1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
|
------------------------------------------------------------------------------
-- --
-- GNAT RUNTIME COMPONENTS --
-- --
-- A D A . N U M E R I C S . A U X --
-- --
-- B o d y --
-- (Machine Version for x86) --
-- --
-- Copyright (C) 1998-2001 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- File a-numaux.adb <- 86numaux.adb
-- This version of Numerics.Aux is for the IEEE Double Extended floating
-- point format on x86.
with System.Machine_Code; use System.Machine_Code;
package body Ada.Numerics.Aux is
NL : constant String := ASCII.LF & ASCII.HT;
type FPU_Stack_Pointer is range 0 .. 7;
for FPU_Stack_Pointer'Size use 3;
type FPU_Status_Word is record
B : Boolean; -- FPU Busy (for 8087 compatibility only)
ES : Boolean; -- Error Summary Status
SF : Boolean; -- Stack Fault
Top : FPU_Stack_Pointer;
-- Condition Code Flags
-- C2 is set by FPREM and FPREM1 to indicate incomplete reduction.
-- In case of successfull recorction, C0, C3 and C1 are set to the
-- three least significant bits of the result (resp. Q2, Q1 and Q0).
-- C2 is used by FPTAN, FSIN, FCOS, and FSINCOS to indicate that
-- that source operand is beyond the allowable range of
-- -2.0**63 .. 2.0**63.
C3 : Boolean;
C2 : Boolean;
C1 : Boolean;
C0 : Boolean;
-- Exception Flags
PE : Boolean; -- Precision
UE : Boolean; -- Underflow
OE : Boolean; -- Overflow
ZE : Boolean; -- Zero Divide
DE : Boolean; -- Denormalized Operand
IE : Boolean; -- Invalid Operation
end record;
for FPU_Status_Word use record
B at 0 range 15 .. 15;
C3 at 0 range 14 .. 14;
Top at 0 range 11 .. 13;
C2 at 0 range 10 .. 10;
C1 at 0 range 9 .. 9;
C0 at 0 range 8 .. 8;
ES at 0 range 7 .. 7;
SF at 0 range 6 .. 6;
PE at 0 range 5 .. 5;
UE at 0 range 4 .. 4;
OE at 0 range 3 .. 3;
ZE at 0 range 2 .. 2;
DE at 0 range 1 .. 1;
IE at 0 range 0 .. 0;
end record;
for FPU_Status_Word'Size use 16;
-----------------------
-- Local subprograms --
-----------------------
function Is_Nan (X : Double) return Boolean;
-- Return True iff X is a IEEE NaN value
function Logarithmic_Pow (X, Y : Double) return Double;
-- Implementation of X**Y using Exp and Log functions (binary base)
-- to calculate the exponentiation. This is used by Pow for values
-- for values of Y in the open interval (-0.25, 0.25)
function Reduce (X : Double) return Double;
-- Implement partial reduction of X by Pi in the x86.
-- Note that for the Sin, Cos and Tan functions completely accurate
-- reduction of the argument is done for arguments in the range of
-- -2.0**63 .. 2.0**63, using a 66-bit approximation of Pi.
pragma Inline (Is_Nan);
pragma Inline (Reduce);
---------------------------------
-- Basic Elementary Functions --
---------------------------------
-- This section implements a few elementary functions that are
-- used to build the more complex ones. This ordering enables
-- better inlining.
----------
-- Atan --
----------
function Atan (X : Double) return Double is
Result : Double;
begin
Asm (Template =>
"fld1" & NL
& "fpatan",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
-- The result value is NaN iff input was invalid
if not (Result = Result) then
raise Argument_Error;
end if;
return Result;
end Atan;
---------
-- Exp --
---------
function Exp (X : Double) return Double is
Result : Double;
begin
Asm (Template =>
"fldl2e " & NL
& "fmulp %%st, %%st(1)" & NL -- X * log2 (E)
& "fld %%st(0) " & NL
& "frndint " & NL -- Integer (X * Log2 (E))
& "fsubr %%st, %%st(1)" & NL -- Fraction (X * Log2 (E))
& "fxch " & NL
& "f2xm1 " & NL -- 2**(...) - 1
& "fld1 " & NL
& "faddp %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E)))
& "fscale " & NL -- E ** X
& "fstp %%st(1) ",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
return Result;
end Exp;
------------
-- Is_Nan --
------------
function Is_Nan (X : Double) return Boolean is
begin
-- The IEEE NaN values are the only ones that do not equal themselves
return not (X = X);
end Is_Nan;
---------
-- Log --
---------
function Log (X : Double) return Double is
Result : Double;
begin
Asm (Template =>
"fldln2 " & NL
& "fxch " & NL
& "fyl2x " & NL,
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
return Result;
end Log;
------------
-- Reduce --
------------
function Reduce (X : Double) return Double is
Result : Double;
begin
Asm
(Template =>
-- Partial argument reduction
"fldpi " & NL
& "fadd %%st(0), %%st" & NL
& "fxch %%st(1) " & NL
& "fprem1 " & NL
& "fstp %%st(1) ",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
return Result;
end Reduce;
----------
-- Sqrt --
----------
function Sqrt (X : Double) return Double is
Result : Double;
begin
if X < 0.0 then
raise Argument_Error;
end if;
Asm (Template => "fsqrt",
Outputs => Double'Asm_Output ("=t", Result),
Inputs => Double'Asm_Input ("0", X));
return Result;
end Sqrt;
---------------------------------
-- Other Elementary Functions --
---------------------------------
-- These are built using the previously implemented basic functions
----------
-- Acos --
----------
function Acos (X : Double) return Double is
Result : Double;
begin
Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X)));
-- The result value is NaN iff input was invalid
if Is_Nan (Result) then
raise Argument_Error;
end if;
return Result;
end Acos;
----------
-- Asin --
----------
function Asin (X : Double) return Double is
Result : Double;
begin
Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X)));
-- The result value is NaN iff input was invalid
if Is_Nan (Result) then
raise Argument_Error;
end if;
return Result;
end Asin;
---------
-- Cos --
---------
function Cos (X : Double) return Double is
Reduced_X : Double := X;
Result : Double;
Status : FPU_Status_Word;
begin
loop
Asm
(Template =>
"fcos " & NL
& "xorl %%eax, %%eax " & NL
& "fnstsw %%ax ",
Outputs => (Double'Asm_Output ("=t", Result),
FPU_Status_Word'Asm_Output ("=a", Status)),
Inputs => Double'Asm_Input ("0", Reduced_X));
exit when not Status.C2;
-- Original argument was not in range and the result
-- is the unmodified argument.
Reduced_X := Reduce (Result);
end loop;
return Result;
end Cos;
---------------------
-- Logarithmic_Pow --
---------------------
function Logarithmic_Pow (X, Y : Double) return Double is
Result : Double;
begin
Asm (Template => "" -- X : Y
& "fyl2x " & NL -- Y * Log2 (X)
& "fst %%st(1) " & NL -- Y * Log2 (X) : Y * Log2 (X)
& "frndint " & NL -- Int (...) : Y * Log2 (X)
& "fsubr %%st, %%st(1)" & NL -- Int (...) : Fract (...)
& "fxch " & NL -- Fract (...) : Int (...)
& "f2xm1 " & NL -- 2**Fract (...) - 1 : Int (...)
& "fld1 " & NL -- 1 : 2**Fract (...) - 1 : Int (...)
& "faddp %%st, %%st(1)" & NL -- 2**Fract (...) : Int (...)
& "fscale " & NL -- 2**(Fract (...) + Int (...))
& "fstp %%st(1) ",
Outputs => Double'Asm_Output ("=t", Result),
Inputs =>
(Double'Asm_Input ("0", X),
Double'Asm_Input ("u", Y)));
return Result;
end Logarithmic_Pow;
---------
-- Pow --
---------
function Pow (X, Y : Double) return Double is
type Mantissa_Type is mod 2**Double'Machine_Mantissa;
-- Modular type that can hold all bits of the mantissa of Double
-- For negative exponents, a division is done
-- at the end of the processing.
Negative_Y : constant Boolean := Y < 0.0;
Abs_Y : constant Double := abs Y;
-- During this function the following invariant is kept:
-- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
Base : Double := X;
Exp_High : Double := Double'Floor (Abs_Y);
Exp_Mid : Double;
Exp_Low : Double;
Exp_Int : Mantissa_Type;
Factor : Double := 1.0;
begin
-- Select algorithm for calculating Pow:
-- integer cases fall through
if Exp_High >= 2.0**Double'Machine_Mantissa then
-- In case of Y that is IEEE infinity, just raise constraint error
if Exp_High > Double'Safe_Last then
raise Constraint_Error;
end if;
-- Large values of Y are even integers and will stay integer
-- after division by two.
loop
-- Exp_Mid and Exp_Low are zero, so
-- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
Exp_High := Exp_High / 2.0;
Base := Base * Base;
exit when Exp_High < 2.0**Double'Machine_Mantissa;
end loop;
elsif Exp_High /= Abs_Y then
Exp_Low := Abs_Y - Exp_High;
Factor := 1.0;
if Exp_Low /= 0.0 then
-- Exp_Low now is in interval (0.0, 1.0)
-- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
Exp_Mid := 0.0;
Exp_Low := Exp_Low - Exp_Mid;
if Exp_Low >= 0.5 then
Factor := Sqrt (X);
Exp_Low := Exp_Low - 0.5; -- exact
if Exp_Low >= 0.25 then
Factor := Factor * Sqrt (Factor);
Exp_Low := Exp_Low - 0.25; -- exact
end if;
elsif Exp_Low >= 0.25 then
Factor := Sqrt (Sqrt (X));
Exp_Low := Exp_Low - 0.25; -- exact
end if;
-- Exp_Low now is in interval (0.0, 0.25)
-- This means it is safe to call Logarithmic_Pow
-- for the remaining part.
Factor := Factor * Logarithmic_Pow (X, Exp_Low);
end if;
elsif X = 0.0 then
return 0.0;
end if;
-- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
Exp_Int := Mantissa_Type (Exp_High);
-- Standard way for processing integer powers > 0
while Exp_Int > 1 loop
if (Exp_Int and 1) = 1 then
-- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
Factor := Factor * Base;
end if;
-- Exp_Int is even and Exp_Int > 0, so
-- Base**Y = (Base**2)**(Exp_Int / 2)
Base := Base * Base;
Exp_Int := Exp_Int / 2;
end loop;
-- Exp_Int = 1 or Exp_Int = 0
if Exp_Int = 1 then
Factor := Base * Factor;
end if;
if Negative_Y then
Factor := 1.0 / Factor;
end if;
return Factor;
end Pow;
---------
-- Sin --
---------
function Sin (X : Double) return Double is
Reduced_X : Double := X;
Result : Double;
Status : FPU_Status_Word;
begin
loop
Asm
(Template =>
"fsin " & NL
& "xorl %%eax, %%eax " & NL
& "fnstsw %%ax ",
Outputs => (Double'Asm_Output ("=t", Result),
FPU_Status_Word'Asm_Output ("=a", Status)),
Inputs => Double'Asm_Input ("0", Reduced_X));
exit when not Status.C2;
-- Original argument was not in range and the result
-- is the unmodified argument.
Reduced_X := Reduce (Result);
end loop;
return Result;
end Sin;
---------
-- Tan --
---------
function Tan (X : Double) return Double is
Reduced_X : Double := X;
Result : Double;
Status : FPU_Status_Word;
begin
loop
Asm
(Template =>
"fptan " & NL
& "xorl %%eax, %%eax " & NL
& "fnstsw %%ax " & NL
& "ffree %%st(0) " & NL
& "fincstp ",
Outputs => (Double'Asm_Output ("=t", Result),
FPU_Status_Word'Asm_Output ("=a", Status)),
Inputs => Double'Asm_Input ("0", Reduced_X));
exit when not Status.C2;
-- Original argument was not in range and the result
-- is the unmodified argument.
Reduced_X := Reduce (Result);
end loop;
return Result;
end Tan;
----------
-- Sinh --
----------
function Sinh (X : Double) return Double is
begin
-- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
if abs X < 25.0 then
return (Exp (X) - Exp (-X)) / 2.0;
else
return Exp (X) / 2.0;
end if;
end Sinh;
----------
-- Cosh --
----------
function Cosh (X : Double) return Double is
begin
-- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
if abs X < 22.0 then
return (Exp (X) + Exp (-X)) / 2.0;
else
return Exp (X) / 2.0;
end if;
end Cosh;
----------
-- Tanh --
----------
function Tanh (X : Double) return Double is
begin
-- Return the Hyperbolic Tangent of x
--
-- x -x
-- e - e Sinh (X)
-- Tanh (X) is defined to be ----------- = --------
-- x -x Cosh (X)
-- e + e
if abs X > 23.0 then
return Double'Copy_Sign (1.0, X);
end if;
return 1.0 / (1.0 + Exp (-2.0 * X)) - 1.0 / (1.0 + Exp (2.0 * X));
end Tanh;
end Ada.Numerics.Aux;
|