summaryrefslogtreecommitdiff
path: root/gcc/ada/a-crbtgo.adb
blob: 4720f8cbb48079f7f05b3c7d54b7dfd4b360681b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT LIBRARY COMPONENTS                          --
--                                                                          --
--        A D A . C O N T A I N E R S . R E D _ B L A C K _ T R E E S .     --
--                    G E N E R I C _ O P E R A T I O N S                   --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 2004-2005, Free Software Foundation, Inc.         --
--                                                                          --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the  contents of the part following the private keyword. --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 2,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT;  see file COPYING.  If not, write --
-- to  the  Free Software Foundation,  51  Franklin  Street,  Fifth  Floor, --
-- Boston, MA 02110-1301, USA.                                              --
--                                                                          --
-- As a special exception,  if other files  instantiate  generics from this --
-- unit, or you link  this unit with other files  to produce an executable, --
-- this  unit  does not  by itself cause  the resulting  executable  to  be --
-- covered  by the  GNU  General  Public  License.  This exception does not --
-- however invalidate  any other reasons why  the executable file  might be --
-- covered by the  GNU Public License.                                      --
--                                                                          --
-- This unit was originally developed by Matthew J Heaney.                  --
------------------------------------------------------------------------------

with System;  use type System.Address;

package body Ada.Containers.Red_Black_Trees.Generic_Operations is

   -----------------------
   -- Local Subprograms --
   -----------------------

   procedure Delete_Fixup (Tree : in out Tree_Type; Node : Node_Access);

   procedure Delete_Swap (Tree : in out Tree_Type; Z, Y : Node_Access);

   procedure Left_Rotate  (Tree : in out Tree_Type; X : Node_Access);
   procedure Right_Rotate (Tree : in out Tree_Type; Y : Node_Access);

--     ---------------------
--     -- Check_Invariant --
--     ---------------------

--     procedure Check_Invariant (Tree : Tree_Type) is
--        Root : constant Node_Access := Tree.Root;
--
--        function Check (Node : Node_Access) return Natural;
--
--        -----------
--        -- Check --
--        -----------
--
--        function Check (Node : Node_Access) return Natural is
--        begin
--           if Node = null then
--              return 0;
--           end if;
--
--           if Color (Node) = Red then
--              declare
--                 L : constant Node_Access := Left (Node);
--              begin
--                 pragma Assert (L = null or else Color (L) = Black);
--                 null;
--              end;
--
--              declare
--                 R : constant Node_Access := Right (Node);
--              begin
--                 pragma Assert (R = null or else Color (R) = Black);
--                 null;
--              end;
--
--              declare
--                 NL : constant Natural := Check (Left (Node));
--                 NR : constant Natural := Check (Right (Node));
--              begin
--                 pragma Assert (NL = NR);
--                 return NL;
--              end;
--           end if;
--
--           declare
--              NL : constant Natural := Check (Left (Node));
--              NR : constant Natural := Check (Right (Node));
--           begin
--              pragma Assert (NL = NR);
--              return NL + 1;
--           end;
--        end Check;
--
--     --  Start of processing for Check_Invariant
--
--     begin
--        if Root = null then
--           pragma Assert (Tree.First = null);
--           pragma Assert (Tree.Last = null);
--           pragma Assert (Tree.Length = 0);
--           null;
--
--        else
--           pragma Assert (Color (Root) = Black);
--           pragma Assert (Tree.Length > 0);
--           pragma Assert (Tree.Root /= null);
--           pragma Assert (Tree.First /= null);
--           pragma Assert (Tree.Last /= null);
--           pragma Assert (Parent (Tree.Root) = null);
--           pragma Assert ((Tree.Length > 1)
--                             or else (Tree.First = Tree.Last
--                                        and Tree.First = Tree.Root));
--           pragma Assert (Left (Tree.First) = null);
--           pragma Assert (Right (Tree.Last) = null);
--
--           declare
--              L  : constant Node_Access := Left (Root);
--              R  : constant Node_Access := Right (Root);
--              NL : constant Natural := Check (L);
--              NR : constant Natural := Check (R);
--           begin
--              pragma Assert (NL = NR);
--              null;
--           end;
--        end if;
--     end Check_Invariant;

   ------------------
   -- Delete_Fixup --
   ------------------

   procedure Delete_Fixup (Tree : in out Tree_Type; Node : Node_Access) is

      --  CLR p274 ???

      X : Node_Access := Node;
      W : Node_Access;

   begin
      while X /= Tree.Root
        and then Color (X) = Black
      loop
         if X = Left (Parent (X)) then
            W :=  Right (Parent (X));

            if Color (W) = Red then
               Set_Color (W, Black);
               Set_Color (Parent (X), Red);
               Left_Rotate (Tree, Parent (X));
               W := Right (Parent (X));
            end if;

            if (Left (W)  = null or else Color (Left (W)) = Black)
              and then
               (Right (W) = null or else Color (Right (W)) = Black)
            then
               Set_Color (W, Red);
               X := Parent (X);

            else
               if Right (W) = null
                 or else Color (Right (W)) = Black
               then
                  if Left (W) /= null then
                     Set_Color (Left (W), Black);
                  end if;

                  Set_Color (W, Red);
                  Right_Rotate (Tree, W);
                  W := Right (Parent (X));
               end if;

               Set_Color (W, Color (Parent (X)));
               Set_Color (Parent (X), Black);
               Set_Color (Right (W), Black);
               Left_Rotate  (Tree, Parent (X));
               X := Tree.Root;
            end if;

         else
            pragma Assert (X = Right (Parent (X)));

            W :=  Left (Parent (X));

            if Color (W) = Red then
               Set_Color (W, Black);
               Set_Color (Parent (X), Red);
               Right_Rotate (Tree, Parent (X));
               W := Left (Parent (X));
            end if;

            if (Left (W)  = null or else Color (Left (W)) = Black)
                  and then
               (Right (W) = null or else Color (Right (W)) = Black)
            then
               Set_Color (W, Red);
               X := Parent (X);

            else
               if Left (W) = null or else Color (Left (W)) = Black then
                  if Right (W) /= null then
                     Set_Color (Right (W), Black);
                  end if;

                  Set_Color (W, Red);
                  Left_Rotate (Tree, W);
                  W := Left (Parent (X));
               end if;

               Set_Color (W, Color (Parent (X)));
               Set_Color (Parent (X), Black);
               Set_Color (Left (W), Black);
               Right_Rotate (Tree, Parent (X));
               X := Tree.Root;
            end if;
         end if;
      end loop;

      Set_Color (X, Black);
   end Delete_Fixup;

   ---------------------------
   -- Delete_Node_Sans_Free --
   ---------------------------

   procedure Delete_Node_Sans_Free
     (Tree : in out Tree_Type;
      Node : Node_Access)
   is
      --  CLR p273 ???

      X, Y : Node_Access;

      Z : constant Node_Access := Node;
      pragma Assert (Z /= null);

   begin
      if Tree.Busy > 0 then
         raise Program_Error;
      end if;

--    pragma Assert (Tree.Length > 0);
--    pragma Assert (Tree.Root /= null);
--    pragma Assert (Tree.First /= null);
--    pragma Assert (Tree.Last /= null);
--    pragma Assert (Parent (Tree.Root) = null);
--    pragma Assert ((Tree.Length > 1)
--                      or else (Tree.First = Tree.Last
--                                 and then Tree.First = Tree.Root));
--    pragma Assert ((Left (Node) = null)
--                      or else (Parent (Left (Node)) = Node));
--    pragma Assert ((Right (Node) = null)
--                      or else (Parent (Right (Node)) = Node));
--    pragma Assert (((Parent (Node) = null) and then (Tree.Root = Node))
--                      or else ((Parent (Node) /= null) and then
--                                ((Left (Parent (Node)) = Node)
--                                   or else (Right (Parent (Node)) = Node))));

      if Left (Z) = null then
         if Right (Z) = null then
            if Z = Tree.First then
               Tree.First := Parent (Z);
            end if;

            if Z = Tree.Last then
               Tree.Last := Parent (Z);
            end if;

            if Color (Z) = Black then
               Delete_Fixup (Tree, Z);
            end if;

            pragma Assert (Left (Z) = null);
            pragma Assert (Right (Z) = null);

            if Z = Tree.Root then
               pragma Assert (Tree.Length = 1);
               pragma Assert (Parent (Z) = null);
               Tree.Root := null;
            elsif Z = Left (Parent (Z)) then
               Set_Left (Parent (Z), null);
            else
               pragma Assert (Z = Right (Parent (Z)));
               Set_Right (Parent (Z), null);
            end if;

         else
            pragma Assert (Z /= Tree.Last);

            X := Right (Z);

            if Z = Tree.First then
               Tree.First := Min (X);
            end if;

            if Z = Tree.Root then
               Tree.Root := X;
            elsif Z = Left (Parent (Z)) then
               Set_Left (Parent (Z), X);
            else
               pragma Assert (Z = Right (Parent (Z)));
               Set_Right (Parent (Z), X);
            end if;

            Set_Parent (X, Parent (Z));

            if Color (Z) = Black then
               Delete_Fixup (Tree, X);
            end if;
         end if;

      elsif Right (Z) = null then
         pragma Assert (Z /= Tree.First);

         X := Left (Z);

         if Z = Tree.Last then
            Tree.Last := Max (X);
         end if;

         if Z = Tree.Root then
            Tree.Root := X;
         elsif Z = Left (Parent (Z)) then
            Set_Left (Parent (Z), X);
         else
            pragma Assert (Z = Right (Parent (Z)));
            Set_Right (Parent (Z), X);
         end if;

         Set_Parent (X, Parent (Z));

         if Color (Z) = Black then
            Delete_Fixup (Tree, X);
         end if;

      else
         pragma Assert (Z /= Tree.First);
         pragma Assert (Z /= Tree.Last);

         Y := Next (Z);
         pragma Assert (Left (Y) = null);

         X := Right (Y);

         if X = null then
            if Y = Left (Parent (Y)) then
               pragma Assert (Parent (Y) /= Z);
               Delete_Swap (Tree, Z, Y);
               Set_Left (Parent (Z), Z);

            else
               pragma Assert (Y = Right (Parent (Y)));
               pragma Assert (Parent (Y) = Z);
               Set_Parent (Y, Parent (Z));

               if Z = Tree.Root then
                  Tree.Root := Y;
               elsif Z = Left (Parent (Z)) then
                  Set_Left (Parent (Z), Y);
               else
                  pragma Assert (Z = Right (Parent (Z)));
                  Set_Right (Parent (Z), Y);
               end if;

               Set_Left (Y, Left (Z));
               Set_Parent (Left (Y), Y);
               Set_Right (Y, Z);
               Set_Parent (Z, Y);
               Set_Left (Z, null);
               Set_Right (Z, null);

               declare
                  Y_Color : constant Color_Type := Color (Y);
               begin
                  Set_Color (Y, Color (Z));
                  Set_Color (Z, Y_Color);
               end;
            end if;

            if Color (Z) = Black then
               Delete_Fixup (Tree, Z);
            end if;

            pragma Assert (Left (Z) = null);
            pragma Assert (Right (Z) = null);

            if Z = Right (Parent (Z)) then
               Set_Right (Parent (Z), null);
            else
               pragma Assert (Z = Left (Parent (Z)));
               Set_Left (Parent (Z), null);
            end if;

         else
            if Y = Left (Parent (Y)) then
               pragma Assert (Parent (Y) /= Z);

               Delete_Swap (Tree, Z, Y);

               Set_Left (Parent (Z), X);
               Set_Parent (X, Parent (Z));

            else
               pragma Assert (Y = Right (Parent (Y)));
               pragma Assert (Parent (Y) = Z);

               Set_Parent (Y, Parent (Z));

               if Z = Tree.Root then
                  Tree.Root := Y;
               elsif Z = Left (Parent (Z)) then
                  Set_Left (Parent (Z), Y);
               else
                  pragma Assert (Z = Right (Parent (Z)));
                  Set_Right (Parent (Z), Y);
               end if;

               Set_Left (Y, Left (Z));
               Set_Parent (Left (Y), Y);

               declare
                  Y_Color : constant Color_Type := Color (Y);
               begin
                  Set_Color (Y, Color (Z));
                  Set_Color (Z, Y_Color);
               end;
            end if;

            if Color (Z) = Black then
               Delete_Fixup (Tree, X);
            end if;
         end if;
      end if;

      Tree.Length := Tree.Length - 1;
   end Delete_Node_Sans_Free;

   -----------------
   -- Delete_Swap --
   -----------------

   procedure Delete_Swap
     (Tree : in out Tree_Type;
      Z, Y : Node_Access)
   is
      pragma Assert (Z /= Y);
      pragma Assert (Parent (Y) /= Z);

      Y_Parent : constant Node_Access := Parent (Y);
      Y_Color  : constant Color_Type  := Color (Y);

   begin
      Set_Parent (Y, Parent (Z));
      Set_Left (Y, Left (Z));
      Set_Right (Y, Right (Z));
      Set_Color (Y, Color (Z));

      if Tree.Root = Z then
         Tree.Root := Y;
      elsif Right (Parent (Y)) = Z then
         Set_Right (Parent (Y), Y);
      else
         pragma Assert (Left (Parent (Y)) = Z);
         Set_Left (Parent (Y), Y);
      end if;

      if Right (Y) /= null then
         Set_Parent (Right (Y), Y);
      end if;

      if Left (Y) /= null then
         Set_Parent (Left (Y), Y);
      end if;

      Set_Parent (Z, Y_Parent);
      Set_Color (Z, Y_Color);
      Set_Left (Z, null);
      Set_Right (Z, null);
   end Delete_Swap;

   --------------------
   -- Generic_Adjust --
   --------------------

   procedure Generic_Adjust (Tree : in out Tree_Type) is
      N    : constant Count_Type := Tree.Length;
      Root : constant Node_Access := Tree.Root;

   begin
      if N = 0 then
         pragma Assert (Root = null);
         pragma Assert (Tree.Busy = 0);
         pragma Assert (Tree.Lock = 0);
         return;
      end if;

      Tree.Root := null;
      Tree.First := null;
      Tree.Last := null;
      Tree.Length := 0;

      Tree.Root := Copy_Tree (Root);
      Tree.First := Min (Tree.Root);
      Tree.Last := Max (Tree.Root);
      Tree.Length := N;
   end Generic_Adjust;

   -------------------
   -- Generic_Clear --
   -------------------

   procedure Generic_Clear (Tree : in out Tree_Type) is
      Root : Node_Access := Tree.Root;
   begin
      if Tree.Busy > 0 then
         raise Program_Error;
      end if;

      Tree := (First  => null,
               Last   => null,
               Root   => null,
               Length => 0,
               Busy   => 0,
               Lock   => 0);

      Delete_Tree (Root);
   end Generic_Clear;

   -----------------------
   -- Generic_Copy_Tree --
   -----------------------

   function Generic_Copy_Tree (Source_Root : Node_Access) return Node_Access is
      Target_Root : Node_Access := Copy_Node (Source_Root);
      P, X        : Node_Access;

   begin
      if Right (Source_Root) /= null then
         Set_Right
           (Node  => Target_Root,
            Right => Generic_Copy_Tree (Right (Source_Root)));

         Set_Parent
           (Node   => Right (Target_Root),
            Parent => Target_Root);
      end if;

      P := Target_Root;

      X := Left (Source_Root);
      while X /= null loop
         declare
            Y : constant Node_Access := Copy_Node (X);
         begin
            Set_Left (Node => P, Left => Y);
            Set_Parent (Node => Y, Parent => P);

            if Right (X) /= null then
               Set_Right
                 (Node  => Y,
                  Right => Generic_Copy_Tree (Right (X)));

               Set_Parent
                 (Node   => Right (Y),
                  Parent => Y);
            end if;

            P := Y;
            X := Left (X);
         end;
      end loop;

      return Target_Root;
   exception
      when others =>
         Delete_Tree (Target_Root);
         raise;
   end Generic_Copy_Tree;

   -------------------------
   -- Generic_Delete_Tree --
   -------------------------

   procedure Generic_Delete_Tree (X : in out Node_Access) is
      Y : Node_Access;
   begin
      while X /= null loop
         Y := Right (X);
         Generic_Delete_Tree (Y);
         Y := Left (X);
         Free (X);
         X := Y;
      end loop;
   end Generic_Delete_Tree;

   -------------------
   -- Generic_Equal --
   -------------------

   function Generic_Equal (Left, Right : Tree_Type) return Boolean is
      L_Node : Node_Access;
      R_Node : Node_Access;

   begin
      if Left'Address = Right'Address then
         return True;
      end if;

      if Left.Length /= Right.Length then
         return False;
      end if;

      L_Node := Left.First;
      R_Node := Right.First;
      while L_Node /= null loop
         if not Is_Equal (L_Node, R_Node) then
            return False;
         end if;

         L_Node := Next (L_Node);
         R_Node := Next (R_Node);
      end loop;

      return True;
   end Generic_Equal;

   -----------------------
   -- Generic_Iteration --
   -----------------------

   procedure Generic_Iteration (Tree : Tree_Type) is
      procedure Iterate (P : Node_Access);

      -------------
      -- Iterate --
      -------------

      procedure Iterate (P : Node_Access) is
         X : Node_Access := P;
      begin
         while X /= null loop
            Iterate (Left (X));
            Process (X);
            X := Right (X);
         end loop;
      end Iterate;

   --  Start of processing for Generic_Iteration

   begin
      Iterate (Tree.Root);
   end Generic_Iteration;

   ------------------
   -- Generic_Move --
   ------------------

   procedure Generic_Move (Target, Source : in out Tree_Type) is
   begin
      if Target'Address = Source'Address then
         return;
      end if;

      if Source.Busy > 0 then
         raise Program_Error;
      end if;

      Clear (Target);

      Target := Source;

      Source := (First  => null,
                 Last   => null,
                 Root   => null,
                 Length => 0,
                 Busy   => 0,
                 Lock   => 0);
   end Generic_Move;

   ------------------
   -- Generic_Read --
   ------------------

   procedure Generic_Read
     (Stream : access Root_Stream_Type'Class;
      Tree   : in out Tree_Type)
   is
      N : Count_Type'Base;

      Node, Last_Node : Node_Access;

   begin
      Clear (Tree);

      Count_Type'Base'Read (Stream, N);
      pragma Assert (N >= 0);

      if N = 0 then
         return;
      end if;

      Node := Read_Node (Stream);
      pragma Assert (Node /= null);
      pragma Assert (Color (Node) = Red);

      Set_Color (Node, Black);

      Tree.Root := Node;
      Tree.First := Node;
      Tree.Last := Node;

      Tree.Length := 1;

      for J in Count_Type range 2 .. N loop
         Last_Node := Node;
         pragma Assert (Last_Node = Tree.Last);

         Node := Read_Node (Stream);
         pragma Assert (Node /= null);
         pragma Assert (Color (Node) = Red);

         Set_Right (Node => Last_Node, Right => Node);
         Tree.Last := Node;
         Set_Parent (Node => Node, Parent => Last_Node);
         Rebalance_For_Insert (Tree, Node);
         Tree.Length := Tree.Length + 1;
      end loop;
   end Generic_Read;

   -------------------------------
   -- Generic_Reverse_Iteration --
   -------------------------------

   procedure Generic_Reverse_Iteration (Tree : Tree_Type)
   is
      procedure Iterate (P : Node_Access);

      -------------
      -- Iterate --
      -------------

      procedure Iterate (P : Node_Access) is
         X : Node_Access := P;
      begin
         while X /= null loop
            Iterate (Right (X));
            Process (X);
            X := Left (X);
         end loop;
      end Iterate;

   --  Start of processing for Generic_Reverse_Iteration

   begin
      Iterate (Tree.Root);
   end Generic_Reverse_Iteration;

   -------------------
   -- Generic_Write --
   -------------------

   procedure Generic_Write
     (Stream : access Root_Stream_Type'Class;
      Tree   : in     Tree_Type)
   is
      procedure Process (Node : Node_Access);
      pragma Inline (Process);

      procedure Iterate is
         new Generic_Iteration (Process);

      -------------
      -- Process --
      -------------

      procedure Process (Node : Node_Access) is
      begin
         Write_Node (Stream, Node);
      end Process;

   --  Start of processing for Generic_Write

   begin
      Count_Type'Base'Write (Stream, Tree.Length);
      Iterate (Tree);
   end Generic_Write;

   -----------------
   -- Left_Rotate --
   -----------------

   procedure Left_Rotate (Tree : in out Tree_Type; X : Node_Access) is

      --  CLR p266 ???

      Y : constant Node_Access := Right (X);
      pragma Assert (Y /= null);

   begin
      Set_Right (X, Left (Y));

      if Left (Y) /= null then
         Set_Parent (Left (Y), X);
      end if;

      Set_Parent (Y, Parent (X));

      if X = Tree.Root then
         Tree.Root := Y;
      elsif X = Left (Parent (X)) then
         Set_Left (Parent (X), Y);
      else
         pragma Assert (X = Right (Parent (X)));
         Set_Right (Parent (X), Y);
      end if;

      Set_Left (Y, X);
      Set_Parent (X, Y);
   end Left_Rotate;

   ---------
   -- Max --
   ---------

   function Max (Node : Node_Access) return Node_Access is

      --  CLR p248 ???

      X : Node_Access := Node;
      Y : Node_Access;

   begin
      loop
         Y := Right (X);

         if Y = null then
            return X;
         end if;

         X := Y;
      end loop;
   end Max;

   ---------
   -- Min --
   ---------

   function Min (Node : Node_Access) return Node_Access is

      --  CLR p248 ???

      X : Node_Access := Node;
      Y : Node_Access;

   begin
      loop
         Y := Left (X);

         if Y = null then
            return X;
         end if;

         X := Y;
      end loop;
   end Min;

   ----------
   -- Next --
   ----------

   function Next (Node : Node_Access) return Node_Access is
   begin
      --  CLR p249 ???

      if Node = null then
         return null;
      end if;

      if Right (Node) /= null then
         return Min (Right (Node));
      end if;

      declare
         X : Node_Access := Node;
         Y : Node_Access := Parent (Node);

      begin
         while Y /= null
           and then X = Right (Y)
         loop
            X := Y;
            Y := Parent (Y);
         end loop;

         --  Why is this code commented out ???

--           if Right (X) /= Y then
--              return Y;
--           else
--              return X;
--           end if;

         return Y;
      end;
   end Next;

   --------------
   -- Previous --
   --------------

   function Previous (Node : Node_Access) return Node_Access is
   begin
      if Node = null then
         return null;
      end if;

      if Left (Node) /= null then
         return Max (Left (Node));
      end if;

      declare
         X : Node_Access := Node;
         Y : Node_Access := Parent (Node);

      begin
         while Y /= null
           and then X = Left (Y)
         loop
            X := Y;
            Y := Parent (Y);
         end loop;

         --  Why is this code commented out ???

--           if Left (X) /= Y then
--              return Y;
--           else
--              return X;
--           end if;

         return Y;
      end;
   end Previous;

   --------------------------
   -- Rebalance_For_Insert --
   --------------------------

   procedure Rebalance_For_Insert
     (Tree : in out Tree_Type;
      Node : Node_Access)
   is
      --  CLR p.268 ???

      X : Node_Access := Node;
      pragma Assert (X /= null);
      pragma Assert (Color (X) = Red);

      Y : Node_Access;

   begin
      while X /= Tree.Root and then Color (Parent (X)) = Red loop
         if Parent (X) = Left (Parent (Parent (X))) then
            Y := Right (Parent (Parent (X)));

            if Y /= null and then Color (Y) = Red then
               Set_Color (Parent (X), Black);
               Set_Color (Y, Black);
               Set_Color (Parent (Parent (X)), Red);
               X := Parent (Parent (X));

            else
               if X = Right (Parent (X)) then
                  X := Parent (X);
                  Left_Rotate (Tree, X);
               end if;

               Set_Color (Parent (X), Black);
               Set_Color (Parent (Parent (X)), Red);
               Right_Rotate (Tree, Parent (Parent (X)));
            end if;

         else
            pragma Assert (Parent (X) = Right (Parent (Parent (X))));

            Y := Left (Parent (Parent (X)));

            if Y /= null and then Color (Y) = Red then
               Set_Color (Parent (X), Black);
               Set_Color (Y, Black);
               Set_Color (Parent (Parent (X)), Red);
               X := Parent (Parent (X));

            else
               if X = Left (Parent (X)) then
                  X := Parent (X);
                  Right_Rotate (Tree, X);
               end if;

               Set_Color (Parent (X), Black);
               Set_Color (Parent (Parent (X)), Red);
               Left_Rotate (Tree, Parent (Parent (X)));
            end if;
         end if;
      end loop;

      Set_Color (Tree.Root, Black);
   end Rebalance_For_Insert;

   ------------------
   -- Right_Rotate --
   ------------------

   procedure Right_Rotate (Tree : in out Tree_Type; Y : Node_Access) is
      X : constant Node_Access := Left (Y);
      pragma Assert (X /= null);

   begin
      Set_Left (Y, Right (X));

      if Right (X) /= null then
         Set_Parent (Right (X), Y);
      end if;

      Set_Parent (X, Parent (Y));

      if Y = Tree.Root then
         Tree.Root := X;
      elsif Y = Left (Parent (Y)) then
         Set_Left (Parent (Y), X);
      else
         pragma Assert (Y = Right (Parent (Y)));
         Set_Right (Parent (Y), X);
      end if;

      Set_Right (X, Y);
      Set_Parent (Y, X);
   end Right_Rotate;

   ---------
   -- Vet --
   ---------

   function Vet (Tree : Tree_Type; Node : Node_Access) return Boolean is
   begin
      if Node = null then
         return True;
      end if;

      if Parent (Node) = Node
        or else Left (Node) = Node
        or else Right (Node) = Node
      then
         return False;
      end if;

      if Tree.Length = 0
        or else Tree.Root = null
        or else Tree.First = null
        or else Tree.Last = null
      then
         return False;
      end if;

      if Parent (Tree.Root) /= null then
         return False;
      end if;

      if Left (Tree.First) /= null then
         return False;
      end if;

      if Right (Tree.Last) /= null then
         return False;
      end if;

      if Tree.Length = 1 then
         if Tree.First /= Tree.Last
           or else Tree.First /= Tree.Root
         then
            return False;
         end if;

         if Node /= Tree.First then
            return False;
         end if;

         if Parent (Node) /= null
           or else Left (Node) /= null
           or else Right (Node) /= null
         then
            return False;
         end if;

         return True;
      end if;

      if Tree.First = Tree.Last then
         return False;
      end if;

      if Tree.Length = 2 then
         if Tree.First /= Tree.Root
           and then Tree.Last /= Tree.Root
         then
            return False;
         end if;

         if Tree.First /= Node
           and then Tree.Last /= Node
         then
            return False;
         end if;
      end if;

      if Left (Node) /= null
        and then Parent (Left (Node)) /= Node
      then
         return False;
      end if;

      if Right (Node) /= null
        and then Parent (Right (Node)) /= Node
      then
         return False;
      end if;

      if Parent (Node) = null then
         if Tree.Root /= Node then
            return False;
         end if;

      elsif Left (Parent (Node)) /= Node
        and then Right (Parent (Node)) /= Node
      then
         return False;
      end if;

      return True;
   end Vet;

end Ada.Containers.Red_Black_Trees.Generic_Operations;