1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
|
------------------------------------------------------------------------------
-- --
-- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . O S _ I N T E R F A C E --
-- --
-- B o d y --
-- --
-- $Revision: 1.15 $
-- --
-- Copyright (C) 1997-2001 Free Software Foundation --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. It is --
-- now maintained by Ada Core Technologies Inc. in cooperation with Florida --
-- State University (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
-- This is the VxWorks version.
-- This package encapsulates all direct interfaces to OS services
-- that are needed by children of System.
pragma Polling (Off);
-- Turn off polling, we do not want ATC polling to take place during
-- tasking operations. It causes infinite loops and other problems.
with Interfaces.C; use Interfaces.C;
with System.VxWorks;
-- used for Wind_TCB_Ptr
with Unchecked_Conversion;
package body System.OS_Interface is
use System.VxWorks;
-- Option flags for taskSpawn
VX_UNBREAKABLE : constant := 16#0002#;
VX_FP_TASK : constant := 16#0008#;
VX_FP_PRIVATE_ENV : constant := 16#0080#;
VX_NO_STACK_FILL : constant := 16#0100#;
function taskSpawn
(name : System.Address; -- Pointer to task name
priority : int;
options : int;
stacksize : size_t;
start_routine : Thread_Body;
arg1 : System.Address;
arg2 : int := 0;
arg3 : int := 0;
arg4 : int := 0;
arg5 : int := 0;
arg6 : int := 0;
arg7 : int := 0;
arg8 : int := 0;
arg9 : int := 0;
arg10 : int := 0) return pthread_t;
pragma Import (C, taskSpawn, "taskSpawn");
procedure taskDelete (tid : pthread_t);
pragma Import (C, taskDelete, "taskDelete");
-- These are the POSIX scheduling priorities. These are enabled
-- when the global variable posixPriorityNumbering is 1.
POSIX_SCHED_FIFO_LOW_PRI : constant := 0;
POSIX_SCHED_FIFO_HIGH_PRI : constant := 255;
POSIX_SCHED_RR_LOW_PRI : constant := 0;
POSIX_SCHED_RR_HIGH_PRI : constant := 255;
-- These are the VxWorks native (default) scheduling priorities.
-- These are used when the global variable posixPriorityNumbering
-- is 0.
SCHED_FIFO_LOW_PRI : constant := 255;
SCHED_FIFO_HIGH_PRI : constant := 0;
SCHED_RR_LOW_PRI : constant := 255;
SCHED_RR_HIGH_PRI : constant := 0;
-- Global variable to enable POSIX priority numbering.
-- By default, it is 0 and VxWorks native priority numbering
-- is used.
posixPriorityNumbering : int;
pragma Import (C, posixPriorityNumbering, "posixPriorityNumbering");
-- VxWorks will let you set round-robin scheduling globally
-- for all tasks, but not for individual tasks. Attempting
-- to set the scheduling policy for a specific task (using
-- sched_setscheduler) to something other than what the system
-- is currently using will fail. If you wish to change the
-- scheduling policy, then use the following function to set
-- it globally for all tasks. When ticks is 0, time slicing
-- (round-robin scheduling) is disabled.
function kernelTimeSlice (ticks : int) return int;
pragma Import (C, kernelTimeSlice, "kernelTimeSlice");
function taskPriorityGet
(tid : pthread_t;
pPriority : access int)
return int;
pragma Import (C, taskPriorityGet, "taskPriorityGet");
function taskPrioritySet
(tid : pthread_t;
newPriority : int)
return int;
pragma Import (C, taskPrioritySet, "taskPrioritySet");
function To_Wind_TCB_Ptr is
new Unchecked_Conversion (pthread_t, Wind_TCB_Ptr);
-- Error codes (errno). The lower level 16 bits are the
-- error code, with the upper 16 bits representing the
-- module number in which the error occurred. By convention,
-- the module number is 0 for UNIX errors. VxWorks reserves
-- module numbers 1-500, with the remaining module numbers
-- being available for user applications.
M_objLib : constant := 61 * 2**16;
-- semTake() failure with ticks = NO_WAIT
S_objLib_OBJ_UNAVAILABLE : constant := M_objLib + 2;
-- semTake() timeout with ticks > NO_WAIT
S_objLib_OBJ_TIMEOUT : constant := M_objLib + 4;
-- We use two different kinds of VxWorks semaphores: mutex
-- and binary semaphores. A null (0) ID is returned when
-- a semaphore cannot be created. Binary semaphores and common
-- operations are declared in the spec of this package,
-- as they are used to implement hardware interrupt handling
function semMCreate
(options : int) return SEM_ID;
pragma Import (C, semMCreate, "semMCreate");
function taskLock return int;
pragma Import (C, taskLock, "taskLock");
function taskUnlock return int;
pragma Import (C, taskUnlock, "taskUnlock");
-------------------------------------------------------
-- Convenience routines to convert between VxWorks --
-- priority and POSIX priority. --
-------------------------------------------------------
function To_Vxworks_Priority (Priority : in int) return int;
pragma Inline (To_Vxworks_Priority);
function To_Posix_Priority (Priority : in int) return int;
pragma Inline (To_Posix_Priority);
function To_Vxworks_Priority (Priority : in int) return int is
begin
return SCHED_FIFO_LOW_PRI - Priority;
end To_Vxworks_Priority;
function To_Posix_Priority (Priority : in int) return int is
begin
return SCHED_FIFO_LOW_PRI - Priority;
end To_Posix_Priority;
----------------------------------------
-- Implementation of POSIX routines --
----------------------------------------
-----------------------------------------
-- Nonstandard Thread Initialization --
-----------------------------------------
procedure pthread_init is
begin
Keys_Created := 0;
Time_Slice := -1;
end pthread_init;
---------------------------
-- POSIX.1c Section 3 --
---------------------------
function sigwait
(set : access sigset_t;
sig : access Signal) return int
is
Result : Interfaces.C.int;
function sigwaitinfo
(set : access sigset_t; sigvalue : System.Address) return int;
pragma Import (C, sigwaitinfo, "sigwaitinfo");
begin
Result := sigwaitinfo (set, System.Null_Address);
if Result /= -1 then
sig.all := Signal (Result);
return 0;
else
sig.all := 0;
return errno;
end if;
end sigwait;
----------------------------
-- POSIX.1c Section 11 --
----------------------------
function pthread_mutexattr_init
(attr : access pthread_mutexattr_t) return int is
begin
-- Let's take advantage of VxWorks priority inversion
-- protection.
--
-- ??? - Do we want to also specify SEM_DELETE_SAFE???
attr.Flags := int (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
-- Initialize the ceiling priority to the maximim priority.
-- We will use POSIX priorities since these routines are
-- emulating POSIX routines.
attr.Prio_Ceiling := POSIX_SCHED_FIFO_HIGH_PRI;
attr.Protocol := PTHREAD_PRIO_INHERIT;
return 0;
end pthread_mutexattr_init;
function pthread_mutexattr_destroy
(attr : access pthread_mutexattr_t) return int is
begin
attr.Flags := 0;
attr.Prio_Ceiling := POSIX_SCHED_FIFO_HIGH_PRI;
attr.Protocol := PTHREAD_PRIO_INHERIT;
return 0;
end pthread_mutexattr_destroy;
function pthread_mutex_init
(mutex : access pthread_mutex_t;
attr : access pthread_mutexattr_t) return int
is
Result : int := 0;
begin
-- A mutex should initially be created full and the task
-- protected from deletion while holding the semaphore.
mutex.Mutex := semMCreate (attr.Flags);
mutex.Prio_Ceiling := attr.Prio_Ceiling;
mutex.Protocol := attr.Protocol;
if mutex.Mutex = 0 then
Result := errno;
end if;
return Result;
end pthread_mutex_init;
function pthread_mutex_destroy
(mutex : access pthread_mutex_t) return int
is
Result : STATUS;
begin
Result := semDelete (mutex.Mutex);
if Result /= 0 then
Result := errno;
end if;
mutex.Mutex := 0; -- Ensure the mutex is properly cleaned.
mutex.Prio_Ceiling := POSIX_SCHED_FIFO_HIGH_PRI;
mutex.Protocol := PTHREAD_PRIO_INHERIT;
return Result;
end pthread_mutex_destroy;
function pthread_mutex_lock
(mutex : access pthread_mutex_t) return int
is
Result : int;
WTCB_Ptr : Wind_TCB_Ptr;
begin
WTCB_Ptr := To_Wind_TCB_Ptr (taskIdSelf);
if WTCB_Ptr = null then
return errno;
end if;
-- Check the current inherited priority in the WIND_TCB
-- against the mutex ceiling priority and return EINVAL
-- upon a ceiling violation.
--
-- We always convert the VxWorks priority to POSIX priority
-- in case the current priority ordering has changed (see
-- posixPriorityNumbering). The mutex ceiling priority is
-- maintained as POSIX compatible.
if mutex.Protocol = PTHREAD_PRIO_PROTECT and then
To_Posix_Priority (WTCB_Ptr.Priority) > mutex.Prio_Ceiling
then
return EINVAL;
end if;
Result := semTake (mutex.Mutex, WAIT_FOREVER);
if Result /= 0 then
Result := errno;
end if;
return Result;
end pthread_mutex_lock;
function pthread_mutex_unlock
(mutex : access pthread_mutex_t) return int
is
Result : int;
begin
Result := semGive (mutex.Mutex);
if Result /= 0 then
Result := errno;
end if;
return Result;
end pthread_mutex_unlock;
function pthread_condattr_init
(attr : access pthread_condattr_t) return int is
begin
attr.Flags := SEM_Q_PRIORITY;
return 0;
end pthread_condattr_init;
function pthread_condattr_destroy
(attr : access pthread_condattr_t) return int is
begin
attr.Flags := 0;
return 0;
end pthread_condattr_destroy;
function pthread_cond_init
(cond : access pthread_cond_t;
attr : access pthread_condattr_t) return int
is
Result : int := 0;
begin
-- Condition variables should be initially created
-- empty.
cond.Sem := semBCreate (attr.Flags, SEM_EMPTY);
cond.Waiting := 0;
if cond.Sem = 0 then
Result := errno;
end if;
return Result;
end pthread_cond_init;
function pthread_cond_destroy (cond : access pthread_cond_t) return int is
Result : int;
begin
Result := semDelete (cond.Sem);
if Result /= 0 then
Result := errno;
end if;
return Result;
end pthread_cond_destroy;
function pthread_cond_signal
(cond : access pthread_cond_t) return int
is
Result : int := 0;
Status : int;
begin
-- Disable task scheduling.
Status := taskLock;
-- Iff someone is currently waiting on the condition variable
-- then release the semaphore; we don't want to leave the
-- semaphore in the full state because the next guy to do
-- a condition wait operation would not block.
if cond.Waiting > 0 then
Result := semGive (cond.Sem);
-- One less thread waiting on the CV.
cond.Waiting := cond.Waiting - 1;
if Result /= 0 then
Result := errno;
end if;
end if;
-- Reenable task scheduling.
Status := taskUnlock;
return Result;
end pthread_cond_signal;
function pthread_cond_wait
(cond : access pthread_cond_t;
mutex : access pthread_mutex_t) return int
is
Result : int;
Status : int;
begin
-- Disable task scheduling.
Status := taskLock;
-- Release the mutex as required by POSIX.
Result := semGive (mutex.Mutex);
-- Indicate that there is another thread waiting on the CV.
cond.Waiting := cond.Waiting + 1;
-- Perform a blocking operation to take the CV semaphore.
-- Note that a blocking operation in VxWorks will reenable
-- task scheduling. When we are no longer blocked and control
-- is returned, task scheduling will again be disabled.
Result := semTake (cond.Sem, WAIT_FOREVER);
if Result /= 0 then
cond.Waiting := cond.Waiting - 1;
Result := EINVAL;
end if;
-- Take the mutex as required by POSIX.
Status := semTake (mutex.Mutex, WAIT_FOREVER);
if Status /= 0 then
Result := EINVAL;
end if;
-- Reenable task scheduling.
Status := taskUnlock;
return Result;
end pthread_cond_wait;
function pthread_cond_timedwait
(cond : access pthread_cond_t;
mutex : access pthread_mutex_t;
abstime : access timespec) return int
is
Result : int;
Status : int;
Ticks : int;
TS : aliased timespec;
begin
Status := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
-- Calculate the number of clock ticks for the timeout.
Ticks := To_Clock_Ticks (To_Duration (abstime.all) - To_Duration (TS));
if Ticks <= 0 then
-- It is not worth the time to try to perform a semTake,
-- because we know it will always fail. A semTake with
-- ticks = 0 (NO_WAIT) will not block and therefore not
-- allow another task to give the semaphore. And if we've
-- designed pthread_cond_signal correctly, the semaphore
-- should never be left in a full state.
--
-- Make sure we give up the CPU.
Status := taskDelay (0);
return ETIMEDOUT;
end if;
-- Disable task scheduling.
Status := taskLock;
-- Release the mutex as required by POSIX.
Result := semGive (mutex.Mutex);
-- Indicate that there is another thread waiting on the CV.
cond.Waiting := cond.Waiting + 1;
-- Perform a blocking operation to take the CV semaphore.
-- Note that a blocking operation in VxWorks will reenable
-- task scheduling. When we are no longer blocked and control
-- is returned, task scheduling will again be disabled.
Result := semTake (cond.Sem, Ticks);
if Result /= 0 then
if errno = S_objLib_OBJ_TIMEOUT then
Result := ETIMEDOUT;
else
Result := EINVAL;
end if;
cond.Waiting := cond.Waiting - 1;
end if;
-- Take the mutex as required by POSIX.
Status := semTake (mutex.Mutex, WAIT_FOREVER);
if Status /= 0 then
Result := EINVAL;
end if;
-- Reenable task scheduling.
Status := taskUnlock;
return Result;
end pthread_cond_timedwait;
----------------------------
-- POSIX.1c Section 13 --
----------------------------
function pthread_mutexattr_setprotocol
(attr : access pthread_mutexattr_t;
protocol : int) return int is
begin
if protocol < PTHREAD_PRIO_NONE
or protocol > PTHREAD_PRIO_PROTECT
then
return EINVAL;
end if;
attr.Protocol := protocol;
return 0;
end pthread_mutexattr_setprotocol;
function pthread_mutexattr_setprioceiling
(attr : access pthread_mutexattr_t;
prioceiling : int) return int is
begin
-- Our interface to the rest of the world is meant
-- to be POSIX compliant; keep the priority in POSIX
-- format.
attr.Prio_Ceiling := prioceiling;
return 0;
end pthread_mutexattr_setprioceiling;
function pthread_setschedparam
(thread : pthread_t;
policy : int;
param : access struct_sched_param) return int
is
Result : int;
begin
-- Convert the POSIX priority to VxWorks native
-- priority.
Result := taskPrioritySet (thread,
To_Vxworks_Priority (param.sched_priority));
return 0;
end pthread_setschedparam;
function sched_yield return int is
begin
return taskDelay (0);
end sched_yield;
function pthread_sched_rr_set_interval (usecs : int) return int is
Result : int := 0;
D_Slice : Duration;
begin
-- Check to see if round-robin scheduling (time slicing)
-- is enabled. If the time slice is the default value (-1)
-- or any negative number, we will leave the kernel time
-- slice unchanged. If the time slice is 0, we disable
-- kernel time slicing by setting it to 0. Otherwise, we
-- set the kernel time slice to the specified value converted
-- to clock ticks.
Time_Slice := usecs;
if Time_Slice > 0 then
D_Slice := Duration (Time_Slice) / Duration (1_000_000.0);
Result := kernelTimeSlice (To_Clock_Ticks (D_Slice));
else
if Time_Slice = 0 then
Result := kernelTimeSlice (0);
end if;
end if;
return Result;
end pthread_sched_rr_set_interval;
function pthread_attr_init (attr : access pthread_attr_t) return int is
begin
attr.Stacksize := 100000; -- What else can I do?
attr.Detachstate := PTHREAD_CREATE_DETACHED;
attr.Priority := POSIX_SCHED_FIFO_LOW_PRI;
attr.Taskname := System.Null_Address;
return 0;
end pthread_attr_init;
function pthread_attr_destroy (attr : access pthread_attr_t) return int is
begin
attr.Stacksize := 0;
attr.Detachstate := 0;
attr.Priority := POSIX_SCHED_FIFO_LOW_PRI;
attr.Taskname := System.Null_Address;
return 0;
end pthread_attr_destroy;
function pthread_attr_setdetachstate
(attr : access pthread_attr_t;
detachstate : int) return int is
begin
attr.Detachstate := detachstate;
return 0;
end pthread_attr_setdetachstate;
function pthread_attr_setstacksize
(attr : access pthread_attr_t;
stacksize : size_t) return int is
begin
attr.Stacksize := stacksize;
return 0;
end pthread_attr_setstacksize;
-- In VxWorks tasks, we can set the task name. This
-- makes it really convenient for debugging.
function pthread_attr_setname_np
(attr : access pthread_attr_t;
name : System.Address) return int is
begin
attr.Taskname := name;
return 0;
end pthread_attr_setname_np;
function pthread_create
(thread : access pthread_t;
attr : access pthread_attr_t;
start_routine : Thread_Body;
arg : System.Address) return int is
begin
thread.all := taskSpawn (attr.Taskname,
To_Vxworks_Priority (attr.Priority), VX_FP_TASK, attr.Stacksize,
start_routine, arg);
if thread.all = -1 then
return -1;
else
return 0;
end if;
end pthread_create;
function pthread_detach (thread : pthread_t) return int is
begin
return 0;
end pthread_detach;
procedure pthread_exit (status : System.Address) is
begin
taskDelete (0);
end pthread_exit;
function pthread_self return pthread_t is
begin
return taskIdSelf;
end pthread_self;
function pthread_equal (t1 : pthread_t; t2 : pthread_t) return int is
begin
if t1 = t2 then
return 1;
else
return 0;
end if;
end pthread_equal;
function pthread_setspecific
(key : pthread_key_t;
value : System.Address) return int
is
Result : int;
begin
if Integer (key) not in Key_Storage'Range then
return EINVAL;
end if;
Key_Storage (Integer (key)) := value;
Result := taskVarAdd (taskIdSelf, Key_Storage (Integer (key))'Access);
-- We should be able to directly set the key with the following:
-- Key_Storage (key) := value;
-- but we'll be safe and use taskVarSet.
-- ??? Come back and revisit this.
Result := taskVarSet (taskIdSelf,
Key_Storage (Integer (key))'Access, value);
return Result;
end pthread_setspecific;
function pthread_getspecific (key : pthread_key_t) return System.Address is
begin
return Key_Storage (Integer (key));
end pthread_getspecific;
function pthread_key_create
(key : access pthread_key_t;
destructor : destructor_pointer) return int is
begin
Keys_Created := Keys_Created + 1;
if Keys_Created not in Key_Storage'Range then
return ENOMEM;
end if;
key.all := pthread_key_t (Keys_Created);
return 0;
end pthread_key_create;
-----------------
-- To_Duration --
-----------------
function To_Duration (TS : timespec) return Duration is
begin
return Duration (TS.ts_sec) + Duration (TS.ts_nsec) / 10#1#E9;
end To_Duration;
-----------------
-- To_Timespec --
-----------------
function To_Timespec (D : Duration) return timespec is
S : time_t;
F : Duration;
begin
S := time_t (Long_Long_Integer (D));
F := D - Duration (S);
-- If F has negative value due to a round-up, adjust for positive F
-- value.
if F < 0.0 then
S := S - 1;
F := F + 1.0;
end if;
return timespec' (ts_sec => S,
ts_nsec => long (Long_Long_Integer (F * 10#1#E9)));
end To_Timespec;
--------------------
-- To_Clock_Ticks --
--------------------
-- ??? - For now, we'll always get the system clock rate
-- since it is allowed to be changed during run-time in
-- VxWorks. A better method would be to provide an operation
-- to set it that so we can always know its value.
--
-- Another thing we should probably allow for is a resultant
-- tick count greater than int'Last. This should probably
-- be a procedure with two output parameters, one in the
-- range 0 .. int'Last, and another representing the overflow
-- count.
function To_Clock_Ticks (D : Duration) return int is
Ticks : Long_Long_Integer;
Rate_Duration : Duration;
Ticks_Duration : Duration;
begin
-- Ensure that the duration can be converted to ticks
-- at the current clock tick rate without overflowing.
Rate_Duration := Duration (sysClkRateGet);
if D > (Duration'Last / Rate_Duration) then
Ticks := Long_Long_Integer (int'Last);
else
-- We always want to round up to the nearest clock tick.
Ticks_Duration := D * Rate_Duration;
Ticks := Long_Long_Integer (Ticks_Duration);
if Ticks_Duration > Duration (Ticks) then
Ticks := Ticks + 1;
end if;
if Ticks > Long_Long_Integer (int'Last) then
Ticks := Long_Long_Integer (int'Last);
end if;
end if;
return int (Ticks);
end To_Clock_Ticks;
end System.OS_Interface;
|