1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
|
------------------------------------------------------------------------------
-- --
-- GNAT RUNTIME COMPONENTS --
-- --
-- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
-- --
-- B o d y --
-- --
-- $Revision$
-- --
-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
-- This body is specifically for using an Ada interface to C math.h to get
-- the computation engine. Many special cases are handled locally to avoid
-- unnecessary calls. This is not a "strict" implementation, but takes full
-- advantage of the C functions, e.g. in providing interface to hardware
-- provided versions of the elementary functions.
-- Uses functions sqrt, exp, log, pow, sin, asin, cos, acos, tan, atan,
-- sinh, cosh, tanh from C library via math.h
with Ada.Numerics.Aux;
package body Ada.Numerics.Generic_Elementary_Functions is
use type Ada.Numerics.Aux.Double;
Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
Half_Log_Two : constant := Log_Two / 2;
subtype T is Float_Type'Base;
subtype Double is Aux.Double;
Two_Pi : constant T := 2.0 * Pi;
Half_Pi : constant T := Pi / 2.0;
Fourth_Pi : constant T := Pi / 4.0;
Epsilon : constant T := 2.0 ** (1 - T'Model_Mantissa);
IEpsilon : constant T := 2.0 ** (T'Model_Mantissa - 1);
Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Log_Two;
Half_Log_Epsilon : constant T := T (1 - T'Model_Mantissa) * Half_Log_Two;
Log_Inverse_Epsilon : constant T := T (T'Model_Mantissa - 1) * Log_Two;
Sqrt_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
DEpsilon : constant Double := Double (Epsilon);
DIEpsilon : constant Double := Double (IEpsilon);
-----------------------
-- Local Subprograms --
-----------------------
function Exp_Strict (X : Float_Type'Base) return Float_Type'Base;
-- Cody/Waite routine, supposedly more precise than the library
-- version. Currently only needed for Sinh/Cosh on X86 with the largest
-- FP type.
function Local_Atan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0)
return Float_Type'Base;
-- Common code for arc tangent after cyele reduction
----------
-- "**" --
----------
function "**" (Left, Right : Float_Type'Base) return Float_Type'Base is
A_Right : Float_Type'Base;
Int_Part : Integer;
Result : Float_Type'Base;
R1 : Float_Type'Base;
Rest : Float_Type'Base;
begin
if Left = 0.0
and then Right = 0.0
then
raise Argument_Error;
elsif Left < 0.0 then
raise Argument_Error;
elsif Right = 0.0 then
return 1.0;
elsif Left = 0.0 then
if Right < 0.0 then
raise Constraint_Error;
else
return 0.0;
end if;
elsif Left = 1.0 then
return 1.0;
elsif Right = 1.0 then
return Left;
else
begin
if Right = 2.0 then
return Left * Left;
elsif Right = 0.5 then
return Sqrt (Left);
else
A_Right := abs (Right);
-- If exponent is larger than one, compute integer exponen-
-- tiation if possible, and evaluate fractional part with
-- more precision. The relative error is now proportional
-- to the fractional part of the exponent only.
if A_Right > 1.0
and then A_Right < Float_Type'Base (Integer'Last)
then
Int_Part := Integer (Float_Type'Base'Truncation (A_Right));
Result := Left ** Int_Part;
Rest := A_Right - Float_Type'Base (Int_Part);
-- Compute with two leading bits of the mantissa using
-- square roots. Bound to be better than logarithms, and
-- easily extended to greater precision.
if Rest >= 0.5 then
R1 := Sqrt (Left);
Result := Result * R1;
Rest := Rest - 0.5;
if Rest >= 0.25 then
Result := Result * Sqrt (R1);
Rest := Rest - 0.25;
end if;
elsif Rest >= 0.25 then
Result := Result * Sqrt (Sqrt (Left));
Rest := Rest - 0.25;
end if;
Result := Result *
Float_Type'Base (Aux.Pow (Double (Left), Double (Rest)));
if Right >= 0.0 then
return Result;
else
return (1.0 / Result);
end if;
else
return
Float_Type'Base (Aux.Pow (Double (Left), Double (Right)));
end if;
end if;
exception
when others =>
raise Constraint_Error;
end;
end if;
end "**";
------------
-- Arccos --
------------
-- Natural cycle
function Arccos (X : Float_Type'Base) return Float_Type'Base is
Temp : Float_Type'Base;
begin
if abs X > 1.0 then
raise Argument_Error;
elsif abs X < Sqrt_Epsilon then
return Pi / 2.0 - X;
elsif X = 1.0 then
return 0.0;
elsif X = -1.0 then
return Pi;
end if;
Temp := Float_Type'Base (Aux.Acos (Double (X)));
if Temp < 0.0 then
Temp := Pi + Temp;
end if;
return Temp;
end Arccos;
-- Arbitrary cycle
function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base is
Temp : Float_Type'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif abs X > 1.0 then
raise Argument_Error;
elsif abs X < Sqrt_Epsilon then
return Cycle / 4.0;
elsif X = 1.0 then
return 0.0;
elsif X = -1.0 then
return Cycle / 2.0;
end if;
Temp := Arctan (Sqrt ((1.0 - X) * (1.0 + X)) / X, 1.0, Cycle);
if Temp < 0.0 then
Temp := Cycle / 2.0 + Temp;
end if;
return Temp;
end Arccos;
-------------
-- Arccosh --
-------------
function Arccosh (X : Float_Type'Base) return Float_Type'Base is
begin
-- Return positive branch of Log (X - Sqrt (X * X - 1.0)), or
-- the proper approximation for X close to 1 or >> 1.
if X < 1.0 then
raise Argument_Error;
elsif X < 1.0 + Sqrt_Epsilon then
return Sqrt (2.0 * (X - 1.0));
elsif X > 1.0 / Sqrt_Epsilon then
return Log (X) + Log_Two;
else
return Log (X + Sqrt ((X - 1.0) * (X + 1.0)));
end if;
end Arccosh;
------------
-- Arccot --
------------
-- Natural cycle
function Arccot
(X : Float_Type'Base;
Y : Float_Type'Base := 1.0)
return Float_Type'Base
is
begin
-- Just reverse arguments
return Arctan (Y, X);
end Arccot;
-- Arbitrary cycle
function Arccot
(X : Float_Type'Base;
Y : Float_Type'Base := 1.0;
Cycle : Float_Type'Base)
return Float_Type'Base
is
begin
-- Just reverse arguments
return Arctan (Y, X, Cycle);
end Arccot;
-------------
-- Arccoth --
-------------
function Arccoth (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X > 2.0 then
return Arctanh (1.0 / X);
elsif abs X = 1.0 then
raise Constraint_Error;
elsif abs X < 1.0 then
raise Argument_Error;
else
-- 1.0 < abs X <= 2.0. One of X + 1.0 and X - 1.0 is exact, the
-- other has error 0 or Epsilon.
return 0.5 * (Log (abs (X + 1.0)) - Log (abs (X - 1.0)));
end if;
end Arccoth;
------------
-- Arcsin --
------------
-- Natural cycle
function Arcsin (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X > 1.0 then
raise Argument_Error;
elsif abs X < Sqrt_Epsilon then
return X;
elsif X = 1.0 then
return Pi / 2.0;
elsif X = -1.0 then
return -Pi / 2.0;
end if;
return Float_Type'Base (Aux.Asin (Double (X)));
end Arcsin;
-- Arbitrary cycle
function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base is
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif abs X > 1.0 then
raise Argument_Error;
elsif X = 0.0 then
return X;
elsif X = 1.0 then
return Cycle / 4.0;
elsif X = -1.0 then
return -Cycle / 4.0;
end if;
return Arctan (X / Sqrt ((1.0 - X) * (1.0 + X)), 1.0, Cycle);
end Arcsin;
-------------
-- Arcsinh --
-------------
function Arcsinh (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X < Sqrt_Epsilon then
return X;
elsif X > 1.0 / Sqrt_Epsilon then
return Log (X) + Log_Two;
elsif X < -1.0 / Sqrt_Epsilon then
return -(Log (-X) + Log_Two);
elsif X < 0.0 then
return -Log (abs X + Sqrt (X * X + 1.0));
else
return Log (X + Sqrt (X * X + 1.0));
end if;
end Arcsinh;
------------
-- Arctan --
------------
-- Natural cycle
function Arctan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0)
return Float_Type'Base
is
begin
if X = 0.0
and then Y = 0.0
then
raise Argument_Error;
elsif Y = 0.0 then
if X > 0.0 then
return 0.0;
else -- X < 0.0
return Pi * Float_Type'Copy_Sign (1.0, Y);
end if;
elsif X = 0.0 then
if Y > 0.0 then
return Half_Pi;
else -- Y < 0.0
return -Half_Pi;
end if;
else
return Local_Atan (Y, X);
end if;
end Arctan;
-- Arbitrary cycle
function Arctan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0;
Cycle : Float_Type'Base)
return Float_Type'Base
is
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif X = 0.0
and then Y = 0.0
then
raise Argument_Error;
elsif Y = 0.0 then
if X > 0.0 then
return 0.0;
else -- X < 0.0
return Cycle / 2.0 * Float_Type'Copy_Sign (1.0, Y);
end if;
elsif X = 0.0 then
if Y > 0.0 then
return Cycle / 4.0;
else -- Y < 0.0
return -Cycle / 4.0;
end if;
else
return Local_Atan (Y, X) * Cycle / Two_Pi;
end if;
end Arctan;
-------------
-- Arctanh --
-------------
function Arctanh (X : Float_Type'Base) return Float_Type'Base is
A, B, D, A_Plus_1, A_From_1 : Float_Type'Base;
Mantissa : constant Integer := Float_Type'Base'Machine_Mantissa;
begin
-- The naive formula:
-- Arctanh (X) := (1/2) * Log (1 + X) / (1 - X)
-- is not well-behaved numerically when X < 0.5 and when X is close
-- to one. The following is accurate but probably not optimal.
if abs X = 1.0 then
raise Constraint_Error;
elsif abs X >= 1.0 - 2.0 ** (-Mantissa) then
if abs X >= 1.0 then
raise Argument_Error;
else
-- The one case that overflows if put through the method below:
-- abs X = 1.0 - Epsilon. In this case (1/2) log (2/Epsilon) is
-- accurate. This simplifies to:
return Float_Type'Copy_Sign (
Half_Log_Two * Float_Type'Base (Mantissa + 1), X);
end if;
-- elsif abs X <= 0.5 then
-- why is above line commented out ???
else
-- Use several piecewise linear approximations.
-- A is close to X, chosen so 1.0 + A, 1.0 - A, and X - A are exact.
-- The two scalings remove the low-order bits of X.
A := Float_Type'Base'Scaling (
Float_Type'Base (Long_Long_Integer
(Float_Type'Base'Scaling (X, Mantissa - 1))), 1 - Mantissa);
B := X - A; -- This is exact; abs B <= 2**(-Mantissa).
A_Plus_1 := 1.0 + A; -- This is exact.
A_From_1 := 1.0 - A; -- Ditto.
D := A_Plus_1 * A_From_1; -- 1 - A*A.
-- use one term of the series expansion:
-- f (x + e) = f(x) + e * f'(x) + ..
-- The derivative of Arctanh at A is 1/(1-A*A). Next term is
-- A*(B/D)**2 (if a quadratic approximation is ever needed).
return 0.5 * (Log (A_Plus_1) - Log (A_From_1)) + B / D;
-- else
-- return 0.5 * Log ((X + 1.0) / (1.0 - X));
-- why are above lines commented out ???
end if;
end Arctanh;
---------
-- Cos --
---------
-- Natural cycle
function Cos (X : Float_Type'Base) return Float_Type'Base is
begin
if X = 0.0 then
return 1.0;
elsif abs X < Sqrt_Epsilon then
return 1.0;
end if;
return Float_Type'Base (Aux.Cos (Double (X)));
end Cos;
-- Arbitrary cycle
function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base is
begin
-- Just reuse the code for Sin. The potential small
-- loss of speed is negligible with proper (front-end) inlining.
return -Sin (abs X - Cycle * 0.25, Cycle);
end Cos;
----------
-- Cosh --
----------
function Cosh (X : Float_Type'Base) return Float_Type'Base is
Lnv : constant Float_Type'Base := 8#0.542714#;
V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
Y : Float_Type'Base := abs X;
Z : Float_Type'Base;
begin
if Y < Sqrt_Epsilon then
return 1.0;
elsif Y > Log_Inverse_Epsilon then
Z := Exp_Strict (Y - Lnv);
return (Z + V2minus1 * Z);
else
Z := Exp_Strict (Y);
return 0.5 * (Z + 1.0 / Z);
end if;
end Cosh;
---------
-- Cot --
---------
-- Natural cycle
function Cot (X : Float_Type'Base) return Float_Type'Base is
begin
if X = 0.0 then
raise Constraint_Error;
elsif abs X < Sqrt_Epsilon then
return 1.0 / X;
end if;
return 1.0 / Float_Type'Base (Aux.Tan (Double (X)));
end Cot;
-- Arbitrary cycle
function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base is
T : Float_Type'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
end if;
T := Float_Type'Base'Remainder (X, Cycle);
if T = 0.0 or abs T = 0.5 * Cycle then
raise Constraint_Error;
elsif abs T < Sqrt_Epsilon then
return 1.0 / T;
elsif abs T = 0.25 * Cycle then
return 0.0;
else
T := T / Cycle * Two_Pi;
return Cos (T) / Sin (T);
end if;
end Cot;
----------
-- Coth --
----------
function Coth (X : Float_Type'Base) return Float_Type'Base is
begin
if X = 0.0 then
raise Constraint_Error;
elsif X < Half_Log_Epsilon then
return -1.0;
elsif X > -Half_Log_Epsilon then
return 1.0;
elsif abs X < Sqrt_Epsilon then
return 1.0 / X;
end if;
return 1.0 / Float_Type'Base (Aux.Tanh (Double (X)));
end Coth;
---------
-- Exp --
---------
function Exp (X : Float_Type'Base) return Float_Type'Base is
Result : Float_Type'Base;
begin
if X = 0.0 then
return 1.0;
end if;
Result := Float_Type'Base (Aux.Exp (Double (X)));
-- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
-- is False, then we can just leave it as an infinity (and indeed we
-- prefer to do so). But if Machine_Overflows is True, then we have
-- to raise a Constraint_Error exception as required by the RM.
if Float_Type'Machine_Overflows and then not Result'Valid then
raise Constraint_Error;
end if;
return Result;
end Exp;
----------------
-- Exp_Strict --
----------------
function Exp_Strict (X : Float_Type'Base) return Float_Type'Base is
G : Float_Type'Base;
Z : Float_Type'Base;
P0 : constant := 0.25000_00000_00000_00000;
P1 : constant := 0.75753_18015_94227_76666E-2;
P2 : constant := 0.31555_19276_56846_46356E-4;
Q0 : constant := 0.5;
Q1 : constant := 0.56817_30269_85512_21787E-1;
Q2 : constant := 0.63121_89437_43985_02557E-3;
Q3 : constant := 0.75104_02839_98700_46114E-6;
C1 : constant := 8#0.543#;
C2 : constant := -2.1219_44400_54690_58277E-4;
Le : constant := 1.4426_95040_88896_34074;
XN : Float_Type'Base;
P, Q, R : Float_Type'Base;
begin
if X = 0.0 then
return 1.0;
end if;
XN := Float_Type'Base'Rounding (X * Le);
G := (X - XN * C1) - XN * C2;
Z := G * G;
P := G * ((P2 * Z + P1) * Z + P0);
Q := ((Q3 * Z + Q2) * Z + Q1) * Z + Q0;
R := 0.5 + P / (Q - P);
R := Float_Type'Base'Scaling (R, Integer (XN) + 1);
-- Deal with case of Exp returning IEEE infinity. If Machine_Overflows
-- is False, then we can just leave it as an infinity (and indeed we
-- prefer to do so). But if Machine_Overflows is True, then we have
-- to raise a Constraint_Error exception as required by the RM.
if Float_Type'Machine_Overflows and then not R'Valid then
raise Constraint_Error;
else
return R;
end if;
end Exp_Strict;
----------------
-- Local_Atan --
----------------
function Local_Atan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0)
return Float_Type'Base
is
Z : Float_Type'Base;
Raw_Atan : Float_Type'Base;
begin
if abs Y > abs X then
Z := abs (X / Y);
else
Z := abs (Y / X);
end if;
if Z < Sqrt_Epsilon then
Raw_Atan := Z;
elsif Z = 1.0 then
Raw_Atan := Pi / 4.0;
else
Raw_Atan := Float_Type'Base (Aux.Atan (Double (Z)));
end if;
if abs Y > abs X then
Raw_Atan := Half_Pi - Raw_Atan;
end if;
if X > 0.0 then
if Y > 0.0 then
return Raw_Atan;
else -- Y < 0.0
return -Raw_Atan;
end if;
else -- X < 0.0
if Y > 0.0 then
return Pi - Raw_Atan;
else -- Y < 0.0
return -(Pi - Raw_Atan);
end if;
end if;
end Local_Atan;
---------
-- Log --
---------
-- Natural base
function Log (X : Float_Type'Base) return Float_Type'Base is
begin
if X < 0.0 then
raise Argument_Error;
elsif X = 0.0 then
raise Constraint_Error;
elsif X = 1.0 then
return 0.0;
end if;
return Float_Type'Base (Aux.Log (Double (X)));
end Log;
-- Arbitrary base
function Log (X, Base : Float_Type'Base) return Float_Type'Base is
begin
if X < 0.0 then
raise Argument_Error;
elsif Base <= 0.0 or else Base = 1.0 then
raise Argument_Error;
elsif X = 0.0 then
raise Constraint_Error;
elsif X = 1.0 then
return 0.0;
end if;
return Float_Type'Base (Aux.Log (Double (X)) / Aux.Log (Double (Base)));
end Log;
---------
-- Sin --
---------
-- Natural cycle
function Sin (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X < Sqrt_Epsilon then
return X;
end if;
return Float_Type'Base (Aux.Sin (Double (X)));
end Sin;
-- Arbitrary cycle
function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base is
T : Float_Type'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif X = 0.0 then
-- Is this test really needed on any machine ???
return X;
end if;
T := Float_Type'Base'Remainder (X, Cycle);
-- The following two reductions reduce the argument
-- to the interval [-0.25 * Cycle, 0.25 * Cycle].
-- This reduction is exact and is needed to prevent
-- inaccuracy that may result if the sinus function
-- a different (more accurate) value of Pi in its
-- reduction than is used in the multiplication with Two_Pi.
if abs T > 0.25 * Cycle then
T := 0.5 * Float_Type'Copy_Sign (Cycle, T) - T;
end if;
-- Could test for 12.0 * abs T = Cycle, and return
-- an exact value in those cases. It is not clear that
-- this is worth the extra test though.
return Float_Type'Base (Aux.Sin (Double (T / Cycle * Two_Pi)));
end Sin;
----------
-- Sinh --
----------
function Sinh (X : Float_Type'Base) return Float_Type'Base is
Lnv : constant Float_Type'Base := 8#0.542714#;
V2minus1 : constant Float_Type'Base := 0.13830_27787_96019_02638E-4;
Y : Float_Type'Base := abs X;
F : constant Float_Type'Base := Y * Y;
Z : Float_Type'Base;
Float_Digits_1_6 : constant Boolean := Float_Type'Digits < 7;
begin
if Y < Sqrt_Epsilon then
return X;
elsif Y > Log_Inverse_Epsilon then
Z := Exp_Strict (Y - Lnv);
Z := Z + V2minus1 * Z;
elsif Y < 1.0 then
if Float_Digits_1_6 then
-- Use expansion provided by Cody and Waite, p. 226. Note that
-- leading term of the polynomial in Q is exactly 1.0.
declare
P0 : constant := -0.71379_3159E+1;
P1 : constant := -0.19033_3399E+0;
Q0 : constant := -0.42827_7109E+2;
begin
Z := Y + Y * F * (P1 * F + P0) / (F + Q0);
end;
else
declare
P0 : constant := -0.35181_28343_01771_17881E+6;
P1 : constant := -0.11563_52119_68517_68270E+5;
P2 : constant := -0.16375_79820_26307_51372E+3;
P3 : constant := -0.78966_12741_73570_99479E+0;
Q0 : constant := -0.21108_77005_81062_71242E+7;
Q1 : constant := 0.36162_72310_94218_36460E+5;
Q2 : constant := -0.27773_52311_96507_01667E+3;
begin
Z := Y + Y * F * (((P3 * F + P2) * F + P1) * F + P0)
/ (((F + Q2) * F + Q1) * F + Q0);
end;
end if;
else
Z := Exp_Strict (Y);
Z := 0.5 * (Z - 1.0 / Z);
end if;
if X > 0.0 then
return Z;
else
return -Z;
end if;
end Sinh;
----------
-- Sqrt --
----------
function Sqrt (X : Float_Type'Base) return Float_Type'Base is
begin
if X < 0.0 then
raise Argument_Error;
-- Special case Sqrt (0.0) to preserve possible minus sign per IEEE
elsif X = 0.0 then
return X;
end if;
return Float_Type'Base (Aux.Sqrt (Double (X)));
end Sqrt;
---------
-- Tan --
---------
-- Natural cycle
function Tan (X : Float_Type'Base) return Float_Type'Base is
begin
if abs X < Sqrt_Epsilon then
return X;
elsif abs X = Pi / 2.0 then
raise Constraint_Error;
end if;
return Float_Type'Base (Aux.Tan (Double (X)));
end Tan;
-- Arbitrary cycle
function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base is
T : Float_Type'Base;
begin
if Cycle <= 0.0 then
raise Argument_Error;
elsif X = 0.0 then
return X;
end if;
T := Float_Type'Base'Remainder (X, Cycle);
if abs T = 0.25 * Cycle then
raise Constraint_Error;
elsif abs T = 0.5 * Cycle then
return 0.0;
else
T := T / Cycle * Two_Pi;
return Sin (T) / Cos (T);
end if;
end Tan;
----------
-- Tanh --
----------
function Tanh (X : Float_Type'Base) return Float_Type'Base is
P0 : constant Float_Type'Base := -0.16134_11902E4;
P1 : constant Float_Type'Base := -0.99225_92967E2;
P2 : constant Float_Type'Base := -0.96437_49299E0;
Q0 : constant Float_Type'Base := 0.48402_35707E4;
Q1 : constant Float_Type'Base := 0.22337_72071E4;
Q2 : constant Float_Type'Base := 0.11274_47438E3;
Q3 : constant Float_Type'Base := 0.10000000000E1;
Half_Ln3 : constant Float_Type'Base := 0.54930_61443;
P, Q, R : Float_Type'Base;
Y : Float_Type'Base := abs X;
G : Float_Type'Base := Y * Y;
Float_Type_Digits_15_Or_More : constant Boolean :=
Float_Type'Digits > 14;
begin
if X < Half_Log_Epsilon then
return -1.0;
elsif X > -Half_Log_Epsilon then
return 1.0;
elsif Y < Sqrt_Epsilon then
return X;
elsif Y < Half_Ln3
and then Float_Type_Digits_15_Or_More
then
P := (P2 * G + P1) * G + P0;
Q := ((Q3 * G + Q2) * G + Q1) * G + Q0;
R := G * (P / Q);
return X + X * R;
else
return Float_Type'Base (Aux.Tanh (Double (X)));
end if;
end Tanh;
end Ada.Numerics.Generic_Elementary_Functions;
|