1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ A T T R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
-- Boston, MA 02110-1301, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Elists; use Elists;
with Exp_Ch2; use Exp_Ch2;
with Exp_Ch9; use Exp_Ch9;
with Exp_Imgv; use Exp_Imgv;
with Exp_Pakd; use Exp_Pakd;
with Exp_Strm; use Exp_Strm;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Gnatvsn; use Gnatvsn;
with Hostparm; use Hostparm;
with Lib; use Lib;
with Namet; use Namet;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Uname; use Uname;
with Validsw; use Validsw;
package body Exp_Attr is
-----------------------
-- Local Subprograms --
-----------------------
procedure Compile_Stream_Body_In_Scope
(N : Node_Id;
Decl : Node_Id;
Arr : Entity_Id;
Check : Boolean);
-- The body for a stream subprogram may be generated outside of the scope
-- of the type. If the type is fully private, it may depend on the full
-- view of other types (e.g. indices) that are currently private as well.
-- We install the declarations of the package in which the type is declared
-- before compiling the body in what is its proper environment. The Check
-- parameter indicates if checks are to be suppressed for the stream body.
-- We suppress checks for array/record reads, since the rule is that these
-- are like assignments, out of range values due to uninitialized storage,
-- or other invalid values do NOT cause a Constraint_Error to be raised.
procedure Expand_Fpt_Attribute
(N : Node_Id;
Rtp : Entity_Id;
Nam : Name_Id;
Args : List_Id);
-- This procedure expands a call to a floating-point attribute function.
-- N is the attribute reference node, and Args is a list of arguments to
-- be passed to the function call. Rtp is the root type of the floating
-- point type involved (used to select the proper generic instantiation
-- of the package containing the attribute routines). The Nam argument
-- is the attribute processing routine to be called. This is normally
-- the same as the attribute name, except in the Unaligned_Valid case.
procedure Expand_Fpt_Attribute_R (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes a single floating-point argument. The function to be called
-- is always the same as the attribute name.
procedure Expand_Fpt_Attribute_RI (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes one floating-point argument and one integer argument. The
-- function to be called is always the same as the attribute name.
procedure Expand_Fpt_Attribute_RR (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes two floating-point arguments. The function to be called
-- is always the same as the attribute name.
procedure Expand_Pred_Succ (N : Node_Id);
-- Handles expansion of Pred or Succ attributes for case of non-real
-- operand with overflow checking required.
function Get_Index_Subtype (N : Node_Id) return Entity_Id;
-- Used for Last, Last, and Length, when the prefix is an array type,
-- Obtains the corresponding index subtype.
procedure Expand_Access_To_Type (N : Node_Id);
-- A reference to a type within its own scope is resolved to a reference
-- to the current instance of the type in its initialization procedure.
function Find_Stream_Subprogram
(Typ : Entity_Id;
Nam : TSS_Name_Type) return Entity_Id;
-- Returns the stream-oriented subprogram attribute for Typ. For tagged
-- types, the corresponding primitive operation is looked up, else the
-- appropriate TSS from the type itself, or from its closest ancestor
-- defining it, is returned. In both cases, inheritance of representation
-- aspects is thus taken into account.
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
-- Given a type, find a corresponding stream convert pragma that applies to
-- the implementation base type of this type (Typ). If found, return the
-- pragma node, otherwise return Empty if no pragma is found.
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
-- Utility for array attributes, returns true on packed constrained
-- arrays, and on access to same.
----------------------------------
-- Compile_Stream_Body_In_Scope --
----------------------------------
procedure Compile_Stream_Body_In_Scope
(N : Node_Id;
Decl : Node_Id;
Arr : Entity_Id;
Check : Boolean)
is
Installed : Boolean := False;
Scop : constant Entity_Id := Scope (Arr);
Curr : constant Entity_Id := Current_Scope;
begin
if Is_Hidden (Arr)
and then not In_Open_Scopes (Scop)
and then Ekind (Scop) = E_Package
then
New_Scope (Scop);
Install_Visible_Declarations (Scop);
Install_Private_Declarations (Scop);
Installed := True;
-- The entities in the package are now visible, but the generated
-- stream entity must appear in the current scope (usually an
-- enclosing stream function) so that itypes all have their proper
-- scopes.
New_Scope (Curr);
end if;
if Check then
Insert_Action (N, Decl);
else
Insert_Action (N, Decl, All_Checks);
end if;
if Installed then
-- Remove extra copy of current scope, and package itself
Pop_Scope;
End_Package_Scope (Scop);
end if;
end Compile_Stream_Body_In_Scope;
---------------------------
-- Expand_Access_To_Type --
---------------------------
procedure Expand_Access_To_Type (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Pref : constant Node_Id := Prefix (N);
Par : Node_Id;
Formal : Entity_Id;
begin
if Is_Entity_Name (Pref)
and then Is_Type (Entity (Pref))
then
-- If the current instance name denotes a task type,
-- then the access attribute is rewritten to be the
-- name of the "_task" parameter associated with the
-- task type's task body procedure. An unchecked
-- conversion is applied to ensure a type match in
-- cases of expander-generated calls (e.g., init procs).
if Is_Task_Type (Entity (Pref)) then
Formal :=
First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
while Present (Formal) loop
exit when Chars (Formal) = Name_uTask;
Next_Entity (Formal);
end loop;
pragma Assert (Present (Formal));
Rewrite (N,
Unchecked_Convert_To (Typ, New_Occurrence_Of (Formal, Loc)));
Set_Etype (N, Typ);
-- The expression must appear in a default expression,
-- (which in the initialization procedure is the rhs of
-- an assignment), and not in a discriminant constraint.
else
Par := Parent (N);
while Present (Par) loop
exit when Nkind (Par) = N_Assignment_Statement;
if Nkind (Par) = N_Component_Declaration then
return;
end if;
Par := Parent (Par);
end loop;
if Present (Par) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Attribute_Name => Attribute_Name (N)));
Analyze_And_Resolve (N, Typ);
end if;
end if;
end if;
end Expand_Access_To_Type;
--------------------------
-- Expand_Fpt_Attribute --
--------------------------
procedure Expand_Fpt_Attribute
(N : Node_Id;
Rtp : Entity_Id;
Nam : Name_Id;
Args : List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Pkg : RE_Id;
Fnm : Node_Id;
begin
-- The function name is the selected component Fat_xxx.yyy where xxx
-- is the floating-point root type, and yyy is the argument Nam.
-- Note: it would be more usual to have separate RE entries for each
-- of the entities in the Fat packages, but first they have identical
-- names (so we would have to have lots of renaming declarations to
-- meet the normal RE rule of separate names for all runtime entities),
-- and second there would be an awful lot of them!
if Rtp = Standard_Short_Float then
Pkg := RE_Fat_Short_Float;
elsif Rtp = Standard_Float then
Pkg := RE_Fat_Float;
elsif Rtp = Standard_Long_Float then
Pkg := RE_Fat_Long_Float;
else
Pkg := RE_Fat_Long_Long_Float;
end if;
Fnm :=
Make_Selected_Component (Loc,
Prefix => New_Reference_To (RTE (Pkg), Loc),
Selector_Name => Make_Identifier (Loc, Nam));
-- The generated call is given the provided set of parameters, and then
-- wrapped in a conversion which converts the result to the target type
-- We use the base type as the target because a range check may be
-- required.
Rewrite (N,
Unchecked_Convert_To (Base_Type (Etype (N)),
Make_Function_Call (Loc,
Name => Fnm,
Parameter_Associations => Args)));
Analyze_And_Resolve (N, Typ);
end Expand_Fpt_Attribute;
----------------------------
-- Expand_Fpt_Attribute_R --
----------------------------
-- The single argument is converted to its root type to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_R (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
Rtp : constant Entity_Id := Root_Type (Etype (E1));
begin
Expand_Fpt_Attribute
(N, Rtp, Attribute_Name (N),
New_List (Unchecked_Convert_To (Rtp, Relocate_Node (E1))));
end Expand_Fpt_Attribute_R;
-----------------------------
-- Expand_Fpt_Attribute_RI --
-----------------------------
-- The first argument is converted to its root type and the second
-- argument is converted to standard long long integer to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
Rtp : constant Entity_Id := Root_Type (Etype (E1));
E2 : constant Node_Id := Next (E1);
begin
Expand_Fpt_Attribute
(N, Rtp, Attribute_Name (N),
New_List (
Unchecked_Convert_To (Rtp, Relocate_Node (E1)),
Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
end Expand_Fpt_Attribute_RI;
-----------------------------
-- Expand_Fpt_Attribute_RR --
-----------------------------
-- The two arguments is converted to their root types to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
Rtp : constant Entity_Id := Root_Type (Etype (E1));
E2 : constant Node_Id := Next (E1);
begin
Expand_Fpt_Attribute
(N, Rtp, Attribute_Name (N),
New_List (
Unchecked_Convert_To (Rtp, Relocate_Node (E1)),
Unchecked_Convert_To (Rtp, Relocate_Node (E2))));
end Expand_Fpt_Attribute_RR;
----------------------------------
-- Expand_N_Attribute_Reference --
----------------------------------
procedure Expand_N_Attribute_Reference (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Btyp : constant Entity_Id := Base_Type (Typ);
Pref : constant Node_Id := Prefix (N);
Exprs : constant List_Id := Expressions (N);
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id);
-- Rewrites a stream attribute for Read, Write or Output with the
-- procedure call. Pname is the entity for the procedure to call.
------------------------------
-- Rewrite_Stream_Proc_Call --
------------------------------
procedure Rewrite_Stream_Proc_Call (Pname : Entity_Id) is
Item : constant Node_Id := Next (First (Exprs));
Formal : constant Entity_Id := Next_Formal (First_Formal (Pname));
Formal_Typ : constant Entity_Id := Etype (Formal);
Is_Written : constant Boolean := (Ekind (Formal) /= E_In_Parameter);
begin
-- The expansion depends on Item, the second actual, which is
-- the object being streamed in or out.
-- If the item is a component of a packed array type, and
-- a conversion is needed on exit, we introduce a temporary to
-- hold the value, because otherwise the packed reference will
-- not be properly expanded.
if Nkind (Item) = N_Indexed_Component
and then Is_Packed (Base_Type (Etype (Prefix (Item))))
and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
and then Is_Written
then
declare
Temp : constant Entity_Id :=
Make_Defining_Identifier
(Loc, New_Internal_Name ('V'));
Decl : Node_Id;
Assn : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Occurrence_Of (Formal_Typ, Loc));
Set_Etype (Temp, Formal_Typ);
Assn :=
Make_Assignment_Statement (Loc,
Name => New_Copy_Tree (Item),
Expression =>
Unchecked_Convert_To
(Etype (Item), New_Occurrence_Of (Temp, Loc)));
Rewrite (Item, New_Occurrence_Of (Temp, Loc));
Insert_Actions (N,
New_List (
Decl,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Pname, Loc),
Parameter_Associations => Exprs),
Assn));
Rewrite (N, Make_Null_Statement (Loc));
return;
end;
end if;
-- For the class-wide dispatching cases, and for cases in which
-- the base type of the second argument matches the base type of
-- the corresponding formal parameter (that is to say the stream
-- operation is not inherited), we are all set, and can use the
-- argument unchanged.
-- For all other cases we do an unchecked conversion of the second
-- parameter to the type of the formal of the procedure we are
-- calling. This deals with the private type cases, and with going
-- to the root type as required in elementary type case.
if not Is_Class_Wide_Type (Entity (Pref))
and then not Is_Class_Wide_Type (Etype (Item))
and then Base_Type (Etype (Item)) /= Base_Type (Formal_Typ)
then
Rewrite (Item,
Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
-- For untagged derived types set Assignment_OK, to prevent
-- copies from being created when the unchecked conversion
-- is expanded (which would happen in Remove_Side_Effects
-- if Expand_N_Unchecked_Conversion were allowed to call
-- Force_Evaluation). The copy could violate Ada semantics
-- in cases such as an actual that is an out parameter.
-- Note that this approach is also used in exp_ch7 for calls
-- to controlled type operations to prevent problems with
-- actuals wrapped in unchecked conversions.
if Is_Untagged_Derivation (Etype (Expression (Item))) then
Set_Assignment_OK (Item);
end if;
end if;
-- And now rewrite the call
Rewrite (N,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Pname, Loc),
Parameter_Associations => Exprs));
Analyze (N);
end Rewrite_Stream_Proc_Call;
-- Start of processing for Expand_N_Attribute_Reference
begin
-- Do required validity checking, if enabled. Do not apply check to
-- output parameters of an Asm instruction, since the value of this
-- is not set till after the attribute has been elaborated.
if Validity_Checks_On and then Validity_Check_Operands
and then Id /= Attribute_Asm_Output
then
declare
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
Ensure_Valid (Expr);
Next (Expr);
end loop;
end;
end if;
-- Remaining processing depends on specific attribute
case Id is
------------
-- Access --
------------
when Attribute_Access =>
if Ekind (Btyp) = E_Access_Protected_Subprogram_Type then
-- The value of the attribute_reference is a record containing
-- two fields: an access to the protected object, and an access
-- to the subprogram itself. The prefix is a selected component.
declare
Agg : Node_Id;
Sub : Entity_Id;
E_T : constant Entity_Id := Equivalent_Type (Btyp);
Acc : constant Entity_Id :=
Etype (Next_Component (First_Component (E_T)));
Obj_Ref : Node_Id;
Curr : Entity_Id;
begin
-- Within the body of the protected type, the prefix
-- designates a local operation, and the object is the first
-- parameter of the corresponding protected body of the
-- current enclosing operation.
if Is_Entity_Name (Pref) then
pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
Sub :=
New_Occurrence_Of
(Protected_Body_Subprogram (Entity (Pref)), Loc);
Curr := Current_Scope;
while Scope (Curr) /= Scope (Entity (Pref)) loop
Curr := Scope (Curr);
end loop;
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(First_Formal
(Protected_Body_Subprogram (Curr)), Loc),
Attribute_Name => Name_Address);
-- Case where the prefix is not an entity name. Find the
-- version of the protected operation to be called from
-- outside the protected object.
else
Sub :=
New_Occurrence_Of
(External_Subprogram
(Entity (Selector_Name (Pref))), Loc);
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Prefix (Pref)),
Attribute_Name => Name_Address);
end if;
Agg :=
Make_Aggregate (Loc,
Expressions =>
New_List (
Obj_Ref,
Unchecked_Convert_To (Acc,
Make_Attribute_Reference (Loc,
Prefix => Sub,
Attribute_Name => Name_Address))));
Rewrite (N, Agg);
Analyze_And_Resolve (N, E_T);
-- For subsequent analysis, the node must retain its type.
-- The backend will replace it with the equivalent type where
-- needed.
Set_Etype (N, Typ);
end;
elsif Ekind (Btyp) = E_General_Access_Type then
declare
Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
Parm_Ent : Entity_Id;
Conversion : Node_Id;
begin
-- If the prefix of an Access attribute is a dereference of an
-- access parameter (or a renaming of such a dereference) and
-- the context is a general access type (but not an anonymous
-- access type), then rewrite the attribute as a conversion of
-- the access parameter to the context access type. This will
-- result in an accessibility check being performed, if needed.
-- (X.all'Access => Acc_Type (X))
if Nkind (Ref_Object) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Ref_Object))
then
Parm_Ent := Entity (Prefix (Ref_Object));
if Ekind (Parm_Ent) in Formal_Kind
and then Ekind (Etype (Parm_Ent)) = E_Anonymous_Access_Type
and then Present (Extra_Accessibility (Parm_Ent))
then
Conversion :=
Convert_To (Typ, New_Copy_Tree (Prefix (Ref_Object)));
Rewrite (N, Conversion);
Analyze_And_Resolve (N, Typ);
end if;
-- Ada 2005 (AI-251): If the designated type is an interface,
-- then rewrite the referenced object as a conversion to force
-- the displacement of the pointer to the secondary dispatch
-- table.
elsif Is_Interface (Directly_Designated_Type (Btyp)) then
Conversion := Convert_To (Typ, New_Copy_Tree (Ref_Object));
Rewrite (N, Conversion);
Analyze_And_Resolve (N, Typ);
end if;
end;
-- If the prefix is a type name, this is a reference to the current
-- instance of the type, within its initialization procedure.
else
Expand_Access_To_Type (N);
end if;
--------------
-- Adjacent --
--------------
-- Transforms 'Adjacent into a call to the floating-point attribute
-- function Adjacent in Fat_xxx (where xxx is the root type)
when Attribute_Adjacent =>
Expand_Fpt_Attribute_RR (N);
-------------
-- Address --
-------------
when Attribute_Address => Address : declare
Task_Proc : Entity_Id;
begin
-- If the prefix is a task or a task type, the useful address
-- is that of the procedure for the task body, i.e. the actual
-- program unit. We replace the original entity with that of
-- the procedure.
if Is_Entity_Name (Pref)
and then Is_Task_Type (Entity (Pref))
then
Task_Proc := Next_Entity (Root_Type (Etype (Pref)));
while Present (Task_Proc) loop
exit when Ekind (Task_Proc) = E_Procedure
and then Etype (First_Formal (Task_Proc)) =
Corresponding_Record_Type (Etype (Pref));
Next_Entity (Task_Proc);
end loop;
if Present (Task_Proc) then
Set_Entity (Pref, Task_Proc);
Set_Etype (Pref, Etype (Task_Proc));
end if;
-- Similarly, the address of a protected operation is the address
-- of the corresponding protected body, regardless of the protected
-- object from which it is selected.
elsif Nkind (Pref) = N_Selected_Component
and then Is_Subprogram (Entity (Selector_Name (Pref)))
and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
then
Rewrite (Pref,
New_Occurrence_Of (
External_Subprogram (Entity (Selector_Name (Pref))), Loc));
elsif Nkind (Pref) = N_Explicit_Dereference
and then Ekind (Etype (Pref)) = E_Subprogram_Type
and then Convention (Etype (Pref)) = Convention_Protected
then
-- The prefix is be a dereference of an access_to_protected_
-- subprogram. The desired address is the second component of
-- the record that represents the access.
declare
Addr : constant Entity_Id := Etype (N);
Ptr : constant Node_Id := Prefix (Pref);
T : constant Entity_Id :=
Equivalent_Type (Base_Type (Etype (Ptr)));
begin
Rewrite (N,
Unchecked_Convert_To (Addr,
Make_Selected_Component (Loc,
Prefix => Unchecked_Convert_To (T, Ptr),
Selector_Name => New_Occurrence_Of (
Next_Entity (First_Entity (T)), Loc))));
Analyze_And_Resolve (N, Addr);
end;
end if;
-- Deal with packed array reference, other cases are handled by gigi
if Involves_Packed_Array_Reference (Pref) then
Expand_Packed_Address_Reference (N);
end if;
end Address;
---------------
-- Alignment --
---------------
when Attribute_Alignment => Alignment : declare
Ptyp : constant Entity_Id := Etype (Pref);
New_Node : Node_Id;
begin
-- For class-wide types, X'Class'Alignment is transformed into a
-- direct reference to the Alignment of the class type, so that the
-- back end does not have to deal with the X'Class'Alignment
-- reference.
if Is_Entity_Name (Pref)
and then Is_Class_Wide_Type (Entity (Pref))
then
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
return;
-- For x'Alignment applied to an object of a class wide type,
-- transform X'Alignment into a call to the predefined primitive
-- operation _Alignment applied to X.
elsif Is_Class_Wide_Type (Ptyp) then
New_Node :=
Make_Function_Call (Loc,
Name => New_Reference_To
(Find_Prim_Op (Ptyp, Name_uAlignment), Loc),
Parameter_Associations => New_List (Pref));
if Typ /= Standard_Integer then
-- The context is a specific integer type with which the
-- original attribute was compatible. The function has a
-- specific type as well, so to preserve the compatibility
-- we must convert explicitly.
New_Node := Convert_To (Typ, New_Node);
end if;
Rewrite (N, New_Node);
Analyze_And_Resolve (N, Typ);
return;
-- For all other cases, we just have to deal with the case of
-- the fact that the result can be universal.
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Alignment;
---------------
-- AST_Entry --
---------------
when Attribute_AST_Entry => AST_Entry : declare
Ttyp : Entity_Id;
T_Id : Node_Id;
Eent : Entity_Id;
Entry_Ref : Node_Id;
-- The reference to the entry or entry family
Index : Node_Id;
-- The index expression for an entry family reference, or
-- the Empty if Entry_Ref references a simple entry.
begin
if Nkind (Pref) = N_Indexed_Component then
Entry_Ref := Prefix (Pref);
Index := First (Expressions (Pref));
else
Entry_Ref := Pref;
Index := Empty;
end if;
-- Get expression for Task_Id and the entry entity
if Nkind (Entry_Ref) = N_Selected_Component then
T_Id :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Identity,
Prefix => Prefix (Entry_Ref));
Ttyp := Etype (Prefix (Entry_Ref));
Eent := Entity (Selector_Name (Entry_Ref));
else
T_Id :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Current_Task), Loc));
Eent := Entity (Entry_Ref);
-- We have to find the enclosing task to get the task type
-- There must be one, since we already validated this earlier
Ttyp := Current_Scope;
while not Is_Task_Type (Ttyp) loop
Ttyp := Scope (Ttyp);
end loop;
end if;
-- Now rewrite the attribute with a call to Create_AST_Handler
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Create_AST_Handler), Loc),
Parameter_Associations => New_List (
T_Id,
Entry_Index_Expression (Loc, Eent, Index, Ttyp))));
Analyze_And_Resolve (N, RTE (RE_AST_Handler));
end AST_Entry;
------------------
-- Bit_Position --
------------------
-- We compute this if a component clause was present, otherwise
-- we leave the computation up to Gigi, since we don't know what
-- layout will be chosen.
-- Note that the attribute can apply to a naked record component
-- in generated code (i.e. the prefix is an identifier that
-- references the component or discriminant entity).
when Attribute_Bit_Position => Bit_Position :
declare
CE : Entity_Id;
begin
if Nkind (Pref) = N_Identifier then
CE := Entity (Pref);
else
CE := Entity (Selector_Name (Pref));
end if;
if Known_Static_Component_Bit_Offset (CE) then
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => Component_Bit_Offset (CE)));
Analyze_And_Resolve (N, Typ);
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Bit_Position;
------------------
-- Body_Version --
------------------
-- A reference to P'Body_Version or P'Version is expanded to
-- Vnn : Unsigned;
-- pragma Import (C, Vnn, "uuuuT";
-- ...
-- Get_Version_String (Vnn)
-- where uuuu is the unit name (dots replaced by double underscore)
-- and T is B for the cases of Body_Version, or Version applied to a
-- subprogram acting as its own spec, and S for Version applied to a
-- subprogram spec or package. This sequence of code references the
-- the unsigned constant created in the main program by the binder.
-- A special exception occurs for Standard, where the string
-- returned is a copy of the library string in gnatvsn.ads.
when Attribute_Body_Version | Attribute_Version => Version : declare
E : constant Entity_Id :=
Make_Defining_Identifier (Loc, New_Internal_Name ('V'));
Pent : Entity_Id := Entity (Pref);
S : String_Id;
begin
-- If not library unit, get to containing library unit
while Pent /= Standard_Standard
and then Scope (Pent) /= Standard_Standard
loop
Pent := Scope (Pent);
end loop;
-- Special case Standard
if Pent = Standard_Standard
or else Pent = Standard_ASCII
then
Rewrite (N,
Make_String_Literal (Loc,
Strval => Verbose_Library_Version));
-- All other cases
else
-- Build required string constant
Get_Name_String (Get_Unit_Name (Pent));
Start_String;
for J in 1 .. Name_Len - 2 loop
if Name_Buffer (J) = '.' then
Store_String_Chars ("__");
else
Store_String_Char (Get_Char_Code (Name_Buffer (J)));
end if;
end loop;
-- Case of subprogram acting as its own spec, always use body
if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
and then Nkind (Parent (Declaration_Node (Pent))) =
N_Subprogram_Body
and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
then
Store_String_Chars ("B");
-- Case of no body present, always use spec
elsif not Unit_Requires_Body (Pent) then
Store_String_Chars ("S");
-- Otherwise use B for Body_Version, S for spec
elsif Id = Attribute_Body_Version then
Store_String_Chars ("B");
else
Store_String_Chars ("S");
end if;
S := End_String;
Lib.Version_Referenced (S);
-- Insert the object declaration
Insert_Actions (N, New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => E,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
-- Set entity as imported with correct external name
Set_Is_Imported (E);
Set_Interface_Name (E, Make_String_Literal (Loc, S));
-- And now rewrite original reference
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Reference_To (RTE (RE_Get_Version_String), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (E, Loc))));
end if;
Analyze_And_Resolve (N, RTE (RE_Version_String));
end Version;
-------------
-- Ceiling --
-------------
-- Transforms 'Ceiling into a call to the floating-point attribute
-- function Ceiling in Fat_xxx (where xxx is the root type)
when Attribute_Ceiling =>
Expand_Fpt_Attribute_R (N);
--------------
-- Callable --
--------------
-- Transforms 'Callable attribute into a call to the Callable function
when Attribute_Callable => Callable :
begin
Rewrite (N,
Build_Call_With_Task (Pref, RTE (RE_Callable)));
Analyze_And_Resolve (N, Standard_Boolean);
end Callable;
------------
-- Caller --
------------
-- Transforms 'Caller attribute into a call to either the
-- Task_Entry_Caller or the Protected_Entry_Caller function.
when Attribute_Caller => Caller : declare
Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id);
Ent : constant Entity_Id := Entity (Pref);
Conctype : constant Entity_Id := Scope (Ent);
Nest_Depth : Integer := 0;
Name : Node_Id;
S : Entity_Id;
begin
-- Protected case
if Is_Protected_Type (Conctype) then
if Abort_Allowed
or else Restriction_Active (No_Entry_Queue) = False
or else Number_Entries (Conctype) > 1
then
Name :=
New_Reference_To
(RTE (RE_Protected_Entry_Caller), Loc);
else
Name :=
New_Reference_To
(RTE (RE_Protected_Single_Entry_Caller), Loc);
end if;
Rewrite (N,
Unchecked_Convert_To (Id_Kind,
Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List
(New_Reference_To (
Object_Ref
(Corresponding_Body (Parent (Conctype))), Loc)))));
-- Task case
else
-- Determine the nesting depth of the E'Caller attribute, that
-- is, how many accept statements are nested within the accept
-- statement for E at the point of E'Caller. The runtime uses
-- this depth to find the specified entry call.
for J in reverse 0 .. Scope_Stack.Last loop
S := Scope_Stack.Table (J).Entity;
-- We should not reach the scope of the entry, as it should
-- already have been checked in Sem_Attr that this attribute
-- reference is within a matching accept statement.
pragma Assert (S /= Conctype);
if S = Ent then
exit;
elsif Is_Entry (S) then
Nest_Depth := Nest_Depth + 1;
end if;
end loop;
Rewrite (N,
Unchecked_Convert_To (Id_Kind,
Make_Function_Call (Loc,
Name => New_Reference_To (
RTE (RE_Task_Entry_Caller), Loc),
Parameter_Associations => New_List (
Make_Integer_Literal (Loc,
Intval => Int (Nest_Depth))))));
end if;
Analyze_And_Resolve (N, Id_Kind);
end Caller;
-------------
-- Compose --
-------------
-- Transforms 'Compose into a call to the floating-point attribute
-- function Compose in Fat_xxx (where xxx is the root type)
-- Note: we strictly should have special code here to deal with the
-- case of absurdly negative arguments (less than Integer'First)
-- which will return a (signed) zero value, but it hardly seems
-- worth the effort. Absurdly large positive arguments will raise
-- constraint error which is fine.
when Attribute_Compose =>
Expand_Fpt_Attribute_RI (N);
-----------------
-- Constrained --
-----------------
when Attribute_Constrained => Constrained : declare
Formal_Ent : constant Entity_Id := Param_Entity (Pref);
Typ : constant Entity_Id := Etype (Pref);
begin
-- Reference to a parameter where the value is passed as an extra
-- actual, corresponding to the extra formal referenced by the
-- Extra_Constrained field of the corresponding formal. If this
-- is an entry in-parameter, it is replaced by a constant renaming
-- for which Extra_Constrained is never created.
if Present (Formal_Ent)
and then Ekind (Formal_Ent) /= E_Constant
and then Present (Extra_Constrained (Formal_Ent))
then
Rewrite (N,
New_Occurrence_Of
(Extra_Constrained (Formal_Ent), Sloc (N)));
-- For variables with a Extra_Constrained field, we use the
-- corresponding entity.
elsif Nkind (Pref) = N_Identifier
and then Ekind (Entity (Pref)) = E_Variable
and then Present (Extra_Constrained (Entity (Pref)))
then
Rewrite (N,
New_Occurrence_Of
(Extra_Constrained (Entity (Pref)), Sloc (N)));
-- For all other entity names, we can tell at compile time
elsif Is_Entity_Name (Pref) then
declare
Ent : constant Entity_Id := Entity (Pref);
Res : Boolean;
begin
-- (RM J.4) obsolescent cases
if Is_Type (Ent) then
-- Private type
if Is_Private_Type (Ent) then
Res := not Has_Discriminants (Ent)
or else Is_Constrained (Ent);
-- It not a private type, must be a generic actual type
-- that corresponded to a private type. We know that this
-- correspondence holds, since otherwise the reference
-- within the generic template would have been illegal.
else
if Is_Composite_Type (Underlying_Type (Ent)) then
Res := Is_Constrained (Ent);
else
Res := True;
end if;
end if;
-- If the prefix is not a variable or is aliased, then
-- definitely true; if it's a formal parameter without
-- an associated extra formal, then treat it as constrained.
elsif not Is_Variable (Pref)
or else Present (Formal_Ent)
or else Is_Aliased_View (Pref)
then
Res := True;
-- Variable case, just look at type to see if it is
-- constrained. Note that the one case where this is
-- not accurate (the procedure formal case), has been
-- handled above.
else
Res := Is_Constrained (Etype (Ent));
end if;
Rewrite (N,
New_Reference_To (Boolean_Literals (Res), Loc));
end;
-- Prefix is not an entity name. These are also cases where
-- we can always tell at compile time by looking at the form
-- and type of the prefix. If an explicit dereference of an
-- object with constrained partial view, this is unconstrained
-- (Ada 2005 AI-363).
else
Rewrite (N,
New_Reference_To (
Boolean_Literals (
not Is_Variable (Pref)
or else
(Nkind (Pref) = N_Explicit_Dereference
and then
not Has_Constrained_Partial_View (Base_Type (Typ)))
or else Is_Constrained (Typ)),
Loc));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Constrained;
---------------
-- Copy_Sign --
---------------
-- Transforms 'Copy_Sign into a call to the floating-point attribute
-- function Copy_Sign in Fat_xxx (where xxx is the root type)
when Attribute_Copy_Sign =>
Expand_Fpt_Attribute_RR (N);
-----------
-- Count --
-----------
-- Transforms 'Count attribute into a call to the Count function
when Attribute_Count => Count :
declare
Entnam : Node_Id;
Index : Node_Id;
Name : Node_Id;
Call : Node_Id;
Conctyp : Entity_Id;
begin
-- If the prefix is a member of an entry family, retrieve both
-- entry name and index. For a simple entry there is no index.
if Nkind (Pref) = N_Indexed_Component then
Entnam := Prefix (Pref);
Index := First (Expressions (Pref));
else
Entnam := Pref;
Index := Empty;
end if;
-- Find the concurrent type in which this attribute is referenced
-- (there had better be one).
Conctyp := Current_Scope;
while not Is_Concurrent_Type (Conctyp) loop
Conctyp := Scope (Conctyp);
end loop;
-- Protected case
if Is_Protected_Type (Conctyp) then
if Abort_Allowed
or else Restriction_Active (No_Entry_Queue) = False
or else Number_Entries (Conctyp) > 1
then
Name := New_Reference_To (RTE (RE_Protected_Count), Loc);
Call :=
Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List (
New_Reference_To (
Object_Ref (
Corresponding_Body (Parent (Conctyp))), Loc),
Entry_Index_Expression (
Loc, Entity (Entnam), Index, Scope (Entity (Entnam)))));
else
Name := New_Reference_To (RTE (RE_Protected_Count_Entry), Loc);
Call := Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List (
New_Reference_To (
Object_Ref (
Corresponding_Body (Parent (Conctyp))), Loc)));
end if;
-- Task case
else
Call :=
Make_Function_Call (Loc,
Name => New_Reference_To (RTE (RE_Task_Count), Loc),
Parameter_Associations => New_List (
Entry_Index_Expression
(Loc, Entity (Entnam), Index, Scope (Entity (Entnam)))));
end if;
-- The call returns type Natural but the context is universal integer
-- so any integer type is allowed. The attribute was already resolved
-- so its Etype is the required result type. If the base type of the
-- context type is other than Standard.Integer we put in a conversion
-- to the required type. This can be a normal typed conversion since
-- both input and output types of the conversion are integer types
if Base_Type (Typ) /= Base_Type (Standard_Integer) then
Rewrite (N, Convert_To (Typ, Call));
else
Rewrite (N, Call);
end if;
Analyze_And_Resolve (N, Typ);
end Count;
---------------
-- Elab_Body --
---------------
-- This processing is shared by Elab_Spec
-- What we do is to insert the following declarations
-- procedure tnn;
-- pragma Import (C, enn, "name___elabb/s");
-- and then the Elab_Body/Spec attribute is replaced by a reference
-- to this defining identifier.
when Attribute_Elab_Body |
Attribute_Elab_Spec =>
Elab_Body : declare
Ent : constant Entity_Id :=
Make_Defining_Identifier (Loc,
New_Internal_Name ('E'));
Str : String_Id;
Lang : Node_Id;
procedure Make_Elab_String (Nod : Node_Id);
-- Given Nod, an identifier, or a selected component, put the
-- image into the current string literal, with double underline
-- between components.
procedure Make_Elab_String (Nod : Node_Id) is
begin
if Nkind (Nod) = N_Selected_Component then
Make_Elab_String (Prefix (Nod));
if Java_VM then
Store_String_Char ('$');
else
Store_String_Char ('_');
Store_String_Char ('_');
end if;
Get_Name_String (Chars (Selector_Name (Nod)));
else
pragma Assert (Nkind (Nod) = N_Identifier);
Get_Name_String (Chars (Nod));
end if;
Store_String_Chars (Name_Buffer (1 .. Name_Len));
end Make_Elab_String;
-- Start of processing for Elab_Body/Elab_Spec
begin
-- First we need to prepare the string literal for the name of
-- the elaboration routine to be referenced.
Start_String;
Make_Elab_String (Pref);
if Java_VM then
Store_String_Chars ("._elab");
Lang := Make_Identifier (Loc, Name_Ada);
else
Store_String_Chars ("___elab");
Lang := Make_Identifier (Loc, Name_C);
end if;
if Id = Attribute_Elab_Body then
Store_String_Char ('b');
else
Store_String_Char ('s');
end if;
Str := End_String;
Insert_Actions (N, New_List (
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Ent)),
Make_Pragma (Loc,
Chars => Name_Import,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Lang),
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_Identifier (Loc, Chars (Ent))),
Make_Pragma_Argument_Association (Loc,
Expression =>
Make_String_Literal (Loc, Str))))));
Set_Entity (N, Ent);
Rewrite (N, New_Occurrence_Of (Ent, Loc));
end Elab_Body;
----------------
-- Elaborated --
----------------
-- Elaborated is always True for preelaborated units, predefined
-- units, pure units and units which have Elaborate_Body pragmas.
-- These units have no elaboration entity.
-- Note: The Elaborated attribute is never passed through to Gigi
when Attribute_Elaborated => Elaborated : declare
Ent : constant Entity_Id := Entity (Pref);
begin
if Present (Elaboration_Entity (Ent)) then
Rewrite (N,
New_Occurrence_Of (Elaboration_Entity (Ent), Loc));
else
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
end if;
end Elaborated;
--------------
-- Enum_Rep --
--------------
when Attribute_Enum_Rep => Enum_Rep :
begin
-- X'Enum_Rep (Y) expands to
-- target-type (Y)
-- This is simply a direct conversion from the enumeration type
-- to the target integer type, which is treated by Gigi as a normal
-- integer conversion, treating the enumeration type as an integer,
-- which is exactly what we want! We set Conversion_OK to make sure
-- that the analyzer does not complain about what otherwise might
-- be an illegal conversion.
if Is_Non_Empty_List (Exprs) then
Rewrite (N,
OK_Convert_To (Typ, Relocate_Node (First (Exprs))));
-- X'Enum_Rep where X is an enumeration literal is replaced by
-- the literal value.
elsif Ekind (Entity (Pref)) = E_Enumeration_Literal then
Rewrite (N,
Make_Integer_Literal (Loc, Enumeration_Rep (Entity (Pref))));
-- If this is a renaming of a literal, recover the representation
-- of the original.
elsif Ekind (Entity (Pref)) = E_Constant
and then Present (Renamed_Object (Entity (Pref)))
and then
Ekind (Entity (Renamed_Object (Entity (Pref))))
= E_Enumeration_Literal
then
Rewrite (N,
Make_Integer_Literal (Loc,
Enumeration_Rep (Entity (Renamed_Object (Entity (Pref))))));
-- X'Enum_Rep where X is an object does a direct unchecked conversion
-- of the object value, as described for the type case above.
else
Rewrite (N,
OK_Convert_To (Typ, Relocate_Node (Pref)));
end if;
Set_Etype (N, Typ);
Analyze_And_Resolve (N, Typ);
end Enum_Rep;
--------------
-- Exponent --
--------------
-- Transforms 'Exponent into a call to the floating-point attribute
-- function Exponent in Fat_xxx (where xxx is the root type)
when Attribute_Exponent =>
Expand_Fpt_Attribute_R (N);
------------------
-- External_Tag --
------------------
-- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
when Attribute_External_Tag => External_Tag :
begin
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Reference_To (RTE (RE_External_Tag), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Tag,
Prefix => Prefix (N)))));
Analyze_And_Resolve (N, Standard_String);
end External_Tag;
-----------
-- First --
-----------
when Attribute_First => declare
Ptyp : constant Entity_Id := Etype (Pref);
begin
-- If the prefix type is a constrained packed array type which
-- already has a Packed_Array_Type representation defined, then
-- replace this attribute with a direct reference to 'First of the
-- appropriate index subtype (since otherwise Gigi will try to give
-- us the value of 'First for this implementation type).
if Is_Constrained_Packed_Array (Ptyp) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
Analyze_And_Resolve (N, Typ);
elsif Is_Access_Type (Ptyp) then
Apply_Access_Check (N);
end if;
end;
---------------
-- First_Bit --
---------------
-- We compute this if a component clause was present, otherwise
-- we leave the computation up to Gigi, since we don't know what
-- layout will be chosen.
when Attribute_First_Bit => First_Bit :
declare
CE : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Known_Static_Component_Bit_Offset (CE) then
Rewrite (N,
Make_Integer_Literal (Loc,
Component_Bit_Offset (CE) mod System_Storage_Unit));
Analyze_And_Resolve (N, Typ);
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end First_Bit;
-----------------
-- Fixed_Value --
-----------------
-- We transform:
-- fixtype'Fixed_Value (integer-value)
-- into
-- fixtype(integer-value)
-- we do all the required analysis of the conversion here, because
-- we do not want this to go through the fixed-point conversion
-- circuits. Note that gigi always treats fixed-point as equivalent
-- to the corresponding integer type anyway.
when Attribute_Fixed_Value => Fixed_Value :
begin
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
Expression => Relocate_Node (First (Exprs))));
Set_Etype (N, Entity (Pref));
Set_Analyzed (N);
-- Note: it might appear that a properly analyzed unchecked conversion
-- would be just fine here, but that's not the case, since the full
-- range checks performed by the following call are critical!
Apply_Type_Conversion_Checks (N);
end Fixed_Value;
-----------
-- Floor --
-----------
-- Transforms 'Floor into a call to the floating-point attribute
-- function Floor in Fat_xxx (where xxx is the root type)
when Attribute_Floor =>
Expand_Fpt_Attribute_R (N);
----------
-- Fore --
----------
-- For the fixed-point type Typ:
-- Typ'Fore
-- expands into
-- Result_Type (System.Fore (Long_Long_Float (Type'First)),
-- Long_Long_Float (Type'Last))
-- Note that we know that the type is a non-static subtype, or Fore
-- would have itself been computed dynamically in Eval_Attribute.
when Attribute_Fore => Fore :
declare
Ptyp : constant Entity_Id := Etype (Pref);
begin
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Reference_To (RTE (RE_Fore), Loc),
Parameter_Associations => New_List (
Convert_To (Standard_Long_Long_Float,
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Ptyp, Loc),
Attribute_Name => Name_First)),
Convert_To (Standard_Long_Long_Float,
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Ptyp, Loc),
Attribute_Name => Name_Last))))));
Analyze_And_Resolve (N, Typ);
end Fore;
--------------
-- Fraction --
--------------
-- Transforms 'Fraction into a call to the floating-point attribute
-- function Fraction in Fat_xxx (where xxx is the root type)
when Attribute_Fraction =>
Expand_Fpt_Attribute_R (N);
--------------
-- Identity --
--------------
-- For an exception returns a reference to the exception data:
-- Exception_Id!(Prefix'Reference)
-- For a task it returns a reference to the _task_id component of
-- corresponding record:
-- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
-- in Ada.Task_Identification
when Attribute_Identity => Identity : declare
Id_Kind : Entity_Id;
begin
if Etype (Pref) = Standard_Exception_Type then
Id_Kind := RTE (RE_Exception_Id);
if Present (Renamed_Object (Entity (Pref))) then
Set_Entity (Pref, Renamed_Object (Entity (Pref)));
end if;
Rewrite (N,
Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
else
Id_Kind := RTE (RO_AT_Task_Id);
Rewrite (N,
Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
end if;
Analyze_And_Resolve (N, Id_Kind);
end Identity;
-----------
-- Image --
-----------
-- Image attribute is handled in separate unit Exp_Imgv
when Attribute_Image =>
Exp_Imgv.Expand_Image_Attribute (N);
---------
-- Img --
---------
-- X'Img is expanded to typ'Image (X), where typ is the type of X
when Attribute_Img => Img :
begin
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Etype (Pref), Loc),
Attribute_Name => Name_Image,
Expressions => New_List (Relocate_Node (Pref))));
Analyze_And_Resolve (N, Standard_String);
end Img;
-----------
-- Input --
-----------
when Attribute_Input => Input : declare
P_Type : constant Entity_Id := Entity (Pref);
B_Type : constant Entity_Id := Base_Type (P_Type);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Strm : constant Node_Id := First (Exprs);
Fname : Entity_Id;
Decl : Node_Id;
Call : Node_Id;
Prag : Node_Id;
Arg2 : Node_Id;
Rfunc : Node_Id;
Cntrl : Node_Id := Empty;
-- Value for controlling argument in call. Always Empty except in
-- the dispatching (class-wide type) case, where it is a reference
-- to the dummy object initialized to the right internal tag.
procedure Freeze_Stream_Subprogram (F : Entity_Id);
-- The expansion of the attribute reference may generate a call to
-- a user-defined stream subprogram that is frozen by the call. This
-- can lead to access-before-elaboration problem if the reference
-- appears in an object declaration and the subprogram body has not
-- been seen. The freezing of the subprogram requires special code
-- because it appears in an expanded context where expressions do
-- not freeze their constituents.
------------------------------
-- Freeze_Stream_Subprogram --
------------------------------
procedure Freeze_Stream_Subprogram (F : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (F);
Bod : Node_Id;
begin
-- If this is user-defined subprogram, the corresponding
-- stream function appears as a renaming-as-body, and the
-- user subprogram must be retrieved by tree traversal.
if Present (Decl)
and then Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Bod := Corresponding_Body (Decl);
if Nkind (Unit_Declaration_Node (Bod)) =
N_Subprogram_Renaming_Declaration
then
Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
end if;
end if;
end Freeze_Stream_Subprogram;
-- Start of processing for Input
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- If there is a TSS for Input, just call it
Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input);
if Present (Fname) then
null;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Input (stream)
-- as
-- sourcetyp (streamread (strmtyp'Input (stream)));
-- where stmrearead is the given Read function that converts
-- an argument of type strmtyp to type sourcetyp or a type
-- from which it is derived. The extra conversion is required
-- for the derived case.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
Rfunc := Entity (Expression (Arg2));
Rewrite (N,
Convert_To (B_Type,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Rfunc, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Formal (Rfunc)), Loc),
Attribute_Name => Name_Input,
Expressions => Exprs)))));
Analyze_And_Resolve (N, B_Type);
return;
-- Elementary types
elsif Is_Elementary_Type (U_Type) then
-- A special case arises if we have a defined _Read routine,
-- since in this case we are required to call this routine.
if Present (TSS (Base_Type (U_Type), TSS_Stream_Read)) then
Build_Record_Or_Elementary_Input_Function
(Loc, U_Type, Decl, Fname);
Insert_Action (N, Decl);
-- For normal cases, we call the I_xxx routine directly
else
Rewrite (N, Build_Elementary_Input_Call (N));
Analyze_And_Resolve (N, P_Type);
return;
end if;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Input_Function (Loc, U_Type, Decl, Fname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
-- Dispatching case with class-wide type
elsif Is_Class_Wide_Type (P_Type) then
declare
Rtyp : constant Entity_Id := Root_Type (P_Type);
Dnn : Entity_Id;
Decl : Node_Id;
begin
-- Read the internal tag (RM 13.13.2(34)) and use it to
-- initialize a dummy tag object:
-- Dnn : Ada.Tags.Tag
-- := Descendant_Tag (String'Input (Strm), P_Type);
-- This dummy object is used only to provide a controlling
-- argument for the eventual _Input call. Descendant_Tag is
-- called rather than Internal_Tag to ensure that we have a
-- tag for a type that is descended from the prefix type and
-- declared at the same accessibility level (the exception
-- Tag_Error will be raised otherwise). The level check is
-- required for Ada 2005 because tagged types can be
-- extended in nested scopes (AI-344).
Dnn :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('D'));
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Dnn,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Tag), Loc),
Expression =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Standard_String, Loc),
Attribute_Name => Name_Input,
Expressions => New_List (
Relocate_Node
(Duplicate_Subexpr (Strm)))),
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (P_Type, Loc),
Attribute_Name => Name_Tag))));
Insert_Action (N, Decl);
-- Now we need to get the entity for the call, and construct
-- a function call node, where we preset a reference to Dnn
-- as the controlling argument (doing an unchecked convert
-- to the class-wide tagged type to make it look like a real
-- tagged object).
Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
Cntrl := Unchecked_Convert_To (P_Type,
New_Occurrence_Of (Dnn, Loc));
Set_Etype (Cntrl, P_Type);
Set_Parent (Cntrl, N);
end;
-- For tagged types, use the primitive Input function
elsif Is_Tagged_Type (U_Type) then
Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
-- All other record type cases, including protected records. The
-- latter only arise for expander generated code for handling
-- shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Input attribute of an
-- unchecked union type if the type lacks default discriminant
-- values.
if Is_Unchecked_Union (Base_Type (U_Type))
and then not Present (Discriminant_Constraint (U_Type))
then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
return;
end if;
Build_Record_Or_Elementary_Input_Function
(Loc, Base_Type (U_Type), Decl, Fname);
Insert_Action (N, Decl);
if Nkind (Parent (N)) = N_Object_Declaration
and then Is_Record_Type (U_Type)
then
-- The stream function may contain calls to user-defined
-- Read procedures for individual components.
declare
Comp : Entity_Id;
Func : Entity_Id;
begin
Comp := First_Component (U_Type);
while Present (Comp) loop
Func :=
Find_Stream_Subprogram
(Etype (Comp), TSS_Stream_Read);
if Present (Func) then
Freeze_Stream_Subprogram (Func);
end if;
Next_Component (Comp);
end loop;
end;
end if;
end if;
end if;
-- If we fall through, Fname is the function to be called. The result
-- is obtained by calling the appropriate function, then converting
-- the result. The conversion does a subtype check.
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Fname, Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm)));
Set_Controlling_Argument (Call, Cntrl);
Rewrite (N, Unchecked_Convert_To (P_Type, Call));
Analyze_And_Resolve (N, P_Type);
if Nkind (Parent (N)) = N_Object_Declaration then
Freeze_Stream_Subprogram (Fname);
end if;
end Input;
-------------------
-- Integer_Value --
-------------------
-- We transform
-- inttype'Fixed_Value (fixed-value)
-- into
-- inttype(integer-value))
-- we do all the required analysis of the conversion here, because
-- we do not want this to go through the fixed-point conversion
-- circuits. Note that gigi always treats fixed-point as equivalent
-- to the corresponding integer type anyway.
when Attribute_Integer_Value => Integer_Value :
begin
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Entity (Pref), Loc),
Expression => Relocate_Node (First (Exprs))));
Set_Etype (N, Entity (Pref));
Set_Analyzed (N);
-- Note: it might appear that a properly analyzed unchecked conversion
-- would be just fine here, but that's not the case, since the full
-- range checks performed by the following call are critical!
Apply_Type_Conversion_Checks (N);
end Integer_Value;
----------
-- Last --
----------
when Attribute_Last => declare
Ptyp : constant Entity_Id := Etype (Pref);
begin
-- If the prefix type is a constrained packed array type which
-- already has a Packed_Array_Type representation defined, then
-- replace this attribute with a direct reference to 'Last of the
-- appropriate index subtype (since otherwise Gigi will try to give
-- us the value of 'Last for this implementation type).
if Is_Constrained_Packed_Array (Ptyp) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Reference_To (Get_Index_Subtype (N), Loc)));
Analyze_And_Resolve (N, Typ);
elsif Is_Access_Type (Ptyp) then
Apply_Access_Check (N);
end if;
end;
--------------
-- Last_Bit --
--------------
-- We compute this if a component clause was present, otherwise
-- we leave the computation up to Gigi, since we don't know what
-- layout will be chosen.
when Attribute_Last_Bit => Last_Bit :
declare
CE : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Known_Static_Component_Bit_Offset (CE)
and then Known_Static_Esize (CE)
then
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => (Component_Bit_Offset (CE) mod System_Storage_Unit)
+ Esize (CE) - 1));
Analyze_And_Resolve (N, Typ);
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Last_Bit;
------------------
-- Leading_Part --
------------------
-- Transforms 'Leading_Part into a call to the floating-point attribute
-- function Leading_Part in Fat_xxx (where xxx is the root type)
-- Note: strictly, we should have special case code to deal with
-- absurdly large positive arguments (greater than Integer'Last), which
-- result in returning the first argument unchanged, but it hardly seems
-- worth the effort. We raise constraint error for absurdly negative
-- arguments which is fine.
when Attribute_Leading_Part =>
Expand_Fpt_Attribute_RI (N);
------------
-- Length --
------------
when Attribute_Length => declare
Ptyp : constant Entity_Id := Etype (Pref);
Ityp : Entity_Id;
Xnum : Uint;
begin
-- Processing for packed array types
if Is_Array_Type (Ptyp) and then Is_Packed (Ptyp) then
Ityp := Get_Index_Subtype (N);
-- If the index type, Ityp, is an enumeration type with
-- holes, then we calculate X'Length explicitly using
-- Typ'Max
-- (0, Ityp'Pos (X'Last (N)) -
-- Ityp'Pos (X'First (N)) + 1);
-- Since the bounds in the template are the representation
-- values and gigi would get the wrong value.
if Is_Enumeration_Type (Ityp)
and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
then
if No (Exprs) then
Xnum := Uint_1;
else
Xnum := Expr_Value (First (Expressions (N)));
end if;
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Max,
Expressions => New_List
(Make_Integer_Literal (Loc, 0),
Make_Op_Add (Loc,
Left_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Pref),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, Xnum))))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Pref),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, Xnum)))))),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
return;
-- If the prefix type is a constrained packed array type which
-- already has a Packed_Array_Type representation defined, then
-- replace this attribute with a direct reference to 'Range_Length
-- of the appropriate index subtype (since otherwise Gigi will try
-- to give us the value of 'Length for this implementation type).
elsif Is_Constrained (Ptyp) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Range_Length,
Prefix => New_Reference_To (Ityp, Loc)));
Analyze_And_Resolve (N, Typ);
end if;
-- If we have a packed array that is not bit packed, which was
-- Access type case
elsif Is_Access_Type (Ptyp) then
Apply_Access_Check (N);
-- If the designated type is a packed array type, then we
-- convert the reference to:
-- typ'Max (0, 1 +
-- xtyp'Pos (Pref'Last (Expr)) -
-- xtyp'Pos (Pref'First (Expr)));
-- This is a bit complex, but it is the easiest thing to do
-- that works in all cases including enum types with holes
-- xtyp here is the appropriate index type.
declare
Dtyp : constant Entity_Id := Designated_Type (Ptyp);
Xtyp : Entity_Id;
begin
if Is_Array_Type (Dtyp) and then Is_Packed (Dtyp) then
Xtyp := Get_Index_Subtype (N);
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Max,
Expressions => New_List (
Make_Integer_Literal (Loc, 0),
Make_Op_Add (Loc,
Make_Integer_Literal (Loc, 1),
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Xtyp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Pref),
Attribute_Name => Name_Last,
Expressions =>
New_Copy_List (Exprs)))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Xtyp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Pref),
Attribute_Name => Name_First,
Expressions =>
New_Copy_List (Exprs)))))))));
Analyze_And_Resolve (N, Typ);
end if;
end;
-- Otherwise leave it to gigi
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end;
-------------
-- Machine --
-------------
-- Transforms 'Machine into a call to the floating-point attribute
-- function Machine in Fat_xxx (where xxx is the root type)
when Attribute_Machine =>
Expand_Fpt_Attribute_R (N);
------------------
-- Machine_Size --
------------------
-- Machine_Size is equivalent to Object_Size, so transform it into
-- Object_Size and that way Gigi never sees Machine_Size.
when Attribute_Machine_Size =>
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Prefix (N),
Attribute_Name => Name_Object_Size));
Analyze_And_Resolve (N, Typ);
--------------
-- Mantissa --
--------------
-- The only case that can get this far is the dynamic case of the old
-- Ada 83 Mantissa attribute for the fixed-point case. For this case, we
-- expand:
-- typ'Mantissa
-- into
-- ityp (System.Mantissa.Mantissa_Value
-- (Integer'Integer_Value (typ'First),
-- Integer'Integer_Value (typ'Last)));
when Attribute_Mantissa => Mantissa : declare
Ptyp : constant Entity_Id := Etype (Pref);
begin
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
Attribute_Name => Name_Integer_Value,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_First))),
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
Attribute_Name => Name_Integer_Value,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Last)))))));
Analyze_And_Resolve (N, Typ);
end Mantissa;
---------
-- Mod --
---------
when Attribute_Mod => Mod_Case : declare
Arg : constant Node_Id := Relocate_Node (First (Exprs));
Hi : constant Node_Id := Type_High_Bound (Etype (Arg));
Modv : constant Uint := Modulus (Btyp);
begin
-- This is not so simple. The issue is what type to use for the
-- computation of the modular value.
-- The easy case is when the modulus value is within the bounds
-- of the signed integer type of the argument. In this case we can
-- just do the computation in that signed integer type, and then
-- do an ordinary conversion to the target type.
if Modv <= Expr_Value (Hi) then
Rewrite (N,
Convert_To (Btyp,
Make_Op_Mod (Loc,
Left_Opnd => Arg,
Right_Opnd => Make_Integer_Literal (Loc, Modv))));
-- Here we know that the modulus is larger than type'Last of the
-- integer type. There are three possible cases to consider:
-- a) The integer value is non-negative. In this case, it is
-- returned as the result (since it is less than the modulus).
-- b) The integer value is negative. In this case, we know that the
-- result is modulus + value, where the value might be as small as
-- -modulus. The trouble is what type do we use to do the subtract.
-- No type will do, since modulus can be as big as 2**64, and no
-- integer type accomodates this value. Let's do bit of algebra
-- modulus + value
-- = modulus - (-value)
-- = (modulus - 1) - (-value - 1)
-- Now modulus - 1 is certainly in range of the modular type.
-- -value is in the range 1 .. modulus, so -value -1 is in the
-- range 0 .. modulus-1 which is in range of the modular type.
-- Furthermore, (-value - 1) can be expressed as -(value + 1)
-- which we can compute using the integer base type.
else
Rewrite (N,
Make_Conditional_Expression (Loc,
Expressions => New_List (
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr (Arg),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Convert_To (Btyp,
Duplicate_Subexpr_No_Checks (Arg)),
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Intval => Modv - 1),
Right_Opnd =>
Convert_To (Btyp,
Make_Op_Minus (Loc,
Right_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Arg),
Right_Opnd =>
Make_Integer_Literal (Loc,
Intval => 1))))))));
end if;
Analyze_And_Resolve (N, Btyp);
end Mod_Case;
-----------
-- Model --
-----------
-- Transforms 'Model into a call to the floating-point attribute
-- function Model in Fat_xxx (where xxx is the root type)
when Attribute_Model =>
Expand_Fpt_Attribute_R (N);
-----------------
-- Object_Size --
-----------------
-- The processing for Object_Size shares the processing for Size
------------
-- Output --
------------
when Attribute_Output => Output : declare
P_Type : constant Entity_Id := Entity (Pref);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg3 : Node_Id;
Wfunc : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- If TSS for Output is present, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output);
if Present (Pname) then
null;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Output (stream, Item)
-- as
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
-- where strmwrite is the given Write function that converts an
-- argument of type sourcetyp or a type acctyp, from which it is
-- derived to type strmtyp. The conversion to acttyp is required
-- for the derived case.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg3 :=
Next (Next (First (Pragma_Argument_Associations (Prag))));
Wfunc := Entity (Expression (Arg3));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (First (Exprs)),
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Wfunc, Loc),
Parameter_Associations => New_List (
Convert_To (Etype (First_Formal (Wfunc)),
Relocate_Node (Next (First (Exprs)))))))));
Analyze (N);
return;
-- For elementary types, we call the W_xxx routine directly.
-- Note that the effect of Write and Output is identical for
-- the case of an elementary type, since there are no
-- discriminants or bounds.
elsif Is_Elementary_Type (U_Type) then
-- A special case arises if we have a defined _Write routine,
-- since in this case we are required to call this routine.
if Present (TSS (Base_Type (U_Type), TSS_Stream_Write)) then
Build_Record_Or_Elementary_Output_Procedure
(Loc, U_Type, Decl, Pname);
Insert_Action (N, Decl);
-- For normal cases, we call the W_xxx routine directly
else
Rewrite (N, Build_Elementary_Write_Call (N));
Analyze (N);
return;
end if;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Output_Procedure (Loc, U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
-- Class-wide case, first output external tag, then dispatch
-- to the appropriate primitive Output function (RM 13.13.2(31)).
elsif Is_Class_Wide_Type (P_Type) then
Tag_Write : declare
Strm : constant Node_Id := First (Exprs);
Item : constant Node_Id := Next (Strm);
begin
-- The code is:
-- if Get_Access_Level (Item'Tag)
-- /= Get_Access_Level (P_Type'Tag)
-- then
-- raise Tag_Error;
-- end if;
-- String'Output (Strm, External_Tag (Item'Tag));
-- Ada 2005 (AI-344): Check that the accessibility level
-- of the type of the output object is not deeper than
-- that of the attribute's prefix type.
if Ada_Version >= Ada_05 then
Insert_Action (N,
Make_Implicit_If_Statement (N,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Reference_To
(RTE (RE_Get_Access_Level), Loc),
Parameter_Associations =>
New_List (Make_Attribute_Reference (Loc,
Prefix =>
Relocate_Node (
Duplicate_Subexpr (Item,
Name_Req => True)),
Attribute_Name =>
Name_Tag))),
Right_Opnd =>
Make_Integer_Literal
(Loc, Type_Access_Level (P_Type))),
Then_Statements =>
New_List (Make_Raise_Statement (Loc,
New_Occurrence_Of (
RTE (RE_Tag_Error), Loc)))));
end if;
Insert_Action (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_String, Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (Duplicate_Subexpr (Strm)),
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_External_Tag), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Relocate_Node
(Duplicate_Subexpr (Item, Name_Req => True)),
Attribute_Name => Name_Tag))))));
end Tag_Write;
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
-- Tagged type case, use the primitive Output function
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
-- -- All other record type cases, including protected records.
-- -- The latter only arise for expander generated code for
-- -- handling shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Output attribute of an
-- unchecked union type if the type lacks default discriminant
-- values.
if Is_Unchecked_Union (Base_Type (U_Type))
and then not Present (Discriminant_Constraint (U_Type))
then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
return;
end if;
Build_Record_Or_Elementary_Output_Procedure
(Loc, Base_Type (U_Type), Decl, Pname);
Insert_Action (N, Decl);
end if;
end if;
-- If we fall through, Pname is the name of the procedure to call
Rewrite_Stream_Proc_Call (Pname);
end Output;
---------
-- Pos --
---------
-- For enumeration types with a standard representation, Pos is
-- handled by Gigi.
-- For enumeration types, with a non-standard representation we
-- generate a call to the _Rep_To_Pos function created when the
-- type was frozen. The call has the form
-- _rep_to_pos (expr, flag)
-- The parameter flag is True if range checks are enabled, causing
-- Program_Error to be raised if the expression has an invalid
-- representation, and False if range checks are suppressed.
-- For integer types, Pos is equivalent to a simple integer
-- conversion and we rewrite it as such
when Attribute_Pos => Pos :
declare
Etyp : Entity_Id := Base_Type (Entity (Pref));
begin
-- Deal with zero/non-zero boolean values
if Is_Boolean_Type (Etyp) then
Adjust_Condition (First (Exprs));
Etyp := Standard_Boolean;
Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
end if;
-- Case of enumeration type
if Is_Enumeration_Type (Etyp) then
-- Non-standard enumeration type (generate call)
if Present (Enum_Pos_To_Rep (Etyp)) then
Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Reference_To (TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs)));
Analyze_And_Resolve (N, Typ);
-- Standard enumeration type (do universal integer check)
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
-- Deal with integer types (replace by conversion)
elsif Is_Integer_Type (Etyp) then
Rewrite (N, Convert_To (Typ, First (Exprs)));
Analyze_And_Resolve (N, Typ);
end if;
end Pos;
--------------
-- Position --
--------------
-- We compute this if a component clause was present, otherwise
-- we leave the computation up to Gigi, since we don't know what
-- layout will be chosen.
when Attribute_Position => Position :
declare
CE : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (CE)) then
Rewrite (N,
Make_Integer_Literal (Loc,
Intval => Component_Bit_Offset (CE) / System_Storage_Unit));
Analyze_And_Resolve (N, Typ);
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Position;
----------
-- Pred --
----------
-- 1. Deal with enumeration types with holes
-- 2. For floating-point, generate call to attribute function
-- 3. For other cases, deal with constraint checking
when Attribute_Pred => Pred :
declare
Ptyp : constant Entity_Id := Base_Type (Etype (Pref));
begin
-- For enumeration types with non-standard representations, we
-- expand typ'Pred (x) into
-- Pos_To_Rep (Rep_To_Pos (x) - 1)
-- If the representation is contiguous, we compute instead
-- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
if Is_Enumeration_Type (Ptyp)
and then Present (Enum_Pos_To_Rep (Ptyp))
then
if Has_Contiguous_Rep (Ptyp) then
Rewrite (N,
Unchecked_Convert_To (Ptyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Ptyp))),
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Reference_To
(TSS (Ptyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations =>
New_List (
Unchecked_Convert_To (Ptyp,
Make_Op_Subtract (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Integer,
Relocate_Node (First (Exprs))),
Right_Opnd =>
Make_Integer_Literal (Loc, 1))),
Rep_To_Pos_Flag (Ptyp, Loc))))));
else
-- Add Boolean parameter True, to request program errror if
-- we have a bad representation on our hands. If checks are
-- suppressed, then add False instead
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix => New_Reference_To (Enum_Pos_To_Rep (Ptyp), Loc),
Expressions => New_List (
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Reference_To (TSS (Ptyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
end if;
Analyze_And_Resolve (N, Typ);
-- For floating-point, we transform 'Pred into a call to the Pred
-- floating-point attribute function in Fat_xxx (xxx is root type)
elsif Is_Floating_Point_Type (Ptyp) then
Expand_Fpt_Attribute_R (N);
Analyze_And_Resolve (N, Typ);
-- For modular types, nothing to do (no overflow, since wraps)
elsif Is_Modular_Integer_Type (Ptyp) then
null;
-- For other types, if range checking is enabled, we must generate
-- a check if overflow checking is enabled.
elsif not Overflow_Checks_Suppressed (Ptyp) then
Expand_Pred_Succ (N);
end if;
end Pred;
------------------
-- Range_Length --
------------------
when Attribute_Range_Length => Range_Length : declare
P_Type : constant Entity_Id := Etype (Pref);
begin
-- The only special processing required is for the case where
-- Range_Length is applied to an enumeration type with holes.
-- In this case we transform
-- X'Range_Length
-- to
-- X'Pos (X'Last) - X'Pos (X'First) + 1
-- So that the result reflects the proper Pos values instead
-- of the underlying representations.
if Is_Enumeration_Type (P_Type)
and then Has_Non_Standard_Rep (P_Type)
then
Rewrite (N,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (P_Type, Loc),
Expressions => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (P_Type, Loc)))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (P_Type, Loc),
Expressions => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (P_Type, Loc))))),
Right_Opnd =>
Make_Integer_Literal (Loc, 1)));
Analyze_And_Resolve (N, Typ);
-- For all other cases, attribute is handled by Gigi, but we need
-- to deal with the case of the range check on a universal integer.
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Range_Length;
----------
-- Read --
----------
when Attribute_Read => Read : declare
P_Type : constant Entity_Id := Entity (Pref);
B_Type : constant Entity_Id := Base_Type (P_Type);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg2 : Node_Id;
Rfunc : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- The simple case, if there is a TSS for Read, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read);
if Present (Pname) then
null;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Read (stream, Item)
-- as
-- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
-- where strmread is the given Read function that converts an
-- argument of type strmtyp to type sourcetyp or a type from which
-- it is derived. The conversion to sourcetyp is required in the
-- latter case.
-- A special case arises if Item is a type conversion in which
-- case, we have to expand to:
-- Itemx := typex (strmread (strmtyp'Input (Stream)));
-- where Itemx is the expression of the type conversion (i.e.
-- the actual object), and typex is the type of Itemx.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
Rfunc := Entity (Expression (Arg2));
Lhs := Relocate_Node (Next (First (Exprs)));
Rhs :=
Convert_To (B_Type,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Rfunc, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Formal (Rfunc)), Loc),
Attribute_Name => Name_Input,
Expressions => New_List (
Relocate_Node (First (Exprs)))))));
if Nkind (Lhs) = N_Type_Conversion then
Lhs := Expression (Lhs);
Rhs := Convert_To (Etype (Lhs), Rhs);
end if;
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Rhs));
Set_Assignment_OK (Lhs);
Analyze (N);
return;
-- For elementary types, we call the I_xxx routine using the first
-- parameter and then assign the result into the second parameter.
-- We set Assignment_OK to deal with the conversion case.
elsif Is_Elementary_Type (U_Type) then
declare
Lhs : Node_Id;
Rhs : Node_Id;
begin
Lhs := Relocate_Node (Next (First (Exprs)));
Rhs := Build_Elementary_Input_Call (N);
if Nkind (Lhs) = N_Type_Conversion then
Lhs := Expression (Lhs);
Rhs := Convert_To (Etype (Lhs), Rhs);
end if;
Set_Assignment_OK (Lhs);
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Rhs));
Analyze (N);
return;
end;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Read_Procedure (N, U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
-- Tagged type case, use the primitive Read function. Note that
-- this will dispatch in the class-wide case which is what we want
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
-- All other record type cases, including protected records. The
-- latter only arise for expander generated code for handling
-- shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Read attribute of an
-- Unchecked_Union type.
if Is_Unchecked_Union (Base_Type (U_Type)) then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
end if;
if Has_Discriminants (U_Type)
and then Present
(Discriminant_Default_Value (First_Discriminant (U_Type)))
then
Build_Mutable_Record_Read_Procedure
(Loc, Base_Type (U_Type), Decl, Pname);
else
Build_Record_Read_Procedure
(Loc, Base_Type (U_Type), Decl, Pname);
end if;
-- Suppress checks, uninitialized or otherwise invalid
-- data does not cause constraint errors to be raised for
-- a complete record read.
Insert_Action (N, Decl, All_Checks);
end if;
end if;
Rewrite_Stream_Proc_Call (Pname);
end Read;
---------------
-- Remainder --
---------------
-- Transforms 'Remainder into a call to the floating-point attribute
-- function Remainder in Fat_xxx (where xxx is the root type)
when Attribute_Remainder =>
Expand_Fpt_Attribute_RR (N);
-----------
-- Round --
-----------
-- The handling of the Round attribute is quite delicate. The processing
-- in Sem_Attr introduced a conversion to universal real, reflecting the
-- semantics of Round, but we do not want anything to do with universal
-- real at runtime, since this corresponds to using floating-point
-- arithmetic.
-- What we have now is that the Etype of the Round attribute correctly
-- indicates the final result type. The operand of the Round is the
-- conversion to universal real, described above, and the operand of
-- this conversion is the actual operand of Round, which may be the
-- special case of a fixed point multiplication or division (Etype =
-- universal fixed)
-- The exapander will expand first the operand of the conversion, then
-- the conversion, and finally the round attribute itself, since we
-- always work inside out. But we cannot simply process naively in this
-- order. In the semantic world where universal fixed and real really
-- exist and have infinite precision, there is no problem, but in the
-- implementation world, where universal real is a floating-point type,
-- we would get the wrong result.
-- So the approach is as follows. First, when expanding a multiply or
-- divide whose type is universal fixed, we do nothing at all, instead
-- deferring the operation till later.
-- The actual processing is done in Expand_N_Type_Conversion which
-- handles the special case of Round by looking at its parent to see if
-- it is a Round attribute, and if it is, handling the conversion (or
-- its fixed multiply/divide child) in an appropriate manner.
-- This means that by the time we get to expanding the Round attribute
-- itself, the Round is nothing more than a type conversion (and will
-- often be a null type conversion), so we just replace it with the
-- appropriate conversion operation.
when Attribute_Round =>
Rewrite (N,
Convert_To (Etype (N), Relocate_Node (First (Exprs))));
Analyze_And_Resolve (N);
--------------
-- Rounding --
--------------
-- Transforms 'Rounding into a call to the floating-point attribute
-- function Rounding in Fat_xxx (where xxx is the root type)
when Attribute_Rounding =>
Expand_Fpt_Attribute_R (N);
-------------
-- Scaling --
-------------
-- Transforms 'Scaling into a call to the floating-point attribute
-- function Scaling in Fat_xxx (where xxx is the root type)
when Attribute_Scaling =>
Expand_Fpt_Attribute_RI (N);
----------
-- Size --
----------
when Attribute_Size |
Attribute_Object_Size |
Attribute_Value_Size |
Attribute_VADS_Size => Size :
declare
Ptyp : constant Entity_Id := Etype (Pref);
Siz : Uint;
New_Node : Node_Id;
begin
-- Processing for VADS_Size case. Note that this processing removes
-- all traces of VADS_Size from the tree, and completes all required
-- processing for VADS_Size by translating the attribute reference
-- to an appropriate Size or Object_Size reference.
if Id = Attribute_VADS_Size
or else (Use_VADS_Size and then Id = Attribute_Size)
then
-- If the size is specified, then we simply use the specified
-- size. This applies to both types and objects. The size of an
-- object can be specified in the following ways:
-- An explicit size object is given for an object
-- A component size is specified for an indexed component
-- A component clause is specified for a selected component
-- The object is a component of a packed composite object
-- If the size is specified, then VADS_Size of an object
if (Is_Entity_Name (Pref)
and then Present (Size_Clause (Entity (Pref))))
or else
(Nkind (Pref) = N_Component_Clause
and then (Present (Component_Clause
(Entity (Selector_Name (Pref))))
or else Is_Packed (Etype (Prefix (Pref)))))
or else
(Nkind (Pref) = N_Indexed_Component
and then (Component_Size (Etype (Prefix (Pref))) /= 0
or else Is_Packed (Etype (Prefix (Pref)))))
then
Set_Attribute_Name (N, Name_Size);
-- Otherwise if we have an object rather than a type, then the
-- VADS_Size attribute applies to the type of the object, rather
-- than the object itself. This is one of the respects in which
-- VADS_Size differs from Size.
else
if (not Is_Entity_Name (Pref)
or else not Is_Type (Entity (Pref)))
and then (Is_Scalar_Type (Etype (Pref))
or else Is_Constrained (Etype (Pref)))
then
Rewrite (Pref, New_Occurrence_Of (Etype (Pref), Loc));
end if;
-- For a scalar type for which no size was explicitly given,
-- VADS_Size means Object_Size. This is the other respect in
-- which VADS_Size differs from Size.
if Is_Scalar_Type (Etype (Pref))
and then No (Size_Clause (Etype (Pref)))
then
Set_Attribute_Name (N, Name_Object_Size);
-- In all other cases, Size and VADS_Size are the sane
else
Set_Attribute_Name (N, Name_Size);
end if;
end if;
end if;
-- For class-wide types, X'Class'Size is transformed into a
-- direct reference to the Size of the class type, so that gigi
-- does not have to deal with the X'Class'Size reference.
if Is_Entity_Name (Pref)
and then Is_Class_Wide_Type (Entity (Pref))
then
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
return;
-- For x'Size applied to an object of a class-wide type, transform
-- X'Size into a call to the primitive operation _Size applied to X.
elsif Is_Class_Wide_Type (Ptyp) then
New_Node :=
Make_Function_Call (Loc,
Name => New_Reference_To
(Find_Prim_Op (Ptyp, Name_uSize), Loc),
Parameter_Associations => New_List (Pref));
if Typ /= Standard_Long_Long_Integer then
-- The context is a specific integer type with which the
-- original attribute was compatible. The function has a
-- specific type as well, so to preserve the compatibility
-- we must convert explicitly.
New_Node := Convert_To (Typ, New_Node);
end if;
Rewrite (N, New_Node);
Analyze_And_Resolve (N, Typ);
return;
-- For an array component, we can do Size in the front end
-- if the component_size of the array is set.
elsif Nkind (Pref) = N_Indexed_Component then
Siz := Component_Size (Etype (Prefix (Pref)));
-- For a record component, we can do Size in the front end if there
-- is a component clause, or if the record is packed and the
-- component's size is known at compile time.
elsif Nkind (Pref) = N_Selected_Component then
declare
Rec : constant Entity_Id := Etype (Prefix (Pref));
Comp : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (Comp)) then
Siz := Esize (Comp);
elsif Is_Packed (Rec) then
Siz := RM_Size (Ptyp);
else
Apply_Universal_Integer_Attribute_Checks (N);
return;
end if;
end;
-- All other cases are handled by Gigi
else
Apply_Universal_Integer_Attribute_Checks (N);
-- If we have Size applied to a formal parameter, that is a
-- packed array subtype, then apply size to the actual subtype.
if Is_Entity_Name (Pref)
and then Is_Formal (Entity (Pref))
and then Is_Array_Type (Etype (Pref))
and then Is_Packed (Etype (Pref))
then
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
Attribute_Name => Name_Size));
Analyze_And_Resolve (N, Typ);
end if;
return;
end if;
-- Common processing for record and array component case
if Siz /= 0 then
Rewrite (N, Make_Integer_Literal (Loc, Siz));
Analyze_And_Resolve (N, Typ);
-- The result is not a static expression
Set_Is_Static_Expression (N, False);
end if;
end Size;
------------------
-- Storage_Pool --
------------------
when Attribute_Storage_Pool =>
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Reference_To (Etype (N), Loc),
Expression => New_Reference_To (Entity (N), Loc)));
Analyze_And_Resolve (N, Typ);
------------------
-- Storage_Size --
------------------
when Attribute_Storage_Size => Storage_Size :
declare
Ptyp : constant Entity_Id := Etype (Pref);
begin
-- Access type case, always go to the root type
-- The case of access types results in a value of zero for the case
-- where no storage size attribute clause has been given. If a
-- storage size has been given, then the attribute is converted
-- to a reference to the variable used to hold this value.
if Is_Access_Type (Ptyp) then
if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Typ, Loc),
Attribute_Name => Name_Max,
Expressions => New_List (
Make_Integer_Literal (Loc, 0),
Convert_To (Typ,
New_Reference_To
(Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
Rewrite (N,
OK_Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Reference_To
(Find_Prim_Op
(Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
Attribute_Name (N)),
Loc),
Parameter_Associations => New_List (New_Reference_To (
Associated_Storage_Pool (Root_Type (Ptyp)), Loc)))));
else
Rewrite (N, Make_Integer_Literal (Loc, 0));
end if;
Analyze_And_Resolve (N, Typ);
-- The case of a task type (an obsolescent feature) is handled the
-- same way, seems as reasonable as anything, and it is what the
-- ACVC tests (e.g. CD1009K) seem to expect.
-- If there is no Storage_Size variable, then we return the default
-- task stack size, otherwise, expand a Storage_Size attribute as
-- follows:
-- Typ (Adjust_Storage_Size (taskZ))
-- except for the case of a task object which has a Storage_Size
-- pragma:
-- Typ (Adjust_Storage_Size (taskV!(name)._Size))
else
if not Present (Storage_Size_Variable (Ptyp)) then
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Default_Stack_Size), Loc))));
else
if not (Is_Entity_Name (Pref) and then
Is_Task_Type (Entity (Pref))) and then
Chars (Last_Entity (Corresponding_Record_Type (Ptyp))) =
Name_uSize
then
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (
RTE (RE_Adjust_Storage_Size), Loc),
Parameter_Associations =>
New_List (
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (
Corresponding_Record_Type (Ptyp),
New_Copy_Tree (Pref)),
Selector_Name =>
Make_Identifier (Loc, Name_uSize))))));
-- Task not having Storage_Size pragma
else
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (
RTE (RE_Adjust_Storage_Size), Loc),
Parameter_Associations =>
New_List (
New_Reference_To (
Storage_Size_Variable (Ptyp), Loc)))));
end if;
Analyze_And_Resolve (N, Typ);
end if;
end if;
end Storage_Size;
-----------------
-- Stream_Size --
-----------------
when Attribute_Stream_Size => Stream_Size : declare
Ptyp : constant Entity_Id := Etype (Pref);
Size : Int;
begin
-- If we have a Stream_Size clause for this type use it, otherwise
-- the Stream_Size if the size of the type.
if Has_Stream_Size_Clause (Ptyp) then
Size := UI_To_Int
(Static_Integer (Expression (Stream_Size_Clause (Ptyp))));
else
Size := UI_To_Int (Esize (Ptyp));
end if;
Rewrite (N, Make_Integer_Literal (Loc, Intval => Size));
Analyze_And_Resolve (N, Typ);
end Stream_Size;
----------
-- Succ --
----------
-- 1. Deal with enumeration types with holes
-- 2. For floating-point, generate call to attribute function
-- 3. For other cases, deal with constraint checking
when Attribute_Succ => Succ :
declare
Ptyp : constant Entity_Id := Base_Type (Etype (Pref));
begin
-- For enumeration types with non-standard representations, we
-- expand typ'Succ (x) into
-- Pos_To_Rep (Rep_To_Pos (x) + 1)
-- If the representation is contiguous, we compute instead
-- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
if Is_Enumeration_Type (Ptyp)
and then Present (Enum_Pos_To_Rep (Ptyp))
then
if Has_Contiguous_Rep (Ptyp) then
Rewrite (N,
Unchecked_Convert_To (Ptyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Ptyp))),
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Reference_To
(TSS (Ptyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations =>
New_List (
Unchecked_Convert_To (Ptyp,
Make_Op_Add (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Integer,
Relocate_Node (First (Exprs))),
Right_Opnd =>
Make_Integer_Literal (Loc, 1))),
Rep_To_Pos_Flag (Ptyp, Loc))))));
else
-- Add Boolean parameter True, to request program errror if
-- we have a bad representation on our hands. Add False if
-- checks are suppressed.
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix => New_Reference_To (Enum_Pos_To_Rep (Ptyp), Loc),
Expressions => New_List (
Make_Op_Add (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Reference_To
(TSS (Ptyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
end if;
Analyze_And_Resolve (N, Typ);
-- For floating-point, we transform 'Succ into a call to the Succ
-- floating-point attribute function in Fat_xxx (xxx is root type)
elsif Is_Floating_Point_Type (Ptyp) then
Expand_Fpt_Attribute_R (N);
Analyze_And_Resolve (N, Typ);
-- For modular types, nothing to do (no overflow, since wraps)
elsif Is_Modular_Integer_Type (Ptyp) then
null;
-- For other types, if range checking is enabled, we must generate
-- a check if overflow checking is enabled.
elsif not Overflow_Checks_Suppressed (Ptyp) then
Expand_Pred_Succ (N);
end if;
end Succ;
---------
-- Tag --
---------
-- Transforms X'Tag into a direct reference to the tag of X
when Attribute_Tag => Tag :
declare
Ttyp : Entity_Id;
Prefix_Is_Type : Boolean;
begin
if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
Ttyp := Entity (Pref);
Prefix_Is_Type := True;
else
Ttyp := Etype (Pref);
Prefix_Is_Type := False;
end if;
if Is_Class_Wide_Type (Ttyp) then
Ttyp := Root_Type (Ttyp);
end if;
Ttyp := Underlying_Type (Ttyp);
if Prefix_Is_Type then
-- For JGNAT we leave the type attribute unexpanded because
-- there's not a dispatching table to reference.
if not Java_VM then
Rewrite (N,
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To
(Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
Analyze_And_Resolve (N, RTE (RE_Tag));
end if;
else
Rewrite (N,
Make_Selected_Component (Loc,
Prefix => Relocate_Node (Pref),
Selector_Name =>
New_Reference_To (First_Tag_Component (Ttyp), Loc)));
Analyze_And_Resolve (N, RTE (RE_Tag));
end if;
end Tag;
----------------
-- Terminated --
----------------
-- Transforms 'Terminated attribute into a call to Terminated function
when Attribute_Terminated => Terminated :
begin
if Restricted_Profile then
Rewrite (N,
Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
else
Rewrite (N,
Build_Call_With_Task (Pref, RTE (RE_Terminated)));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Terminated;
----------------
-- To_Address --
----------------
-- Transforms System'To_Address (X) into unchecked conversion
-- from (integral) type of X to type address.
when Attribute_To_Address =>
Rewrite (N,
Unchecked_Convert_To (RTE (RE_Address),
Relocate_Node (First (Exprs))));
Analyze_And_Resolve (N, RTE (RE_Address));
----------------
-- Truncation --
----------------
-- Transforms 'Truncation into a call to the floating-point attribute
-- function Truncation in Fat_xxx (where xxx is the root type)
when Attribute_Truncation =>
Expand_Fpt_Attribute_R (N);
-----------------------
-- Unbiased_Rounding --
-----------------------
-- Transforms 'Unbiased_Rounding into a call to the floating-point
-- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
-- root type)
when Attribute_Unbiased_Rounding =>
Expand_Fpt_Attribute_R (N);
----------------------
-- Unchecked_Access --
----------------------
when Attribute_Unchecked_Access =>
Expand_Access_To_Type (N);
-----------------
-- UET_Address --
-----------------
when Attribute_UET_Address => UET_Address : declare
Ent : constant Entity_Id :=
Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
begin
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Aliased_Present => True,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Address), Loc)));
-- Construct name __gnat_xxx__SDP, where xxx is the unit name
-- in normal external form.
Get_External_Unit_Name_String (Get_Unit_Name (Pref));
Name_Buffer (1 + 7 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
Name_Len := Name_Len + 7;
Name_Buffer (1 .. 7) := "__gnat_";
Name_Buffer (Name_Len + 1 .. Name_Len + 5) := "__SDP";
Name_Len := Name_Len + 5;
Set_Is_Imported (Ent);
Set_Interface_Name (Ent,
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Attribute_Name => Name_Address));
Analyze_And_Resolve (N, Typ);
end UET_Address;
-------------------------
-- Unrestricted_Access --
-------------------------
when Attribute_Unrestricted_Access =>
Expand_Access_To_Type (N);
---------------
-- VADS_Size --
---------------
-- The processing for VADS_Size is shared with Size
---------
-- Val --
---------
-- For enumeration types with a standard representation, and for all
-- other types, Val is handled by Gigi. For enumeration types with
-- a non-standard representation we use the _Pos_To_Rep array that
-- was created when the type was frozen.
when Attribute_Val => Val :
declare
Etyp : constant Entity_Id := Base_Type (Entity (Pref));
begin
if Is_Enumeration_Type (Etyp)
and then Present (Enum_Pos_To_Rep (Etyp))
then
if Has_Contiguous_Rep (Etyp) then
declare
Rep_Node : constant Node_Id :=
Unchecked_Convert_To (Etyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Etyp))),
Right_Opnd =>
(Convert_To (Standard_Integer,
Relocate_Node (First (Exprs))))));
begin
Rewrite (N,
Unchecked_Convert_To (Etyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Etyp))),
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Reference_To
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => New_List (
Rep_Node,
Rep_To_Pos_Flag (Etyp, Loc))))));
end;
else
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix => New_Reference_To (Enum_Pos_To_Rep (Etyp), Loc),
Expressions => New_List (
Convert_To (Standard_Integer,
Relocate_Node (First (Exprs))))));
end if;
Analyze_And_Resolve (N, Typ);
end if;
end Val;
-----------
-- Valid --
-----------
-- The code for valid is dependent on the particular types involved.
-- See separate sections below for the generated code in each case.
when Attribute_Valid => Valid :
declare
Ptyp : constant Entity_Id := Etype (Pref);
Btyp : Entity_Id := Base_Type (Ptyp);
Tst : Node_Id;
Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
-- Save the validity checking mode. We always turn off validity
-- checking during process of 'Valid since this is one place
-- where we do not want the implicit validity checks to intefere
-- with the explicit validity check that the programmer is doing.
function Make_Range_Test return Node_Id;
-- Build the code for a range test of the form
-- Btyp!(Pref) >= Btyp!(Ptyp'First)
-- and then
-- Btyp!(Pref) <= Btyp!(Ptyp'Last)
---------------------
-- Make_Range_Test --
---------------------
function Make_Range_Test return Node_Id is
begin
return
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Ge (Loc,
Left_Opnd =>
Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
Right_Opnd =>
Unchecked_Convert_To (Btyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_First))),
Right_Opnd =>
Make_Op_Le (Loc,
Left_Opnd =>
Unchecked_Convert_To (Btyp,
Duplicate_Subexpr_No_Checks (Pref)),
Right_Opnd =>
Unchecked_Convert_To (Btyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Last))));
end Make_Range_Test;
-- Start of processing for Attribute_Valid
begin
-- Turn off validity checks. We do not want any implicit validity
-- checks to intefere with the explicit check from the attribute
Validity_Checks_On := False;
-- Floating-point case. This case is handled by the Valid attribute
-- code in the floating-point attribute run-time library.
if Is_Floating_Point_Type (Ptyp) then
declare
Rtp : constant Entity_Id := Root_Type (Etype (Pref));
begin
-- If the floating-point object might be unaligned, we need
-- to call the special routine Unaligned_Valid, which makes
-- the needed copy, being careful not to load the value into
-- any floating-point register. The argument in this case is
-- obj'Address (see Unchecked_Valid routine in s-fatgen.ads).
if Is_Possibly_Unaligned_Object (Pref) then
Set_Attribute_Name (N, Name_Unaligned_Valid);
Expand_Fpt_Attribute
(N, Rtp, Name_Unaligned_Valid,
New_List (
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Pref),
Attribute_Name => Name_Address)));
-- In the normal case where we are sure the object is aligned,
-- we generate a caqll to Valid, and the argument in this case
-- is obj'Unrestricted_Access (after converting obj to the
-- right floating-point type).
else
Expand_Fpt_Attribute
(N, Rtp, Name_Valid,
New_List (
Make_Attribute_Reference (Loc,
Prefix => Unchecked_Convert_To (Rtp, Pref),
Attribute_Name => Name_Unrestricted_Access)));
end if;
-- One more task, we still need a range check. Required
-- only if we have a constraint, since the Valid routine
-- catches infinities properly (infinities are never valid).
-- The way we do the range check is simply to create the
-- expression: Valid (N) and then Base_Type(Pref) in Typ.
if not Subtypes_Statically_Match (Ptyp, Btyp) then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd =>
Make_In (Loc,
Left_Opnd => Convert_To (Btyp, Pref),
Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
end if;
end;
-- Enumeration type with holes
-- For enumeration types with holes, the Pos value constructed by
-- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
-- second argument of False returns minus one for an invalid value,
-- and the non-negative pos value for a valid value, so the
-- expansion of X'Valid is simply:
-- type(X)'Pos (X) >= 0
-- We can't quite generate it that way because of the requirement
-- for the non-standard second argument of False in the resulting
-- rep_to_pos call, so we have to explicitly create:
-- _rep_to_pos (X, False) >= 0
-- If we have an enumeration subtype, we also check that the
-- value is in range:
-- _rep_to_pos (X, False) >= 0
-- and then
-- (X >= type(X)'First and then type(X)'Last <= X)
elsif Is_Enumeration_Type (Ptyp)
and then Present (Enum_Pos_To_Rep (Base_Type (Ptyp)))
then
Tst :=
Make_Op_Ge (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Reference_To
(TSS (Base_Type (Ptyp), TSS_Rep_To_Pos), Loc),
Parameter_Associations => New_List (
Pref,
New_Occurrence_Of (Standard_False, Loc))),
Right_Opnd => Make_Integer_Literal (Loc, 0));
if Ptyp /= Btyp
and then
(Type_Low_Bound (Ptyp) /= Type_Low_Bound (Btyp)
or else
Type_High_Bound (Ptyp) /= Type_High_Bound (Btyp))
then
-- The call to Make_Range_Test will create declarations
-- that need a proper insertion point, but Pref is now
-- attached to a node with no ancestor. Attach to tree
-- even if it is to be rewritten below.
Set_Parent (Tst, Parent (N));
Tst :=
Make_And_Then (Loc,
Left_Opnd => Make_Range_Test,
Right_Opnd => Tst);
end if;
Rewrite (N, Tst);
-- Fortran convention booleans
-- For the very special case of Fortran convention booleans, the
-- value is always valid, since it is an integer with the semantics
-- that non-zero is true, and any value is permissible.
elsif Is_Boolean_Type (Ptyp)
and then Convention (Ptyp) = Convention_Fortran
then
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
-- For biased representations, we will be doing an unchecked
-- conversion without unbiasing the result. That means that the range
-- test has to take this into account, and the proper form of the
-- test is:
-- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
elsif Has_Biased_Representation (Ptyp) then
Btyp := RTE (RE_Unsigned_32);
Rewrite (N,
Make_Op_Lt (Loc,
Left_Opnd =>
Unchecked_Convert_To (Btyp, Duplicate_Subexpr (Pref)),
Right_Opnd =>
Unchecked_Convert_To (Btyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Range_Length))));
-- For all other scalar types, what we want logically is a
-- range test:
-- X in type(X)'First .. type(X)'Last
-- But that's precisely what won't work because of possible
-- unwanted optimization (and indeed the basic motivation for
-- the Valid attribute is exactly that this test does not work!)
-- What will work is:
-- Btyp!(X) >= Btyp!(type(X)'First)
-- and then
-- Btyp!(X) <= Btyp!(type(X)'Last)
-- where Btyp is an integer type large enough to cover the full
-- range of possible stored values (i.e. it is chosen on the basis
-- of the size of the type, not the range of the values). We write
-- this as two tests, rather than a range check, so that static
-- evaluation will easily remove either or both of the checks if
-- they can be -statically determined to be true (this happens
-- when the type of X is static and the range extends to the full
-- range of stored values).
-- Unsigned types. Note: it is safe to consider only whether the
-- subtype is unsigned, since we will in that case be doing all
-- unsigned comparisons based on the subtype range. Since we use the
-- actual subtype object size, this is appropriate.
-- For example, if we have
-- subtype x is integer range 1 .. 200;
-- for x'Object_Size use 8;
-- Now the base type is signed, but objects of this type are bits
-- unsigned, and doing an unsigned test of the range 1 to 200 is
-- correct, even though a value greater than 127 looks signed to a
-- signed comparison.
elsif Is_Unsigned_Type (Ptyp) then
if Esize (Ptyp) <= 32 then
Btyp := RTE (RE_Unsigned_32);
else
Btyp := RTE (RE_Unsigned_64);
end if;
Rewrite (N, Make_Range_Test);
-- Signed types
else
if Esize (Ptyp) <= Esize (Standard_Integer) then
Btyp := Standard_Integer;
else
Btyp := Universal_Integer;
end if;
Rewrite (N, Make_Range_Test);
end if;
Analyze_And_Resolve (N, Standard_Boolean);
Validity_Checks_On := Save_Validity_Checks_On;
end Valid;
-----------
-- Value --
-----------
-- Value attribute is handled in separate unti Exp_Imgv
when Attribute_Value =>
Exp_Imgv.Expand_Value_Attribute (N);
-----------------
-- Value_Size --
-----------------
-- The processing for Value_Size shares the processing for Size
-------------
-- Version --
-------------
-- The processing for Version shares the processing for Body_Version
----------------
-- Wide_Image --
----------------
-- We expand typ'Wide_Image (X) into
-- String_To_Wide_String
-- (typ'Image (X), Wide_Character_Encoding_Method)
-- This works in all cases because String_To_Wide_String converts any
-- wide character escape sequences resulting from the Image call to the
-- proper Wide_Character equivalent
-- not quite right for typ = Wide_Character ???
when Attribute_Wide_Image => Wide_Image :
begin
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Reference_To (RTE (RE_String_To_Wide_String), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Image,
Expressions => Exprs),
Make_Integer_Literal (Loc,
Intval => Int (Wide_Character_Encoding_Method)))));
Analyze_And_Resolve (N, Standard_Wide_String);
end Wide_Image;
---------------------
-- Wide_Wide_Image --
---------------------
-- We expand typ'Wide_Wide_Image (X) into
-- String_To_Wide_Wide_String
-- (typ'Image (X), Wide_Character_Encoding_Method)
-- This works in all cases because String_To_Wide_Wide_String converts
-- any wide character escape sequences resulting from the Image call to
-- the proper Wide_Character equivalent
-- not quite right for typ = Wide_Wide_Character ???
when Attribute_Wide_Wide_Image => Wide_Wide_Image :
begin
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Reference_To
(RTE (RE_String_To_Wide_Wide_String), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Image,
Expressions => Exprs),
Make_Integer_Literal (Loc,
Intval => Int (Wide_Character_Encoding_Method)))));
Analyze_And_Resolve (N, Standard_Wide_Wide_String);
end Wide_Wide_Image;
----------------
-- Wide_Value --
----------------
-- We expand typ'Wide_Value (X) into
-- typ'Value
-- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
-- Wide_String_To_String is a runtime function that converts its wide
-- string argument to String, converting any non-translatable characters
-- into appropriate escape sequences. This preserves the required
-- semantics of Wide_Value in all cases, and results in a very simple
-- implementation approach.
-- It's not quite right where typ = Wide_Character, because the encoding
-- method may not cover the whole character type ???
when Attribute_Wide_Value => Wide_Value :
begin
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Value,
Expressions => New_List (
Make_Function_Call (Loc,
Name =>
New_Reference_To (RTE (RE_Wide_String_To_String), Loc),
Parameter_Associations => New_List (
Relocate_Node (First (Exprs)),
Make_Integer_Literal (Loc,
Intval => Int (Wide_Character_Encoding_Method)))))));
Analyze_And_Resolve (N, Typ);
end Wide_Value;
---------------------
-- Wide_Wide_Value --
---------------------
-- We expand typ'Wide_Value_Value (X) into
-- typ'Value
-- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
-- Wide_Wide_String_To_String is a runtime function that converts its
-- wide string argument to String, converting any non-translatable
-- characters into appropriate escape sequences. This preserves the
-- required semantics of Wide_Wide_Value in all cases, and results in a
-- very simple implementation approach.
-- It's not quite right where typ = Wide_Wide_Character, because the
-- encoding method may not cover the whole character type ???
when Attribute_Wide_Wide_Value => Wide_Wide_Value :
begin
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Value,
Expressions => New_List (
Make_Function_Call (Loc,
Name =>
New_Reference_To (RTE (RE_Wide_Wide_String_To_String), Loc),
Parameter_Associations => New_List (
Relocate_Node (First (Exprs)),
Make_Integer_Literal (Loc,
Intval => Int (Wide_Character_Encoding_Method)))))));
Analyze_And_Resolve (N, Typ);
end Wide_Wide_Value;
---------------------
-- Wide_Wide_Width --
---------------------
-- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
when Attribute_Wide_Wide_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
----------------
-- Wide_Width --
----------------
-- Wide_Width attribute is handled in separate unit Exp_Imgv
when Attribute_Wide_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Wide);
-----------
-- Width --
-----------
-- Width attribute is handled in separate unit Exp_Imgv
when Attribute_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Normal);
-----------
-- Write --
-----------
when Attribute_Write => Write : declare
P_Type : constant Entity_Id := Entity (Pref);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg3 : Node_Id;
Wfunc : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- The simple case, if there is a TSS for Write, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write);
if Present (Pname) then
null;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Output (stream, Item)
-- as
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
-- where strmwrite is the given Write function that converts an
-- argument of type sourcetyp or a type acctyp, from which it is
-- derived to type strmtyp. The conversion to acttyp is required
-- for the derived case.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg3 :=
Next (Next (First (Pragma_Argument_Associations (Prag))));
Wfunc := Entity (Expression (Arg3));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (First (Exprs)),
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Wfunc, Loc),
Parameter_Associations => New_List (
Convert_To (Etype (First_Formal (Wfunc)),
Relocate_Node (Next (First (Exprs)))))))));
Analyze (N);
return;
-- For elementary types, we call the W_xxx routine directly
elsif Is_Elementary_Type (U_Type) then
Rewrite (N, Build_Elementary_Write_Call (N));
Analyze (N);
return;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Write_Procedure (N, U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type, Check => False);
-- Tagged type case, use the primitive Write function. Note that
-- this will dispatch in the class-wide case which is what we want
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
-- All other record type cases, including protected records.
-- The latter only arise for expander generated code for
-- handling shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Write attribute of an
-- Unchecked_Union type.
if Is_Unchecked_Union (Base_Type (U_Type)) then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
end if;
if Has_Discriminants (U_Type)
and then Present
(Discriminant_Default_Value (First_Discriminant (U_Type)))
then
Build_Mutable_Record_Write_Procedure
(Loc, Base_Type (U_Type), Decl, Pname);
else
Build_Record_Write_Procedure
(Loc, Base_Type (U_Type), Decl, Pname);
end if;
Insert_Action (N, Decl);
end if;
end if;
-- If we fall through, Pname is the procedure to be called
Rewrite_Stream_Proc_Call (Pname);
end Write;
-- Component_Size is handled by Gigi, unless the component size is known
-- at compile time, which is always true in the packed array case. It is
-- important that the packed array case is handled in the front end (see
-- Eval_Attribute) since Gigi would otherwise get confused by the
-- equivalent packed array type.
when Attribute_Component_Size =>
null;
-- The following attributes are handled by Gigi (except that static
-- cases have already been evaluated by the semantics, but in any case
-- Gigi should not count on that).
-- In addition Gigi handles the non-floating-point cases of Pred and
-- Succ (including the fixed-point cases, which can just be treated as
-- integer increment/decrement operations)
-- Gigi also handles the non-class-wide cases of Size
when Attribute_Bit_Order |
Attribute_Code_Address |
Attribute_Definite |
Attribute_Max |
Attribute_Mechanism_Code |
Attribute_Min |
Attribute_Null_Parameter |
Attribute_Passed_By_Reference |
Attribute_Pool_Address =>
null;
-- The following attributes are also handled by Gigi, but return a
-- universal integer result, so may need a conversion for checking
-- that the result is in range.
when Attribute_Aft |
Attribute_Bit |
Attribute_Max_Size_In_Storage_Elements
=>
Apply_Universal_Integer_Attribute_Checks (N);
-- The following attributes should not appear at this stage, since they
-- have already been handled by the analyzer (and properly rewritten
-- with corresponding values or entities to represent the right values)
when Attribute_Abort_Signal |
Attribute_Address_Size |
Attribute_Base |
Attribute_Class |
Attribute_Default_Bit_Order |
Attribute_Delta |
Attribute_Denorm |
Attribute_Digits |
Attribute_Emax |
Attribute_Epsilon |
Attribute_Has_Access_Values |
Attribute_Has_Discriminants |
Attribute_Large |
Attribute_Machine_Emax |
Attribute_Machine_Emin |
Attribute_Machine_Mantissa |
Attribute_Machine_Overflows |
Attribute_Machine_Radix |
Attribute_Machine_Rounds |
Attribute_Maximum_Alignment |
Attribute_Model_Emin |
Attribute_Model_Epsilon |
Attribute_Model_Mantissa |
Attribute_Model_Small |
Attribute_Modulus |
Attribute_Partition_ID |
Attribute_Range |
Attribute_Safe_Emax |
Attribute_Safe_First |
Attribute_Safe_Large |
Attribute_Safe_Last |
Attribute_Safe_Small |
Attribute_Scale |
Attribute_Signed_Zeros |
Attribute_Small |
Attribute_Storage_Unit |
Attribute_Target_Name |
Attribute_Type_Class |
Attribute_Unconstrained_Array |
Attribute_Universal_Literal_String |
Attribute_Wchar_T_Size |
Attribute_Word_Size =>
raise Program_Error;
-- The Asm_Input and Asm_Output attributes are not expanded at this
-- stage, but will be eliminated in the expansion of the Asm call,
-- see Exp_Intr for details. So Gigi will never see these either.
when Attribute_Asm_Input |
Attribute_Asm_Output =>
null;
end case;
exception
when RE_Not_Available =>
return;
end Expand_N_Attribute_Reference;
----------------------
-- Expand_Pred_Succ --
----------------------
-- For typ'Pred (exp), we generate the check
-- [constraint_error when exp = typ'Base'First]
-- Similarly, for typ'Succ (exp), we generate the check
-- [constraint_error when exp = typ'Base'Last]
-- These checks are not generated for modular types, since the proper
-- semantics for Succ and Pred on modular types is to wrap, not raise CE.
procedure Expand_Pred_Succ (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Cnam : Name_Id;
begin
if Attribute_Name (N) = Name_Pred then
Cnam := Name_First;
else
Cnam := Name_Last;
end if;
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Reference_To (Base_Type (Etype (Prefix (N))), Loc),
Attribute_Name => Cnam)),
Reason => CE_Overflow_Check_Failed));
end Expand_Pred_Succ;
----------------------------
-- Find_Stream_Subprogram --
----------------------------
function Find_Stream_Subprogram
(Typ : Entity_Id;
Nam : TSS_Name_Type) return Entity_Id
is
Ent : constant Entity_Id := TSS (Typ, Nam);
begin
if Present (Ent) then
return Ent;
end if;
if Is_Tagged_Type (Typ)
and then Is_Derived_Type (Typ)
then
return Find_Prim_Op (Typ, Nam);
else
return Find_Inherited_TSS (Typ, Nam);
end if;
end Find_Stream_Subprogram;
-----------------------
-- Get_Index_Subtype --
-----------------------
function Get_Index_Subtype (N : Node_Id) return Node_Id is
P_Type : Entity_Id := Etype (Prefix (N));
Indx : Node_Id;
J : Int;
begin
if Is_Access_Type (P_Type) then
P_Type := Designated_Type (P_Type);
end if;
if No (Expressions (N)) then
J := 1;
else
J := UI_To_Int (Expr_Value (First (Expressions (N))));
end if;
Indx := First_Index (P_Type);
while J > 1 loop
Next_Index (Indx);
J := J - 1;
end loop;
return Etype (Indx);
end Get_Index_Subtype;
-------------------------------
-- Get_Stream_Convert_Pragma --
-------------------------------
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
Typ : Entity_Id;
N : Node_Id;
begin
-- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
-- that a stream convert pragma for a tagged type is not inherited from
-- its parent. Probably what is wrong here is that it is basically
-- incorrect to consider a stream convert pragma to be a representation
-- pragma at all ???
N := First_Rep_Item (Implementation_Base_Type (T));
while Present (N) loop
if Nkind (N) = N_Pragma and then Chars (N) = Name_Stream_Convert then
-- For tagged types this pragma is not inherited, so we
-- must verify that it is defined for the given type and
-- not an ancestor.
Typ :=
Entity (Expression (First (Pragma_Argument_Associations (N))));
if not Is_Tagged_Type (T)
or else T = Typ
or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
then
return N;
end if;
end if;
Next_Rep_Item (N);
end loop;
return Empty;
end Get_Stream_Convert_Pragma;
---------------------------------
-- Is_Constrained_Packed_Array --
---------------------------------
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
Arr : Entity_Id := Typ;
begin
if Is_Access_Type (Arr) then
Arr := Designated_Type (Arr);
end if;
return Is_Array_Type (Arr)
and then Is_Constrained (Arr)
and then Present (Packed_Array_Type (Arr));
end Is_Constrained_Packed_Array;
end Exp_Attr;
|