summaryrefslogtreecommitdiff
path: root/contrib/analyze_brprob.py
blob: de5f474d6298c224cbd6000b601e5b18fb39650e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#!/usr/bin/env python3
#
# Script to analyze results of our branch prediction heuristics
#
# This file is part of GCC.
#
# GCC is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# GCC is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING3.  If not see
# <http://www.gnu.org/licenses/>.  */
#
#
#
# This script is used to calculate two basic properties of the branch prediction
# heuristics - coverage and hitrate.  Coverage is number of executions
# of a given branch matched by the heuristics and hitrate is probability
# that once branch is predicted as taken it is really taken.
#
# These values are useful to determine the quality of given heuristics.
# Hitrate may be directly used in predict.def.
#
# Usage:
#  Step 1: Compile and profile your program.  You need to use -fprofile-generate
#    flag to get the profiles.
#  Step 2: Make a reference run of the intrumented application.
#  Step 3: Compile the program with collected profile and dump IPA profiles
#          (-fprofile-use -fdump-ipa-profile-details)
#  Step 4: Collect all generated dump files:
#          find . -name '*.profile' | xargs cat > dump_file
#  Step 5: Run the script:
#          ./analyze_brprob.py dump_file
#          and read results.  Basically the following table is printed:
#
# HEURISTICS                           BRANCHES  (REL)  HITRATE                COVERAGE  (REL)
# early return (on trees)                     3   0.2%  35.83% /  93.64%          66360   0.0%
# guess loop iv compare                       8   0.6%  53.35% /  53.73%       11183344   0.0%
# call                                       18   1.4%  31.95% /  69.95%       51880179   0.2%
# loop guard                                 23   1.8%  84.13% /  84.85%    13749065956  42.2%
# opcode values positive (on trees)          42   3.3%  15.71% /  84.81%     6771097902  20.8%
# opcode values nonequal (on trees)         226  17.6%  72.48% /  72.84%      844753864   2.6%
# loop exit                                 231  18.0%  86.97% /  86.98%     8952666897  27.5%
# loop iterations                           239  18.6%  91.10% /  91.10%     3062707264   9.4%
# DS theory                                 281  21.9%  82.08% /  83.39%     7787264075  23.9%
# no prediction                             293  22.9%  46.92% /  70.70%     2293267840   7.0%
# guessed loop iterations                   313  24.4%  76.41% /  76.41%    10782750177  33.1%
# first match                               708  55.2%  82.30% /  82.31%    22489588691  69.0%
# combined                                 1282 100.0%  79.76% /  81.75%    32570120606 100.0%
#
#
#  The heuristics called "first match" is a heuristics used by GCC branch
#  prediction pass and it predicts 55.2% branches correctly. As you can,
#  the heuristics has very good covertage (69.05%).  On the other hand,
#  "opcode values nonequal (on trees)" heuristics has good hirate, but poor
#  coverage.

import sys
import os
import re
import argparse

from math import *

counter_aggregates = set(['combined', 'first match', 'DS theory',
    'no prediction'])
hot_threshold = 10

def percentage(a, b):
    return 100.0 * a / b

def average(values):
    return 1.0 * sum(values) / len(values)

def average_cutoff(values, cut):
    l = len(values)
    skip = floor(l * cut / 2)
    if skip > 0:
        values.sort()
        values = values[skip:-skip]
    return average(values)

def median(values):
    values.sort()
    return values[int(len(values) / 2)]

class PredictDefFile:
    def __init__(self, path):
        self.path = path
        self.predictors = {}

    def parse_and_modify(self, heuristics, write_def_file):
        lines = [x.rstrip() for x in open(self.path).readlines()]

        p = None
        modified_lines = []
        for l in lines:
            if l.startswith('DEF_PREDICTOR'):
                m = re.match('.*"(.*)".*', l)
                p = m.group(1)
            elif l == '':
                p = None

            if p != None:
                heuristic = [x for x in heuristics if x.name == p]
                heuristic = heuristic[0] if len(heuristic) == 1 else None

                m = re.match('.*HITRATE \(([^)]*)\).*', l)
                if (m != None):
                    self.predictors[p] = int(m.group(1))

                    # modify the line
                    if heuristic != None:
                        new_line = (l[:m.start(1)]
                            + str(round(heuristic.get_hitrate()))
                            + l[m.end(1):])
                        l = new_line
                    p = None
                elif 'PROB_VERY_LIKELY' in l:
                    self.predictors[p] = 100
            modified_lines.append(l)

        # save the file
        if write_def_file:
            with open(self.path, 'w+') as f:
                for l in modified_lines:
                    f.write(l + '\n')
class Heuristics:
    def __init__(self, count, hits, fits):
        self.count = count
        self.hits = hits
        self.fits = fits

class Summary:
    def __init__(self, name):
        self.name = name
        self.edges= []

    def branches(self):
        return len(self.edges)

    def hits(self):
        return sum([x.hits for x in self.edges])

    def fits(self):
        return sum([x.fits for x in self.edges])

    def count(self):
        return sum([x.count for x in self.edges])

    def successfull_branches(self):
        return len([x for x in self.edges if 2 * x.hits >= x.count])

    def get_hitrate(self):
        return 100.0 * self.hits() / self.count()

    def get_branch_hitrate(self):
        return 100.0 * self.successfull_branches() / self.branches()

    def count_formatted(self):
        v = self.count()
        for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']:
            if v < 1000:
                return "%3.2f%s" % (v, unit)
            v /= 1000.0
        return "%.1f%s" % (v, 'Y')

    def count(self):
        return sum([x.count for x in self.edges])

    def print(self, branches_max, count_max, predict_def):
        # filter out most hot edges (if requested)
        self.edges = sorted(self.edges, reverse = True, key = lambda x: x.count)
        if args.coverage_threshold != None:
            threshold = args.coverage_threshold * self.count() / 100
            edges = [x for x in self.edges if x.count < threshold]
            if len(edges) != 0:
                self.edges = edges

        predicted_as = None
        if predict_def != None and self.name in predict_def.predictors:
            predicted_as = predict_def.predictors[self.name]

        print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
            (self.name, self.branches(),
                percentage(self.branches(), branches_max),
                self.get_branch_hitrate(),
                self.get_hitrate(),
                percentage(self.fits(), self.count()),
                self.count(), self.count_formatted(),
                percentage(self.count(), count_max)), end = '')

        if predicted_as != None:
            print('%12i%% %5.1f%%' % (predicted_as,
                self.get_hitrate() - predicted_as), end = '')
        else:
            print(' ' * 20, end = '')

        # print details about the most important edges
        if args.coverage_threshold == None:
            edges = [x for x in self.edges[:100] if x.count * hot_threshold > self.count()]
            if args.verbose:
                for c in edges:
                    r = 100.0 * c.count / self.count()
                    print(' %.0f%%:%d' % (r, c.count), end = '')
            elif len(edges) > 0:
                print(' %0.0f%%:%d' % (100.0 * sum([x.count for x in edges]) / self.count(), len(edges)), end = '')

        print()

class Profile:
    def __init__(self, filename):
        self.filename = filename
        self.heuristics = {}
        self.niter_vector = []

    def add(self, name, prediction, count, hits):
        if not name in self.heuristics:
            self.heuristics[name] = Summary(name)

        s = self.heuristics[name]

        if prediction < 50:
            hits = count - hits
        remaining = count - hits
        fits = max(hits, remaining)

        s.edges.append(Heuristics(count, hits, fits))

    def add_loop_niter(self, niter):
        if niter > 0:
            self.niter_vector.append(niter)

    def branches_max(self):
        return max([v.branches() for k, v in self.heuristics.items()])

    def count_max(self):
        return max([v.count() for k, v in self.heuristics.items()])

    def print_group(self, sorting, group_name, heuristics, predict_def):
        count_max = self.count_max()
        branches_max = self.branches_max()

        sorter = lambda x: x.branches()
        if sorting == 'branch-hitrate':
            sorter = lambda x: x.get_branch_hitrate()
        elif sorting == 'hitrate':
            sorter = lambda x: x.get_hitrate()
        elif sorting == 'coverage':
            sorter = lambda x: x.count
        elif sorting == 'name':
            sorter = lambda x: x.name.lower()

        print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s %s' %
            ('HEURISTICS', 'BRANCHES', '(REL)',
            'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)',
            'predict.def', '(REL)', 'HOT branches (>%d%%)' % hot_threshold))
        for h in sorted(heuristics, key = sorter):
            h.print(branches_max, count_max, predict_def)

    def dump(self, sorting):
        heuristics = self.heuristics.values()
        if len(heuristics) == 0:
            print('No heuristics available')
            return

        predict_def = None
        if args.def_file != None:
            predict_def = PredictDefFile(args.def_file)
            predict_def.parse_and_modify(heuristics, args.write_def_file)

        special = list(filter(lambda x: x.name in counter_aggregates,
            heuristics))
        normal = list(filter(lambda x: x.name not in counter_aggregates,
            heuristics))

        self.print_group(sorting, 'HEURISTICS', normal, predict_def)
        print()
        self.print_group(sorting, 'HEURISTIC AGGREGATES', special, predict_def)

        if len(self.niter_vector) > 0:
            print ('\nLoop count: %d' % len(self.niter_vector)),
            print('  avg. # of iter: %.2f' % average(self.niter_vector))
            print('  median # of iter: %.2f' % median(self.niter_vector))
            for v in [1, 5, 10, 20, 30]:
                cut = 0.01 * v
                print('  avg. (%d%% cutoff) # of iter: %.2f'
                    % (v, average_cutoff(self.niter_vector, cut)))

parser = argparse.ArgumentParser()
parser.add_argument('dump_file', metavar = 'dump_file',
    help = 'IPA profile dump file')
parser.add_argument('-s', '--sorting', dest = 'sorting',
    choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'],
    default = 'branches')
parser.add_argument('-d', '--def-file', help = 'path to predict.def')
parser.add_argument('-w', '--write-def-file', action = 'store_true',
    help = 'Modify predict.def file in order to set new numbers')
parser.add_argument('-c', '--coverage-threshold', type = int,
    help = 'Ignore edges that have percentage coverage >= coverage-threshold')
parser.add_argument('-v', '--verbose', action = 'store_true', help = 'Print verbose informations')

args = parser.parse_args()

profile = Profile(args.dump_file)
loop_niter_str = ';;  profile-based iteration count: '

for l in open(args.dump_file):
    if l.startswith(';;heuristics;'):
        parts = l.strip().split(';')
        assert len(parts) == 8
        name = parts[3]
        prediction = float(parts[6])
        count = int(parts[4])
        hits = int(parts[5])

        profile.add(name, prediction, count, hits)
    elif l.startswith(loop_niter_str):
        v = int(l[len(loop_niter_str):])
        profile.add_loop_niter(v)

profile.dump(args.sorting)