, Loc)),
Bodies => Bodies);
-- If some (sub)component is an unchecked_union, the whole
-- operation will raise program error.
if Nkind (Check) = N_Raise_Program_Error then
Result := Check;
Set_Etype (Result, Standard_Boolean);
exit;
else
Result :=
Make_And_Then (Loc,
Left_Opnd => Result,
Right_Opnd => Check);
end if;
end;
C := Element_To_Compare (Next_Entity (C));
end loop;
return Result;
end Expand_Record_Equality;
---------------------------
-- Expand_Set_Membership --
---------------------------
procedure Expand_Set_Membership (N : Node_Id) is
Lop : constant Node_Id := Left_Opnd (N);
Alt : Node_Id;
Res : Node_Id;
function Make_Cond (Alt : Node_Id) return Node_Id;
-- If the alternative is a subtype mark, create a simple membership
-- test. Otherwise create an equality test for it.
---------------
-- Make_Cond --
---------------
function Make_Cond (Alt : Node_Id) return Node_Id is
Cond : Node_Id;
L : constant Node_Id := New_Copy (Lop);
R : constant Node_Id := Relocate_Node (Alt);
begin
if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
or else Nkind (Alt) = N_Range
then
Cond :=
Make_In (Sloc (Alt),
Left_Opnd => L,
Right_Opnd => R);
else
Cond :=
Make_Op_Eq (Sloc (Alt),
Left_Opnd => L,
Right_Opnd => R);
end if;
return Cond;
end Make_Cond;
-- Start of processing for Expand_Set_Membership
begin
Remove_Side_Effects (Lop);
Alt := Last (Alternatives (N));
Res := Make_Cond (Alt);
Prev (Alt);
while Present (Alt) loop
Res :=
Make_Or_Else (Sloc (Alt),
Left_Opnd => Make_Cond (Alt),
Right_Opnd => Res);
Prev (Alt);
end loop;
Rewrite (N, Res);
Analyze_And_Resolve (N, Standard_Boolean);
end Expand_Set_Membership;
-----------------------------------
-- Expand_Short_Circuit_Operator --
-----------------------------------
-- Deal with special expansion if actions are present for the right operand
-- and deal with optimizing case of arguments being True or False. We also
-- deal with the special case of non-standard boolean values.
procedure Expand_Short_Circuit_Operator (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
LocR : constant Source_Ptr := Sloc (Right);
Actlist : List_Id;
Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
-- If Left = Shortcut_Value then Right need not be evaluated
begin
-- Deal with non-standard booleans
if Is_Boolean_Type (Typ) then
Adjust_Condition (Left);
Adjust_Condition (Right);
Set_Etype (N, Standard_Boolean);
end if;
-- Check for cases where left argument is known to be True or False
if Compile_Time_Known_Value (Left) then
-- Mark SCO for left condition as compile time known
if Generate_SCO and then Comes_From_Source (Left) then
Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
end if;
-- Rewrite True AND THEN Right / False OR ELSE Right to Right.
-- Any actions associated with Right will be executed unconditionally
-- and can thus be inserted into the tree unconditionally.
if Expr_Value_E (Left) /= Shortcut_Ent then
if Present (Actions (N)) then
Insert_Actions (N, Actions (N));
end if;
Rewrite (N, Right);
-- Rewrite False AND THEN Right / True OR ELSE Right to Left.
-- In this case we can forget the actions associated with Right,
-- since they will never be executed.
else
Kill_Dead_Code (Right);
Kill_Dead_Code (Actions (N));
Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
end if;
Adjust_Result_Type (N, Typ);
return;
end if;
-- If Actions are present for the right operand, we have to do some
-- special processing. We can't just let these actions filter back into
-- code preceding the short circuit (which is what would have happened
-- if we had not trapped them in the short-circuit form), since they
-- must only be executed if the right operand of the short circuit is
-- executed and not otherwise.
if Present (Actions (N)) then
Actlist := Actions (N);
-- We now use an Expression_With_Actions node for the right operand
-- of the short-circuit form. Note that this solves the traceability
-- problems for coverage analysis.
Rewrite (Right,
Make_Expression_With_Actions (LocR,
Expression => Relocate_Node (Right),
Actions => Actlist));
Set_Actions (N, No_List);
Analyze_And_Resolve (Right, Standard_Boolean);
Adjust_Result_Type (N, Typ);
return;
end if;
-- No actions present, check for cases of right argument True/False
if Compile_Time_Known_Value (Right) then
-- Mark SCO for left condition as compile time known
if Generate_SCO and then Comes_From_Source (Right) then
Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
end if;
-- Change (Left and then True), (Left or else False) to Left.
-- Note that we know there are no actions associated with the right
-- operand, since we just checked for this case above.
if Expr_Value_E (Right) /= Shortcut_Ent then
Rewrite (N, Left);
-- Change (Left and then False), (Left or else True) to Right,
-- making sure to preserve any side effects associated with the Left
-- operand.
else
Remove_Side_Effects (Left);
Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
end if;
end if;
Adjust_Result_Type (N, Typ);
end Expand_Short_Circuit_Operator;
-------------------------------------
-- Fixup_Universal_Fixed_Operation --
-------------------------------------
procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
Conv : constant Node_Id := Parent (N);
begin
-- We must have a type conversion immediately above us
pragma Assert (Nkind (Conv) = N_Type_Conversion);
-- Normally the type conversion gives our target type. The exception
-- occurs in the case of the Round attribute, where the conversion
-- will be to universal real, and our real type comes from the Round
-- attribute (as well as an indication that we must round the result)
if Nkind (Parent (Conv)) = N_Attribute_Reference
and then Attribute_Name (Parent (Conv)) = Name_Round
then
Set_Etype (N, Etype (Parent (Conv)));
Set_Rounded_Result (N);
-- Normal case where type comes from conversion above us
else
Set_Etype (N, Etype (Conv));
end if;
end Fixup_Universal_Fixed_Operation;
---------------------------------
-- Has_Inferable_Discriminants --
---------------------------------
function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
-- Determines whether the left-most prefix of a selected component is a
-- formal parameter in a subprogram. Assumes N is a selected component.
--------------------------------
-- Prefix_Is_Formal_Parameter --
--------------------------------
function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
Sel_Comp : Node_Id;
begin
-- Move to the left-most prefix by climbing up the tree
Sel_Comp := N;
while Present (Parent (Sel_Comp))
and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
loop
Sel_Comp := Parent (Sel_Comp);
end loop;
return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
end Prefix_Is_Formal_Parameter;
-- Start of processing for Has_Inferable_Discriminants
begin
-- For selected components, the subtype of the selector must be a
-- constrained Unchecked_Union. If the component is subject to a
-- per-object constraint, then the enclosing object must have inferable
-- discriminants.
if Nkind (N) = N_Selected_Component then
if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
-- A small hack. If we have a per-object constrained selected
-- component of a formal parameter, return True since we do not
-- know the actual parameter association yet.
if Prefix_Is_Formal_Parameter (N) then
return True;
-- Otherwise, check the enclosing object and the selector
else
return Has_Inferable_Discriminants (Prefix (N))
and then Has_Inferable_Discriminants (Selector_Name (N));
end if;
-- The call to Has_Inferable_Discriminants will determine whether
-- the selector has a constrained Unchecked_Union nominal type.
else
return Has_Inferable_Discriminants (Selector_Name (N));
end if;
-- A qualified expression has inferable discriminants if its subtype
-- mark is a constrained Unchecked_Union subtype.
elsif Nkind (N) = N_Qualified_Expression then
return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
and then Is_Constrained (Etype (Subtype_Mark (N)));
-- For all other names, it is sufficient to have a constrained
-- Unchecked_Union nominal subtype.
else
return Is_Unchecked_Union (Base_Type (Etype (N)))
and then Is_Constrained (Etype (N));
end if;
end Has_Inferable_Discriminants;
-------------------------------
-- Insert_Dereference_Action --
-------------------------------
procedure Insert_Dereference_Action (N : Node_Id) is
function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
-- Return true if type of P is derived from Checked_Pool;
-----------------------------
-- Is_Checked_Storage_Pool --
-----------------------------
function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
T : Entity_Id;
begin
if No (P) then
return False;
end if;
T := Etype (P);
while T /= Etype (T) loop
if Is_RTE (T, RE_Checked_Pool) then
return True;
else
T := Etype (T);
end if;
end loop;
return False;
end Is_Checked_Storage_Pool;
-- Local variables
Typ : constant Entity_Id := Etype (N);
Desig : constant Entity_Id := Available_View (Designated_Type (Typ));
Loc : constant Source_Ptr := Sloc (N);
Pool : constant Entity_Id := Associated_Storage_Pool (Typ);
Pnod : constant Node_Id := Parent (N);
Addr : Entity_Id;
Alig : Entity_Id;
Deref : Node_Id;
Size : Entity_Id;
Size_Bits : Node_Id;
Stmt : Node_Id;
-- Start of processing for Insert_Dereference_Action
begin
pragma Assert (Nkind (Pnod) = N_Explicit_Dereference);
-- Do not re-expand a dereference which has already been processed by
-- this routine.
if Has_Dereference_Action (Pnod) then
return;
-- Do not perform this type of expansion for internally-generated
-- dereferences.
elsif not Comes_From_Source (Original_Node (Pnod)) then
return;
-- A dereference action is only applicable to objects which have been
-- allocated on a checked pool.
elsif not Is_Checked_Storage_Pool (Pool) then
return;
end if;
-- Extract the address of the dereferenced object. Generate:
-- Addr : System.Address := <N>'Pool_Address;
Addr := Make_Temporary (Loc, 'P');
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Addr,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Address), Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_Move_Checks (N),
Attribute_Name => Name_Pool_Address)));
-- Calculate the size of the dereferenced object. Generate:
-- Size : Storage_Count := <N>.all'Size / Storage_Unit;
Deref :=
Make_Explicit_Dereference (Loc,
Prefix => Duplicate_Subexpr_Move_Checks (N));
Set_Has_Dereference_Action (Deref);
Size_Bits :=
Make_Attribute_Reference (Loc,
Prefix => Deref,
Attribute_Name => Name_Size);
-- Special case of an unconstrained array: need to add descriptor size
if Is_Array_Type (Desig)
and then not Is_Constrained (First_Subtype (Desig))
then
Size_Bits :=
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (First_Subtype (Desig), Loc),
Attribute_Name => Name_Descriptor_Size),
Right_Opnd => Size_Bits);
end if;
Size := Make_Temporary (Loc, 'S');
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Size,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
Expression =>
Make_Op_Divide (Loc,
Left_Opnd => Size_Bits,
Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
-- Calculate the alignment of the dereferenced object. Generate:
-- Alig : constant Storage_Count := <N>.all'Alignment;
Deref :=
Make_Explicit_Dereference (Loc,
Prefix => Duplicate_Subexpr_Move_Checks (N));
Set_Has_Dereference_Action (Deref);
Alig := Make_Temporary (Loc, 'A');
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Alig,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Deref,
Attribute_Name => Name_Alignment)));
-- A dereference of a controlled object requires special processing. The
-- finalization machinery requests additional space from the underlying
-- pool to allocate and hide two pointers. As a result, a checked pool
-- may mark the wrong memory as valid. Since checked pools do not have
-- knowledge of hidden pointers, we have to bring the two pointers back
-- in view in order to restore the original state of the object.
if Needs_Finalization (Desig) then
-- Adjust the address and size of the dereferenced object. Generate:
-- Adjust_Controlled_Dereference (Addr, Size, Alig);
Stmt :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Addr, Loc),
New_Occurrence_Of (Size, Loc),
New_Occurrence_Of (Alig, Loc)));
-- Class-wide types complicate things because we cannot determine
-- statically whether the actual object is truly controlled. We must
-- generate a runtime check to detect this property. Generate:
--
-- if Needs_Finalization (<N>.all'Tag) then
-- <Stmt>;
-- end if;
if Is_Class_Wide_Type (Desig) then
Deref :=
Make_Explicit_Dereference (Loc,
Prefix => Duplicate_Subexpr_Move_Checks (N));
Set_Has_Dereference_Action (Deref);
Stmt :=
Make_Implicit_If_Statement (N,
Condition =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Deref,
Attribute_Name => Name_Tag))),
Then_Statements => New_List (Stmt));
end if;
Insert_Action (N, Stmt);
end if;
-- Generate:
-- Dereference (Pool, Addr, Size, Alig);
Insert_Action (N,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of
(Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Pool, Loc),
New_Occurrence_Of (Addr, Loc),
New_Occurrence_Of (Size, Loc),
New_Occurrence_Of (Alig, Loc))));
-- Mark the explicit dereference as processed to avoid potential
-- infinite expansion.
Set_Has_Dereference_Action (Pnod);
exception
when RE_Not_Available =>
return;
end Insert_Dereference_Action;
--------------------------------
-- Integer_Promotion_Possible --
--------------------------------
function Integer_Promotion_Possible (N : Node_Id) return Boolean is
Operand : constant Node_Id := Expression (N);
Operand_Type : constant Entity_Id := Etype (Operand);
Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
begin
pragma Assert (Nkind (N) = N_Type_Conversion);
return
-- We only do the transformation for source constructs. We assume
-- that the expander knows what it is doing when it generates code.
Comes_From_Source (N)
-- If the operand type is Short_Integer or Short_Short_Integer,
-- then we will promote to Integer, which is available on all
-- targets, and is sufficient to ensure no intermediate overflow.
-- Furthermore it is likely to be as efficient or more efficient
-- than using the smaller type for the computation so we do this
-- unconditionally.
and then
(Root_Operand_Type = Base_Type (Standard_Short_Integer)
or else
Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
-- Test for interesting operation, which includes addition,
-- division, exponentiation, multiplication, subtraction, absolute
-- value and unary negation. Unary "+" is omitted since it is a
-- no-op and thus can't overflow.
and then Nkind_In (Operand, N_Op_Abs,
N_Op_Add,
N_Op_Divide,
N_Op_Expon,
N_Op_Minus,
N_Op_Multiply,
N_Op_Subtract);
end Integer_Promotion_Possible;
------------------------------
-- Make_Array_Comparison_Op --
------------------------------
-- This is a hand-coded expansion of the following generic function:
-- generic
-- type elem is (<>);
-- type index is (<>);
-- type a is array (index range <>) of elem;
-- function Gnnn (X : a; Y: a) return boolean is
-- J : index := Y'first;
-- begin
-- if X'length = 0 then
-- return false;
-- elsif Y'length = 0 then
-- return true;
-- else
-- for I in X'range loop
-- if X (I) = Y (J) then
-- if J = Y'last then
-- exit;
-- else
-- J := index'succ (J);
-- end if;
-- else
-- return X (I) > Y (J);
-- end if;
-- end loop;
-- return X'length > Y'length;
-- end if;
-- end Gnnn;
-- Note that since we are essentially doing this expansion by hand, we
-- do not need to generate an actual or formal generic part, just the
-- instantiated function itself.
-- Perhaps we could have the actual generic available in the run-time,
-- obtained by rtsfind, and actually expand a real instantiation ???
function Make_Array_Comparison_Op
(Typ : Entity_Id;
Nod : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
Loop_Statement : Node_Id;
Loop_Body : Node_Id;
If_Stat : Node_Id;
Inner_If : Node_Id;
Final_Expr : Node_Id;
Func_Body : Node_Id;
Func_Name : Entity_Id;
Formals : List_Id;
Length1 : Node_Id;
Length2 : Node_Id;
begin
-- if J = Y'last then
-- exit;
-- else
-- J := index'succ (J);
-- end if;
Inner_If :=
Make_Implicit_If_Statement (Nod,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (J, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Attribute_Name => Name_Last)),
Then_Statements => New_List (
Make_Exit_Statement (Loc)),
Else_Statements =>
New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (J, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (New_Occurrence_Of (J, Loc))))));
-- if X (I) = Y (J) then
-- if ... end if;
-- else
-- return X (I) > Y (J);
-- end if;
Loop_Body :=
Make_Implicit_If_Statement (Nod,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Expressions => New_List (New_Occurrence_Of (I, Loc))),
Right_Opnd =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)))),
Then_Statements => New_List (Inner_If),
Else_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Op_Gt (Loc,
Left_Opnd =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Expressions => New_List (New_Occurrence_Of (I, Loc))),
Right_Opnd =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Expressions => New_List (
New_Occurrence_Of (J, Loc)))))));
-- for I in X'range loop
-- if ... end if;
-- end loop;
Loop_Statement :=
Make_Implicit_Loop_Statement (Nod,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => I,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Attribute_Name => Name_Range))),
Statements => New_List (Loop_Body));
-- if X'length = 0 then
-- return false;
-- elsif Y'length = 0 then
-- return true;
-- else
-- for ... loop ... end loop;
-- return X'length > Y'length;
-- end if;
Length1 :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Attribute_Name => Name_Length);
Length2 :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Attribute_Name => Name_Length);
Final_Expr :=
Make_Op_Gt (Loc,
Left_Opnd => Length1,
Right_Opnd => Length2);
If_Stat :=
Make_Implicit_If_Statement (Nod,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Attribute_Name => Name_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, 0)),
Then_Statements =>
New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))),
Elsif_Parts => New_List (
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Attribute_Name => Name_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, 0)),
Then_Statements =>
New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc))))),
Else_Statements => New_List (
Loop_Statement,
Make_Simple_Return_Statement (Loc,
Expression => Final_Expr)));
-- (X : a; Y: a)
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => X,
Parameter_Type => New_Occurrence_Of (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Y,
Parameter_Type => New_Occurrence_Of (Typ, Loc)));
-- function Gnnn (...) return boolean is
-- J : index := Y'first;
-- begin
-- if ... end if;
-- end Gnnn;
Func_Name := Make_Temporary (Loc, 'G');
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => Formals,
Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => J,
Object_Definition => New_Occurrence_Of (Index, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Attribute_Name => Name_First))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (If_Stat)));
return Func_Body;
end Make_Array_Comparison_Op;
---------------------------
-- Make_Boolean_Array_Op --
---------------------------
-- For logical operations on boolean arrays, expand in line the following,
-- replacing 'and' with 'or' or 'xor' where needed:
-- function Annn (A : typ; B: typ) return typ is
-- C : typ;
-- begin
-- for J in A'range loop
-- C (J) := A (J) op B (J);
-- end loop;
-- return C;
-- end Annn;
-- Here typ is the boolean array type
function Make_Boolean_Array_Op
(Typ : Entity_Id;
N : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
A_J : Node_Id;
B_J : Node_Id;
C_J : Node_Id;
Op : Node_Id;
Formals : List_Id;
Func_Name : Entity_Id;
Func_Body : Node_Id;
Loop_Statement : Node_Id;
begin
A_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (A, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
B_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (B, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
C_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (C, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
if Nkind (N) = N_Op_And then
Op :=
Make_Op_And (Loc,
Left_Opnd => A_J,
Right_Opnd => B_J);
elsif Nkind (N) = N_Op_Or then
Op :=
Make_Op_Or (Loc,
Left_Opnd => A_J,
Right_Opnd => B_J);
else
Op :=
Make_Op_Xor (Loc,
Left_Opnd => A_J,
Right_Opnd => B_J);
end if;
Loop_Statement :=
Make_Implicit_Loop_Statement (N,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => J,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (A, Loc),
Attribute_Name => Name_Range))),
Statements => New_List (
Make_Assignment_Statement (Loc,
Name => C_J,
Expression => Op)));
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type => New_Occurrence_Of (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => B,
Parameter_Type => New_Occurrence_Of (Typ, Loc)));
Func_Name := Make_Temporary (Loc, 'A');
Set_Is_Inlined (Func_Name);
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => Formals,
Result_Definition => New_Occurrence_Of (Typ, Loc)),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => C,
Object_Definition => New_Occurrence_Of (Typ, Loc))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Loop_Statement,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (C, Loc)))));
return Func_Body;
end Make_Boolean_Array_Op;
-----------------------------------------
-- Minimized_Eliminated_Overflow_Check --
-----------------------------------------
function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
begin
return
Is_Signed_Integer_Type (Etype (N))
and then Overflow_Check_Mode in Minimized_Or_Eliminated;
end Minimized_Eliminated_Overflow_Check;
--------------------------------
-- Optimize_Length_Comparison --
--------------------------------
procedure Optimize_Length_Comparison (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Result : Node_Id;
Left : Node_Id;
Right : Node_Id;
-- First and Last attribute reference nodes, which end up as left and
-- right operands of the optimized result.
Is_Zero : Boolean;
-- True for comparison operand of zero
Comp : Node_Id;
-- Comparison operand, set only if Is_Zero is false
Ent : Entity_Id;
-- Entity whose length is being compared
Index : Node_Id;
-- Integer_Literal node for length attribute expression, or Empty
-- if there is no such expression present.
Ityp : Entity_Id;
-- Type of array index to which 'Length is applied
Op : Node_Kind := Nkind (N);
-- Kind of comparison operator, gets flipped if operands backwards
function Is_Optimizable (N : Node_Id) return Boolean;
-- Tests N to see if it is an optimizable comparison value (defined as
-- constant zero or one, or something else where the value is known to
-- be positive and in the range of 32-bits, and where the corresponding
-- Length value is also known to be 32-bits. If result is true, sets
-- Is_Zero, Ityp, and Comp accordingly.
function Is_Entity_Length (N : Node_Id) return Boolean;
-- Tests if N is a length attribute applied to a simple entity. If so,
-- returns True, and sets Ent to the entity, and Index to the integer
-- literal provided as an attribute expression, or to Empty if none.
-- Also returns True if the expression is a generated type conversion
-- whose expression is of the desired form. This latter case arises
-- when Apply_Universal_Integer_Attribute_Check installs a conversion
-- to check for being in range, which is not needed in this context.
-- Returns False if neither condition holds.
function Prepare_64 (N : Node_Id) return Node_Id;
-- Given a discrete expression, returns a Long_Long_Integer typed
-- expression representing the underlying value of the expression.
-- This is done with an unchecked conversion to the result type. We
-- use unchecked conversion to handle the enumeration type case.
----------------------
-- Is_Entity_Length --
----------------------
function Is_Entity_Length (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Length
and then Is_Entity_Name (Prefix (N))
then
Ent := Entity (Prefix (N));
if Present (Expressions (N)) then
Index := First (Expressions (N));
else
Index := Empty;
end if;
return True;
elsif Nkind (N) = N_Type_Conversion
and then not Comes_From_Source (N)
then
return Is_Entity_Length (Expression (N));
else
return False;
end if;
end Is_Entity_Length;
--------------------
-- Is_Optimizable --
--------------------
function Is_Optimizable (N : Node_Id) return Boolean is
Val : Uint;
OK : Boolean;
Lo : Uint;
Hi : Uint;
Indx : Node_Id;
begin
if Compile_Time_Known_Value (N) then
Val := Expr_Value (N);
if Val = Uint_0 then
Is_Zero := True;
Comp := Empty;
return True;
elsif Val = Uint_1 then
Is_Zero := False;
Comp := Empty;
return True;
end if;
end if;
-- Here we have to make sure of being within 32-bits
Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
if not OK
or else Lo < Uint_1
or else Hi > UI_From_Int (Int'Last)
then
return False;
end if;
-- Comparison value was within range, so now we must check the index
-- value to make sure it is also within 32-bits.
Indx := First_Index (Etype (Ent));
if Present (Index) then
for J in 2 .. UI_To_Int (Intval (Index)) loop
Next_Index (Indx);
end loop;
end if;
Ityp := Etype (Indx);
if Esize (Ityp) > 32 then
return False;
end if;
Is_Zero := False;
Comp := N;
return True;
end Is_Optimizable;
----------------
-- Prepare_64 --
----------------
function Prepare_64 (N : Node_Id) return Node_Id is
begin
return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
end Prepare_64;
-- Start of processing for Optimize_Length_Comparison
begin
-- Nothing to do if not a comparison
if Op not in N_Op_Compare then
return;
end if;
-- Nothing to do if special -gnatd.P debug flag set
if Debug_Flag_Dot_PP then
return;
end if;
-- Ent'Length op 0/1
if Is_Entity_Length (Left_Opnd (N))
and then Is_Optimizable (Right_Opnd (N))
then
null;
-- 0/1 op Ent'Length
elsif Is_Entity_Length (Right_Opnd (N))
and then Is_Optimizable (Left_Opnd (N))
then
-- Flip comparison to opposite sense
case Op is
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Le => Op := N_Op_Ge;
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Ge => Op := N_Op_Le;
when others => null;
end case;
-- Else optimization not possible
else
return;
end if;
-- Fall through if we will do the optimization
-- Cases to handle:
-- X'Length = 0 => X'First > X'Last
-- X'Length = 1 => X'First = X'Last
-- X'Length = n => X'First + (n - 1) = X'Last
-- X'Length /= 0 => X'First <= X'Last
-- X'Length /= 1 => X'First /= X'Last
-- X'Length /= n => X'First + (n - 1) /= X'Last
-- X'Length >= 0 => always true, warn
-- X'Length >= 1 => X'First <= X'Last
-- X'Length >= n => X'First + (n - 1) <= X'Last
-- X'Length > 0 => X'First <= X'Last
-- X'Length > 1 => X'First < X'Last
-- X'Length > n => X'First + (n - 1) < X'Last
-- X'Length <= 0 => X'First > X'Last (warn, could be =)
-- X'Length <= 1 => X'First >= X'Last
-- X'Length <= n => X'First + (n - 1) >= X'Last
-- X'Length < 0 => always false (warn)
-- X'Length < 1 => X'First > X'Last
-- X'Length < n => X'First + (n - 1) > X'Last
-- Note: for the cases of n (not constant 0,1), we require that the
-- corresponding index type be integer or shorter (i.e. not 64-bit),
-- and the same for the comparison value. Then we do the comparison
-- using 64-bit arithmetic (actually long long integer), so that we
-- cannot have overflow intefering with the result.
-- First deal with warning cases
if Is_Zero then
case Op is
-- X'Length >= 0
when N_Op_Ge =>
Rewrite (N,
Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
Analyze_And_Resolve (N, Typ);
Warn_On_Known_Condition (N);
return;
-- X'Length < 0
when N_Op_Lt =>
Rewrite (N,
Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
Analyze_And_Resolve (N, Typ);
Warn_On_Known_Condition (N);
return;
when N_Op_Le =>
if Constant_Condition_Warnings
and then Comes_From_Source (Original_Node (N))
then
Error_Msg_N ("could replace by ""'=""?c?", N);
end if;
Op := N_Op_Eq;
when others =>
null;
end case;
end if;
-- Build the First reference we will use
Left :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Attribute_Name => Name_First);
if Present (Index) then
Set_Expressions (Left, New_List (New_Copy (Index)));
end if;
-- If general value case, then do the addition of (n - 1), and
-- also add the needed conversions to type Long_Long_Integer.
if Present (Comp) then
Left :=
Make_Op_Add (Loc,
Left_Opnd => Prepare_64 (Left),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Prepare_64 (Comp),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
end if;
-- Build the Last reference we will use
Right :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Attribute_Name => Name_Last);
if Present (Index) then
Set_Expressions (Right, New_List (New_Copy (Index)));
end if;
-- If general operand, convert Last reference to Long_Long_Integer
if Present (Comp) then
Right := Prepare_64 (Right);
end if;
-- Check for cases to optimize
-- X'Length = 0 => X'First > X'Last
-- X'Length < 1 => X'First > X'Last
-- X'Length < n => X'First + (n - 1) > X'Last
if (Is_Zero and then Op = N_Op_Eq)
or else (not Is_Zero and then Op = N_Op_Lt)
then
Result :=
Make_Op_Gt (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length = 1 => X'First = X'Last
-- X'Length = n => X'First + (n - 1) = X'Last
elsif not Is_Zero and then Op = N_Op_Eq then
Result :=
Make_Op_Eq (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length /= 0 => X'First <= X'Last
-- X'Length > 0 => X'First <= X'Last
elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
Result :=
Make_Op_Le (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length /= 1 => X'First /= X'Last
-- X'Length /= n => X'First + (n - 1) /= X'Last
elsif not Is_Zero and then Op = N_Op_Ne then
Result :=
Make_Op_Ne (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length >= 1 => X'First <= X'Last
-- X'Length >= n => X'First + (n - 1) <= X'Last
elsif not Is_Zero and then Op = N_Op_Ge then
Result :=
Make_Op_Le (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length > 1 => X'First < X'Last
-- X'Length > n => X'First + (n = 1) < X'Last
elsif not Is_Zero and then Op = N_Op_Gt then
Result :=
Make_Op_Lt (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length <= 1 => X'First >= X'Last
-- X'Length <= n => X'First + (n - 1) >= X'Last
elsif not Is_Zero and then Op = N_Op_Le then
Result :=
Make_Op_Ge (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- Should not happen at this stage
else
raise Program_Error;
end if;
-- Rewrite and finish up
Rewrite (N, Result);
Analyze_And_Resolve (N, Typ);
return;
end Optimize_Length_Comparison;
------------------------------
-- Process_Transient_Object --
------------------------------
procedure Process_Transient_Object
(Decl : Node_Id;
Rel_Node : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Decl);
Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
Obj_Typ : constant Node_Id := Etype (Obj_Id);
Desig_Typ : Entity_Id;
Expr : Node_Id;
Fin_Stmts : List_Id;
Ptr_Id : Entity_Id;
Temp_Id : Entity_Id;
Temp_Ins : Node_Id;
Hook_Context : constant Node_Id := Find_Hook_Context (Rel_Node);
-- Node on which to insert the hook pointer (as an action): the
-- innermost enclosing non-transient scope.
Finalization_Context : Node_Id;
-- Node after which to insert finalization actions
Finalize_Always : Boolean;
-- If False, call to finalizer includes a test of whether the hook
-- pointer is null.
begin
-- Step 0: determine where to attach finalization actions in the tree
-- Special case for Boolean EWAs: capture expression in a temporary,
-- whose declaration will serve as the context around which to insert
-- finalization code. The finalization thus remains local to the
-- specific condition being evaluated.
if Is_Boolean_Type (Etype (Rel_Node)) then
-- In this case, the finalization context is chosen so that we know
-- at finalization point that the hook pointer is never null, so no
-- need for a test, we can call the finalizer unconditionally, except
-- in the case where the object is created in a specific branch of a
-- conditional expression.
Finalize_Always :=
not Within_Case_Or_If_Expression (Rel_Node)
and then not Nkind_In
(Original_Node (Rel_Node), N_Case_Expression,
N_If_Expression);
declare
Loc : constant Source_Ptr := Sloc (Rel_Node);
Temp : constant Entity_Id := Make_Temporary (Loc, 'E', Rel_Node);
begin
Append_To (Actions (Rel_Node),
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Etype (Rel_Node), Loc),
Expression => Expression (Rel_Node)));
Finalization_Context := Last (Actions (Rel_Node));
Analyze (Last (Actions (Rel_Node)));
Set_Expression (Rel_Node, New_Occurrence_Of (Temp, Loc));
Analyze (Expression (Rel_Node));
end;
else
Finalize_Always := False;
Finalization_Context := Hook_Context;
end if;
-- Step 1: Create the access type which provides a reference to the
-- transient controlled object.
if Is_Access_Type (Obj_Typ) then
Desig_Typ := Directly_Designated_Type (Obj_Typ);
else
Desig_Typ := Obj_Typ;
end if;
Desig_Typ := Base_Type (Desig_Typ);
-- Generate:
-- Ann : access [all] <Desig_Typ>;
Ptr_Id := Make_Temporary (Loc, 'A');
Insert_Action (Hook_Context,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Id,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => Ekind (Obj_Typ) = E_General_Access_Type,
Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))));
-- Step 2: Create a temporary which acts as a hook to the transient
-- controlled object. Generate:
-- Temp : Ptr_Id := null;
Temp_Id := Make_Temporary (Loc, 'T');
Insert_Action (Hook_Context,
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Id,
Object_Definition => New_Occurrence_Of (Ptr_Id, Loc)));
-- Mark the temporary as created for the purposes of exporting the
-- transient controlled object out of the expression_with_action or if
-- expression. This signals the machinery in Build_Finalizer to treat
-- this case specially.
Set_Status_Flag_Or_Transient_Decl (Temp_Id, Decl);
-- Step 3: Hook the transient object to the temporary
-- This must be inserted right after the object declaration, so that
-- the assignment is executed if, and only if, the object is actually
-- created (whereas the declaration of the hook pointer, and the
-- finalization call, may be inserted at an outer level, and may
-- remain unused for some executions, if the actual creation of
-- the object is conditional).
-- The use of unchecked conversion / unrestricted access is needed to
-- avoid an accessibility violation. Note that the finalization code is
-- structured in such a way that the "hook" is processed only when it
-- points to an existing object.
if Is_Access_Type (Obj_Typ) then
Expr :=
Unchecked_Convert_To (Ptr_Id, New_Occurrence_Of (Obj_Id, Loc));
else
Expr :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Attribute_Name => Name_Unrestricted_Access);
end if;
-- Generate:
-- Temp := Ptr_Id (Obj_Id);
-- <or>
-- Temp := Obj_Id'Unrestricted_Access;
-- When the transient object is initialized by an aggregate, the hook
-- must capture the object after the last component assignment takes
-- place. Only then is the object fully initialized.
if Ekind (Obj_Id) = E_Variable
and then Present (Last_Aggregate_Assignment (Obj_Id))
then
Temp_Ins := Last_Aggregate_Assignment (Obj_Id);
-- Otherwise the hook seizes the related object immediately
else
Temp_Ins := Decl;
end if;
Insert_After_And_Analyze (Temp_Ins,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp_Id, Loc),
Expression => Expr));
-- Step 4: Finalize the transient controlled object after the context
-- has been evaluated/elaborated. Generate:
-- if Temp /= null then
-- [Deep_]Finalize (Temp.all);
-- Temp := null;
-- end if;
-- When the node is part of a return statement, there is no need to
-- insert a finalization call, as the general finalization mechanism
-- (see Build_Finalizer) would take care of the transient controlled
-- object on subprogram exit. Note that it would also be impossible to
-- insert the finalization code after the return statement as this will
-- render it unreachable.
if Nkind (Finalization_Context) /= N_Simple_Return_Statement then
Fin_Stmts := New_List (
Make_Final_Call
(Obj_Ref =>
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp_Id, Loc)),
Typ => Desig_Typ),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp_Id, Loc),
Expression => Make_Null (Loc)));
if not Finalize_Always then
Fin_Stmts := New_List (
Make_Implicit_If_Statement (Decl,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Temp_Id, Loc),
Right_Opnd => Make_Null (Loc)),
Then_Statements => Fin_Stmts));
end if;
Insert_Actions_After (Finalization_Context, Fin_Stmts);
end if;
end Process_Transient_Object;
------------------------
-- Rewrite_Comparison --
------------------------
procedure Rewrite_Comparison (N : Node_Id) is
Warning_Generated : Boolean := False;
-- Set to True if first pass with Assume_Valid generates a warning in
-- which case we skip the second pass to avoid warning overloaded.
Result : Node_Id;
-- Set to Standard_True or Standard_False
begin
if Nkind (N) = N_Type_Conversion then
Rewrite_Comparison (Expression (N));
return;
elsif Nkind (N) not in N_Op_Compare then
return;
end if;
-- Now start looking at the comparison in detail. We potentially go
-- through this loop twice. The first time, Assume_Valid is set False
-- in the call to Compile_Time_Compare. If this call results in a
-- clear result of always True or Always False, that's decisive and
-- we are done. Otherwise we repeat the processing with Assume_Valid
-- set to True to generate additional warnings. We can skip that step
-- if Constant_Condition_Warnings is False.
for AV in False .. True loop
declare
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Res : constant Compare_Result :=
Compile_Time_Compare (Op1, Op2, Assume_Valid => AV);
-- Res indicates if compare outcome can be compile time determined
True_Result : Boolean;
False_Result : Boolean;
begin
case N_Op_Compare (Nkind (N)) is
when N_Op_Eq =>
True_Result := Res = EQ;
False_Result := Res = LT or else Res = GT or else Res = NE;
when N_Op_Ge =>
True_Result := Res in Compare_GE;
False_Result := Res = LT;
if Res = LE
and then Constant_Condition_Warnings
and then Comes_From_Source (Original_Node (N))
and then Nkind (Original_Node (N)) = N_Op_Ge
and then not In_Instance
and then Is_Integer_Type (Etype (Left_Opnd (N)))
and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
then
Error_Msg_N
("can never be greater than, could replace by ""'=""?c?",
N);
Warning_Generated := True;
end if;
when N_Op_Gt =>
True_Result := Res = GT;
False_Result := Res in Compare_LE;
when N_Op_Lt =>
True_Result := Res = LT;
False_Result := Res in Compare_GE;
when N_Op_Le =>
True_Result := Res in Compare_LE;
False_Result := Res = GT;
if Res = GE
and then Constant_Condition_Warnings
and then Comes_From_Source (Original_Node (N))
and then Nkind (Original_Node (N)) = N_Op_Le
and then not In_Instance
and then Is_Integer_Type (Etype (Left_Opnd (N)))
and then not Has_Warnings_Off (Etype (Left_Opnd (N)))
then
Error_Msg_N
("can never be less than, could replace by ""'=""?c?", N);
Warning_Generated := True;
end if;
when N_Op_Ne =>
True_Result := Res = NE or else Res = GT or else Res = LT;
False_Result := Res = EQ;
end case;
-- If this is the first iteration, then we actually convert the
-- comparison into True or False, if the result is certain.
if AV = False then
if True_Result or False_Result then
Result := Boolean_Literals (True_Result);
Rewrite (N,
Convert_To (Typ,
New_Occurrence_Of (Result, Sloc (N))));
Analyze_And_Resolve (N, Typ);
Warn_On_Known_Condition (N);
return;
end if;
-- If this is the second iteration (AV = True), and the original
-- node comes from source and we are not in an instance, then give
-- a warning if we know result would be True or False. Note: we
-- know Constant_Condition_Warnings is set if we get here.
elsif Comes_From_Source (Original_Node (N))
and then not In_Instance
then
if True_Result then
Error_Msg_N
("condition can only be False if invalid values present??",
N);
elsif False_Result then
Error_Msg_N
("condition can only be True if invalid values present??",
N);
end if;
end if;
end;
-- Skip second iteration if not warning on constant conditions or
-- if the first iteration already generated a warning of some kind or
-- if we are in any case assuming all values are valid (so that the
-- first iteration took care of the valid case).
exit when not Constant_Condition_Warnings;
exit when Warning_Generated;
exit when Assume_No_Invalid_Values;
end loop;
end Rewrite_Comparison;
----------------------------
-- Safe_In_Place_Array_Op --
----------------------------
function Safe_In_Place_Array_Op
(Lhs : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id) return Boolean
is
Target : Entity_Id;
function Is_Safe_Operand (Op : Node_Id) return Boolean;
-- Operand is safe if it cannot overlap part of the target of the
-- operation. If the operand and the target are identical, the operand
-- is safe. The operand can be empty in the case of negation.
function Is_Unaliased (N : Node_Id) return Boolean;
-- Check that N is a stand-alone entity
------------------
-- Is_Unaliased --
------------------
function Is_Unaliased (N : Node_Id) return Boolean is
begin
return
Is_Entity_Name (N)
and then No (Address_Clause (Entity (N)))
and then No (Renamed_Object (Entity (N)));
end Is_Unaliased;
---------------------
-- Is_Safe_Operand --
---------------------
function Is_Safe_Operand (Op : Node_Id) return Boolean is
begin
if No (Op) then
return True;
elsif Is_Entity_Name (Op) then
return Is_Unaliased (Op);
elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
return Is_Unaliased (Prefix (Op));
elsif Nkind (Op) = N_Slice then
return
Is_Unaliased (Prefix (Op))
and then Entity (Prefix (Op)) /= Target;
elsif Nkind (Op) = N_Op_Not then
return Is_Safe_Operand (Right_Opnd (Op));
else
return False;
end if;
end Is_Safe_Operand;
-- Start of processing for Safe_In_Place_Array_Op
begin
-- Skip this processing if the component size is different from system
-- storage unit (since at least for NOT this would cause problems).
if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
return False;
-- Cannot do in place stuff on VM_Target since cannot pass addresses
elsif VM_Target /= No_VM then
return False;
-- Cannot do in place stuff if non-standard Boolean representation
elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
return False;
elsif not Is_Unaliased (Lhs) then
return False;
else
Target := Entity (Lhs);
return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
end if;
end Safe_In_Place_Array_Op;
-----------------------
-- Tagged_Membership --
-----------------------
-- There are two different cases to consider depending on whether the right
-- operand is a class-wide type or not. If not we just compare the actual
-- tag of the left expr to the target type tag:
--
-- Left_Expr.Tag = Right_Type'Tag;
--
-- If it is a class-wide type we use the RT function CW_Membership which is
-- usually implemented by looking in the ancestor tables contained in the
-- dispatch table pointed by Left_Expr.Tag for Typ'Tag
-- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
-- function IW_Membership which is usually implemented by looking in the
-- table of abstract interface types plus the ancestor table contained in
-- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
procedure Tagged_Membership
(N : Node_Id;
SCIL_Node : out Node_Id;
Result : out Node_Id)
is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Loc : constant Source_Ptr := Sloc (N);
Full_R_Typ : Entity_Id;
Left_Type : Entity_Id;
New_Node : Node_Id;
Right_Type : Entity_Id;
Obj_Tag : Node_Id;
begin
SCIL_Node := Empty;
-- Handle entities from the limited view
Left_Type := Available_View (Etype (Left));
Right_Type := Available_View (Etype (Right));
-- In the case where the type is an access type, the test is applied
-- using the designated types (needed in Ada 2012 for implicit anonymous
-- access conversions, for AI05-0149).
if Is_Access_Type (Right_Type) then
Left_Type := Designated_Type (Left_Type);
Right_Type := Designated_Type (Right_Type);
end if;
if Is_Class_Wide_Type (Left_Type) then
Left_Type := Root_Type (Left_Type);
end if;
if Is_Class_Wide_Type (Right_Type) then
Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
else
Full_R_Typ := Underlying_Type (Right_Type);
end if;
Obj_Tag :=
Make_Selected_Component (Loc,
Prefix => Relocate_Node (Left),
Selector_Name =>
New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
if Is_Class_Wide_Type (Right_Type) then
-- No need to issue a run-time check if we statically know that the
-- result of this membership test is always true. For example,
-- considering the following declarations:
-- type Iface is interface;
-- type T is tagged null record;
-- type DT is new T and Iface with null record;
-- Obj1 : T;
-- Obj2 : DT;
-- These membership tests are always true:
-- Obj1 in T'Class
-- Obj2 in T'Class;
-- Obj2 in Iface'Class;
-- We do not need to handle cases where the membership is illegal.
-- For example:
-- Obj1 in DT'Class; -- Compile time error
-- Obj1 in Iface'Class; -- Compile time error
if not Is_Class_Wide_Type (Left_Type)
and then (Is_Ancestor (Etype (Right_Type), Left_Type,
Use_Full_View => True)
or else (Is_Interface (Etype (Right_Type))
and then Interface_Present_In_Ancestor
(Typ => Left_Type,
Iface => Etype (Right_Type))))
then
Result := New_Occurrence_Of (Standard_True, Loc);
return;
end if;
-- Ada 2005 (AI-251): Class-wide applied to interfaces
if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
-- Support to: "Iface_CW_Typ in Typ'Class"
or else Is_Interface (Left_Type)
then
-- Issue error if IW_Membership operation not available in a
-- configurable run time setting.
if not RTE_Available (RE_IW_Membership) then
Error_Msg_CRT
("dynamic membership test on interface types", N);
Result := Empty;
return;
end if;
Result :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Obj_Tag,
Attribute_Name => Name_Address),
New_Occurrence_Of (
Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
Loc)));
-- Ada 95: Normal case
else
Build_CW_Membership (Loc,
Obj_Tag_Node => Obj_Tag,
Typ_Tag_Node =>
New_Occurrence_Of (
Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
Related_Nod => N,
New_Node => New_Node);
-- Generate the SCIL node for this class-wide membership test.
-- Done here because the previous call to Build_CW_Membership
-- relocates Obj_Tag.
if Generate_SCIL then
SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
end if;
Result := New_Node;
end if;
-- Right_Type is not a class-wide type
else
-- No need to check the tag of the object if Right_Typ is abstract
if Is_Abstract_Type (Right_Type) then
Result := New_Occurrence_Of (Standard_False, Loc);
else
Result :=
Make_Op_Eq (Loc,
Left_Opnd => Obj_Tag,
Right_Opnd =>
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
end if;
end if;
end Tagged_Membership;
------------------------------
-- Unary_Op_Validity_Checks --
------------------------------
procedure Unary_Op_Validity_Checks (N : Node_Id) is
begin
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Right_Opnd (N));
end if;
end Unary_Op_Validity_Checks;
end Exp_Ch4;
|