1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E V A L _ F A T --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Einfo; use Einfo;
with Errout; use Errout;
with Sem_Util; use Sem_Util;
with Ttypef; use Ttypef;
with Targparm; use Targparm;
package body Eval_Fat is
Radix : constant Int := 2;
-- This code is currently only correct for the radix 2 case. We use
-- the symbolic value Radix where possible to help in the unlikely
-- case of anyone ever having to adjust this code for another value,
-- and for documentation purposes.
-- Another assumption is that the range of the floating-point type
-- is symmetric around zero.
type Radix_Power_Table is array (Int range 1 .. 4) of Int;
Radix_Powers : constant Radix_Power_Table :=
(Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
-----------------------
-- Local Subprograms --
-----------------------
procedure Decompose
(RT : R;
X : in T;
Fraction : out T;
Exponent : out UI;
Mode : Rounding_Mode := Round);
-- Decomposes a non-zero floating-point number into fraction and
-- exponent parts. The fraction is in the interval 1.0 / Radix ..
-- T'Pred (1.0) and uses Rbase = Radix.
-- The result is rounded to a nearest machine number.
procedure Decompose_Int
(RT : R;
X : in T;
Fraction : out UI;
Exponent : out UI;
Mode : Rounding_Mode);
-- This is similar to Decompose, except that the Fraction value returned
-- is an integer representing the value Fraction * Scale, where Scale is
-- the value (Radix ** Machine_Mantissa (RT)). The value is obtained by
-- using biased rounding (halfway cases round away from zero), round to
-- even, a floor operation or a ceiling operation depending on the setting
-- of Mode (see corresponding descriptions in Urealp).
function Machine_Emin (RT : R) return Int;
-- Return value of the Machine_Emin attribute
--------------
-- Adjacent --
--------------
function Adjacent (RT : R; X, Towards : T) return T is
begin
if Towards = X then
return X;
elsif Towards > X then
return Succ (RT, X);
else
return Pred (RT, X);
end if;
end Adjacent;
-------------
-- Ceiling --
-------------
function Ceiling (RT : R; X : T) return T is
XT : constant T := Truncation (RT, X);
begin
if UR_Is_Negative (X) then
return XT;
elsif X = XT then
return X;
else
return XT + Ureal_1;
end if;
end Ceiling;
-------------
-- Compose --
-------------
function Compose (RT : R; Fraction : T; Exponent : UI) return T is
Arg_Frac : T;
Arg_Exp : UI;
begin
if UR_Is_Zero (Fraction) then
return Fraction;
else
Decompose (RT, Fraction, Arg_Frac, Arg_Exp);
return Scaling (RT, Arg_Frac, Exponent);
end if;
end Compose;
---------------
-- Copy_Sign --
---------------
function Copy_Sign (RT : R; Value, Sign : T) return T is
pragma Warnings (Off, RT);
Result : T;
begin
Result := abs Value;
if UR_Is_Negative (Sign) then
return -Result;
else
return Result;
end if;
end Copy_Sign;
---------------
-- Decompose --
---------------
procedure Decompose
(RT : R;
X : in T;
Fraction : out T;
Exponent : out UI;
Mode : Rounding_Mode := Round)
is
Int_F : UI;
begin
Decompose_Int (RT, abs X, Int_F, Exponent, Mode);
Fraction := UR_From_Components
(Num => Int_F,
Den => UI_From_Int (Machine_Mantissa (RT)),
Rbase => Radix,
Negative => False);
if UR_Is_Negative (X) then
Fraction := -Fraction;
end if;
return;
end Decompose;
-------------------
-- Decompose_Int --
-------------------
-- This procedure should be modified with care, as there are many
-- non-obvious details that may cause problems that are hard to
-- detect. The cases of positive and negative zeroes are also
-- special and should be verified separately.
procedure Decompose_Int
(RT : R;
X : in T;
Fraction : out UI;
Exponent : out UI;
Mode : Rounding_Mode)
is
Base : Int := Rbase (X);
N : UI := abs Numerator (X);
D : UI := Denominator (X);
N_Times_Radix : UI;
Even : Boolean;
-- True iff Fraction is even
Most_Significant_Digit : constant UI :=
Radix ** (Machine_Mantissa (RT) - 1);
Uintp_Mark : Uintp.Save_Mark;
-- The code is divided into blocks that systematically release
-- intermediate values (this routine generates lots of junk!)
begin
Calculate_D_And_Exponent_1 : begin
Uintp_Mark := Mark;
Exponent := Uint_0;
-- In cases where Base > 1, the actual denominator is
-- Base**D. For cases where Base is a power of Radix, use
-- the value 1 for the Denominator and adjust the exponent.
-- Note: Exponent has different sign from D, because D is a divisor
for Power in 1 .. Radix_Powers'Last loop
if Base = Radix_Powers (Power) then
Exponent := -D * Power;
Base := 0;
D := Uint_1;
exit;
end if;
end loop;
Release_And_Save (Uintp_Mark, D, Exponent);
end Calculate_D_And_Exponent_1;
if Base > 0 then
Calculate_Exponent : begin
Uintp_Mark := Mark;
-- For bases that are a multiple of the Radix, divide
-- the base by Radix and adjust the Exponent. This will
-- help because D will be much smaller and faster to process.
-- This occurs for decimal bases on a machine with binary
-- floating-point for example. When calculating 1E40,
-- with Radix = 2, N will be 93 bits instead of 133.
-- N E
-- ------ * Radix
-- D
-- Base
-- N E
-- = -------------------------- * Radix
-- D D
-- (Base/Radix) * Radix
-- N E-D
-- = --------------- * Radix
-- D
-- (Base/Radix)
-- This code is commented out, because it causes numerous
-- failures in the regression suite. To be studied ???
while False and then Base > 0 and then Base mod Radix = 0 loop
Base := Base / Radix;
Exponent := Exponent + D;
end loop;
Release_And_Save (Uintp_Mark, Exponent);
end Calculate_Exponent;
-- For remaining bases we must actually compute
-- the exponentiation.
-- Because the exponentiation can be negative, and D must
-- be integer, the numerator is corrected instead.
Calculate_N_And_D : begin
Uintp_Mark := Mark;
if D < 0 then
N := N * Base ** (-D);
D := Uint_1;
else
D := Base ** D;
end if;
Release_And_Save (Uintp_Mark, N, D);
end Calculate_N_And_D;
Base := 0;
end if;
-- Now scale N and D so that N / D is a value in the
-- interval [1.0 / Radix, 1.0) and adjust Exponent accordingly,
-- so the value N / D * Radix ** Exponent remains unchanged.
-- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
-- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
-- This scaling is not possible for N is Uint_0 as there
-- is no way to scale Uint_0 so the first digit is non-zero.
Calculate_N_And_Exponent : begin
Uintp_Mark := Mark;
N_Times_Radix := N * Radix;
if N /= Uint_0 then
while not (N_Times_Radix >= D) loop
N := N_Times_Radix;
Exponent := Exponent - 1;
N_Times_Radix := N * Radix;
end loop;
end if;
Release_And_Save (Uintp_Mark, N, Exponent);
end Calculate_N_And_Exponent;
-- Step 2 - Adjust D so N / D < 1
-- Scale up D so N / D < 1, so N < D
Calculate_D_And_Exponent_2 : begin
Uintp_Mark := Mark;
while not (N < D) loop
-- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix,
-- so the result of Step 1 stays valid
D := D * Radix;
Exponent := Exponent + 1;
end loop;
Release_And_Save (Uintp_Mark, D, Exponent);
end Calculate_D_And_Exponent_2;
-- Here the value N / D is in the range [1.0 / Radix .. 1.0)
-- Now find the fraction by doing a very simple-minded
-- division until enough digits have been computed.
-- This division works for all radices, but is only efficient for
-- a binary radix. It is just like a manual division algorithm,
-- but instead of moving the denominator one digit right, we move
-- the numerator one digit left so the numerator and denominator
-- remain integral.
Fraction := Uint_0;
Even := True;
Calculate_Fraction_And_N : begin
Uintp_Mark := Mark;
loop
while N >= D loop
N := N - D;
Fraction := Fraction + 1;
Even := not Even;
end loop;
-- Stop when the result is in [1.0 / Radix, 1.0)
exit when Fraction >= Most_Significant_Digit;
N := N * Radix;
Fraction := Fraction * Radix;
Even := True;
end loop;
Release_And_Save (Uintp_Mark, Fraction, N);
end Calculate_Fraction_And_N;
Calculate_Fraction_And_Exponent : begin
Uintp_Mark := Mark;
-- Determine correct rounding based on the remainder which is in
-- N and the divisor D. The rounding is performed on the absolute
-- value of X, so Ceiling and Floor need to check for the sign of
-- X explicitly.
case Mode is
when Round_Even =>
-- This rounding mode should not be used for static
-- expressions, but only for compile-time evaluation
-- of non-static expressions.
if (Even and then N * 2 > D)
or else
(not Even and then N * 2 >= D)
then
Fraction := Fraction + 1;
end if;
when Round =>
-- Do not round to even as is done with IEEE arithmetic,
-- but instead round away from zero when the result is
-- exactly between two machine numbers. See RM 4.9(38).
if N * 2 >= D then
Fraction := Fraction + 1;
end if;
when Ceiling =>
if N > Uint_0 and then not UR_Is_Negative (X) then
Fraction := Fraction + 1;
end if;
when Floor =>
if N > Uint_0 and then UR_Is_Negative (X) then
Fraction := Fraction + 1;
end if;
end case;
-- The result must be normalized to [1.0/Radix, 1.0),
-- so adjust if the result is 1.0 because of rounding.
if Fraction = Most_Significant_Digit * Radix then
Fraction := Most_Significant_Digit;
Exponent := Exponent + 1;
end if;
-- Put back sign after applying the rounding.
if UR_Is_Negative (X) then
Fraction := -Fraction;
end if;
Release_And_Save (Uintp_Mark, Fraction, Exponent);
end Calculate_Fraction_And_Exponent;
end Decompose_Int;
--------------
-- Exponent --
--------------
function Exponent (RT : R; X : T) return UI is
X_Frac : UI;
X_Exp : UI;
begin
if UR_Is_Zero (X) then
return Uint_0;
else
Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even);
return X_Exp;
end if;
end Exponent;
-----------
-- Floor --
-----------
function Floor (RT : R; X : T) return T is
XT : constant T := Truncation (RT, X);
begin
if UR_Is_Positive (X) then
return XT;
elsif XT = X then
return X;
else
return XT - Ureal_1;
end if;
end Floor;
--------------
-- Fraction --
--------------
function Fraction (RT : R; X : T) return T is
X_Frac : T;
X_Exp : UI;
begin
if UR_Is_Zero (X) then
return X;
else
Decompose (RT, X, X_Frac, X_Exp);
return X_Frac;
end if;
end Fraction;
------------------
-- Leading_Part --
------------------
function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is
RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa (RT));
L : UI;
Y : T;
begin
L := Exponent (RT, X) - RD;
Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L)));
return Scaling (RT, Y, L);
end Leading_Part;
-------------
-- Machine --
-------------
function Machine
(RT : R;
X : T;
Mode : Rounding_Mode;
Enode : Node_Id) return T
is
X_Frac : T;
X_Exp : UI;
Emin : constant UI := UI_From_Int (Machine_Emin (RT));
begin
if UR_Is_Zero (X) then
return X;
else
Decompose (RT, X, X_Frac, X_Exp, Mode);
-- Case of denormalized number or (gradual) underflow
-- A denormalized number is one with the minimum exponent Emin, but
-- that breaks the assumption that the first digit of the mantissa
-- is a one. This allows the first non-zero digit to be in any
-- of the remaining Mant - 1 spots. The gap between subsequent
-- denormalized numbers is the same as for the smallest normalized
-- numbers. However, the number of significant digits left decreases
-- as a result of the mantissa now having leading seros.
if X_Exp < Emin then
declare
Emin_Den : constant UI :=
UI_From_Int
(Machine_Emin (RT) - Machine_Mantissa (RT) + 1);
begin
if X_Exp < Emin_Den or not Denorm_On_Target then
if UR_Is_Negative (X) then
Error_Msg_N
("floating-point value underflows to -0.0?", Enode);
return Ureal_M_0;
else
Error_Msg_N
("floating-point value underflows to 0.0?", Enode);
return Ureal_0;
end if;
elsif Denorm_On_Target then
-- Emin - Mant <= X_Exp < Emin, so result is denormal.
-- Handle gradual underflow by first computing the
-- number of significant bits still available for the
-- mantissa and then truncating the fraction to this
-- number of bits.
-- If this value is different from the original
-- fraction, precision is lost due to gradual underflow.
-- We probably should round here and prevent double
-- rounding as a result of first rounding to a model
-- number and then to a machine number. However, this
-- is an extremely rare case that is not worth the extra
-- complexity. In any case, a warning is issued in cases
-- where gradual underflow occurs.
declare
Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1;
X_Frac_Denorm : constant T := UR_From_Components
(UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)),
Denorm_Sig_Bits,
Radix,
UR_Is_Negative (X));
begin
if X_Frac_Denorm /= X_Frac then
Error_Msg_N
("gradual underflow causes loss of precision?",
Enode);
X_Frac := X_Frac_Denorm;
end if;
end;
end if;
end;
end if;
return Scaling (RT, X_Frac, X_Exp);
end if;
end Machine;
------------------
-- Machine_Emin --
------------------
function Machine_Emin (RT : R) return Int is
Digs : constant UI := Digits_Value (RT);
Emin : Int;
begin
if Vax_Float (RT) then
if Digs = VAXFF_Digits then
Emin := VAXFF_Machine_Emin;
elsif Digs = VAXDF_Digits then
Emin := VAXDF_Machine_Emin;
else
pragma Assert (Digs = VAXGF_Digits);
Emin := VAXGF_Machine_Emin;
end if;
elsif Is_AAMP_Float (RT) then
if Digs = AAMPS_Digits then
Emin := AAMPS_Machine_Emin;
else
pragma Assert (Digs = AAMPL_Digits);
Emin := AAMPL_Machine_Emin;
end if;
else
if Digs = IEEES_Digits then
Emin := IEEES_Machine_Emin;
elsif Digs = IEEEL_Digits then
Emin := IEEEL_Machine_Emin;
else
pragma Assert (Digs = IEEEX_Digits);
Emin := IEEEX_Machine_Emin;
end if;
end if;
return Emin;
end Machine_Emin;
----------------------
-- Machine_Mantissa --
----------------------
function Machine_Mantissa (RT : R) return Nat is
Digs : constant UI := Digits_Value (RT);
Mant : Nat;
begin
if Vax_Float (RT) then
if Digs = VAXFF_Digits then
Mant := VAXFF_Machine_Mantissa;
elsif Digs = VAXDF_Digits then
Mant := VAXDF_Machine_Mantissa;
else
pragma Assert (Digs = VAXGF_Digits);
Mant := VAXGF_Machine_Mantissa;
end if;
elsif Is_AAMP_Float (RT) then
if Digs = AAMPS_Digits then
Mant := AAMPS_Machine_Mantissa;
else
pragma Assert (Digs = AAMPL_Digits);
Mant := AAMPL_Machine_Mantissa;
end if;
else
if Digs = IEEES_Digits then
Mant := IEEES_Machine_Mantissa;
elsif Digs = IEEEL_Digits then
Mant := IEEEL_Machine_Mantissa;
else
pragma Assert (Digs = IEEEX_Digits);
Mant := IEEEX_Machine_Mantissa;
end if;
end if;
return Mant;
end Machine_Mantissa;
-------------------
-- Machine_Radix --
-------------------
function Machine_Radix (RT : R) return Nat is
pragma Warnings (Off, RT);
begin
return Radix;
end Machine_Radix;
-----------
-- Model --
-----------
function Model (RT : R; X : T) return T is
X_Frac : T;
X_Exp : UI;
begin
Decompose (RT, X, X_Frac, X_Exp);
return Compose (RT, X_Frac, X_Exp);
end Model;
----------
-- Pred --
----------
function Pred (RT : R; X : T) return T is
begin
return -Succ (RT, -X);
end Pred;
---------------
-- Remainder --
---------------
function Remainder (RT : R; X, Y : T) return T is
A : T;
B : T;
Arg : T;
P : T;
Arg_Frac : T;
P_Frac : T;
Sign_X : T;
IEEE_Rem : T;
Arg_Exp : UI;
P_Exp : UI;
K : UI;
P_Even : Boolean;
begin
if UR_Is_Positive (X) then
Sign_X := Ureal_1;
else
Sign_X := -Ureal_1;
end if;
Arg := abs X;
P := abs Y;
if Arg < P then
P_Even := True;
IEEE_Rem := Arg;
P_Exp := Exponent (RT, P);
else
-- ??? what about zero cases?
Decompose (RT, Arg, Arg_Frac, Arg_Exp);
Decompose (RT, P, P_Frac, P_Exp);
P := Compose (RT, P_Frac, Arg_Exp);
K := Arg_Exp - P_Exp;
P_Even := True;
IEEE_Rem := Arg;
for Cnt in reverse 0 .. UI_To_Int (K) loop
if IEEE_Rem >= P then
P_Even := False;
IEEE_Rem := IEEE_Rem - P;
else
P_Even := True;
end if;
P := P * Ureal_Half;
end loop;
end if;
-- That completes the calculation of modulus remainder. The final step
-- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
if P_Exp >= 0 then
A := IEEE_Rem;
B := abs Y * Ureal_Half;
else
A := IEEE_Rem * Ureal_2;
B := abs Y;
end if;
if A > B or else (A = B and then not P_Even) then
IEEE_Rem := IEEE_Rem - abs Y;
end if;
return Sign_X * IEEE_Rem;
end Remainder;
--------------
-- Rounding --
--------------
function Rounding (RT : R; X : T) return T is
Result : T;
Tail : T;
begin
Result := Truncation (RT, abs X);
Tail := abs X - Result;
if Tail >= Ureal_Half then
Result := Result + Ureal_1;
end if;
if UR_Is_Negative (X) then
return -Result;
else
return Result;
end if;
end Rounding;
-------------
-- Scaling --
-------------
function Scaling (RT : R; X : T; Adjustment : UI) return T is
pragma Warnings (Off, RT);
begin
if Rbase (X) = Radix then
return UR_From_Components
(Num => Numerator (X),
Den => Denominator (X) - Adjustment,
Rbase => Radix,
Negative => UR_Is_Negative (X));
elsif Adjustment >= 0 then
return X * Radix ** Adjustment;
else
return X / Radix ** (-Adjustment);
end if;
end Scaling;
----------
-- Succ --
----------
function Succ (RT : R; X : T) return T is
Emin : constant UI := UI_From_Int (Machine_Emin (RT));
Mantissa : constant UI := UI_From_Int (Machine_Mantissa (RT));
Exp : UI := UI_Max (Emin, Exponent (RT, X));
Frac : T;
New_Frac : T;
begin
if UR_Is_Zero (X) then
Exp := Emin;
end if;
-- Set exponent such that the radix point will be directly
-- following the mantissa after scaling
if Denorm_On_Target or Exp /= Emin then
Exp := Exp - Mantissa;
else
Exp := Exp - 1;
end if;
Frac := Scaling (RT, X, -Exp);
New_Frac := Ceiling (RT, Frac);
if New_Frac = Frac then
if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
New_Frac := New_Frac + Scaling (RT, Ureal_1, Uint_Minus_1);
else
New_Frac := New_Frac + Ureal_1;
end if;
end if;
return Scaling (RT, New_Frac, Exp);
end Succ;
----------------
-- Truncation --
----------------
function Truncation (RT : R; X : T) return T is
pragma Warnings (Off, RT);
begin
return UR_From_Uint (UR_Trunc (X));
end Truncation;
-----------------------
-- Unbiased_Rounding --
-----------------------
function Unbiased_Rounding (RT : R; X : T) return T is
Abs_X : constant T := abs X;
Result : T;
Tail : T;
begin
Result := Truncation (RT, Abs_X);
Tail := Abs_X - Result;
if Tail > Ureal_Half then
Result := Result + Ureal_1;
elsif Tail = Ureal_Half then
Result := Ureal_2 *
Truncation (RT, (Result / Ureal_2) + Ureal_Half);
end if;
if UR_Is_Negative (X) then
return -Result;
elsif UR_Is_Positive (X) then
return Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end Unbiased_Rounding;
end Eval_Fat;
|