1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ A G G R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2002 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Expander; use Expander;
with Exp_Util; use Exp_Util;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch7; use Exp_Ch7;
with Freeze; use Freeze;
with Hostparm; use Hostparm;
with Itypes; use Itypes;
with Lib; use Lib;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Restrict; use Restrict;
with Rtsfind; use Rtsfind;
with Ttypes; use Ttypes;
with Sem; use Sem;
with Sem_Ch3; use Sem_Ch3;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
package body Exp_Aggr is
type Case_Bounds is record
Choice_Lo : Node_Id;
Choice_Hi : Node_Id;
Choice_Node : Node_Id;
end record;
type Case_Table_Type is array (Nat range <>) of Case_Bounds;
-- Table type used by Check_Case_Choices procedure
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
-- Sort the Case Table using the Lower Bound of each Choice as the key.
-- A simple insertion sort is used since the number of choices in a case
-- statement of variant part will usually be small and probably in near
-- sorted order.
------------------------------------------------------
-- Local subprograms for Record Aggregate Expansion --
------------------------------------------------------
procedure Expand_Record_Aggregate
(N : Node_Id;
Orig_Tag : Node_Id := Empty;
Parent_Expr : Node_Id := Empty);
-- This is the top level procedure for record aggregate expansion.
-- Expansion for record aggregates needs expand aggregates for tagged
-- record types. Specifically Expand_Record_Aggregate adds the Tag
-- field in front of the Component_Association list that was created
-- during resolution by Resolve_Record_Aggregate.
--
-- N is the record aggregate node.
-- Orig_Tag is the value of the Tag that has to be provided for this
-- specific aggregate. It carries the tag corresponding to the type
-- of the outermost aggregate during the recursive expansion
-- Parent_Expr is the ancestor part of the original extension
-- aggregate
procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
-- N is an N_Aggregate of a N_Extension_Aggregate. Typ is the type of
-- the aggregate. Transform the given aggregate into a sequence of
-- assignments component per component.
function Build_Record_Aggr_Code
(N : Node_Id;
Typ : Entity_Id;
Target : Node_Id;
Flist : Node_Id := Empty;
Obj : Entity_Id := Empty)
return List_Id;
-- N is an N_Aggregate or a N_Extension_Aggregate. Typ is the type
-- of the aggregate. Target is an expression containing the
-- location on which the component by component assignments will
-- take place. Returns the list of assignments plus all other
-- adjustments needed for tagged and controlled types. Flist is an
-- expression representing the finalization list on which to
-- attach the controlled components if any. Obj is present in the
-- object declaration and dynamic allocation cases, it contains
-- an entity that allows to know if the value being created needs to be
-- attached to the final list in case of pragma finalize_Storage_Only.
procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
-- If the type of the aggregate is a type extension with renamed discrimi-
-- nants, we must initialize the hidden discriminants of the parent.
-- Otherwise, the target object must not be initialized. The discriminants
-- are initialized by calling the initialization procedure for the type.
-- This is incorrect if the initialization of other components has any
-- side effects. We restrict this call to the case where the parent type
-- has a variant part, because this is the only case where the hidden
-- discriminants are accessed, namely when calling discriminant checking
-- functions of the parent type, and when applying a stream attribute to
-- an object of the derived type.
-----------------------------------------------------
-- Local Subprograms for Array Aggregate Expansion --
-----------------------------------------------------
procedure Convert_To_Positional
(N : Node_Id;
Max_Others_Replicate : Nat := 5;
Handle_Bit_Packed : Boolean := False);
-- If possible, convert named notation to positional notation. This
-- conversion is possible only in some static cases. If the conversion
-- is possible, then N is rewritten with the analyzed converted
-- aggregate. The parameter Max_Others_Replicate controls the maximum
-- number of values corresponding to an others choice that will be
-- converted to positional notation (the default of 5 is the normal
-- limit, and reflects the fact that normally the loop is better than
-- a lot of separate assignments). Note that this limit gets overridden
-- in any case if either of the restrictions No_Elaboration_Code or
-- No_Implicit_Loops is set. The parameter Handle_Bit_Packed is usually
-- set False (since we do not expect the back end to handle bit packed
-- arrays, so the normal case of conversion is pointless), but in the
-- special case of a call from Packed_Array_Aggregate_Handled, we set
-- this parameter to True, since these are cases we handle in there.
procedure Expand_Array_Aggregate (N : Node_Id);
-- This is the top-level routine to perform array aggregate expansion.
-- N is the N_Aggregate node to be expanded.
function Backend_Processing_Possible (N : Node_Id) return Boolean;
-- This function checks if array aggregate N can be processed directly
-- by Gigi. If this is the case True is returned.
function Build_Array_Aggr_Code
(N : Node_Id;
Index : Node_Id;
Into : Node_Id;
Scalar_Comp : Boolean;
Indices : List_Id := No_List;
Flist : Node_Id := Empty)
return List_Id;
-- This recursive routine returns a list of statements containing the
-- loops and assignments that are needed for the expansion of the array
-- aggregate N.
--
-- N is the (sub-)aggregate node to be expanded into code.
--
-- Index is the index node corresponding to the array sub-aggregate N.
--
-- Into is the target expression into which we are copying the aggregate.
--
-- Scalar_Comp is True if the component type of the aggregate is scalar.
--
-- Indices is the current list of expressions used to index the
-- object we are writing into.
--
-- Flist is an expression representing the finalization list on which
-- to attach the controlled components if any.
function Number_Of_Choices (N : Node_Id) return Nat;
-- Returns the number of discrete choices (not including the others choice
-- if present) contained in (sub-)aggregate N.
function Late_Expansion
(N : Node_Id;
Typ : Entity_Id;
Target : Node_Id;
Flist : Node_Id := Empty;
Obj : Entity_Id := Empty)
return List_Id;
-- N is a nested (record or array) aggregate that has been marked
-- with 'Delay_Expansion'. Typ is the expected type of the
-- aggregate and Target is a (duplicable) expression that will
-- hold the result of the aggregate expansion. Flist is the
-- finalization list to be used to attach controlled
-- components. 'Obj' when non empty, carries the original object
-- being initialized in order to know if it needs to be attached
-- to the previous parameter which may not be the case when
-- Finalize_Storage_Only is set. Basically this procedure is used
-- to implement top-down expansions of nested aggregates. This is
-- necessary for avoiding temporaries at each level as well as for
-- propagating the right internal finalization list.
function Make_OK_Assignment_Statement
(Sloc : Source_Ptr;
Name : Node_Id;
Expression : Node_Id)
return Node_Id;
-- This is like Make_Assignment_Statement, except that Assignment_OK
-- is set in the left operand. All assignments built by this unit
-- use this routine. This is needed to deal with assignments to
-- initialized constants that are done in place.
function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
-- Given an array aggregate, this function handles the case of a packed
-- array aggregate with all constant values, where the aggregate can be
-- evaluated at compile time. If this is possible, then N is rewritten
-- to be its proper compile time value with all the components properly
-- assembled. The expression is analyzed and resolved and True is
-- returned. If this transformation is not possible, N is unchanged
-- and False is returned
function Safe_Slice_Assignment (N : Node_Id) return Boolean;
-- If a slice assignment has an aggregate with a single others_choice,
-- the assignment can be done in place even if bounds are not static,
-- by converting it into a loop over the discrete range of the slice.
---------------------------------
-- Backend_Processing_Possible --
---------------------------------
-- Backend processing by Gigi/gcc is possible only if all the following
-- conditions are met:
-- 1. N is fully positional
-- 2. N is not a bit-packed array aggregate;
-- 3. The size of N's array type must be known at compile time. Note
-- that this implies that the component size is also known
-- 4. The array type of N does not follow the Fortran layout convention
-- or if it does it must be 1 dimensional.
-- 5. The array component type is tagged, which may necessitate
-- reassignment of proper tags.
function Backend_Processing_Possible (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
-- Typ is the correct constrained array subtype of the aggregate.
function Static_Check (N : Node_Id; Index : Node_Id) return Boolean;
-- Recursively checks that N is fully positional, returns true if so.
------------------
-- Static_Check --
------------------
function Static_Check (N : Node_Id; Index : Node_Id) return Boolean is
Expr : Node_Id;
begin
-- Check for component associations
if Present (Component_Associations (N)) then
return False;
end if;
-- Recurse to check subaggregates, which may appear in qualified
-- expressions. If delayed, the front-end will have to expand.
Expr := First (Expressions (N));
while Present (Expr) loop
if Is_Delayed_Aggregate (Expr) then
return False;
end if;
if Present (Next_Index (Index))
and then not Static_Check (Expr, Next_Index (Index))
then
return False;
end if;
Next (Expr);
end loop;
return True;
end Static_Check;
-- Start of processing for Backend_Processing_Possible
begin
-- Checks 2 (array must not be bit packed)
if Is_Bit_Packed_Array (Typ) then
return False;
end if;
-- Checks 4 (array must not be multi-dimensional Fortran case)
if Convention (Typ) = Convention_Fortran
and then Number_Dimensions (Typ) > 1
then
return False;
end if;
-- Checks 3 (size of array must be known at compile time)
if not Size_Known_At_Compile_Time (Typ) then
return False;
end if;
-- Checks 1 (aggregate must be fully positional)
if not Static_Check (N, First_Index (Typ)) then
return False;
end if;
-- Checks 5 (if the component type is tagged, then we may need
-- to do tag adjustments; perhaps this should be refined to
-- check for any component associations that actually
-- need tag adjustment, along the lines of the test that's
-- done in Has_Delayed_Nested_Aggregate_Or_Tagged_Comps
-- for record aggregates with tagged components, but not
-- clear whether it's worthwhile ???; in the case of the
-- JVM, object tags are handled implicitly)
if Is_Tagged_Type (Component_Type (Typ)) and then not Java_VM then
return False;
end if;
-- Backend processing is possible
Set_Compile_Time_Known_Aggregate (N, True);
Set_Size_Known_At_Compile_Time (Etype (N), True);
return True;
end Backend_Processing_Possible;
---------------------------
-- Build_Array_Aggr_Code --
---------------------------
-- The code that we generate from a one dimensional aggregate is
-- 1. If the sub-aggregate contains discrete choices we
-- (a) Sort the discrete choices
-- (b) Otherwise for each discrete choice that specifies a range we
-- emit a loop. If a range specifies a maximum of three values, or
-- we are dealing with an expression we emit a sequence of
-- assignments instead of a loop.
-- (c) Generate the remaining loops to cover the others choice if any.
-- 2. If the aggregate contains positional elements we
-- (a) translate the positional elements in a series of assignments.
-- (b) Generate a final loop to cover the others choice if any.
-- Note that this final loop has to be a while loop since the case
-- L : Integer := Integer'Last;
-- H : Integer := Integer'Last;
-- A : array (L .. H) := (1, others =>0);
-- cannot be handled by a for loop. Thus for the following
-- array (L .. H) := (.. positional elements.., others =>E);
-- we always generate something like:
-- J : Index_Type := Index_Of_Last_Positional_Element;
-- while J < H loop
-- J := Index_Base'Succ (J)
-- Tmp (J) := E;
-- end loop;
function Build_Array_Aggr_Code
(N : Node_Id;
Index : Node_Id;
Into : Node_Id;
Scalar_Comp : Boolean;
Indices : List_Id := No_List;
Flist : Node_Id := Empty)
return List_Id
is
Loc : constant Source_Ptr := Sloc (N);
Index_Base : constant Entity_Id := Base_Type (Etype (Index));
Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
function Add (Val : Int; To : Node_Id) return Node_Id;
-- Returns an expression where Val is added to expression To,
-- unless To+Val is provably out of To's base type range.
-- To must be an already analyzed expression.
function Empty_Range (L, H : Node_Id) return Boolean;
-- Returns True if the range defined by L .. H is certainly empty.
function Equal (L, H : Node_Id) return Boolean;
-- Returns True if L = H for sure.
function Index_Base_Name return Node_Id;
-- Returns a new reference to the index type name.
function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id;
-- Ind must be a side-effect free expression.
-- If the input aggregate N to Build_Loop contains no sub-aggregates,
-- This routine returns the assignment statement
--
-- Into (Indices, Ind) := Expr;
--
-- Otherwise we call Build_Code recursively.
function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
-- Nodes L and H must be side-effect free expressions.
-- If the input aggregate N to Build_Loop contains no sub-aggregates,
-- This routine returns the for loop statement
--
-- for J in Index_Base'(L) .. Index_Base'(H) loop
-- Into (Indices, J) := Expr;
-- end loop;
--
-- Otherwise we call Build_Code recursively.
-- As an optimization if the loop covers 3 or less scalar elements we
-- generate a sequence of assignments.
function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
-- Nodes L and H must be side-effect free expressions.
-- If the input aggregate N to Build_Loop contains no sub-aggregates,
-- This routine returns the while loop statement
--
-- J : Index_Base := L;
-- while J < H loop
-- J := Index_Base'Succ (J);
-- Into (Indices, J) := Expr;
-- end loop;
--
-- Otherwise we call Build_Code recursively.
function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
function Local_Expr_Value (E : Node_Id) return Uint;
-- These two Local routines are used to replace the corresponding ones
-- in sem_eval because while processing the bounds of an aggregate with
-- discrete choices whose index type is an enumeration, we build static
-- expressions not recognized by Compile_Time_Known_Value as such since
-- they have not yet been analyzed and resolved. All the expressions in
-- question are things like Index_Base_Name'Val (Const) which we can
-- easily recognize as being constant.
---------
-- Add --
---------
function Add (Val : Int; To : Node_Id) return Node_Id is
Expr_Pos : Node_Id;
Expr : Node_Id;
To_Pos : Node_Id;
U_To : Uint;
U_Val : Uint := UI_From_Int (Val);
begin
-- Note: do not try to optimize the case of Val = 0, because
-- we need to build a new node with the proper Sloc value anyway.
-- First test if we can do constant folding
if Local_Compile_Time_Known_Value (To) then
U_To := Local_Expr_Value (To) + Val;
-- Determine if our constant is outside the range of the index.
-- If so return an Empty node. This empty node will be caught
-- by Empty_Range below.
if Compile_Time_Known_Value (Index_Base_L)
and then U_To < Expr_Value (Index_Base_L)
then
return Empty;
elsif Compile_Time_Known_Value (Index_Base_H)
and then U_To > Expr_Value (Index_Base_H)
then
return Empty;
end if;
Expr_Pos := Make_Integer_Literal (Loc, U_To);
Set_Is_Static_Expression (Expr_Pos);
if not Is_Enumeration_Type (Index_Base) then
Expr := Expr_Pos;
-- If we are dealing with enumeration return
-- Index_Base'Val (Expr_Pos)
else
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => Index_Base_Name,
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
end if;
return Expr;
end if;
-- If we are here no constant folding possible
if not Is_Enumeration_Type (Index_Base) then
Expr :=
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr (To),
Right_Opnd => Make_Integer_Literal (Loc, U_Val));
-- If we are dealing with enumeration return
-- Index_Base'Val (Index_Base'Pos (To) + Val)
else
To_Pos :=
Make_Attribute_Reference
(Loc,
Prefix => Index_Base_Name,
Attribute_Name => Name_Pos,
Expressions => New_List (Duplicate_Subexpr (To)));
Expr_Pos :=
Make_Op_Add (Loc,
Left_Opnd => To_Pos,
Right_Opnd => Make_Integer_Literal (Loc, U_Val));
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => Index_Base_Name,
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
end if;
return Expr;
end Add;
-----------------
-- Empty_Range --
-----------------
function Empty_Range (L, H : Node_Id) return Boolean is
Is_Empty : Boolean := False;
Low : Node_Id;
High : Node_Id;
begin
-- First check if L or H were already detected as overflowing the
-- index base range type by function Add above. If this is so Add
-- returns the empty node.
if No (L) or else No (H) then
return True;
end if;
for J in 1 .. 3 loop
case J is
-- L > H range is empty
when 1 =>
Low := L;
High := H;
-- B_L > H range must be empty
when 2 =>
Low := Index_Base_L;
High := H;
-- L > B_H range must be empty
when 3 =>
Low := L;
High := Index_Base_H;
end case;
if Local_Compile_Time_Known_Value (Low)
and then Local_Compile_Time_Known_Value (High)
then
Is_Empty :=
UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
end if;
exit when Is_Empty;
end loop;
return Is_Empty;
end Empty_Range;
-----------
-- Equal --
-----------
function Equal (L, H : Node_Id) return Boolean is
begin
if L = H then
return True;
elsif Local_Compile_Time_Known_Value (L)
and then Local_Compile_Time_Known_Value (H)
then
return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
end if;
return False;
end Equal;
----------------
-- Gen_Assign --
----------------
function Gen_Assign (Ind : Node_Id; Expr : Node_Id) return List_Id is
L : List_Id := New_List;
F : Entity_Id;
A : Node_Id;
New_Indices : List_Id;
Indexed_Comp : Node_Id;
Expr_Q : Node_Id;
Comp_Type : Entity_Id := Empty;
function Add_Loop_Actions (Lis : List_Id) return List_Id;
-- Collect insert_actions generated in the construction of a
-- loop, and prepend them to the sequence of assignments to
-- complete the eventual body of the loop.
----------------------
-- Add_Loop_Actions --
----------------------
function Add_Loop_Actions (Lis : List_Id) return List_Id is
Res : List_Id;
begin
if Nkind (Parent (Expr)) = N_Component_Association
and then Present (Loop_Actions (Parent (Expr)))
then
Append_List (Lis, Loop_Actions (Parent (Expr)));
Res := Loop_Actions (Parent (Expr));
Set_Loop_Actions (Parent (Expr), No_List);
return Res;
else
return Lis;
end if;
end Add_Loop_Actions;
-- Start of processing for Gen_Assign
begin
if No (Indices) then
New_Indices := New_List;
else
New_Indices := New_Copy_List_Tree (Indices);
end if;
Append_To (New_Indices, Ind);
if Present (Flist) then
F := New_Copy_Tree (Flist);
elsif Present (Etype (N)) and then Controlled_Type (Etype (N)) then
if Is_Entity_Name (Into)
and then Present (Scope (Entity (Into)))
then
F := Find_Final_List (Scope (Entity (Into)));
else
F := Find_Final_List (Current_Scope);
end if;
else
F := 0;
end if;
if Present (Next_Index (Index)) then
return
Add_Loop_Actions (
Build_Array_Aggr_Code
(Expr, Next_Index (Index),
Into, Scalar_Comp, New_Indices, F));
end if;
-- If we get here then we are at a bottom-level (sub-)aggregate
Indexed_Comp := Checks_Off (
Make_Indexed_Component (Loc,
Prefix => New_Copy_Tree (Into),
Expressions => New_Indices));
Set_Assignment_OK (Indexed_Comp);
if Nkind (Expr) = N_Qualified_Expression then
Expr_Q := Expression (Expr);
else
Expr_Q := Expr;
end if;
if Present (Etype (N))
and then Etype (N) /= Any_Composite
then
Comp_Type := Component_Type (Etype (N));
elsif Present (Next (First (New_Indices))) then
-- this is a multidimensional array. Recover the component
-- type from the outermost aggregate, because subaggregates
-- do not have an assigned type.
declare
P : Node_Id := Parent (Expr);
begin
while Present (P) loop
if Nkind (P) = N_Aggregate
and then Present (Etype (P))
then
Comp_Type := Component_Type (Etype (P));
exit;
else
P := Parent (P);
end if;
end loop;
end;
end if;
if (Nkind (Expr_Q) = N_Aggregate
or else Nkind (Expr_Q) = N_Extension_Aggregate)
then
-- At this stage the Expression may not have been
-- analyzed yet because the array aggregate code has not
-- been updated to use the Expansion_Delayed flag and
-- avoid analysis altogether to solve the same problem
-- (see Resolve_Aggr_Expr) so let's do the analysis of
-- non-array aggregates now in order to get the value of
-- Expansion_Delayed flag for the inner aggregate ???
if Present (Comp_Type) and then not Is_Array_Type (Comp_Type) then
Analyze_And_Resolve (Expr_Q, Comp_Type);
end if;
if Is_Delayed_Aggregate (Expr_Q) then
return
Add_Loop_Actions (
Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp, F));
end if;
end if;
-- Now generate the assignment with no associated controlled
-- actions since the target of the assignment may not have
-- been initialized, it is not possible to Finalize it as
-- expected by normal controlled assignment. The rest of the
-- controlled actions are done manually with the proper
-- finalization list coming from the context.
A :=
Make_OK_Assignment_Statement (Loc,
Name => Indexed_Comp,
Expression => New_Copy_Tree (Expr));
if Present (Comp_Type) and then Controlled_Type (Comp_Type) then
Set_No_Ctrl_Actions (A);
end if;
Append_To (L, A);
-- Adjust the tag if tagged (because of possible view
-- conversions), unless compiling for the Java VM
-- where tags are implicit.
if Present (Comp_Type)
and then Is_Tagged_Type (Comp_Type)
and then not Java_VM
then
A :=
Make_OK_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Indexed_Comp),
Selector_Name =>
New_Reference_To (Tag_Component (Comp_Type), Loc)),
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To (
Access_Disp_Table (Comp_Type), Loc)));
Append_To (L, A);
end if;
-- Adjust and Attach the component to the proper final list
-- which can be the controller of the outer record object or
-- the final list associated with the scope
if Present (Comp_Type) and then Controlled_Type (Comp_Type) then
Append_List_To (L,
Make_Adjust_Call (
Ref => New_Copy_Tree (Indexed_Comp),
Typ => Comp_Type,
Flist_Ref => F,
With_Attach => Make_Integer_Literal (Loc, 1)));
end if;
return Add_Loop_Actions (L);
end Gen_Assign;
--------------
-- Gen_Loop --
--------------
function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
L_J : Node_Id;
L_Range : Node_Id;
-- Index_Base'(L) .. Index_Base'(H)
L_Iteration_Scheme : Node_Id;
-- L_J in Index_Base'(L) .. Index_Base'(H)
L_Body : List_Id;
-- The statements to execute in the loop
S : List_Id := New_List;
-- list of statement
Tcopy : Node_Id;
-- Copy of expression tree, used for checking purposes
begin
-- If loop bounds define an empty range return the null statement
if Empty_Range (L, H) then
Append_To (S, Make_Null_Statement (Loc));
-- The expression must be type-checked even though no component
-- of the aggregate will have this value. This is done only for
-- actual components of the array, not for subaggregates. Do the
-- check on a copy, because the expression may be shared among
-- several choices, some of which might be non-null.
if Present (Etype (N))
and then Is_Array_Type (Etype (N))
and then No (Next_Index (Index))
then
Expander_Mode_Save_And_Set (False);
Tcopy := New_Copy_Tree (Expr);
Set_Parent (Tcopy, N);
Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
Expander_Mode_Restore;
end if;
return S;
-- If loop bounds are the same then generate an assignment
elsif Equal (L, H) then
return Gen_Assign (New_Copy_Tree (L), Expr);
-- If H - L <= 2 then generate a sequence of assignments
-- when we are processing the bottom most aggregate and it contains
-- scalar components.
elsif No (Next_Index (Index))
and then Scalar_Comp
and then Local_Compile_Time_Known_Value (L)
and then Local_Compile_Time_Known_Value (H)
and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
then
Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
end if;
return S;
end if;
-- Otherwise construct the loop, starting with the loop index L_J
L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
-- Construct "L .. H"
L_Range :=
Make_Range
(Loc,
Low_Bound => Make_Qualified_Expression
(Loc,
Subtype_Mark => Index_Base_Name,
Expression => L),
High_Bound => Make_Qualified_Expression
(Loc,
Subtype_Mark => Index_Base_Name,
Expression => H));
-- Construct "for L_J in Index_Base range L .. H"
L_Iteration_Scheme :=
Make_Iteration_Scheme
(Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification
(Loc,
Defining_Identifier => L_J,
Discrete_Subtype_Definition => L_Range));
-- Construct the statements to execute in the loop body
L_Body := Gen_Assign (New_Reference_To (L_J, Loc), Expr);
-- Construct the final loop
Append_To (S, Make_Implicit_Loop_Statement
(Node => N,
Identifier => Empty,
Iteration_Scheme => L_Iteration_Scheme,
Statements => L_Body));
return S;
end Gen_Loop;
---------------
-- Gen_While --
---------------
-- The code built is
-- W_J : Index_Base := L;
-- while W_J < H loop
-- W_J := Index_Base'Succ (W);
-- L_Body;
-- end loop;
function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
W_J : Node_Id;
W_Decl : Node_Id;
-- W_J : Base_Type := L;
W_Iteration_Scheme : Node_Id;
-- while W_J < H
W_Index_Succ : Node_Id;
-- Index_Base'Succ (J)
W_Increment : Node_Id;
-- W_J := Index_Base'Succ (W)
W_Body : List_Id := New_List;
-- The statements to execute in the loop
S : List_Id := New_List;
-- list of statement
begin
-- If loop bounds define an empty range or are equal return null
if Empty_Range (L, H) or else Equal (L, H) then
Append_To (S, Make_Null_Statement (Loc));
return S;
end if;
-- Build the decl of W_J
W_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
W_Decl :=
Make_Object_Declaration
(Loc,
Defining_Identifier => W_J,
Object_Definition => Index_Base_Name,
Expression => L);
-- Theoretically we should do a New_Copy_Tree (L) here, but we know
-- that in this particular case L is a fresh Expr generated by
-- Add which we are the only ones to use.
Append_To (S, W_Decl);
-- construct " while W_J < H"
W_Iteration_Scheme :=
Make_Iteration_Scheme
(Loc,
Condition => Make_Op_Lt
(Loc,
Left_Opnd => New_Reference_To (W_J, Loc),
Right_Opnd => New_Copy_Tree (H)));
-- Construct the statements to execute in the loop body
W_Index_Succ :=
Make_Attribute_Reference
(Loc,
Prefix => Index_Base_Name,
Attribute_Name => Name_Succ,
Expressions => New_List (New_Reference_To (W_J, Loc)));
W_Increment :=
Make_OK_Assignment_Statement
(Loc,
Name => New_Reference_To (W_J, Loc),
Expression => W_Index_Succ);
Append_To (W_Body, W_Increment);
Append_List_To (W_Body,
Gen_Assign (New_Reference_To (W_J, Loc), Expr));
-- Construct the final loop
Append_To (S, Make_Implicit_Loop_Statement
(Node => N,
Identifier => Empty,
Iteration_Scheme => W_Iteration_Scheme,
Statements => W_Body));
return S;
end Gen_While;
---------------------
-- Index_Base_Name --
---------------------
function Index_Base_Name return Node_Id is
begin
return New_Reference_To (Index_Base, Sloc (N));
end Index_Base_Name;
------------------------------------
-- Local_Compile_Time_Known_Value --
------------------------------------
function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
begin
return Compile_Time_Known_Value (E)
or else
(Nkind (E) = N_Attribute_Reference
and then Attribute_Name (E) = Name_Val
and then Compile_Time_Known_Value (First (Expressions (E))));
end Local_Compile_Time_Known_Value;
----------------------
-- Local_Expr_Value --
----------------------
function Local_Expr_Value (E : Node_Id) return Uint is
begin
if Compile_Time_Known_Value (E) then
return Expr_Value (E);
else
return Expr_Value (First (Expressions (E)));
end if;
end Local_Expr_Value;
-- Build_Array_Aggr_Code Variables
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
Others_Expr : Node_Id := Empty;
Aggr_L : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
Aggr_H : constant Node_Id := High_Bound (Aggregate_Bounds (N));
-- The aggregate bounds of this specific sub-aggregate. Note that if
-- the code generated by Build_Array_Aggr_Code is executed then these
-- bounds are OK. Otherwise a Constraint_Error would have been raised.
Aggr_Low : constant Node_Id := Duplicate_Subexpr (Aggr_L);
Aggr_High : constant Node_Id := Duplicate_Subexpr (Aggr_H);
-- After Duplicate_Subexpr these are side-effect free.
Low : Node_Id;
High : Node_Id;
Nb_Choices : Nat := 0;
Table : Case_Table_Type (1 .. Number_Of_Choices (N));
-- Used to sort all the different choice values
Nb_Elements : Int;
-- Number of elements in the positional aggregate
New_Code : List_Id := New_List;
-- Start of processing for Build_Array_Aggr_Code
begin
-- STEP 1: Process component associations
if No (Expressions (N)) then
-- STEP 1 (a): Sort the discrete choices
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Expr := Expression (Assoc);
exit;
end if;
Get_Index_Bounds (Choice, Low, High);
Nb_Choices := Nb_Choices + 1;
Table (Nb_Choices) := (Choice_Lo => Low,
Choice_Hi => High,
Choice_Node => Expression (Assoc));
Next (Choice);
end loop;
Next (Assoc);
end loop;
-- If there is more than one set of choices these must be static
-- and we can therefore sort them. Remember that Nb_Choices does not
-- account for an others choice.
if Nb_Choices > 1 then
Sort_Case_Table (Table);
end if;
-- STEP 1 (b): take care of the whole set of discrete choices.
for J in 1 .. Nb_Choices loop
Low := Table (J).Choice_Lo;
High := Table (J).Choice_Hi;
Expr := Table (J).Choice_Node;
Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
end loop;
-- STEP 1 (c): generate the remaining loops to cover others choice
-- We don't need to generate loops over empty gaps, but if there is
-- a single empty range we must analyze the expression for semantics
if Present (Others_Expr) then
declare
First : Boolean := True;
begin
for J in 0 .. Nb_Choices loop
if J = 0 then
Low := Aggr_Low;
else
Low := Add (1, To => Table (J).Choice_Hi);
end if;
if J = Nb_Choices then
High := Aggr_High;
else
High := Add (-1, To => Table (J + 1).Choice_Lo);
end if;
-- If this is an expansion within an init_proc, make
-- sure that discriminant references are replaced by
-- the corresponding discriminal.
if Inside_Init_Proc then
if Is_Entity_Name (Low)
and then Ekind (Entity (Low)) = E_Discriminant
then
Set_Entity (Low, Discriminal (Entity (Low)));
end if;
if Is_Entity_Name (High)
and then Ekind (Entity (High)) = E_Discriminant
then
Set_Entity (High, Discriminal (Entity (High)));
end if;
end if;
if First
or else not Empty_Range (Low, High)
then
First := False;
Append_List
(Gen_Loop (Low, High, Others_Expr), To => New_Code);
end if;
end loop;
end;
end if;
-- STEP 2: Process positional components
else
-- STEP 2 (a): Generate the assignments for each positional element
-- Note that here we have to use Aggr_L rather than Aggr_Low because
-- Aggr_L is analyzed and Add wants an analyzed expression.
Expr := First (Expressions (N));
Nb_Elements := -1;
while Present (Expr) loop
Nb_Elements := Nb_Elements + 1;
Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
To => New_Code);
Next (Expr);
end loop;
-- STEP 2 (b): Generate final loop if an others choice is present
-- Here Nb_Elements gives the offset of the last positional element.
if Present (Component_Associations (N)) then
Assoc := Last (Component_Associations (N));
Expr := Expression (Assoc);
Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
Aggr_High,
Expr),
To => New_Code);
end if;
end if;
return New_Code;
end Build_Array_Aggr_Code;
----------------------------
-- Build_Record_Aggr_Code --
----------------------------
function Build_Record_Aggr_Code
(N : Node_Id;
Typ : Entity_Id;
Target : Node_Id;
Flist : Node_Id := Empty;
Obj : Entity_Id := Empty)
return List_Id
is
Loc : constant Source_Ptr := Sloc (N);
L : constant List_Id := New_List;
Start_L : constant List_Id := New_List;
N_Typ : constant Entity_Id := Etype (N);
Comp : Node_Id;
Instr : Node_Id;
Ref : Node_Id;
F : Node_Id;
Comp_Type : Entity_Id;
Selector : Entity_Id;
Comp_Expr : Node_Id;
Comp_Kind : Node_Kind;
Expr_Q : Node_Id;
Internal_Final_List : Node_Id;
-- If this is an internal aggregate, the External_Final_List is an
-- expression for the controller record of the enclosing type.
-- If the current aggregate has several controlled components, this
-- expression will appear in several calls to attach to the finali-
-- zation list, and it must not be shared.
External_Final_List : Node_Id;
Ancestor_Is_Expression : Boolean := False;
Ancestor_Is_Subtype_Mark : Boolean := False;
Init_Typ : Entity_Id := Empty;
Attach : Node_Id;
function Get_Constraint_Association (T : Entity_Id) return Node_Id;
-- Returns the first discriminant association in the constraint
-- associated with T, if any, otherwise returns Empty.
function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
-- Returns the value that the given discriminant of an ancestor
-- type should receive (in the absence of a conflict with the
-- value provided by an ancestor part of an extension aggregate).
procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
-- Check that each of the discriminant values defined by the
-- ancestor part of an extension aggregate match the corresponding
-- values provided by either an association of the aggregate or
-- by the constraint imposed by a parent type (RM95-4.3.2(8)).
function Init_Controller
(Target : Node_Id;
Typ : Entity_Id;
F : Node_Id;
Attach : Node_Id;
Init_Pr : Boolean)
return List_Id;
-- returns the list of statements necessary to initialize the internal
-- controller of the (possible) ancestor typ into target and attach
-- it to finalization list F. Init_Pr conditions the call to the
-- init_proc since it may already be done due to ancestor initialization
---------------------------------
-- Ancestor_Discriminant_Value --
---------------------------------
function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
Assoc : Node_Id;
Assoc_Elmt : Elmt_Id;
Aggr_Comp : Entity_Id;
Corresp_Disc : Entity_Id;
Current_Typ : Entity_Id := Base_Type (Typ);
Parent_Typ : Entity_Id;
Parent_Disc : Entity_Id;
Save_Assoc : Node_Id := Empty;
begin
-- First check any discriminant associations to see if
-- any of them provide a value for the discriminant.
if Present (Discriminant_Specifications (Parent (Current_Typ))) then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Aggr_Comp := Entity (First (Choices (Assoc)));
if Ekind (Aggr_Comp) = E_Discriminant then
Save_Assoc := Expression (Assoc);
Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
while Present (Corresp_Disc) loop
-- If found a corresponding discriminant then return
-- the value given in the aggregate. (Note: this is
-- not correct in the presence of side effects. ???)
if Disc = Corresp_Disc then
return Duplicate_Subexpr (Expression (Assoc));
end if;
Corresp_Disc :=
Corresponding_Discriminant (Corresp_Disc);
end loop;
end if;
Next (Assoc);
end loop;
end if;
-- No match found in aggregate, so chain up parent types to find
-- a constraint that defines the value of the discriminant.
Parent_Typ := Etype (Current_Typ);
while Current_Typ /= Parent_Typ loop
if Has_Discriminants (Parent_Typ) then
Parent_Disc := First_Discriminant (Parent_Typ);
-- We either get the association from the subtype indication
-- of the type definition itself, or from the discriminant
-- constraint associated with the type entity (which is
-- preferable, but it's not always present ???)
if Is_Empty_Elmt_List (
Discriminant_Constraint (Current_Typ))
then
Assoc := Get_Constraint_Association (Current_Typ);
Assoc_Elmt := No_Elmt;
else
Assoc_Elmt :=
First_Elmt (Discriminant_Constraint (Current_Typ));
Assoc := Node (Assoc_Elmt);
end if;
-- Traverse the discriminants of the parent type looking
-- for one that corresponds.
while Present (Parent_Disc) and then Present (Assoc) loop
Corresp_Disc := Parent_Disc;
while Present (Corresp_Disc)
and then Disc /= Corresp_Disc
loop
Corresp_Disc :=
Corresponding_Discriminant (Corresp_Disc);
end loop;
if Disc = Corresp_Disc then
if Nkind (Assoc) = N_Discriminant_Association then
Assoc := Expression (Assoc);
end if;
-- If the located association directly denotes
-- a discriminant, then use the value of a saved
-- association of the aggregate. This is a kludge
-- to handle certain cases involving multiple
-- discriminants mapped to a single discriminant
-- of a descendant. It's not clear how to locate the
-- appropriate discriminant value for such cases. ???
if Is_Entity_Name (Assoc)
and then Ekind (Entity (Assoc)) = E_Discriminant
then
Assoc := Save_Assoc;
end if;
return Duplicate_Subexpr (Assoc);
end if;
Next_Discriminant (Parent_Disc);
if No (Assoc_Elmt) then
Next (Assoc);
else
Next_Elmt (Assoc_Elmt);
if Present (Assoc_Elmt) then
Assoc := Node (Assoc_Elmt);
else
Assoc := Empty;
end if;
end if;
end loop;
end if;
Current_Typ := Parent_Typ;
Parent_Typ := Etype (Current_Typ);
end loop;
-- In some cases there's no ancestor value to locate (such as
-- when an ancestor part given by an expression defines the
-- discriminant value).
return Empty;
end Ancestor_Discriminant_Value;
----------------------------------
-- Check_Ancestor_Discriminants --
----------------------------------
procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
Discr : Entity_Id := First_Discriminant (Base_Type (Anc_Typ));
Disc_Value : Node_Id;
Cond : Node_Id;
begin
while Present (Discr) loop
Disc_Value := Ancestor_Discriminant_Value (Discr);
if Present (Disc_Value) then
Cond := Make_Op_Ne (Loc,
Left_Opnd =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Discr, Loc)),
Right_Opnd => Disc_Value);
Append_To (L,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Discriminant_Check_Failed));
end if;
Next_Discriminant (Discr);
end loop;
end Check_Ancestor_Discriminants;
--------------------------------
-- Get_Constraint_Association --
--------------------------------
function Get_Constraint_Association (T : Entity_Id) return Node_Id is
Typ_Def : constant Node_Id := Type_Definition (Parent (T));
Indic : constant Node_Id := Subtype_Indication (Typ_Def);
begin
-- ??? Also need to cover case of a type mark denoting a subtype
-- with constraint.
if Nkind (Indic) = N_Subtype_Indication
and then Present (Constraint (Indic))
then
return First (Constraints (Constraint (Indic)));
end if;
return Empty;
end Get_Constraint_Association;
---------------------
-- Init_controller --
---------------------
function Init_Controller
(Target : Node_Id;
Typ : Entity_Id;
F : Node_Id;
Attach : Node_Id;
Init_Pr : Boolean)
return List_Id
is
Ref : Node_Id;
L : List_Id := New_List;
begin
-- _init_proc (target._controller);
-- initialize (target._controller);
-- Attach_to_Final_List (target._controller, F);
Ref := Make_Selected_Component (Loc,
Prefix => Convert_To (Typ, New_Copy_Tree (Target)),
Selector_Name => Make_Identifier (Loc, Name_uController));
Set_Assignment_OK (Ref);
if Init_Pr then
Append_List_To (L,
Build_Initialization_Call (Loc,
Id_Ref => Ref,
Typ => RTE (RE_Record_Controller),
In_Init_Proc => Within_Init_Proc));
end if;
Append_To (L,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Reference_To (Find_Prim_Op (RTE (RE_Record_Controller),
Name_Initialize), Loc),
Parameter_Associations => New_List (New_Copy_Tree (Ref))));
Append_To (L,
Make_Attach_Call (
Obj_Ref => New_Copy_Tree (Ref),
Flist_Ref => F,
With_Attach => Attach));
return L;
end Init_Controller;
-- Start of processing for Build_Record_Aggr_Code
begin
-- Deal with the ancestor part of extension aggregates
-- or with the discriminants of the root type
if Nkind (N) = N_Extension_Aggregate then
declare
A : constant Node_Id := Ancestor_Part (N);
begin
-- If the ancestor part is a subtype mark "T", we generate
-- _init_proc (T(tmp)); if T is constrained and
-- _init_proc (S(tmp)); where S applies an appropriate
-- constraint if T is unconstrained
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
Ancestor_Is_Subtype_Mark := True;
if Is_Constrained (Entity (A)) then
Init_Typ := Entity (A);
-- For an ancestor part given by an unconstrained type
-- mark, create a subtype constrained by appropriate
-- corresponding discriminant values coming from either
-- associations of the aggregate or a constraint on
-- a parent type. The subtype will be used to generate
-- the correct default value for the ancestor part.
elsif Has_Discriminants (Entity (A)) then
declare
Anc_Typ : Entity_Id := Entity (A);
Discrim : Entity_Id := First_Discriminant (Anc_Typ);
Anc_Constr : List_Id := New_List;
Disc_Value : Node_Id;
New_Indic : Node_Id;
Subt_Decl : Node_Id;
begin
while Present (Discrim) loop
Disc_Value := Ancestor_Discriminant_Value (Discrim);
Append_To (Anc_Constr, Disc_Value);
Next_Discriminant (Discrim);
end loop;
New_Indic :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Anc_Constr));
Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
Subt_Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Init_Typ,
Subtype_Indication => New_Indic);
-- Itypes must be analyzed with checks off
-- Declaration must have a parent for proper
-- handling of subsidiary actions.
Set_Parent (Subt_Decl, N);
Analyze (Subt_Decl, Suppress => All_Checks);
end;
end if;
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
Set_Assignment_OK (Ref);
Append_List_To (Start_L,
Build_Initialization_Call (Loc,
Id_Ref => Ref,
Typ => Init_Typ,
In_Init_Proc => Within_Init_Proc));
if Is_Constrained (Entity (A))
and then Has_Discriminants (Entity (A))
then
Check_Ancestor_Discriminants (Entity (A));
end if;
-- If the ancestor part is an expression "E", we generate
-- T(tmp) := E;
else
Ancestor_Is_Expression := True;
Init_Typ := Etype (A);
-- Assign the tag before doing the assignment to make sure
-- that the dispatching call in the subsequent deep_adjust
-- works properly (unless Java_VM, where tags are implicit).
if not Java_VM then
Instr :=
Make_OK_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Reference_To (
Tag_Component (Base_Type (Typ)), Loc)),
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To (
Access_Disp_Table (Base_Type (Typ)), Loc)));
Set_Assignment_OK (Name (Instr));
Append_To (L, Instr);
end if;
-- If the ancestor part is an aggregate, force its full
-- expansion, which was delayed.
if Nkind (A) = N_Qualified_Expression
and then (Nkind (Expression (A)) = N_Aggregate
or else
Nkind (Expression (A)) = N_Extension_Aggregate)
then
Set_Analyzed (A, False);
Set_Analyzed (Expression (A), False);
end if;
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
Set_Assignment_OK (Ref);
Append_To (L,
Make_Unsuppress_Block (Loc,
Name_Discriminant_Check,
New_List (
Make_OK_Assignment_Statement (Loc,
Name => Ref,
Expression => A))));
if Has_Discriminants (Init_Typ) then
Check_Ancestor_Discriminants (Init_Typ);
end if;
end if;
end;
else
-- Generate the discriminant expressions, component by component.
-- If the base type is an unchecked union, the discriminants are
-- unknown to the back-end and absent from a value of the type, so
-- assignments for them are not emitted.
if Has_Discriminants (Typ)
and then not Is_Unchecked_Union (Base_Type (Typ))
then
-- ??? The discriminants of the object not inherited in the type
-- of the object should be initialized here
null;
-- Generate discriminant init values
declare
Discriminant : Entity_Id;
Discriminant_Value : Node_Id;
begin
Discriminant := First_Girder_Discriminant (Typ);
while Present (Discriminant) loop
Comp_Expr :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Discriminant, Loc));
Discriminant_Value :=
Get_Discriminant_Value (
Discriminant,
N_Typ,
Discriminant_Constraint (N_Typ));
Instr :=
Make_OK_Assignment_Statement (Loc,
Name => Comp_Expr,
Expression => New_Copy_Tree (Discriminant_Value));
Set_No_Ctrl_Actions (Instr);
Append_To (L, Instr);
Next_Girder_Discriminant (Discriminant);
end loop;
end;
end if;
end if;
-- Generate the assignments, component by component
-- tmp.comp1 := Expr1_From_Aggr;
-- tmp.comp2 := Expr2_From_Aggr;
-- ....
Comp := First (Component_Associations (N));
while Present (Comp) loop
Selector := Entity (First (Choices (Comp)));
if Ekind (Selector) /= E_Discriminant
or else Nkind (N) = N_Extension_Aggregate
then
Comp_Type := Etype (Selector);
Comp_Kind := Nkind (Expression (Comp));
Comp_Expr :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Selector, Loc));
if Nkind (Expression (Comp)) = N_Qualified_Expression then
Expr_Q := Expression (Expression (Comp));
else
Expr_Q := Expression (Comp);
end if;
-- The controller is the one of the parent type defining
-- the component (in case of inherited components).
if Controlled_Type (Comp_Type) then
Internal_Final_List :=
Make_Selected_Component (Loc,
Prefix => Convert_To (
Scope (Original_Record_Component (Selector)),
New_Copy_Tree (Target)),
Selector_Name =>
Make_Identifier (Loc, Name_uController));
Internal_Final_List :=
Make_Selected_Component (Loc,
Prefix => Internal_Final_List,
Selector_Name => Make_Identifier (Loc, Name_F));
-- The internal final list can be part of a constant object
Set_Assignment_OK (Internal_Final_List);
else
Internal_Final_List := Empty;
end if;
if Is_Delayed_Aggregate (Expr_Q) then
Append_List_To (L,
Late_Expansion (Expr_Q, Comp_Type, Comp_Expr,
Internal_Final_List));
else
Instr :=
Make_OK_Assignment_Statement (Loc,
Name => Comp_Expr,
Expression => Expression (Comp));
Set_No_Ctrl_Actions (Instr);
Append_To (L, Instr);
-- Adjust the tag if tagged (because of possible view
-- conversions), unless compiling for the Java VM
-- where tags are implicit.
-- tmp.comp._tag := comp_typ'tag;
if Is_Tagged_Type (Comp_Type) and then not Java_VM then
Instr :=
Make_OK_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Comp_Expr),
Selector_Name =>
New_Reference_To (Tag_Component (Comp_Type), Loc)),
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To (
Access_Disp_Table (Comp_Type), Loc)));
Append_To (L, Instr);
end if;
-- Adjust and Attach the component to the proper controller
-- Adjust (tmp.comp);
-- Attach_To_Final_List (tmp.comp,
-- comp_typ (tmp)._record_controller.f)
if Controlled_Type (Comp_Type) then
Append_List_To (L,
Make_Adjust_Call (
Ref => New_Copy_Tree (Comp_Expr),
Typ => Comp_Type,
Flist_Ref => Internal_Final_List,
With_Attach => Make_Integer_Literal (Loc, 1)));
end if;
end if;
end if;
Next (Comp);
end loop;
-- If the type is tagged, the tag needs to be initialized (unless
-- compiling for the Java VM where tags are implicit). It is done
-- late in the initialization process because in some cases, we call
-- the init_proc of an ancestor which will not leave out the right tag
if Ancestor_Is_Expression then
null;
elsif Is_Tagged_Type (Typ) and then not Java_VM then
Instr :=
Make_OK_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name =>
New_Reference_To (Tag_Component (Base_Type (Typ)), Loc)),
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Reference_To (Access_Disp_Table (Base_Type (Typ)), Loc)));
Append_To (L, Instr);
end if;
-- Now deal with the various controlled type data structure
-- initializations
if Present (Obj)
and then Finalize_Storage_Only (Typ)
and then (Is_Library_Level_Entity (Obj)
or else Entity (Constant_Value (RTE (RE_Garbage_Collected)))
= Standard_True)
then
Attach := Make_Integer_Literal (Loc, 0);
elsif Nkind (Parent (N)) = N_Qualified_Expression
and then Nkind (Parent (Parent (N))) = N_Allocator
then
Attach := Make_Integer_Literal (Loc, 2);
else
Attach := Make_Integer_Literal (Loc, 1);
end if;
-- Determine the external finalization list. It is either the
-- finalization list of the outer-scope or the one coming from
-- an outer aggregate. When the target is not a temporary, the
-- proper scope is the scope of the target rather than the
-- potentially transient current scope.
if Controlled_Type (Typ) then
if Present (Flist) then
External_Final_List := New_Copy_Tree (Flist);
elsif Is_Entity_Name (Target)
and then Present (Scope (Entity (Target)))
then
External_Final_List := Find_Final_List (Scope (Entity (Target)));
else
External_Final_List := Find_Final_List (Current_Scope);
end if;
else
External_Final_List := Empty;
end if;
-- initialize and attach the outer object in the is_controlled
-- case
if Is_Controlled (Typ) then
if Ancestor_Is_Subtype_Mark then
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
Set_Assignment_OK (Ref);
Append_To (L,
Make_Procedure_Call_Statement (Loc,
Name => New_Reference_To (
Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
Parameter_Associations => New_List (New_Copy_Tree (Ref))));
end if;
-- ??? when the ancestor part is an expression, the global
-- object is already attached at the wrong level. It should
-- be detached and re-attached. We have a design problem here.
if Ancestor_Is_Expression
and then Has_Controlled_Component (Init_Typ)
then
null;
elsif Has_Controlled_Component (Typ) then
F := Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => Make_Identifier (Loc, Name_uController));
F := Make_Selected_Component (Loc,
Prefix => F,
Selector_Name => Make_Identifier (Loc, Name_F));
Ref := New_Copy_Tree (Target);
Set_Assignment_OK (Ref);
Append_To (L,
Make_Attach_Call (
Obj_Ref => Ref,
Flist_Ref => F,
With_Attach => Make_Integer_Literal (Loc, 1)));
else -- is_Controlled (Typ) and not Has_Controlled_Component (Typ)
Ref := New_Copy_Tree (Target);
Set_Assignment_OK (Ref);
Append_To (Start_L,
Make_Attach_Call (
Obj_Ref => Ref,
Flist_Ref => New_Copy_Tree (External_Final_List),
With_Attach => Attach));
end if;
end if;
-- in the Has_Controlled component case, all the intermediate
-- controllers must be initialized
if Has_Controlled_Component (Typ) then
declare
Inner_Typ : Entity_Id;
Outer_Typ : Entity_Id;
At_Root : Boolean;
begin
Outer_Typ := Base_Type (Typ);
-- find outer type with a controller
while Outer_Typ /= Init_Typ
and then not Has_New_Controlled_Component (Outer_Typ)
loop
Outer_Typ := Etype (Outer_Typ);
end loop;
-- attach it to the outer record controller to the
-- external final list
if Outer_Typ = Init_Typ then
Append_List_To (Start_L,
Init_Controller (
Target => Target,
Typ => Outer_Typ,
F => External_Final_List,
Attach => Attach,
Init_Pr => Ancestor_Is_Expression));
At_Root := True;
Inner_Typ := Init_Typ;
else
Append_List_To (Start_L,
Init_Controller (
Target => Target,
Typ => Outer_Typ,
F => External_Final_List,
Attach => Attach,
Init_Pr => True));
Inner_Typ := Etype (Outer_Typ);
At_Root :=
not Is_Tagged_Type (Typ) or else Inner_Typ = Outer_Typ;
end if;
-- Initialize the internal controllers for tagged types with
-- more than one controller.
while not At_Root and then Inner_Typ /= Init_Typ loop
if Has_New_Controlled_Component (Inner_Typ) then
F :=
Make_Selected_Component (Loc,
Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)),
Selector_Name =>
Make_Identifier (Loc, Name_uController));
F := Make_Selected_Component (Loc,
Prefix => F,
Selector_Name => Make_Identifier (Loc, Name_F));
Append_List_To (Start_L,
Init_Controller (
Target => Target,
Typ => Inner_Typ,
F => F,
Attach => Make_Integer_Literal (Loc, 1),
Init_Pr => True));
Outer_Typ := Inner_Typ;
end if;
-- Stop at the root
At_Root := Inner_Typ = Etype (Inner_Typ);
Inner_Typ := Etype (Inner_Typ);
end loop;
-- if not done yet attach the controller of the ancestor part
if Outer_Typ /= Init_Typ
and then Inner_Typ = Init_Typ
and then Has_Controlled_Component (Init_Typ)
then
F :=
Make_Selected_Component (Loc,
Prefix => Convert_To (Outer_Typ, New_Copy_Tree (Target)),
Selector_Name => Make_Identifier (Loc, Name_uController));
F := Make_Selected_Component (Loc,
Prefix => F,
Selector_Name => Make_Identifier (Loc, Name_F));
Attach := Make_Integer_Literal (Loc, 1);
Append_List_To (Start_L,
Init_Controller (
Target => Target,
Typ => Init_Typ,
F => F,
Attach => Attach,
Init_Pr => Ancestor_Is_Expression));
end if;
end;
end if;
Append_List_To (Start_L, L);
return Start_L;
end Build_Record_Aggr_Code;
-------------------------------
-- Convert_Aggr_In_Allocator --
-------------------------------
procedure Convert_Aggr_In_Allocator (Decl, Aggr : Node_Id) is
Loc : constant Source_Ptr := Sloc (Aggr);
Typ : constant Entity_Id := Etype (Aggr);
Temp : constant Entity_Id := Defining_Identifier (Decl);
Occ : constant Node_Id := Unchecked_Convert_To (Typ,
Make_Explicit_Dereference (Loc, New_Reference_To (Temp, Loc)));
Access_Type : constant Entity_Id := Etype (Temp);
begin
Insert_Actions_After (Decl,
Late_Expansion (Aggr, Typ, Occ,
Find_Final_List (Access_Type),
Associated_Final_Chain (Base_Type (Access_Type))));
end Convert_Aggr_In_Allocator;
--------------------------------
-- Convert_Aggr_In_Assignment --
--------------------------------
procedure Convert_Aggr_In_Assignment (N : Node_Id) is
Aggr : Node_Id := Expression (N);
Typ : constant Entity_Id := Etype (Aggr);
Occ : constant Node_Id := New_Copy_Tree (Name (N));
begin
if Nkind (Aggr) = N_Qualified_Expression then
Aggr := Expression (Aggr);
end if;
Insert_Actions_After (N,
Late_Expansion (Aggr, Typ, Occ,
Find_Final_List (Typ, New_Copy_Tree (Occ))));
end Convert_Aggr_In_Assignment;
---------------------------------
-- Convert_Aggr_In_Object_Decl --
---------------------------------
procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
Obj : constant Entity_Id := Defining_Identifier (N);
Aggr : Node_Id := Expression (N);
Loc : constant Source_Ptr := Sloc (Aggr);
Typ : constant Entity_Id := Etype (Aggr);
Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
begin
Set_Assignment_OK (Occ);
if Nkind (Aggr) = N_Qualified_Expression then
Aggr := Expression (Aggr);
end if;
Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ, Obj => Obj));
Set_No_Initialization (N);
Initialize_Discriminants (N, Typ);
end Convert_Aggr_In_Object_Decl;
----------------------------
-- Convert_To_Assignments --
----------------------------
procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Temp : Entity_Id;
Instr : Node_Id;
Target_Expr : Node_Id;
Parent_Kind : Node_Kind;
Unc_Decl : Boolean := False;
Parent_Node : Node_Id;
begin
Parent_Node := Parent (N);
Parent_Kind := Nkind (Parent_Node);
if Parent_Kind = N_Qualified_Expression then
-- Check if we are in a unconstrained declaration because in this
-- case the current delayed expansion mechanism doesn't work when
-- the declared object size depend on the initializing expr.
begin
Parent_Node := Parent (Parent_Node);
Parent_Kind := Nkind (Parent_Node);
if Parent_Kind = N_Object_Declaration then
Unc_Decl :=
not Is_Entity_Name (Object_Definition (Parent_Node))
or else Has_Discriminants (
Entity (Object_Definition (Parent_Node)))
or else Is_Class_Wide_Type (
Entity (Object_Definition (Parent_Node)));
end if;
end;
end if;
-- Just set the Delay flag in the following cases where the
-- transformation will be done top down from above
-- - internal aggregate (transformed when expanding the parent)
-- - allocators (see Convert_Aggr_In_Allocator)
-- - object decl (see Convert_Aggr_In_Object_Decl)
-- - safe assignments (see Convert_Aggr_Assignments)
-- so far only the assignments in the init_procs are taken
-- into account
if Parent_Kind = N_Aggregate
or else Parent_Kind = N_Extension_Aggregate
or else Parent_Kind = N_Component_Association
or else Parent_Kind = N_Allocator
or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
or else (Parent_Kind = N_Assignment_Statement
and then Inside_Init_Proc)
then
Set_Expansion_Delayed (N);
return;
end if;
if Requires_Transient_Scope (Typ) then
Establish_Transient_Scope (N, Sec_Stack =>
Is_Controlled (Typ) or else Has_Controlled_Component (Typ));
end if;
-- Create the temporary
Temp := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
Instr :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Typ, Loc));
Set_No_Initialization (Instr);
Insert_Action (N, Instr);
Initialize_Discriminants (Instr, Typ);
Target_Expr := New_Occurrence_Of (Temp, Loc);
Insert_Actions (N, Build_Record_Aggr_Code (N, Typ, Target_Expr));
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, Typ);
end Convert_To_Assignments;
---------------------------
-- Convert_To_Positional --
---------------------------
procedure Convert_To_Positional
(N : Node_Id;
Max_Others_Replicate : Nat := 5;
Handle_Bit_Packed : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Ndim : constant Pos := Number_Dimensions (Typ);
Xtyp : constant Entity_Id := Etype (First_Index (Typ));
Indx : constant Node_Id := First_Index (Base_Type (Typ));
Blo : constant Node_Id := Type_Low_Bound (Etype (Indx));
Lo : constant Node_Id := Type_Low_Bound (Xtyp);
Hi : constant Node_Id := Type_High_Bound (Xtyp);
Lov : Uint;
Hiv : Uint;
-- The following constant determines the maximum size of an
-- aggregate produced by converting named to positional
-- notation (e.g. from others clauses). This avoids running
-- away with attempts to convert huge aggregates.
-- The normal limit is 5000, but we increase this limit to
-- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code)
-- or Restrictions (No_Implicit_Loops) is specified, since in
-- either case, we are at risk of declaring the program illegal
-- because of this limit.
Max_Aggr_Size : constant Nat :=
5000 + (2 ** 24 - 5000) * Boolean'Pos
(Restrictions (No_Elaboration_Code)
or else
Restrictions (No_Implicit_Loops));
begin
-- For now, we only handle the one dimensional case and aggregates
-- that are not part of a component_association
if Ndim > 1 or else Nkind (Parent (N)) = N_Aggregate
or else Nkind (Parent (N)) = N_Component_Association
then
return;
end if;
-- If already positional, nothing to do!
if No (Component_Associations (N)) then
return;
end if;
-- Bounds need to be known at compile time
if not Compile_Time_Known_Value (Lo)
or else not Compile_Time_Known_Value (Hi)
then
return;
end if;
-- Normally we do not attempt to convert bit packed arrays. The
-- exception is when we are explicitly asked to do so (this call
-- is from the Packed_Array_Aggregate_Handled procedure).
if Is_Bit_Packed_Array (Typ)
and then not Handle_Bit_Packed
then
return;
end if;
-- Do not convert to positional if controlled components are
-- involved since these require special processing
if Has_Controlled_Component (Typ) then
return;
end if;
-- Get bounds and check reasonable size (positive, not too large)
-- Also only handle bounds starting at the base type low bound for now
-- since the compiler isn't able to handle different low bounds yet.
Lov := Expr_Value (Lo);
Hiv := Expr_Value (Hi);
if Hiv < Lov
or else (Hiv - Lov > Max_Aggr_Size)
or else not Compile_Time_Known_Value (Blo)
or else (Lov /= Expr_Value (Blo))
then
return;
end if;
-- Bounds must be in integer range (for array Vals below)
if not UI_Is_In_Int_Range (Lov)
or else
not UI_Is_In_Int_Range (Hiv)
then
return;
end if;
-- Determine if set of alternatives is suitable for conversion
-- and build an array containing the values in sequence.
declare
Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
of Node_Id := (others => Empty);
-- The values in the aggregate sorted appropriately
Vlist : List_Id;
-- Same data as Vals in list form
Rep_Count : Nat;
-- Used to validate Max_Others_Replicate limit
Elmt : Node_Id;
Num : Int := UI_To_Int (Lov);
Choice : Node_Id;
Lo, Hi : Node_Id;
begin
if Present (Expressions (N)) then
Elmt := First (Expressions (N));
while Present (Elmt) loop
Vals (Num) := Relocate_Node (Elmt);
Num := Num + 1;
Next (Elmt);
end loop;
end if;
Elmt := First (Component_Associations (N));
Component_Loop : while Present (Elmt) loop
Choice := First (Choices (Elmt));
Choice_Loop : while Present (Choice) loop
-- If we have an others choice, fill in the missing elements
-- subject to the limit established by Max_Others_Replicate.
if Nkind (Choice) = N_Others_Choice then
Rep_Count := 0;
for J in Vals'Range loop
if No (Vals (J)) then
Vals (J) := New_Copy_Tree (Expression (Elmt));
Rep_Count := Rep_Count + 1;
-- Check for maximum others replication. Note that
-- we skip this test if either of the restrictions
-- No_Elaboration_Code or No_Implicit_Loops is
-- active, or if this is a preelaborable unit.
if Rep_Count > Max_Others_Replicate
and then not Restrictions (No_Elaboration_Code)
and then not Restrictions (No_Implicit_Loops)
and then not
Is_Preelaborated (Cunit_Entity (Current_Sem_Unit))
then
return;
end if;
end if;
end loop;
exit Component_Loop;
-- Case of a subtype mark
elsif (Nkind (Choice) = N_Identifier
and then Is_Type (Entity (Choice)))
then
Lo := Type_Low_Bound (Etype (Choice));
Hi := Type_High_Bound (Etype (Choice));
-- Case of subtype indication
elsif Nkind (Choice) = N_Subtype_Indication then
Lo := Low_Bound (Range_Expression (Constraint (Choice)));
Hi := High_Bound (Range_Expression (Constraint (Choice)));
-- Case of a range
elsif Nkind (Choice) = N_Range then
Lo := Low_Bound (Choice);
Hi := High_Bound (Choice);
-- Normal subexpression case
else pragma Assert (Nkind (Choice) in N_Subexpr);
if not Compile_Time_Known_Value (Choice) then
return;
else
Vals (UI_To_Int (Expr_Value (Choice))) :=
New_Copy_Tree (Expression (Elmt));
goto Continue;
end if;
end if;
-- Range cases merge with Lo,Hi said
if not Compile_Time_Known_Value (Lo)
or else
not Compile_Time_Known_Value (Hi)
then
return;
else
for J in UI_To_Int (Expr_Value (Lo)) ..
UI_To_Int (Expr_Value (Hi))
loop
Vals (J) := New_Copy_Tree (Expression (Elmt));
end loop;
end if;
<<Continue>>
Next (Choice);
end loop Choice_Loop;
Next (Elmt);
end loop Component_Loop;
-- If we get here the conversion is possible
Vlist := New_List;
for J in Vals'Range loop
Append (Vals (J), Vlist);
end loop;
Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
Analyze_And_Resolve (N, Typ);
end;
end Convert_To_Positional;
----------------------------
-- Expand_Array_Aggregate --
----------------------------
-- Array aggregate expansion proceeds as follows:
-- 1. If requested we generate code to perform all the array aggregate
-- bound checks, specifically
-- (a) Check that the index range defined by aggregate bounds is
-- compatible with corresponding index subtype.
-- (b) If an others choice is present check that no aggregate
-- index is outside the bounds of the index constraint.
-- (c) For multidimensional arrays make sure that all subaggregates
-- corresponding to the same dimension have the same bounds.
-- 2. Check if the aggregate can be statically processed. If this is the
-- case pass it as is to Gigi. Note that a necessary condition for
-- static processing is that the aggregate be fully positional.
-- 3. If in place aggregate expansion is possible (i.e. no need to create
-- a temporary) then mark the aggregate as such and return. Otherwise
-- create a new temporary and generate the appropriate initialization
-- code.
procedure Expand_Array_Aggregate (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Ctyp : constant Entity_Id := Component_Type (Typ);
-- Typ is the correct constrained array subtype of the aggregate
-- Ctyp is the corresponding component type.
Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
-- Number of aggregate index dimensions.
Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
-- Low and High bounds of the constraint for each aggregate index.
Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
-- The type of each index.
Maybe_In_Place_OK : Boolean;
-- If the type is neither controlled nor packed and the aggregate
-- is the expression in an assignment, assignment in place may be
-- possible, provided other conditions are met on the LHS.
Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
(others => False);
-- If Others_Present (J) is True, then there is an others choice
-- in one of the sub-aggregates of N at dimension J.
procedure Build_Constrained_Type (Positional : Boolean);
-- If the subtype is not static or unconstrained, build a constrained
-- type using the computable sizes of the aggregate and its sub-
-- aggregates.
procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id);
-- Checks that the bounds of Aggr_Bounds are within the bounds defined
-- by Index_Bounds.
procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
-- Checks that in a multi-dimensional array aggregate all subaggregates
-- corresponding to the same dimension have the same bounds.
-- Sub_Aggr is an array sub-aggregate. Dim is the dimension
-- corresponding to the sub-aggregate.
procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
-- Computes the values of array Others_Present. Sub_Aggr is the
-- array sub-aggregate we start the computation from. Dim is the
-- dimension corresponding to the sub-aggregate.
function Has_Address_Clause (D : Node_Id) return Boolean;
-- If the aggregate is the expression in an object declaration, it
-- cannot be expanded in place. This function does a lookahead in the
-- current declarative part to find an address clause for the object
-- being declared.
function In_Place_Assign_OK return Boolean;
-- Simple predicate to determine whether an aggregate assignment can
-- be done in place, because none of the new values can depend on the
-- components of the target of the assignment.
procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
-- Checks that if an others choice is present in any sub-aggregate no
-- aggregate index is outside the bounds of the index constraint.
-- Sub_Aggr is an array sub-aggregate. Dim is the dimension
-- corresponding to the sub-aggregate.
----------------------------
-- Build_Constrained_Type --
----------------------------
procedure Build_Constrained_Type (Positional : Boolean) is
Loc : constant Source_Ptr := Sloc (N);
Agg_Type : Entity_Id;
Comp : Node_Id;
Decl : Node_Id;
Typ : constant Entity_Id := Etype (N);
Indices : List_Id := New_List;
Num : Int;
Sub_Agg : Node_Id;
begin
Agg_Type :=
Make_Defining_Identifier (
Loc, New_Internal_Name ('A'));
-- If the aggregate is purely positional, all its subaggregates
-- have the same size. We collect the dimensions from the first
-- subaggregate at each level.
if Positional then
Sub_Agg := N;
for D in 1 .. Number_Dimensions (Typ) loop
Comp := First (Expressions (Sub_Agg));
Sub_Agg := Comp;
Num := 0;
while Present (Comp) loop
Num := Num + 1;
Next (Comp);
end loop;
Append (
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound =>
Make_Integer_Literal (Loc, Num)),
Indices);
end loop;
else
-- We know the aggregate type is unconstrained and the
-- aggregate is not processable by the back end, therefore
-- not necessarily positional. Retrieve the bounds of each
-- dimension as computed earlier.
for D in 1 .. Number_Dimensions (Typ) loop
Append (
Make_Range (Loc,
Low_Bound => Aggr_Low (D),
High_Bound => Aggr_High (D)),
Indices);
end loop;
end if;
Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Agg_Type,
Type_Definition =>
Make_Constrained_Array_Definition (Loc,
Discrete_Subtype_Definitions => Indices,
Subtype_Indication =>
New_Occurrence_Of (Component_Type (Typ), Loc)));
Insert_Action (N, Decl);
Analyze (Decl);
Set_Etype (N, Agg_Type);
Set_Is_Itype (Agg_Type);
Freeze_Itype (Agg_Type, N);
end Build_Constrained_Type;
------------------
-- Check_Bounds --
------------------
procedure Check_Bounds (Aggr_Bounds : Node_Id; Index_Bounds : Node_Id) is
Aggr_Lo : Node_Id;
Aggr_Hi : Node_Id;
Ind_Lo : Node_Id;
Ind_Hi : Node_Id;
Cond : Node_Id := Empty;
begin
Get_Index_Bounds (Aggr_Bounds, Aggr_Lo, Aggr_Hi);
Get_Index_Bounds (Index_Bounds, Ind_Lo, Ind_Hi);
-- Generate the following test:
--
-- [constraint_error when
-- Aggr_Lo <= Aggr_Hi and then
-- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
--
-- As an optimization try to see if some tests are trivially vacuos
-- because we are comparing an expression against itself.
if Aggr_Lo = Ind_Lo and then Aggr_Hi = Ind_Hi then
Cond := Empty;
elsif Aggr_Hi = Ind_Hi then
Cond :=
Make_Op_Lt (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Lo),
Right_Opnd => Duplicate_Subexpr (Ind_Lo));
elsif Aggr_Lo = Ind_Lo then
Cond :=
Make_Op_Gt (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
Right_Opnd => Duplicate_Subexpr (Ind_Hi));
else
Cond :=
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Lt (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Lo),
Right_Opnd => Duplicate_Subexpr (Ind_Lo)),
Right_Opnd =>
Make_Op_Gt (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
Right_Opnd => Duplicate_Subexpr (Ind_Hi)));
end if;
if Present (Cond) then
Cond :=
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Le (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Lo),
Right_Opnd => Duplicate_Subexpr (Aggr_Hi)),
Right_Opnd => Cond);
Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Length_Check_Failed));
end if;
end Check_Bounds;
----------------------------
-- Check_Same_Aggr_Bounds --
----------------------------
procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
Sub_Lo : constant Node_Id := Low_Bound (Aggregate_Bounds (Sub_Aggr));
Sub_Hi : constant Node_Id := High_Bound (Aggregate_Bounds (Sub_Aggr));
-- The bounds of this specific sub-aggregate.
Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
Aggr_Hi : constant Node_Id := Aggr_High (Dim);
-- The bounds of the aggregate for this dimension
Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
-- The index type for this dimension.
Cond : Node_Id := Empty;
Assoc : Node_Id;
Expr : Node_Id;
begin
-- If index checks are on generate the test
--
-- [constraint_error when
-- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
--
-- As an optimization try to see if some tests are trivially vacuos
-- because we are comparing an expression against itself. Also for
-- the first dimension the test is trivially vacuous because there
-- is just one aggregate for dimension 1.
if Index_Checks_Suppressed (Ind_Typ) then
Cond := Empty;
elsif Dim = 1
or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
then
Cond := Empty;
elsif Aggr_Hi = Sub_Hi then
Cond :=
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Lo),
Right_Opnd => Duplicate_Subexpr (Sub_Lo));
elsif Aggr_Lo = Sub_Lo then
Cond :=
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
Right_Opnd => Duplicate_Subexpr (Sub_Hi));
else
Cond :=
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Lo),
Right_Opnd => Duplicate_Subexpr (Sub_Lo)),
Right_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
end if;
if Present (Cond) then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Length_Check_Failed));
end if;
-- Now look inside the sub-aggregate to see if there is more work
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (Sub_Aggr)) then
Expr := First (Expressions (Sub_Aggr));
while Present (Expr) loop
Check_Same_Aggr_Bounds (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (Sub_Aggr)) then
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Expr := Expression (Assoc);
Check_Same_Aggr_Bounds (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Check_Same_Aggr_Bounds;
----------------------------
-- Compute_Others_Present --
----------------------------
procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
Assoc : Node_Id;
Expr : Node_Id;
begin
if Present (Component_Associations (Sub_Aggr)) then
Assoc := Last (Component_Associations (Sub_Aggr));
if Nkind (First (Choices (Assoc))) = N_Others_Choice then
Others_Present (Dim) := True;
end if;
end if;
-- Now look inside the sub-aggregate to see if there is more work
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (Sub_Aggr)) then
Expr := First (Expressions (Sub_Aggr));
while Present (Expr) loop
Compute_Others_Present (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (Sub_Aggr)) then
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Expr := Expression (Assoc);
Compute_Others_Present (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Compute_Others_Present;
-------------------------
-- Has_Address_Clause --
-------------------------
function Has_Address_Clause (D : Node_Id) return Boolean is
Id : Entity_Id := Defining_Identifier (D);
Decl : Node_Id := Next (D);
begin
while Present (Decl) loop
if Nkind (Decl) = N_At_Clause
and then Chars (Identifier (Decl)) = Chars (Id)
then
return True;
elsif Nkind (Decl) = N_Attribute_Definition_Clause
and then Chars (Decl) = Name_Address
and then Chars (Name (Decl)) = Chars (Id)
then
return True;
end if;
Next (Decl);
end loop;
return False;
end Has_Address_Clause;
------------------------
-- In_Place_Assign_OK --
------------------------
function In_Place_Assign_OK return Boolean is
Aggr_In : Node_Id;
Aggr_Lo : Node_Id;
Aggr_Hi : Node_Id;
Obj_In : Node_Id;
Obj_Lo : Node_Id;
Obj_Hi : Node_Id;
function Is_Others_Aggregate (Aggr : Node_Id) return Boolean;
-- Aggregates that consist of a single Others choice are safe
-- if the single expression is.
function Safe_Aggregate (Aggr : Node_Id) return Boolean;
-- Check recursively that each component of a (sub)aggregate does
-- not depend on the variable being assigned to.
function Safe_Component (Expr : Node_Id) return Boolean;
-- Verify that an expression cannot depend on the variable being
-- assigned to. Room for improvement here (but less than before).
-------------------------
-- Is_Others_Aggregate --
-------------------------
function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
begin
return No (Expressions (Aggr))
and then Nkind
(First (Choices (First (Component_Associations (Aggr)))))
= N_Others_Choice;
end Is_Others_Aggregate;
--------------------
-- Safe_Aggregate --
--------------------
function Safe_Aggregate (Aggr : Node_Id) return Boolean is
Expr : Node_Id;
begin
if Present (Expressions (Aggr)) then
Expr := First (Expressions (Aggr));
while Present (Expr) loop
if Nkind (Expr) = N_Aggregate then
if not Safe_Aggregate (Expr) then
return False;
end if;
elsif not Safe_Component (Expr) then
return False;
end if;
Next (Expr);
end loop;
end if;
if Present (Component_Associations (Aggr)) then
Expr := First (Component_Associations (Aggr));
while Present (Expr) loop
if Nkind (Expression (Expr)) = N_Aggregate then
if not Safe_Aggregate (Expression (Expr)) then
return False;
end if;
elsif not Safe_Component (Expression (Expr)) then
return False;
end if;
Next (Expr);
end loop;
end if;
return True;
end Safe_Aggregate;
--------------------
-- Safe_Component --
--------------------
function Safe_Component (Expr : Node_Id) return Boolean is
Comp : Node_Id := Expr;
function Check_Component (Comp : Node_Id) return Boolean;
-- Do the recursive traversal, after copy.
function Check_Component (Comp : Node_Id) return Boolean is
begin
if Is_Overloaded (Comp) then
return False;
end if;
return Compile_Time_Known_Value (Comp)
or else (Is_Entity_Name (Comp)
and then Present (Entity (Comp))
and then No (Renamed_Object (Entity (Comp))))
or else (Nkind (Comp) = N_Attribute_Reference
and then Check_Component (Prefix (Comp)))
or else (Nkind (Comp) in N_Binary_Op
and then Check_Component (Left_Opnd (Comp))
and then Check_Component (Right_Opnd (Comp)))
or else (Nkind (Comp) in N_Unary_Op
and then Check_Component (Right_Opnd (Comp)))
or else (Nkind (Comp) = N_Selected_Component
and then Check_Component (Prefix (Comp)));
end Check_Component;
-- Start of processing for Safe_Component
begin
-- If the component appears in an association that may
-- correspond to more than one element, it is not analyzed
-- before the expansion into assignments, to avoid side effects.
-- We analyze, but do not resolve the copy, to obtain sufficient
-- entity information for the checks that follow. If component is
-- overloaded we assume an unsafe function call.
if not Analyzed (Comp) then
if Is_Overloaded (Expr) then
return False;
elsif Nkind (Expr) = N_Aggregate
and then not Is_Others_Aggregate (Expr)
then
return False;
elsif Nkind (Expr) = N_Allocator then
-- For now, too complex to analyze.
return False;
end if;
Comp := New_Copy_Tree (Expr);
Set_Parent (Comp, Parent (Expr));
Analyze (Comp);
end if;
if Nkind (Comp) = N_Aggregate then
return Safe_Aggregate (Comp);
else
return Check_Component (Comp);
end if;
end Safe_Component;
-- Start of processing for In_Place_Assign_OK
begin
if Present (Component_Associations (N)) then
-- On assignment, sliding can take place, so we cannot do the
-- assignment in place unless the bounds of the aggregate are
-- statically equal to those of the target.
-- If the aggregate is given by an others choice, the bounds
-- are derived from the left-hand side, and the assignment is
-- safe if the expression is.
if Is_Others_Aggregate (N) then
return
Safe_Component
(Expression (First (Component_Associations (N))));
end if;
Aggr_In := First_Index (Etype (N));
Obj_In := First_Index (Etype (Name (Parent (N))));
while Present (Aggr_In) loop
Get_Index_Bounds (Aggr_In, Aggr_Lo, Aggr_Hi);
Get_Index_Bounds (Obj_In, Obj_Lo, Obj_Hi);
if not Compile_Time_Known_Value (Aggr_Lo)
or else not Compile_Time_Known_Value (Aggr_Hi)
or else not Compile_Time_Known_Value (Obj_Lo)
or else not Compile_Time_Known_Value (Obj_Hi)
or else Expr_Value (Aggr_Lo) /= Expr_Value (Obj_Lo)
or else Expr_Value (Aggr_Hi) /= Expr_Value (Obj_Hi)
then
return False;
end if;
Next_Index (Aggr_In);
Next_Index (Obj_In);
end loop;
end if;
-- Now check the component values themselves.
return Safe_Aggregate (N);
end In_Place_Assign_OK;
------------------
-- Others_Check --
------------------
procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
Aggr_Hi : constant Node_Id := Aggr_High (Dim);
-- The bounds of the aggregate for this dimension.
Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
-- The index type for this dimension.
Need_To_Check : Boolean := False;
Choices_Lo : Node_Id := Empty;
Choices_Hi : Node_Id := Empty;
-- The lowest and highest discrete choices for a named sub-aggregate
Nb_Choices : Int := -1;
-- The number of discrete non-others choices in this sub-aggregate
Nb_Elements : Uint := Uint_0;
-- The number of elements in a positional aggregate
Cond : Node_Id := Empty;
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
begin
-- Check if we have an others choice. If we do make sure that this
-- sub-aggregate contains at least one element in addition to the
-- others choice.
if Range_Checks_Suppressed (Ind_Typ) then
Need_To_Check := False;
elsif Present (Expressions (Sub_Aggr))
and then Present (Component_Associations (Sub_Aggr))
then
Need_To_Check := True;
elsif Present (Component_Associations (Sub_Aggr)) then
Assoc := Last (Component_Associations (Sub_Aggr));
if Nkind (First (Choices (Assoc))) /= N_Others_Choice then
Need_To_Check := False;
else
-- Count the number of discrete choices. Start with -1
-- because the others choice does not count.
Nb_Choices := -1;
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
Nb_Choices := Nb_Choices + 1;
Next (Choice);
end loop;
Next (Assoc);
end loop;
-- If there is only an others choice nothing to do
Need_To_Check := (Nb_Choices > 0);
end if;
else
Need_To_Check := False;
end if;
-- If we are dealing with a positional sub-aggregate with an
-- others choice then compute the number or positional elements.
if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
Expr := First (Expressions (Sub_Aggr));
Nb_Elements := Uint_0;
while Present (Expr) loop
Nb_Elements := Nb_Elements + 1;
Next (Expr);
end loop;
-- If the aggregate contains discrete choices and an others choice
-- compute the smallest and largest discrete choice values.
elsif Need_To_Check then
Compute_Choices_Lo_And_Choices_Hi : declare
Table : Case_Table_Type (1 .. Nb_Choices);
-- Used to sort all the different choice values
J : Pos := 1;
Low : Node_Id;
High : Node_Id;
begin
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
exit;
end if;
Get_Index_Bounds (Choice, Low, High);
Table (J).Choice_Lo := Low;
Table (J).Choice_Hi := High;
J := J + 1;
Next (Choice);
end loop;
Next (Assoc);
end loop;
-- Sort the discrete choices
Sort_Case_Table (Table);
Choices_Lo := Table (1).Choice_Lo;
Choices_Hi := Table (Nb_Choices).Choice_Hi;
end Compute_Choices_Lo_And_Choices_Hi;
end if;
-- If no others choice in this sub-aggregate, or the aggregate
-- comprises only an others choice, nothing to do.
if not Need_To_Check then
Cond := Empty;
-- If we are dealing with an aggregate containing an others
-- choice and positional components, we generate the following test:
--
-- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
-- Ind_Typ'Pos (Aggr_Hi)
-- then
-- raise Constraint_Error;
-- end if;
elsif Nb_Elements > Uint_0 then
Cond :=
Make_Op_Gt (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Ind_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions =>
New_List (Duplicate_Subexpr (Aggr_Lo))),
Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Reference_To (Ind_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (Duplicate_Subexpr (Aggr_Hi))));
-- If we are dealing with an aggregate containing an others
-- choice and discrete choices we generate the following test:
--
-- [constraint_error when
-- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
else
Cond :=
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Lt (Loc,
Left_Opnd => Duplicate_Subexpr (Choices_Lo),
Right_Opnd => Duplicate_Subexpr (Aggr_Lo)),
Right_Opnd =>
Make_Op_Gt (Loc,
Left_Opnd => Duplicate_Subexpr (Choices_Hi),
Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
end if;
if Present (Cond) then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Length_Check_Failed));
end if;
-- Now look inside the sub-aggregate to see if there is more work
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (Sub_Aggr)) then
Expr := First (Expressions (Sub_Aggr));
while Present (Expr) loop
Others_Check (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (Sub_Aggr)) then
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Expr := Expression (Assoc);
Others_Check (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Others_Check;
-- Remaining Expand_Array_Aggregate variables
Tmp : Entity_Id;
-- Holds the temporary aggregate value.
Tmp_Decl : Node_Id;
-- Holds the declaration of Tmp.
Aggr_Code : List_Id;
Parent_Node : Node_Id;
Parent_Kind : Node_Kind;
-- Start of processing for Expand_Array_Aggregate
begin
-- Do not touch the special aggregates of attributes used for Asm calls
if Is_RTE (Ctyp, RE_Asm_Input_Operand)
or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
then
return;
end if;
-- If the semantic analyzer has determined that aggregate N will raise
-- Constraint_Error at run-time, then the aggregate node has been
-- replaced with an N_Raise_Constraint_Error node and we should
-- never get here.
pragma Assert (not Raises_Constraint_Error (N));
-- STEP 1: Check (a)
Index_Compatibility_Check : declare
Aggr_Index_Range : Node_Id := First_Index (Typ);
-- The current aggregate index range
Index_Constraint : Node_Id := First_Index (Etype (Typ));
-- The corresponding index constraint against which we have to
-- check the above aggregate index range.
begin
Compute_Others_Present (N, 1);
for J in 1 .. Aggr_Dimension loop
-- There is no need to emit a check if an others choice is
-- present for this array aggregate dimension since in this
-- case one of N's sub-aggregates has taken its bounds from the
-- context and these bounds must have been checked already. In
-- addition all sub-aggregates corresponding to the same
-- dimension must all have the same bounds (checked in (c) below).
if not Range_Checks_Suppressed (Etype (Index_Constraint))
and then not Others_Present (J)
then
-- We don't use Checks.Apply_Range_Check here because it
-- emits a spurious check. Namely it checks that the range
-- defined by the aggregate bounds is non empty. But we know
-- this already if we get here.
Check_Bounds (Aggr_Index_Range, Index_Constraint);
end if;
-- Save the low and high bounds of the aggregate index as well
-- as the index type for later use in checks (b) and (c) below.
Aggr_Low (J) := Low_Bound (Aggr_Index_Range);
Aggr_High (J) := High_Bound (Aggr_Index_Range);
Aggr_Index_Typ (J) := Etype (Index_Constraint);
Next_Index (Aggr_Index_Range);
Next_Index (Index_Constraint);
end loop;
end Index_Compatibility_Check;
-- STEP 1: Check (b)
Others_Check (N, 1);
-- STEP 1: Check (c)
if Aggr_Dimension > 1 then
Check_Same_Aggr_Bounds (N, 1);
end if;
-- STEP 2.
-- First try to convert to positional form. If the result is not
-- an aggregate any more, then we are done with the analysis (it
-- it could be a string literal or an identifier for a temporary
-- variable following this call). If result is an analyzed aggregate
-- the transformation was also successful and we are done as well.
Convert_To_Positional (N);
if Nkind (N) /= N_Aggregate then
return;
elsif Analyzed (N)
and then N /= Original_Node (N)
then
return;
end if;
if Backend_Processing_Possible (N) then
-- If the aggregate is static but the constraints are not, build
-- a static subtype for the aggregate, so that Gigi can place it
-- in static memory. Perform an unchecked_conversion to the non-
-- static type imposed by the context.
declare
Itype : constant Entity_Id := Etype (N);
Index : Node_Id;
Needs_Type : Boolean := False;
begin
Index := First_Index (Itype);
while Present (Index) loop
if not Is_Static_Subtype (Etype (Index)) then
Needs_Type := True;
exit;
else
Next_Index (Index);
end if;
end loop;
if Needs_Type then
Build_Constrained_Type (Positional => True);
Rewrite (N, Unchecked_Convert_To (Itype, N));
Analyze (N);
end if;
end;
return;
end if;
-- Delay expansion for nested aggregates it will be taken care of
-- when the parent aggregate is expanded
Parent_Node := Parent (N);
Parent_Kind := Nkind (Parent_Node);
if Parent_Kind = N_Qualified_Expression then
Parent_Node := Parent (Parent_Node);
Parent_Kind := Nkind (Parent_Node);
end if;
if Parent_Kind = N_Aggregate
or else Parent_Kind = N_Extension_Aggregate
or else Parent_Kind = N_Component_Association
or else (Parent_Kind = N_Object_Declaration
and then Controlled_Type (Typ))
or else (Parent_Kind = N_Assignment_Statement
and then Inside_Init_Proc)
then
Set_Expansion_Delayed (N);
return;
end if;
-- STEP 3.
-- Look if in place aggregate expansion is possible
-- First case to test for is packed array aggregate that we can
-- handle at compile time. If so, return with transformation done.
if Packed_Array_Aggregate_Handled (N) then
return;
end if;
-- For object declarations we build the aggregate in place, unless
-- the array is bit-packed or the component is controlled.
-- For assignments we do the assignment in place if all the component
-- associations have compile-time known values. For other cases we
-- create a temporary. The analysis for safety of on-line assignment
-- is delicate, i.e. we don't know how to do it fully yet ???
if Requires_Transient_Scope (Typ) then
Establish_Transient_Scope
(N, Sec_Stack => Has_Controlled_Component (Typ));
end if;
Maybe_In_Place_OK :=
Comes_From_Source (N)
and then Nkind (Parent (N)) = N_Assignment_Statement
and then not Is_Bit_Packed_Array (Typ)
and then not Has_Controlled_Component (Typ)
and then In_Place_Assign_OK;
if Comes_From_Source (Parent (N))
and then Nkind (Parent (N)) = N_Object_Declaration
and then N = Expression (Parent (N))
and then not Is_Bit_Packed_Array (Typ)
and then not Has_Controlled_Component (Typ)
and then not Has_Address_Clause (Parent (N))
then
Tmp := Defining_Identifier (Parent (N));
Set_No_Initialization (Parent (N));
Set_Expression (Parent (N), Empty);
-- Set the type of the entity, for use in the analysis of the
-- subsequent indexed assignments. If the nominal type is not
-- constrained, build a subtype from the known bounds of the
-- aggregate. If the declaration has a subtype mark, use it,
-- otherwise use the itype of the aggregate.
if not Is_Constrained (Typ) then
Build_Constrained_Type (Positional => False);
elsif Is_Entity_Name (Object_Definition (Parent (N)))
and then Is_Constrained (Entity (Object_Definition (Parent (N))))
then
Set_Etype (Tmp, Entity (Object_Definition (Parent (N))));
else
Set_Size_Known_At_Compile_Time (Typ, False);
Set_Etype (Tmp, Typ);
end if;
elsif Maybe_In_Place_OK
and then Is_Entity_Name (Name (Parent (N)))
then
Tmp := Entity (Name (Parent (N)));
if Etype (Tmp) /= Etype (N) then
Apply_Length_Check (N, Etype (Tmp));
end if;
elsif Maybe_In_Place_OK
and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Name (Parent (N))))
then
Tmp := Name (Parent (N));
if Etype (Tmp) /= Etype (N) then
Apply_Length_Check (N, Etype (Tmp));
end if;
elsif Maybe_In_Place_OK
and then Nkind (Name (Parent (N))) = N_Slice
and then Safe_Slice_Assignment (N)
then
-- Safe_Slice_Assignment rewrites assignment as a loop
return;
else
Maybe_In_Place_OK := False;
Tmp := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
Tmp_Decl :=
Make_Object_Declaration
(Loc,
Defining_Identifier => Tmp,
Object_Definition => New_Occurrence_Of (Typ, Loc));
Set_No_Initialization (Tmp_Decl, True);
-- If we are within a loop, the temporary will be pushed on the
-- stack at each iteration. If the aggregate is the expression for
-- an allocator, it will be immediately copied to the heap and can
-- be reclaimed at once. We create a transient scope around the
-- aggregate for this purpose.
if Ekind (Current_Scope) = E_Loop
and then Nkind (Parent (Parent (N))) = N_Allocator
then
Establish_Transient_Scope (N, False);
end if;
Insert_Action (N, Tmp_Decl);
end if;
-- Construct and insert the aggregate code. We can safely suppress
-- index checks because this code is guaranteed not to raise CE
-- on index checks. However we should *not* suppress all checks.
declare
Target : Node_Id;
begin
if Nkind (Tmp) = N_Defining_Identifier then
Target := New_Reference_To (Tmp, Loc);
else
-- Name in assignment is explicit dereference.
Target := New_Copy (Tmp);
end if;
Aggr_Code :=
Build_Array_Aggr_Code (N,
Index => First_Index (Typ),
Into => Target,
Scalar_Comp => Is_Scalar_Type (Ctyp));
end;
if Comes_From_Source (Tmp) then
Insert_Actions_After (Parent (N), Aggr_Code);
else
Insert_Actions (N, Aggr_Code);
end if;
-- If the aggregate has been assigned in place, remove the original
-- assignment.
if Nkind (Parent (N)) = N_Assignment_Statement
and then Maybe_In_Place_OK
then
Rewrite (Parent (N), Make_Null_Statement (Loc));
elsif Nkind (Parent (N)) /= N_Object_Declaration
or else Tmp /= Defining_Identifier (Parent (N))
then
Rewrite (N, New_Occurrence_Of (Tmp, Loc));
Analyze_And_Resolve (N, Typ);
end if;
end Expand_Array_Aggregate;
------------------------
-- Expand_N_Aggregate --
------------------------
procedure Expand_N_Aggregate (N : Node_Id) is
begin
if Is_Record_Type (Etype (N)) then
Expand_Record_Aggregate (N);
else
Expand_Array_Aggregate (N);
end if;
end Expand_N_Aggregate;
----------------------------------
-- Expand_N_Extension_Aggregate --
----------------------------------
-- If the ancestor part is an expression, add a component association for
-- the parent field. If the type of the ancestor part is not the direct
-- parent of the expected type, build recursively the needed ancestors.
-- If the ancestor part is a subtype_mark, replace aggregate with a decla-
-- ration for a temporary of the expected type, followed by individual
-- assignments to the given components.
procedure Expand_N_Extension_Aggregate (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
A : constant Node_Id := Ancestor_Part (N);
Typ : constant Entity_Id := Etype (N);
begin
-- If the ancestor is a subtype mark, an init_proc must be called
-- on the resulting object which thus has to be materialized in
-- the front-end
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
Convert_To_Assignments (N, Typ);
-- The extension aggregate is transformed into a record aggregate
-- of the following form (c1 and c2 are inherited components)
-- (Exp with c3 => a, c4 => b)
-- ==> (c1 => Exp.c1, c2 => Exp.c2, c1 => a, c2 => b)
else
Set_Etype (N, Typ);
-- No tag is needed in the case of Java_VM
if Java_VM then
Expand_Record_Aggregate (N,
Parent_Expr => A);
else
Expand_Record_Aggregate (N,
Orig_Tag => New_Occurrence_Of (Access_Disp_Table (Typ), Loc),
Parent_Expr => A);
end if;
end if;
end Expand_N_Extension_Aggregate;
-----------------------------
-- Expand_Record_Aggregate --
-----------------------------
procedure Expand_Record_Aggregate
(N : Node_Id;
Orig_Tag : Node_Id := Empty;
Parent_Expr : Node_Id := Empty)
is
Loc : constant Source_Ptr := Sloc (N);
Comps : constant List_Id := Component_Associations (N);
Typ : constant Entity_Id := Etype (N);
Base_Typ : constant Entity_Id := Base_Type (Typ);
function Has_Delayed_Nested_Aggregate_Or_Tagged_Comps return Boolean;
-- Checks the presence of a nested aggregate which needs Late_Expansion
-- or the presence of tagged components which may need tag adjustment.
--------------------------------------------------
-- Has_Delayed_Nested_Aggregate_Or_Tagged_Comps --
--------------------------------------------------
function Has_Delayed_Nested_Aggregate_Or_Tagged_Comps return Boolean is
C : Node_Id;
Expr_Q : Node_Id;
begin
if No (Comps) then
return False;
end if;
C := First (Comps);
while Present (C) loop
if Nkind (Expression (C)) = N_Qualified_Expression then
Expr_Q := Expression (Expression (C));
else
Expr_Q := Expression (C);
end if;
-- Return true if the aggregate has any associations for
-- tagged components that may require tag adjustment.
-- These are cases where the source expression may have
-- a tag that could differ from the component tag (e.g.,
-- can occur for type conversions and formal parameters).
-- (Tag adjustment is not needed if Java_VM because object
-- tags are implicit in the JVM.)
if Is_Tagged_Type (Etype (Expr_Q))
and then (Nkind (Expr_Q) = N_Type_Conversion
or else (Is_Entity_Name (Expr_Q)
and then Ekind (Entity (Expr_Q)) in Formal_Kind))
and then not Java_VM
then
return True;
end if;
if Is_Delayed_Aggregate (Expr_Q) then
return True;
end if;
Next (C);
end loop;
return False;
end Has_Delayed_Nested_Aggregate_Or_Tagged_Comps;
-- Remaining Expand_Record_Aggregate variables
Tag_Value : Node_Id;
Comp : Entity_Id;
New_Comp : Node_Id;
-- Start of processing for Expand_Record_Aggregate
begin
-- Gigi doesn't handle properly temporaries of variable size
-- so we generate it in the front-end
if not Size_Known_At_Compile_Time (Typ) then
Convert_To_Assignments (N, Typ);
-- Temporaries for controlled aggregates need to be attached to a
-- final chain in order to be properly finalized, so it has to
-- be created in the front-end
elsif Is_Controlled (Typ)
or else Has_Controlled_Component (Base_Type (Typ))
then
Convert_To_Assignments (N, Typ);
elsif Has_Delayed_Nested_Aggregate_Or_Tagged_Comps then
Convert_To_Assignments (N, Typ);
-- If an ancestor is private, some components are not inherited and
-- we cannot expand into a record aggregate
elsif Has_Private_Ancestor (Typ) then
Convert_To_Assignments (N, Typ);
-- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
-- is not able to handle the aggregate for Late_Request.
elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
Convert_To_Assignments (N, Typ);
-- In all other cases we generate a proper aggregate that
-- can be handled by gigi.
else
-- If no discriminants, nothing special to do
if not Has_Discriminants (Typ) then
null;
-- Case of discriminants present
elsif Is_Derived_Type (Typ) then
-- For untagged types, non-girder discriminants are replaced
-- with girder discriminants, which are the ones that gigi uses
-- to describe the type and its components.
Generate_Aggregate_For_Derived_Type : declare
First_Comp : Node_Id;
Discriminant : Entity_Id;
Constraints : List_Id := New_List;
Decl : Node_Id;
Num_Disc : Int := 0;
Num_Gird : Int := 0;
procedure Prepend_Girder_Values (T : Entity_Id);
-- Scan the list of girder discriminants of the type, and
-- add their values to the aggregate being built.
---------------------------
-- Prepend_Girder_Values --
---------------------------
procedure Prepend_Girder_Values (T : Entity_Id) is
begin
Discriminant := First_Girder_Discriminant (T);
while Present (Discriminant) loop
New_Comp :=
Make_Component_Association (Loc,
Choices =>
New_List (New_Occurrence_Of (Discriminant, Loc)),
Expression =>
New_Copy_Tree (
Get_Discriminant_Value (
Discriminant,
Typ,
Discriminant_Constraint (Typ))));
if No (First_Comp) then
Prepend_To (Component_Associations (N), New_Comp);
else
Insert_After (First_Comp, New_Comp);
end if;
First_Comp := New_Comp;
Next_Girder_Discriminant (Discriminant);
end loop;
end Prepend_Girder_Values;
-- Start of processing for Generate_Aggregate_For_Derived_Type
begin
-- Remove the associations for the discriminant of
-- the derived type.
First_Comp := First (Component_Associations (N));
while Present (First_Comp) loop
Comp := First_Comp;
Next (First_Comp);
if Ekind (Entity (First (Choices (Comp)))) =
E_Discriminant
then
Remove (Comp);
Num_Disc := Num_Disc + 1;
end if;
end loop;
-- Insert girder discriminant associations in the correct
-- order. If there are more girder discriminants than new
-- discriminants, there is at least one new discriminant
-- that constrains more than one of the girders. In this
-- case we need to construct a proper subtype of the parent
-- type, in order to supply values to all the components.
-- Otherwise there is one-one correspondence between the
-- constraints and the girder discriminants.
First_Comp := Empty;
Discriminant := First_Girder_Discriminant (Base_Type (Typ));
while Present (Discriminant) loop
Num_Gird := Num_Gird + 1;
Next_Girder_Discriminant (Discriminant);
end loop;
-- Case of more girder discriminants than new discriminants
if Num_Gird > Num_Disc then
-- Create a proper subtype of the parent type, which is
-- the proper implementation type for the aggregate, and
-- convert it to the intended target type.
Discriminant := First_Girder_Discriminant (Base_Type (Typ));
while Present (Discriminant) loop
New_Comp :=
New_Copy_Tree (
Get_Discriminant_Value (
Discriminant,
Typ,
Discriminant_Constraint (Typ)));
Append (New_Comp, Constraints);
Next_Girder_Discriminant (Discriminant);
end loop;
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
New_Internal_Name ('T')),
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint
(Loc, Constraints)));
Insert_Action (N, Decl);
Prepend_Girder_Values (Base_Type (Typ));
Set_Etype (N, Defining_Identifier (Decl));
Set_Analyzed (N);
Rewrite (N, Unchecked_Convert_To (Typ, N));
Analyze (N);
-- Case where we do not have fewer new discriminants than
-- girder discriminants, so in this case we can simply
-- use the girder discriminants of the subtype.
else
Prepend_Girder_Values (Typ);
end if;
end Generate_Aggregate_For_Derived_Type;
end if;
if Is_Tagged_Type (Typ) then
-- The tagged case, _parent and _tag component must be created.
-- Reset null_present unconditionally. tagged records always have
-- at least one field (the tag or the parent)
Set_Null_Record_Present (N, False);
-- When the current aggregate comes from the expansion of an
-- extension aggregate, the parent expr is replaced by an
-- aggregate formed by selected components of this expr
if Present (Parent_Expr)
and then Is_Empty_List (Comps)
then
Comp := First_Entity (Typ);
while Present (Comp) loop
-- Skip all entities that aren't discriminants or components
if Ekind (Comp) /= E_Discriminant
and then Ekind (Comp) /= E_Component
then
null;
-- Skip all expander-generated components
elsif
not Comes_From_Source (Original_Record_Component (Comp))
then
null;
else
New_Comp :=
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Typ,
Duplicate_Subexpr (Parent_Expr, True)),
Selector_Name => New_Occurrence_Of (Comp, Loc));
Append_To (Comps,
Make_Component_Association (Loc,
Choices =>
New_List (New_Occurrence_Of (Comp, Loc)),
Expression =>
New_Comp));
Analyze_And_Resolve (New_Comp, Etype (Comp));
end if;
Next_Entity (Comp);
end loop;
end if;
-- Compute the value for the Tag now, if the type is a root it
-- will be included in the aggregate right away, otherwise it will
-- be propagated to the parent aggregate
if Present (Orig_Tag) then
Tag_Value := Orig_Tag;
elsif Java_VM then
Tag_Value := Empty;
else
Tag_Value := New_Occurrence_Of (Access_Disp_Table (Typ), Loc);
end if;
-- For a derived type, an aggregate for the parent is formed with
-- all the inherited components.
if Is_Derived_Type (Typ) then
declare
First_Comp : Node_Id;
Parent_Comps : List_Id;
Parent_Aggr : Node_Id;
Parent_Name : Node_Id;
begin
-- Remove the inherited component association from the
-- aggregate and store them in the parent aggregate
First_Comp := First (Component_Associations (N));
Parent_Comps := New_List;
while Present (First_Comp)
and then Scope (Original_Record_Component (
Entity (First (Choices (First_Comp))))) /= Base_Typ
loop
Comp := First_Comp;
Next (First_Comp);
Remove (Comp);
Append (Comp, Parent_Comps);
end loop;
Parent_Aggr := Make_Aggregate (Loc,
Component_Associations => Parent_Comps);
Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
-- Find the _parent component
Comp := First_Component (Typ);
while Chars (Comp) /= Name_uParent loop
Comp := Next_Component (Comp);
end loop;
Parent_Name := New_Occurrence_Of (Comp, Loc);
-- Insert the parent aggregate
Prepend_To (Component_Associations (N),
Make_Component_Association (Loc,
Choices => New_List (Parent_Name),
Expression => Parent_Aggr));
-- Expand recursively the parent propagating the right Tag
Expand_Record_Aggregate (
Parent_Aggr, Tag_Value, Parent_Expr);
end;
-- For a root type, the tag component is added (unless compiling
-- for the Java VM, where tags are implicit).
elsif not Java_VM then
declare
Tag_Name : constant Node_Id :=
New_Occurrence_Of (Tag_Component (Typ), Loc);
Typ_Tag : constant Entity_Id := RTE (RE_Tag);
Conv_Node : constant Node_Id :=
Unchecked_Convert_To (Typ_Tag, Tag_Value);
begin
Set_Etype (Conv_Node, Typ_Tag);
Prepend_To (Component_Associations (N),
Make_Component_Association (Loc,
Choices => New_List (Tag_Name),
Expression => Conv_Node));
end;
end if;
end if;
end if;
end Expand_Record_Aggregate;
--------------------------
-- Is_Delayed_Aggregate --
--------------------------
function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
Node : Node_Id := N;
Kind : Node_Kind := Nkind (Node);
begin
if Kind = N_Qualified_Expression then
Node := Expression (Node);
Kind := Nkind (Node);
end if;
if Kind /= N_Aggregate and then Kind /= N_Extension_Aggregate then
return False;
else
return Expansion_Delayed (Node);
end if;
end Is_Delayed_Aggregate;
--------------------
-- Late_Expansion --
--------------------
function Late_Expansion
(N : Node_Id;
Typ : Entity_Id;
Target : Node_Id;
Flist : Node_Id := Empty;
Obj : Entity_Id := Empty)
return List_Id is
begin
if Is_Record_Type (Etype (N)) then
return Build_Record_Aggr_Code (N, Typ, Target, Flist, Obj);
else
return
Build_Array_Aggr_Code
(N,
First_Index (Typ),
Target,
Is_Scalar_Type (Component_Type (Typ)),
No_List,
Flist);
end if;
end Late_Expansion;
----------------------------------
-- Make_OK_Assignment_Statement --
----------------------------------
function Make_OK_Assignment_Statement
(Sloc : Source_Ptr;
Name : Node_Id;
Expression : Node_Id)
return Node_Id
is
begin
Set_Assignment_OK (Name);
return Make_Assignment_Statement (Sloc, Name, Expression);
end Make_OK_Assignment_Statement;
-----------------------
-- Number_Of_Choices --
-----------------------
function Number_Of_Choices (N : Node_Id) return Nat is
Assoc : Node_Id;
Choice : Node_Id;
Nb_Choices : Nat := 0;
begin
if Present (Expressions (N)) then
return 0;
end if;
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
if Nkind (Choice) /= N_Others_Choice then
Nb_Choices := Nb_Choices + 1;
end if;
Next (Choice);
end loop;
Next (Assoc);
end loop;
return Nb_Choices;
end Number_Of_Choices;
------------------------------------
-- Packed_Array_Aggregate_Handled --
------------------------------------
-- The current version of this procedure will handle at compile time
-- any array aggregate that meets these conditions:
-- One dimensional, bit packed
-- Underlying packed type is modular type
-- Bounds are within 32-bit Int range
-- All bounds and values are static
function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Ctyp : constant Entity_Id := Component_Type (Typ);
Not_Handled : exception;
-- Exception raised if this aggregate cannot be handled
begin
-- For now, handle only one dimensional bit packed arrays
if not Is_Bit_Packed_Array (Typ)
or else Number_Dimensions (Typ) > 1
or else not Is_Modular_Integer_Type (Packed_Array_Type (Typ))
then
return False;
end if;
declare
Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
Lo : Node_Id;
Hi : Node_Id;
-- Bounds of index type
Lob : Uint;
Hib : Uint;
-- Values of bounds if compile time known
function Get_Component_Val (N : Node_Id) return Uint;
-- Given a expression value N of the component type Ctyp, returns
-- A value of Csiz (component size) bits representing this value.
-- If the value is non-static or any other reason exists why the
-- value cannot be returned, then Not_Handled is raised.
-----------------------
-- Get_Component_Val --
-----------------------
function Get_Component_Val (N : Node_Id) return Uint is
Val : Uint;
begin
-- We have to analyze the expression here before doing any further
-- processing here. The analysis of such expressions is deferred
-- till expansion to prevent some problems of premature analysis.
Analyze_And_Resolve (N, Ctyp);
-- Must have a compile time value
if not Compile_Time_Known_Value (N) then
raise Not_Handled;
end if;
Val := Expr_Rep_Value (N);
-- Adjust for bias, and strip proper number of bits
if Has_Biased_Representation (Ctyp) then
Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
end if;
return Val mod Uint_2 ** Csiz;
end Get_Component_Val;
-- Here we know we have a one dimensional bit packed array
begin
Get_Index_Bounds (First_Index (Typ), Lo, Hi);
-- Cannot do anything if bounds are dynamic
if not Compile_Time_Known_Value (Lo)
or else
not Compile_Time_Known_Value (Hi)
then
return False;
end if;
-- Or are silly out of range of int bounds
Lob := Expr_Value (Lo);
Hib := Expr_Value (Hi);
if not UI_Is_In_Int_Range (Lob)
or else
not UI_Is_In_Int_Range (Hib)
then
return False;
end if;
-- At this stage we have a suitable aggregate for handling
-- at compile time (the only remaining checks, are that the
-- values of expressions in the aggregate are compile time
-- known (check performed by Get_Component_Val), and that
-- any subtypes or ranges are statically known.
-- If the aggregate is not fully positional at this stage,
-- then convert it to positional form. Either this will fail,
-- in which case we can do nothing, or it will succeed, in
-- which case we have succeeded in handling the aggregate,
-- or it will stay an aggregate, in which case we have failed
-- to handle this case.
if Present (Component_Associations (N)) then
Convert_To_Positional
(N, Max_Others_Replicate => 64, Handle_Bit_Packed => True);
return Nkind (N) /= N_Aggregate;
end if;
-- Otherwise we are all positional, so convert to proper value
declare
Lov : constant Nat := UI_To_Int (Lob);
Hiv : constant Nat := UI_To_Int (Hib);
Len : constant Nat := Int'Max (0, Hiv - Lov + 1);
-- The length of the array (number of elements)
Aggregate_Val : Uint;
-- Value of aggregate. The value is set in the low order
-- bits of this value. For the little-endian case, the
-- values are stored from low-order to high-order and
-- for the big-endian case the values are stored from
-- high-order to low-order. Note that gigi will take care
-- of the conversions to left justify the value in the big
-- endian case (because of left justified modular type
-- processing), so we do not have to worry about that here.
Lit : Node_Id;
-- Integer literal for resulting constructed value
Shift : Nat;
-- Shift count from low order for next value
Incr : Int;
-- Shift increment for loop
Expr : Node_Id;
-- Next expression from positional parameters of aggregate
begin
-- For little endian, we fill up the low order bits of the
-- target value. For big endian we fill up the high order
-- bits of the target value (which is a left justified
-- modular value).
if Bytes_Big_Endian xor Debug_Flag_8 then
Shift := Csiz * (Len - 1);
Incr := -Csiz;
else
Shift := 0;
Incr := +Csiz;
end if;
-- Loop to set the values
Aggregate_Val := Uint_0;
Expr := First (Expressions (N));
for J in 1 .. Len loop
Aggregate_Val :=
Aggregate_Val + Get_Component_Val (Expr) * Uint_2 ** Shift;
Shift := Shift + Incr;
Next (Expr);
end loop;
-- Now we can rewrite with the proper value
Lit :=
Make_Integer_Literal (Loc,
Intval => Aggregate_Val);
Set_Print_In_Hex (Lit);
-- Construct the expression using this literal. Note that it is
-- important to qualify the literal with its proper modular type
-- since universal integer does not have the required range and
-- also this is a left justified modular type, which is important
-- in the big-endian case.
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Qualified_Expression (Loc,
Subtype_Mark =>
New_Occurrence_Of (Packed_Array_Type (Typ), Loc),
Expression => Lit)));
Analyze_And_Resolve (N, Typ);
return True;
end;
end;
exception
when Not_Handled =>
return False;
end Packed_Array_Aggregate_Handled;
------------------------------
-- Initialize_Discriminants --
------------------------------
procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Bas : constant Entity_Id := Base_Type (Typ);
Par : constant Entity_Id := Etype (Bas);
Decl : constant Node_Id := Parent (Par);
Ref : Node_Id;
begin
if Is_Tagged_Type (Bas)
and then Is_Derived_Type (Bas)
and then Has_Discriminants (Par)
and then Has_Discriminants (Bas)
and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
and then Nkind (Decl) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
and then Present
(Variant_Part (Component_List (Type_Definition (Decl))))
and then Nkind (N) /= N_Extension_Aggregate
then
-- Call init_proc to set discriminants.
-- There should eventually be a special procedure for this ???
Ref := New_Reference_To (Defining_Identifier (N), Loc);
Insert_Actions_After (N,
Build_Initialization_Call (Sloc (N), Ref, Typ));
end if;
end Initialize_Discriminants;
---------------------------
-- Safe_Slice_Assignment --
---------------------------
function Safe_Slice_Assignment (N : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (Parent (N));
Pref : constant Node_Id := Prefix (Name (Parent (N)));
Range_Node : constant Node_Id := Discrete_Range (Name (Parent (N)));
Expr : Node_Id;
L_J : Entity_Id;
L_Iter : Node_Id;
L_Body : Node_Id;
Stat : Node_Id;
begin
-- Generate: for J in Range loop Pref (J) := Expr; end loop;
if Comes_From_Source (N)
and then No (Expressions (N))
and then Nkind (First (Choices (First (Component_Associations (N)))))
= N_Others_Choice
then
Expr :=
Expression (First (Component_Associations (N)));
L_J := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
L_Iter :=
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification
(Loc,
Defining_Identifier => L_J,
Discrete_Subtype_Definition => Relocate_Node (Range_Node)));
L_Body :=
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => Relocate_Node (Pref),
Expressions => New_List (New_Occurrence_Of (L_J, Loc))),
Expression => Relocate_Node (Expr));
-- Construct the final loop
Stat :=
Make_Implicit_Loop_Statement
(Node => Parent (N),
Identifier => Empty,
Iteration_Scheme => L_Iter,
Statements => New_List (L_Body));
Rewrite (Parent (N), Stat);
Analyze (Parent (N));
return True;
else
return False;
end if;
end Safe_Slice_Assignment;
---------------------
-- Sort_Case_Table --
---------------------
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
L : Int := Case_Table'First;
U : Int := Case_Table'Last;
K : Int;
J : Int;
T : Case_Bounds;
begin
K := L;
while K /= U loop
T := Case_Table (K + 1);
J := K + 1;
while J /= L
and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
Expr_Value (T.Choice_Lo)
loop
Case_Table (J) := Case_Table (J - 1);
J := J - 1;
end loop;
Case_Table (J) := T;
K := K + 1;
end loop;
end Sort_Case_Table;
end Exp_Aggr;
|