1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
-- --
-- S p e c --
-- --
-- Copyright (C) 2012-2014, Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the Post aspects that have been added to the spec. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
generic
type Float_Type is digits <>;
package Ada.Numerics.Generic_Elementary_Functions is
pragma Pure;
function Sqrt (X : Float_Type'Base) return Float_Type'Base with
Post => Sqrt'Result >= 0.0
and then (if X = 0.0 then Sqrt'Result = 0.0)
and then (if X = 1.0 then Sqrt'Result = 1.0)
-- Finally if X is positive, the result of Sqrt is positive (because
-- the sqrt of numbers greater than 1 is greater than or equal to 1,
-- and the sqrt of numbers less than 1 is greater than the argument).
-- This property is useful in particular for static analysis. The
-- property that X is positive is not expressed as (X > 0.0), as
-- the value X may be held in registers that have larger range and
-- precision on some architecture (for example, on x86 using x387
-- FPU, as opposed to SSE2). So, it might be possible for X to be
-- 2.0**(-5000) or so, which could cause the number to compare as
-- greater than 0, but Sqrt would still return a zero result.
-- Note: we use the comparison with Succ (0.0) here because this is
-- more amenable to CodePeer analysis than the use of 'Machine.
and then (if X >= Float_Type'Succ (0.0) then Sqrt'Result > 0.0);
function Log (X : Float_Type'Base) return Float_Type'Base
with
Post => (if X = 1.0 then Log'Result = 0.0);
function Log (X, Base : Float_Type'Base) return Float_Type'Base with
Post => (if X = 1.0 then Log'Result = 0.0);
function Exp (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Exp'Result = 1.0);
function "**" (Left, Right : Float_Type'Base) return Float_Type'Base with
Post => "**"'Result >= 0.0
and then (if Right = 0.0 then "**"'Result = 1.0)
and then (if Right = 1.0 then "**"'Result = Left)
and then (if Left = 1.0 then "**"'Result = 1.0)
and then (if Left = 0.0 then "**"'Result = 0.0);
function Sin (X : Float_Type'Base) return Float_Type'Base with
Post => Sin'Result in -1.0 .. 1.0
and then (if X = 0.0 then Sin'Result = 0.0);
function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base with
Post => Sin'Result in -1.0 .. 1.0
and then (if X = 0.0 then Sin'Result = 0.0);
function Cos (X : Float_Type'Base) return Float_Type'Base with
Post => Cos'Result in -1.0 .. 1.0
and then (if X = 0.0 then Cos'Result = 1.0);
function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base with
Post => Cos'Result in -1.0 .. 1.0
and then (if X = 0.0 then Cos'Result = 1.0);
function Tan (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Tan'Result = 0.0);
function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Tan'Result = 0.0);
function Cot (X : Float_Type'Base) return Float_Type'Base;
function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base;
function Arcsin (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Arcsin'Result = 0.0);
function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Arcsin'Result = 0.0);
function Arccos (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 1.0 then Arccos'Result = 0.0);
function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base with
Post => (if X = 1.0 then Arccos'Result = 0.0);
function Arctan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0) return Float_Type'Base
with
Post => (if X > 0.0 and then Y = 0.0 then Arctan'Result = 0.0);
function Arctan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0;
Cycle : Float_Type'Base) return Float_Type'Base
with
Post => (if X > 0.0 and then Y = 0.0 then Arctan'Result = 0.0);
function Arccot
(X : Float_Type'Base;
Y : Float_Type'Base := 1.0) return Float_Type'Base
with
Post => (if X > 0.0 and then Y = 0.0 then Arccot'Result = 0.0);
function Arccot
(X : Float_Type'Base;
Y : Float_Type'Base := 1.0;
Cycle : Float_Type'Base) return Float_Type'Base
with
Post => (if X > 0.0 and then Y = 0.0 then Arccot'Result = 0.0);
function Sinh (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Sinh'Result = 0.0);
function Cosh (X : Float_Type'Base) return Float_Type'Base with
Post => Cosh'Result >= 1.0
and then (if X = 0.0 then Cosh'Result = 1.0);
function Tanh (X : Float_Type'Base) return Float_Type'Base with
Post => Tanh'Result in -1.0 .. 1.0
and then (if X = 0.0 then Tanh'Result = 0.0);
function Coth (X : Float_Type'Base) return Float_Type'Base with
Post => abs Coth'Result >= 1.0;
function Arcsinh (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Arcsinh'Result = 0.0);
function Arccosh (X : Float_Type'Base) return Float_Type'Base with
Post => Arccosh'Result >= 0.0
and then (if X = 1.0 then Arccosh'Result = 0.0);
function Arctanh (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Arctanh'Result = 0.0);
function Arccoth (X : Float_Type'Base) return Float_Type'Base;
end Ada.Numerics.Generic_Elementary_Functions;
|