1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
|
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.HASH_TABLES.GENERIC_OPERATIONS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2004 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- This unit was originally developed by Matthew J Heaney. --
------------------------------------------------------------------------------
-- This body needs commenting ???
with Ada.Containers.Prime_Numbers;
with Ada.Unchecked_Deallocation;
with System; use type System.Address;
package body Ada.Containers.Hash_Tables.Generic_Operations is
procedure Free is
new Ada.Unchecked_Deallocation (Buckets_Type, Buckets_Access);
-----------------------
-- Local Subprograms --
-----------------------
procedure Rehash
(HT : in out Hash_Table_Type;
Size : Hash_Type);
------------
-- Adjust --
------------
procedure Adjust (HT : in out Hash_Table_Type) is
Src_Buckets : constant Buckets_Access := HT.Buckets;
N : constant Count_Type := HT.Length;
Src_Node : Node_Access;
Dst_Prev : Node_Access;
begin
HT.Buckets := null;
HT.Length := 0;
if N = 0 then
return;
end if;
HT.Buckets := new Buckets_Type (Src_Buckets'Range);
-- Probably we have to duplicate the Size (Src), too, in order
-- to guarantee that
-- Dst := Src;
-- Dst = Src is true
-- The only quirk is that we depend on the hash value of a dst key
-- to be the same as the src key from which it was copied.
-- If we relax the requirement that the hash value must be the
-- same, then of course we can't guarantee that following
-- assignment that Dst = Src is true ???
for Src_Index in Src_Buckets'Range loop
Src_Node := Src_Buckets (Src_Index);
if Src_Node /= Null_Node then
declare
Dst_Node : constant Node_Access := Copy_Node (Src_Node);
-- See note above
pragma Assert (Index (HT, Dst_Node) = Src_Index);
begin
HT.Buckets (Src_Index) := Dst_Node;
HT.Length := HT.Length + 1;
Dst_Prev := Dst_Node;
end;
Src_Node := Next (Src_Node);
while Src_Node /= Null_Node loop
declare
Dst_Node : constant Node_Access := Copy_Node (Src_Node);
-- See note above
pragma Assert (Index (HT, Dst_Node) = Src_Index);
begin
Set_Next (Node => Dst_Prev, Next => Dst_Node);
HT.Length := HT.Length + 1;
Dst_Prev := Dst_Node;
end;
Src_Node := Next (Src_Node);
end loop;
end if;
end loop;
pragma Assert (HT.Length = N);
end Adjust;
--------------
-- Capacity --
--------------
function Capacity (HT : Hash_Table_Type) return Count_Type is
begin
if HT.Buckets = null then
return 0;
end if;
return HT.Buckets'Length;
end Capacity;
-----------
-- Clear --
-----------
procedure Clear (HT : in out Hash_Table_Type) is
Index : Hash_Type := 0;
Node : Node_Access;
begin
while HT.Length > 0 loop
while HT.Buckets (Index) = Null_Node loop
Index := Index + 1;
end loop;
declare
Bucket : Node_Access renames HT.Buckets (Index);
begin
loop
Node := Bucket;
Bucket := Next (Bucket);
HT.Length := HT.Length - 1;
Free (Node);
exit when Bucket = Null_Node;
end loop;
end;
end loop;
end Clear;
---------------------------
-- Delete_Node_Sans_Free --
---------------------------
procedure Delete_Node_Sans_Free
(HT : in out Hash_Table_Type;
X : Node_Access)
is
pragma Assert (X /= Null_Node);
Indx : Hash_Type;
Prev : Node_Access;
Curr : Node_Access;
begin
if HT.Length = 0 then
raise Program_Error;
end if;
Indx := Index (HT, X);
Prev := HT.Buckets (Indx);
if Prev = Null_Node then
raise Program_Error;
end if;
if Prev = X then
HT.Buckets (Indx) := Next (Prev);
HT.Length := HT.Length - 1;
return;
end if;
if HT.Length = 1 then
raise Program_Error;
end if;
loop
Curr := Next (Prev);
if Curr = Null_Node then
raise Program_Error;
end if;
if Curr = X then
Set_Next (Node => Prev, Next => Next (Curr));
HT.Length := HT.Length - 1;
return;
end if;
Prev := Curr;
end loop;
end Delete_Node_Sans_Free;
---------------------
-- Ensure_Capacity --
---------------------
procedure Ensure_Capacity
(HT : in out Hash_Table_Type;
N : Count_Type)
is
NN : Hash_Type;
begin
if N = 0 then
if HT.Length = 0 then
Free (HT.Buckets);
elsif HT.Length < HT.Buckets'Length then
NN := Prime_Numbers.To_Prime (HT.Length);
-- ASSERT: NN >= HT.Length
if NN < HT.Buckets'Length then
Rehash (HT, Size => NN);
end if;
end if;
return;
end if;
if HT.Buckets = null then
NN := Prime_Numbers.To_Prime (N);
-- ASSERT: NN >= N
Rehash (HT, Size => NN);
return;
end if;
if N <= HT.Length then
if HT.Length >= HT.Buckets'Length then
return;
end if;
NN := Prime_Numbers.To_Prime (HT.Length);
-- ASSERT: NN >= HT.Length
if NN < HT.Buckets'Length then
Rehash (HT, Size => NN);
end if;
return;
end if;
-- ASSERT: N > HT.Length
if N = HT.Buckets'Length then
return;
end if;
NN := Prime_Numbers.To_Prime (N);
-- ASSERT: NN >= N
-- ASSERT: NN > HT.Length
if NN /= HT.Buckets'Length then
Rehash (HT, Size => NN);
end if;
end Ensure_Capacity;
--------------
-- Finalize --
--------------
procedure Finalize (HT : in out Hash_Table_Type) is
begin
Clear (HT);
Free (HT.Buckets);
end Finalize;
-----------
-- First --
-----------
function First (HT : Hash_Table_Type) return Node_Access is
Indx : Hash_Type;
begin
if HT.Length = 0 then
return Null_Node;
end if;
Indx := HT.Buckets'First;
loop
if HT.Buckets (Indx) /= Null_Node then
return HT.Buckets (Indx);
end if;
Indx := Indx + 1;
end loop;
end First;
---------------------
-- Free_Hash_Table --
---------------------
procedure Free_Hash_Table (Buckets : in out Buckets_Access) is
Node : Node_Access;
begin
if Buckets = null then
return;
end if;
for J in Buckets'Range loop
while Buckets (J) /= Null_Node loop
Node := Buckets (J);
Buckets (J) := Next (Node);
Free (Node);
end loop;
end loop;
Free (Buckets);
end Free_Hash_Table;
-------------------
-- Generic_Equal --
-------------------
function Generic_Equal
(L, R : Hash_Table_Type) return Boolean is
L_Index : Hash_Type;
L_Node : Node_Access;
N : Count_Type;
begin
if L'Address = R'Address then
return True;
end if;
if L.Length /= R.Length then
return False;
end if;
if L.Length = 0 then
return True;
end if;
L_Index := 0;
loop
L_Node := L.Buckets (L_Index);
exit when L_Node /= Null_Node;
L_Index := L_Index + 1;
end loop;
N := L.Length;
loop
if not Find (HT => R, Key => L_Node) then
return False;
end if;
N := N - 1;
L_Node := Next (L_Node);
if L_Node = Null_Node then
if N = 0 then
return True;
end if;
loop
L_Index := L_Index + 1;
L_Node := L.Buckets (L_Index);
exit when L_Node /= Null_Node;
end loop;
end if;
end loop;
end Generic_Equal;
-----------------------
-- Generic_Iteration --
-----------------------
procedure Generic_Iteration (HT : Hash_Table_Type) is
Node : Node_Access;
begin
if HT.Buckets = null
or else HT.Length = 0
then
return;
end if;
for Indx in HT.Buckets'Range loop
Node := HT.Buckets (Indx);
while Node /= Null_Node loop
Process (Node);
Node := Next (Node);
end loop;
end loop;
end Generic_Iteration;
------------------
-- Generic_Read --
------------------
procedure Generic_Read
(Stream : access Root_Stream_Type'Class;
HT : out Hash_Table_Type)
is
X, Y : Node_Access;
Last, I : Hash_Type;
N, M : Count_Type'Base;
begin
-- As with the sorted set, it's not clear whether read is allowed to
-- have side effect if it fails. For now, we assume side effects are
-- allowed since it simplifies the algorithm ???
--
Clear (HT);
declare
B : Buckets_Access := HT.Buckets;
begin
HT.Buckets := null;
HT.Length := 0;
Free (B); -- can this fail???
end;
Hash_Type'Read (Stream, Last);
if Last /= 0 then
HT.Buckets := new Buckets_Type (0 .. Last);
end if;
Count_Type'Base'Read (Stream, N);
pragma Assert (N >= 0);
while N > 0 loop
Hash_Type'Read (Stream, I);
pragma Assert (I in HT.Buckets'Range);
pragma Assert (HT.Buckets (I) = Null_Node);
Count_Type'Base'Read (Stream, M);
pragma Assert (M >= 1);
pragma Assert (M <= N);
HT.Buckets (I) := New_Node (Stream);
pragma Assert (HT.Buckets (I) /= Null_Node);
pragma Assert (Next (HT.Buckets (I)) = Null_Node);
Y := HT.Buckets (I);
HT.Length := HT.Length + 1;
for J in Count_Type range 2 .. M loop
X := New_Node (Stream);
pragma Assert (X /= Null_Node);
pragma Assert (Next (X) = Null_Node);
Set_Next (Node => Y, Next => X);
Y := X;
HT.Length := HT.Length + 1;
end loop;
N := N - M;
end loop;
end Generic_Read;
-------------------
-- Generic_Write --
-------------------
procedure Generic_Write
(Stream : access Root_Stream_Type'Class;
HT : Hash_Table_Type)
is
M : Count_Type'Base;
X : Node_Access;
begin
if HT.Buckets = null then
Hash_Type'Write (Stream, 0);
else
Hash_Type'Write (Stream, HT.Buckets'Last);
end if;
Count_Type'Base'Write (Stream, HT.Length);
if HT.Length = 0 then
return;
end if;
for Indx in HT.Buckets'Range loop
X := HT.Buckets (Indx);
if X /= Null_Node then
M := 1;
loop
X := Next (X);
exit when X = Null_Node;
M := M + 1;
end loop;
Hash_Type'Write (Stream, Indx);
Count_Type'Base'Write (Stream, M);
X := HT.Buckets (Indx);
for J in Count_Type range 1 .. M loop
Write (Stream, X);
X := Next (X);
end loop;
pragma Assert (X = Null_Node);
end if;
end loop;
end Generic_Write;
-----------
-- Index --
-----------
function Index
(Buckets : Buckets_Type;
Node : Node_Access) return Hash_Type is
begin
return Hash_Node (Node) mod Buckets'Length;
end Index;
function Index
(Hash_Table : Hash_Table_Type;
Node : Node_Access) return Hash_Type is
begin
return Index (Hash_Table.Buckets.all, Node);
end Index;
----------
-- Move --
----------
procedure Move (Target, Source : in out Hash_Table_Type) is
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Length > 0 then
raise Constraint_Error;
end if;
Free (Target.Buckets);
Target.Buckets := Source.Buckets;
Source.Buckets := null;
Target.Length := Source.Length;
Source.Length := 0;
end Move;
----------
-- Next --
----------
function Next
(HT : Hash_Table_Type;
Node : Node_Access) return Node_Access
is
Result : Node_Access := Next (Node);
begin
if Result /= Null_Node then
return Result;
end if;
for Indx in Index (HT, Node) + 1 .. HT.Buckets'Last loop
Result := HT.Buckets (Indx);
if Result /= Null_Node then
return Result;
end if;
end loop;
return Null_Node;
end Next;
------------
-- Rehash --
------------
procedure Rehash
(HT : in out Hash_Table_Type;
Size : Hash_Type)
is
subtype Buckets_Range is Hash_Type range 0 .. Size - 1;
Dst_Buckets : Buckets_Access := new Buckets_Type (Buckets_Range);
Src_Buckets : Buckets_Access := HT.Buckets;
L : Count_Type renames HT.Length;
LL : constant Count_Type := L;
begin
if Src_Buckets = null then
pragma Assert (L = 0);
HT.Buckets := Dst_Buckets;
return;
end if;
if L = 0 then
HT.Buckets := Dst_Buckets;
Free (Src_Buckets);
return;
end if;
-- We might want to change this to iter from 1 .. L instead ???
for Src_Index in Src_Buckets'Range loop
declare
Src_Bucket : Node_Access renames Src_Buckets (Src_Index);
begin
while Src_Bucket /= Null_Node loop
declare
Src_Node : constant Node_Access := Src_Bucket;
Dst_Index : constant Hash_Type :=
Index (Dst_Buckets.all, Src_Node);
Dst_Bucket : Node_Access renames Dst_Buckets (Dst_Index);
begin
Src_Bucket := Next (Src_Node);
Set_Next (Src_Node, Dst_Bucket);
Dst_Bucket := Src_Node;
end;
pragma Assert (L > 0);
L := L - 1;
end loop;
exception
when others =>
-- Not clear that we can deallocate the nodes,
-- because they may be designated by outstanding
-- iterators. Which means they're now lost... ???
-- for J in NB'Range loop
-- declare
-- Dst : Node_Access renames NB (J);
-- X : Node_Access;
-- begin
-- while Dst /= Null_Node loop
-- X := Dst;
-- Dst := Succ (Dst);
-- Free (X);
-- end loop;
-- end;
-- end loop;
Free (Dst_Buckets);
raise;
end;
-- exit when L = 0;
-- need to bother???
end loop;
pragma Assert (L = 0);
HT.Buckets := Dst_Buckets;
HT.Length := LL;
Free (Src_Buckets);
end Rehash;
end Ada.Containers.Hash_Tables.Generic_Operations;
|