summaryrefslogtreecommitdiff
path: root/libjava/java/awt/Polygon.java
diff options
context:
space:
mode:
Diffstat (limited to 'libjava/java/awt/Polygon.java')
-rw-r--r--libjava/java/awt/Polygon.java963
1 files changed, 646 insertions, 317 deletions
diff --git a/libjava/java/awt/Polygon.java b/libjava/java/awt/Polygon.java
index ad4df2c47a0..1f51ac811d6 100644
--- a/libjava/java/awt/Polygon.java
+++ b/libjava/java/awt/Polygon.java
@@ -1,422 +1,751 @@
-/* Copyright (C) 2001 Free Software Foundation
+/* Polygon.java -- class representing a polygon
+ Copyright (C) 1999, 2002 Free Software Foundation, Inc.
+
+This file is part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; see the file COPYING. If not, write to the
+Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+02111-1307 USA.
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
- This file is part of libjava.
-
-This software is copyrighted work licensed under the terms of the
-Libjava License. Please consult the file "LIBJAVA_LICENSE" for
-details. */
package java.awt;
-import java.awt.geom.*;
+import java.awt.geom.AffineTransform;
+import java.awt.geom.PathIterator;
+import java.awt.geom.Point2D;
+import java.awt.geom.Rectangle2D;
import java.io.Serializable;
-import java.util.Arrays;
/**
- * @author Tom Tromey <tromey@redhat.com>
- * @date May 10, 2001
+ * This class represents a polygon, a closed, two-dimensional region in a
+ * coordinate space. The region is bounded by an arbitrary number of line
+ * segments, between (x,y) coordinate vertices. The polygon has even-odd
+ * winding, meaning that a point is inside the shape if it crosses the
+ * boundary an odd number of times on the way to infinity.
+ *
+ * <p>There are some public fields; if you mess with them in an inconsistent
+ * manner, it is your own fault when you get NullPointerException,
+ * ArrayIndexOutOfBoundsException, or invalid results. Also, this class is
+ * not threadsafe.
+ *
+ * @author Aaron M. Renn <arenn@urbanophile.com>
+ * @author Eric Blake <ebb9@email.byu.edu>
+ * @since 1.0
+ * @status updated to 1.4
*/
-
-/** The Polygon class represents a closed region whose boundary is
- made of line segments. The Polygon is defined by its vertices. */
public class Polygon implements Shape, Serializable
{
- /** The bounds of the polygon. This is null until the bounds have
- * been computed for the first time; then it is correctly
- * maintained whenever it is modified. */
- protected Rectangle bounds;
+ /**
+ * Compatible with JDK 1.0+.
+ */
+ private static final long serialVersionUID = -6460061437900069969L;
- /** The number of points in the polygon. */
+ /**
+ * This total number of endpoints.
+ *
+ * @serial the number of endpoints, possibly less than the array sizes
+ */
public int npoints;
- /** The x coordinates of the points. */
+ /**
+ * The array of X coordinates of endpoints. This should not be null.
+ *
+ * @see #addPoint(int, int)
+ * @serial the x coordinates
+ */
public int[] xpoints;
- /** The y coordinates of the points. */
+ /**
+ * The array of Y coordinates of endpoints. This should not be null.
+ *
+ * @see #addPoint(int, int)
+ * @serial the y coordinates
+ */
public int[] ypoints;
- /** Create a new, empty Polygon. */
- public Polygon ()
+ /**
+ * The bounding box of this polygon. This is lazily created and cached, so
+ * it must be invalidated after changing points.
+ *
+ * @see #getBounds()
+ * @serial the bounding box, or null
+ */
+ protected Rectangle bounds;
+
+ /**
+ * Cached flattened version - condense points and parallel lines, so the
+ * result has area if there are >= 3 condensed vertices. flat[0] is the
+ * number of condensed points, and (flat[odd], flat[odd+1]) form the
+ * condensed points.
+ *
+ * @see #condense()
+ * @see #contains(double, double)
+ * @see #contains(double, double, double, double)
+ */
+ private transient int[] condensed;
+
+ /**
+ * Initializes an empty polygon.
+ */
+ public Polygon()
{
- this.xpoints = new int[0];
- this.ypoints = new int[0];
- this.npoints = 0;
+ // Leave room for growth.
+ xpoints = new int[4];
+ ypoints = new int[4];
}
- /** Create a new Polygon from the given vertices.
- * @param xpoints The x coordinates
- * @param ypoints The y coordinates
- * @param npoints The number of points
+ /**
+ * Create a new polygon with the specified endpoints. The arrays are copied,
+ * so that future modifications to the parameters do not affect the polygon.
+ *
+ * @param xpoints the array of X coordinates for this polygon
+ * @param ypoints the array of Y coordinates for this polygon
+ * @param npoints the total number of endpoints in this polygon
+ * @throws NegativeArraySizeException if npoints is negative
+ * @throws IndexOutOfBoundsException if npoints exceeds either array
+ * @throws NullPointerException if xpoints or ypoints is null
*/
- public Polygon (int[] xpoints, int[] ypoints, int npoints)
+ public Polygon(int[] xpoints, int[] ypoints, int npoints)
{
- // We make explicit copies instead of relying on clone so that we
- // ensure the new arrays are the same size.
this.xpoints = new int[npoints];
this.ypoints = new int[npoints];
- System.arraycopy (xpoints, 0, this.xpoints, 0, npoints);
- System.arraycopy (ypoints, 0, this.ypoints, 0, npoints);
+ System.arraycopy(xpoints, 0, this.xpoints, 0, npoints);
+ System.arraycopy(ypoints, 0, this.ypoints, 0, npoints);
+ this.npoints = npoints;
}
- /** Append the specified point to this Polygon.
- * @param x The x coordinate
- * @param y The y coordinate
+ /**
+ * Reset the polygon to be empty. The arrays are left alone, to avoid object
+ * allocation, but the number of points is set to 0, and all cached data
+ * is discarded. If you are discarding a huge number of points, it may be
+ * more efficient to just create a new Polygon.
+ *
+ * @see #invalidate()
+ * @since 1.4
*/
- public void addPoint (int x, int y)
+ public void reset()
{
- int[] newx = new int[npoints + 1];
- System.arraycopy (xpoints, 0, newx, 0, npoints);
- int[] newy = new int[npoints + 1];
- System.arraycopy (ypoints, 0, newy, 0, npoints);
- newx[npoints] = x;
- newy[npoints] = y;
- ++npoints;
- xpoints = newx;
- ypoints = newy;
-
- // It is simpler to just recompute.
- if (bounds != null)
- computeBoundingBox ();
+ npoints = 0;
+ invalidate();
}
- /** Return true if the indicated point is inside this Polygon.
- * This uses an even-odd rule to determine insideness.
- * @param x The x coordinate
- * @param y The y coordinate
- * @returns true if the point is contained by this Polygon.
+ /**
+ * Invalidate or flush all cached data. After direct manipulation of the
+ * public member fields, this is necessary to avoid inconsistent results
+ * in methods like <code>contains</code>.
+ *
+ * @see #getBounds()
+ * @since 1.4
*/
- public boolean contains (double x, double y)
+ public void invalidate()
{
- // What we do is look at each line segment. If the line segment
- // crosses the "scan line" at y at a point x' < x, then we
- // increment our counter. At the end, an even number means the
- // point is outside the polygon. Instead of a number, though, we
- // use a boolean.
- boolean inside = false;
- for (int i = 0; i < npoints; ++i)
+ bounds = null;
+ condensed = null;
+ }
+
+ /**
+ * Translates the polygon by adding the specified values to all X and Y
+ * coordinates. This updates the bounding box, if it has been calculated.
+ *
+ * @param dx the amount to add to all X coordinates
+ * @param dy the amount to add to all Y coordinates
+ * @since 1.1
+ */
+ public void translate(int dx, int dy)
+ {
+ int i = npoints;
+ while (--i >= 0)
{
- // Handle the wrap case.
- int x2 = (i == npoints) ? xpoints[0] : xpoints[i + 1];
- int y2 = (i == npoints) ? ypoints[0] : ypoints[i + 1];
-
- if (ypoints[i] == y2)
- {
- // We ignore horizontal lines. This might give weird
- // results in some situations -- ?
- continue;
- }
-
- double t = (y - ypoints[i]) / (double) (y2 - ypoints[i]);
- double x3 = xpoints[i] + t * (x2 - xpoints[i]);
- if (x3 < x)
- inside = ! inside;
+ xpoints[i] += dx;
+ xpoints[i] += dy;
}
-
- return inside;
+ if (bounds != null)
+ {
+ bounds.x += dx;
+ bounds.y += dy;
+ }
+ condensed = null;
}
- /** Return true if the indicated rectangle is entirely inside this
- * Polygon.
- * This uses an even-odd rule to determine insideness.
- * @param x The x coordinate
- * @param y The y coordinate
- * @param w The width
- * @param h The height
- * @returns true if the rectangle is contained by this Polygon.
+ /**
+ * Adds the specified endpoint to the polygon. This updates the bounding
+ * box, if it has been created.
+ *
+ * @param x the X coordinate of the point to add
+ * @param y the Y coordiante of the point to add
*/
- public boolean contains (double x, double y, double w, double h)
+ public void addPoint(int x, int y)
{
- return intersectOrContains (x, y, w, h, false);
+ if (npoints + 1 > xpoints.length)
+ {
+ int[] newx = new int[npoints + 1];
+ System.arraycopy(xpoints, 0, newx, 0, npoints);
+ xpoints = newx;
+ }
+ if (npoints + 1 > ypoints.length)
+ {
+ int[] newy = new int[npoints + 1];
+ System.arraycopy(ypoints, 0, newy, 0, npoints);
+ ypoints = newy;
+ }
+ xpoints[npoints] = x;
+ ypoints[npoints] = y;
+ npoints++;
+ if (bounds != null)
+ {
+ if (npoints == 1)
+ {
+ bounds.x = x;
+ bounds.y = y;
+ }
+ else
+ {
+ if (x < bounds.x)
+ {
+ bounds.width += bounds.x - x;
+ bounds.x = x;
+ }
+ else if (x > bounds.x + bounds.width)
+ bounds.width = x - bounds.x;
+ if (y < bounds.y)
+ {
+ bounds.height += bounds.y - y;
+ bounds.y = y;
+ }
+ else if (y > bounds.y + bounds.height)
+ bounds.height = y - bounds.y;
+ }
+ }
+ condensed = null;
}
- /** Return true if the indicated point is inside this Polygon.
- * This uses an even-odd rule to determine insideness.
- * @param x The x coordinate
- * @param y The y coordinate
- * @returns true if the point is contained by this Polygon.
+ /**
+ * Returns the bounding box of this polygon. This is the smallest
+ * rectangle with sides parallel to the X axis that will contain this
+ * polygon.
+ *
+ * @return the bounding box for this polygon
+ * @see #getBounds2D()
+ * @since 1.1
*/
- public boolean contains (int x, int y)
+ public Rectangle getBounds()
{
- return contains ((double) x, (double) y);
+ if (bounds == null)
+ {
+ if (npoints == 0)
+ return bounds = new Rectangle();
+ int i = npoints - 1;
+ int minx = xpoints[i];
+ int maxx = minx;
+ int miny = ypoints[i];
+ int maxy = miny;
+ while (--i >= 0)
+ {
+ int x = xpoints[i];
+ int y = ypoints[i];
+ if (x < minx)
+ minx = x;
+ else if (x > maxx)
+ maxx = x;
+ if (y < miny)
+ miny = y;
+ else if (y > maxy)
+ maxy = y;
+ }
+ bounds = new Rectangle(minx, maxy, maxx - minx, maxy - miny);
+ }
+ return bounds;
}
- /** Return true if the indicated point is inside this Polygon.
- * This uses an even-odd rule to determine insideness.
- * @param p The point
- * @returns true if the point is contained by this Polygon.
+ /**
+ * Returns the bounding box of this polygon. This is the smallest
+ * rectangle with sides parallel to the X axis that will contain this
+ * polygon.
+ *
+ * @return the bounding box for this polygon
+ * @see #getBounds2D()
+ * @deprecated use {@link #getBounds()} instead
*/
- public boolean contains (Point p)
+ public Rectangle getBoundingBox()
{
- return contains (p.x, p.y);
+ return getBounds();
}
- /** Return true if the indicated point is inside this Polygon.
- * This uses an even-odd rule to determine insideness.
- * @param p The point
- * @returns true if the point is contained by this Polygon.
+ /**
+ * Tests whether or not the specified point is inside this polygon.
+ *
+ * @param p the point to test
+ * @return true if the point is inside this polygon
+ * @throws NullPointerException if p is null
+ * @see #contains(double, double)
*/
- public boolean contains (Point2D p)
+ public boolean contains(Point p)
{
- return contains (p.getX (), p.getY ());
+ return contains(p.getX(), p.getY());
}
- /** Return true if the indicated rectangle is entirely inside this
- * Polygon. This uses an even-odd rule to determine insideness.
- * @param r The rectangle
- * @returns true if the rectangle is contained by this Polygon.
+ /**
+ * Tests whether or not the specified point is inside this polygon.
+ *
+ * @param x the X coordinate of the point to test
+ * @param y the Y coordinate of the point to test
+ * @return true if the point is inside this polygon
+ * @see #contains(double, double)
+ * @since 1.1
*/
- public boolean contains (Rectangle2D r)
+ public boolean contains(int x, int y)
{
- return contains (r.getX (), r.getY (), r.getWidth (), r.getHeight ());
+ return contains((double) x, (double) y);
}
- /** Returns the bounds of this Polygon.
- * @deprecated Use getBounds() instead.
+ /**
+ * Tests whether or not the specified point is inside this polygon.
+ *
+ * @param x the X coordinate of the point to test
+ * @param y the Y coordinate of the point to test
+ * @return true if the point is inside this polygon
+ * @see #contains(double, double)
+ * @deprecated use {@link #contains(int, int)} instead
*/
- public Rectangle getBoundingBox ()
+ public boolean inside(int x, int y)
{
- if (bounds == null)
- computeBoundingBox ();
- return bounds;
+ return contains((double) x, (double) y);
}
- /** Returns the bounds of this Polygon. */
- public Rectangle getBounds ()
+ /**
+ * Returns a high-precision bounding box of this polygon. This is the
+ * smallest rectangle with sides parallel to the X axis that will contain
+ * this polygon.
+ *
+ * @return the bounding box for this polygon
+ * @see #getBounds()
+ * @since 1.2
+ */
+ public Rectangle2D getBounds2D()
{
- if (bounds == null)
- computeBoundingBox ();
- return bounds;
+ // For polygons, the integer version is exact!
+ return getBounds();
}
- /** Returns the bounds of this Polygon. */
- public Rectangle2D getBounds2D ()
+ /**
+ * Tests whether or not the specified point is inside this polygon.
+ *
+ * @param x the X coordinate of the point to test
+ * @param y the Y coordinate of the point to test
+ * @return true if the point is inside this polygon
+ * @since 1.2
+ */
+ public boolean contains(double x, double y)
{
- if (bounds == null)
- computeBoundingBox ();
- return bounds; // Why not?
+ // First, the obvious bounds checks.
+ if (! condense() || ! getBounds().contains(x, y))
+ return false;
+ // A point is contained if a ray to (-inf, y) crosses an odd number
+ // of segments. This must obey the semantics of Shape when the point is
+ // exactly on a segment or vertex: a point is inside only if the adjacent
+ // point in the increasing x or y direction is also inside. Note that we
+ // are guaranteed that the condensed polygon has area, and no consecutive
+ // segments with identical slope.
+ boolean inside = false;
+ int limit = condensed[0];
+ int curx = condensed[(limit << 1) - 1];
+ int cury = condensed[limit << 1];
+ for (int i = 1; i <= limit; i++)
+ {
+ int priorx = curx;
+ int priory = cury;
+ curx = condensed[(i << 1) - 1];
+ cury = condensed[i << 1];
+ if ((priorx > x && curx > x) // Left of segment, or NaN.
+ || (priory > y && cury > y) // Below segment, or NaN.
+ || (priory < y && cury < y)) // Above segment.
+ continue;
+ if (priory == cury) // Horizontal segment, y == cury == priory
+ {
+ if (priorx < x && curx < x) // Right of segment.
+ {
+ inside = ! inside;
+ continue;
+ }
+ // Did we approach this segment from above or below?
+ // This mess is necessary to obey rules of Shape.
+ priory = condensed[((limit + i - 2) % limit) << 1];
+ boolean above = priory > cury;
+ if ((curx == x && (curx > priorx || above))
+ || (priorx == x && (curx < priorx || ! above))
+ || (curx > priorx && ! above) || above)
+ inside = ! inside;
+ continue;
+ }
+ if (priorx == x && priory == y) // On prior vertex.
+ continue;
+ if (priorx == curx // Vertical segment.
+ || (priorx < x && curx < x)) // Right of segment.
+ {
+ inside = ! inside;
+ continue;
+ }
+ // The point is inside the segment's bounding box, compare slopes.
+ double leftx = curx > priorx ? priorx : curx;
+ double lefty = curx > priorx ? priory : cury;
+ double slopeseg = (double) (cury - priory) / (curx - priorx);
+ double slopepoint = (double) (y - lefty) / (x - leftx);
+ if ((slopeseg > 0 && slopeseg > slopepoint)
+ || slopeseg < slopepoint)
+ inside = ! inside;
+ }
+ return inside;
}
- /** Return an iterator for the boundary of this Polygon.
- * @param at A transform to apply to the coordinates.
- * @returns A path iterator for the Polygon's boundary.
+ /**
+ * Tests whether or not the specified point is inside this polygon.
+ *
+ * @param p the point to test
+ * @return true if the point is inside this polygon
+ * @throws NullPointerException if p is null
+ * @see #contains(double, double)
+ * @since 1.2
*/
- public PathIterator getPathIterator (AffineTransform at)
+ public boolean contains(Point2D p)
{
- return new Iterator (at);
+ return contains(p.getX(), p.getY());
}
- /** Return an iterator for the boundary of this Polygon.
- * @param at A transform to apply to the coordinates.
- * @param flatness The flatness of the result; it is ignored by
- * this class.
- * @returns A path iterator for the Polygon's boundary.
+ /**
+ * Test if a high-precision rectangle intersects the shape. This is true
+ * if any point in the rectangle is in the shape. This implementation is
+ * precise.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle, treated as point if negative
+ * @param h the height of the rectangle, treated as point if negative
+ * @return true if the rectangle intersects this shape
+ * @since 1.2
*/
- public PathIterator getPathIterator (AffineTransform at, double flatness)
+ public boolean intersects(double x, double y, double w, double h)
{
- // We ignore the flatness.
- return new Iterator (at);
+ // First, the obvious bounds checks.
+ if (w <= 0 || h <= 0 || npoints == 0 ||
+ ! getBounds().intersects(x, y, w, h))
+ return false; // Disjoint bounds.
+ if ((x <= bounds.x && x + w >= bounds.x + bounds.width
+ && y <= bounds.y && y + h >= bounds.y + bounds.height)
+ || contains(x, y))
+ return true; // Rectangle contains the polygon, or one point matches.
+ // If any vertex is in the rectangle, the two might intersect.
+ int curx = 0;
+ int cury = 0;
+ for (int i = 0; i < npoints; i++)
+ {
+ curx = xpoints[i];
+ cury = ypoints[i];
+ if (curx >= x && curx < x + w && cury >= y && cury < y + h
+ && contains(curx, cury)) // Boundary check necessary.
+ return true;
+ }
+ // Finally, if at least one of the four bounding lines intersect any
+ // segment of the polygon, return true. Be careful of the semantics of
+ // Shape; coinciding lines do not necessarily return true.
+ for (int i = 0; i < npoints; i++)
+ {
+ int priorx = curx;
+ int priory = cury;
+ curx = xpoints[i];
+ cury = ypoints[i];
+ if (priorx == curx) // Vertical segment.
+ {
+ if (curx < x || curx >= x + w) // Outside rectangle.
+ continue;
+ if ((cury >= y + h && priory <= y)
+ || (cury <= y && priory >= y + h))
+ return true; // Bisects rectangle.
+ continue;
+ }
+ if (priory == cury) // Horizontal segment.
+ {
+ if (cury < y || cury >= y + h) // Outside rectangle.
+ continue;
+ if ((curx >= x + w && priorx <= x)
+ || (curx <= x && priorx >= x + w))
+ return true; // Bisects rectangle.
+ continue;
+ }
+ // Slanted segment.
+ double slope = (double) (cury - priory) / (curx - priorx);
+ double intersect = slope * (x - curx) + cury;
+ if (intersect > y && intersect < y + h) // Intersects left edge.
+ return true;
+ intersect = slope * (x + w - curx) + cury;
+ if (intersect > y && intersect < y + h) // Intersects right edge.
+ return true;
+ intersect = (y - cury) / slope + curx;
+ if (intersect > x && intersect < x + w) // Intersects bottom edge.
+ return true;
+ intersect = (y + h - cury) / slope + cury;
+ if (intersect > x && intersect < x + w) // Intersects top edge.
+ return true;
+ }
+ return false;
}
- /** @deprecated use contains(int,int). */
- public boolean inside (int x, int y)
+ /**
+ * Test if a high-precision rectangle intersects the shape. This is true
+ * if any point in the rectangle is in the shape. This implementation is
+ * precise.
+ *
+ * @param r the rectangle
+ * @return true if the rectangle intersects this shape
+ * @throws NullPointerException if r is null
+ * @see #intersects(double, double, double, double)
+ * @since 1.2
+ */
+ public boolean intersects(Rectangle2D r)
{
- return contains (x, y);
+ return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
- /** Return true if this Polygon's interior intersects the given
- * rectangle's interior.
- * @param x The x coordinate
- * @param y The y coordinate
- * @param w The width
- * @param h The height
+ /**
+ * Test if a high-precision rectangle lies completely in the shape. This is
+ * true if all points in the rectangle are in the shape. This implementation
+ * is precise.
+ *
+ * @param x the x coordinate of the rectangle
+ * @param y the y coordinate of the rectangle
+ * @param w the width of the rectangle, treated as point if negative
+ * @param h the height of the rectangle, treated as point if negative
+ * @return true if the rectangle is contained in this shape
+ * @since 1.2
*/
- public boolean intersects (double x, double y, double w, double h)
+ public boolean contains(double x, double y, double w, double h)
{
- return intersectOrContains (x, y, w, h, true);
+ // First, the obvious bounds checks.
+ if (w <= 0 || h <= 0 || ! contains(x, y)
+ || ! bounds.contains(x, y, w, h))
+ return false;
+ // Now, if any of the four bounding lines intersects a polygon segment,
+ // return false. The previous check had the side effect of setting
+ // the condensed array, which we use. Be careful of the semantics of
+ // Shape; coinciding lines do not necessarily return false.
+ int limit = condensed[0];
+ int curx = condensed[(limit << 1) - 1];
+ int cury = condensed[limit << 1];
+ for (int i = 1; i <= limit; i++)
+ {
+ int priorx = curx;
+ int priory = cury;
+ curx = condensed[(i << 1) - 1];
+ cury = condensed[i << 1];
+ if (curx > x && curx < x + w && cury > y && cury < y + h)
+ return false; // Vertex is in rectangle.
+ if (priorx == curx) // Vertical segment.
+ {
+ if (curx < x || curx > x + w) // Outside rectangle.
+ continue;
+ if ((cury >= y + h && priory <= y)
+ || (cury <= y && priory >= y + h))
+ return false; // Bisects rectangle.
+ continue;
+ }
+ if (priory == cury) // Horizontal segment.
+ {
+ if (cury < y || cury > y + h) // Outside rectangle.
+ continue;
+ if ((curx >= x + w && priorx <= x)
+ || (curx <= x && priorx >= x + w))
+ return false; // Bisects rectangle.
+ continue;
+ }
+ // Slanted segment.
+ double slope = (double) (cury - priory) / (curx - priorx);
+ double intersect = slope * (x - curx) + cury;
+ if (intersect > y && intersect < y + h) // Intersects left edge.
+ return false;
+ intersect = slope * (x + w - curx) + cury;
+ if (intersect > y && intersect < y + h) // Intersects right edge.
+ return false;
+ intersect = (y - cury) / slope + curx;
+ if (intersect > x && intersect < x + w) // Intersects bottom edge.
+ return false;
+ intersect = (y + h - cury) / slope + cury;
+ if (intersect > x && intersect < x + w) // Intersects top edge.
+ return false;
+ }
+ return true;
}
- /** Return true if this Polygon's interior intersects the given
- * rectangle's interior.
- * @param r The rectangle
+ /**
+ * Test if a high-precision rectangle lies completely in the shape. This is
+ * true if all points in the rectangle are in the shape. This implementation
+ * is precise.
+ *
+ * @param r the rectangle
+ * @return true if the rectangle is contained in this shape
+ * @throws NullPointerException if r is null
+ * @see #contains(double, double, double, double)
+ * @since 1.2
*/
- public boolean intersects (Rectangle2D r)
+ public boolean contains(Rectangle2D r)
{
- return intersects (r.getX (), r.getY (), r.getWidth (), r.getHeight ());
+ return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
- // This tests for intersection with or containment of a rectangle,
- // depending on the INTERSECT argument.
- private boolean intersectOrContains (double x, double y, double w, double h,
- boolean intersect)
+ /**
+ * Return an iterator along the shape boundary. If the optional transform
+ * is provided, the iterator is transformed accordingly. Each call returns
+ * a new object, independent from others in use. This class is not
+ * threadsafe to begin with, so the path iterator is not either.
+ *
+ * @param transform an optional transform to apply to the iterator
+ * @return a new iterator over the boundary
+ * @since 1.2
+ */
+ public PathIterator getPathIterator(final AffineTransform transform)
{
- // First compute the rectangle of possible intersection points.
- Rectangle r = getBounds ();
- int minx = Math.max (r.x, (int) x);
- int maxx = Math.min (r.x + r.width, (int) (x + w));
- int miny = Math.max (r.y, (int) y);
- int maxy = Math.min (r.y + r.height, (int) (y + h));
-
- if (miny > maxy)
- return false;
-
- double[] crosses = new double[npoints + 1];
+ return new PathIterator()
+ {
+ /** The current vertex of iteration. */
+ private int vertex;
- for (; miny < maxy; ++miny)
+ public int getWindingRule()
{
- // First compute every place where the polygon might intersect
- // the scan line at Y.
- int ins = 0;
- for (int i = 0; i < npoints; ++i)
- {
- // Handle the wrap case.
- int x2 = (i == npoints) ? xpoints[0] : xpoints[i + 1];
- int y2 = (i == npoints) ? ypoints[0] : ypoints[i + 1];
-
- if (ypoints[i] == y2)
- {
- // We ignore horizontal lines. This might give weird
- // results in some situations -- ?
- continue;
- }
-
- double t = (((double) miny - ypoints[i])
- / (double) (y2 - ypoints[i]));
- double x3 = xpoints[i] + t * (x2 - xpoints[i]);
- crosses[ins++] = x3;
- }
-
- // Now we can sort into increasing order and look to see if
- // any point in the rectangle is in the polygon. We examine
- // every other pair due to our even-odd rule.
- Arrays.sort (crosses, 0, ins);
- int i = intersect ? 0 : 1;
- for (; i < ins - 1; i += 2)
- {
- // Pathological case.
- if (crosses[i] == crosses[i + 1])
- continue;
-
- // Found a point on the inside.
- if ((crosses[i] >= x && crosses[i] < x + w)
- || (crosses[i + 1] >= x && crosses[i + 1] < x + w))
- {
- // If we're checking containment then we just lost.
- // But if we're checking intersection then we just
- // won.
- return intersect;
- }
- }
+ return WIND_EVEN_ODD;
}
- return false;
- }
-
- /** Translates all the vertices of the polygon via a given vector.
- * @param deltaX The X offset
- * @param deltaY The Y offset
- */
- public void translate (int deltaX, int deltaY)
- {
- for (int i = 0; i < npoints; ++i)
+ public boolean isDone()
{
- xpoints[i] += deltaX;
- ypoints[i] += deltaY;
+ return vertex > npoints;
}
- if (bounds != null)
+ public void next()
{
- bounds.x += deltaX;
- bounds.y += deltaY;
+ vertex++;
}
- }
- // This computes the bounding box if required.
- private void computeBoundingBox ()
- {
- if (npoints == 0)
+ public int currentSegment(float[] coords)
{
- // This is wrong if the user adds a new point, but we
- // account for that in addPoint().
- bounds = new Rectangle (0, 0, 0, 0);
+ if (vertex >= npoints)
+ return SEG_CLOSE;
+ coords[0] = xpoints[vertex];
+ coords[1] = ypoints[vertex];
+ if (transform != null)
+ transform.transform(coords, 0, coords, 0, 1);
+ return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
}
- else
+
+ public int currentSegment(double[] coords)
{
- int maxx = xpoints[0];
- int minx = xpoints[0];
- int maxy = ypoints[0];
- int miny = ypoints[0];
-
- for (int i = 1; i < npoints; ++i)
- {
- maxx = Math.max (maxx, xpoints[i]);
- minx = Math.min (minx, xpoints[i]);
- maxy = Math.max (maxy, ypoints[i]);
- miny = Math.min (miny, ypoints[i]);
- }
-
- bounds = new Rectangle (minx, miny, maxx - minx, maxy - miny);
+ if (vertex >= npoints)
+ return SEG_CLOSE;
+ coords[0] = xpoints[vertex];
+ coords[1] = ypoints[vertex];
+ if (transform != null)
+ transform.transform(coords, 0, coords, 0, 1);
+ return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
}
+ };
}
- private class Iterator implements PathIterator
+ /**
+ * Return an iterator along the flattened version of the shape boundary.
+ * Since polygons are already flat, the flatness parameter is ignored, and
+ * the resulting iterator only has SEG_MOVETO, SEG_LINETO and SEG_CLOSE
+ * points. If the optional transform is provided, the iterator is
+ * transformed accordingly. Each call returns a new object, independent
+ * from others in use. This class is not threadsafe to begin with, so the
+ * path iterator is not either.
+ *
+ * @param transform an optional transform to apply to the iterator
+ * @param double the maximum distance for deviation from the real boundary
+ * @return a new iterator over the boundary
+ * @since 1.2
+ */
+ public PathIterator getPathIterator(AffineTransform transform,
+ double flatness)
{
- public AffineTransform xform;
- public int where;
-
- public Iterator (AffineTransform xform)
- {
- this.xform = xform;
- where = 0;
- }
-
- public int currentSegment (double[] coords)
- {
- int r;
-
- if (where < npoints)
- {
- coords[0] = xpoints[where];
- coords[1] = ypoints[where];
- r = (where == 0) ? SEG_MOVETO : SEG_LINETO;
- xform.transform (coords, 0, coords, 0, 1);
- ++where;
- }
- else
- r = SEG_CLOSE;
-
- return r;
- }
-
- public int currentSegment (float[] coords)
- {
- int r;
-
- if (where < npoints)
- {
- coords[0] = xpoints[where];
- coords[1] = ypoints[where];
- r = (where == 0) ? SEG_MOVETO : SEG_LINETO;
- xform.transform (coords, 0, coords, 0, 1);
- }
- else
- r = SEG_CLOSE;
-
- return r;
- }
-
- public int getWindingRule ()
- {
- return WIND_EVEN_ODD;
- }
-
- public boolean isDone ()
- {
- return where == npoints + 1;
- }
+ return getPathIterator(transform);
+ }
- public void next ()
- {
- ++where;
- }
+ /**
+ * Helper for contains, which caches a condensed version of the polygon.
+ * This condenses all colinear points, so that consecutive segments in
+ * the condensed version always have different slope.
+ *
+ * @return true if the condensed polygon has area
+ * @see #condensed
+ * @see #contains(double, double)
+ */
+ private boolean condense()
+ {
+ if (npoints <= 2)
+ return false;
+ if (condensed != null)
+ return condensed[0] > 2;
+ condensed = new int[npoints * 2 + 1];
+ int curx = xpoints[npoints - 1];
+ int cury = ypoints[npoints - 1];
+ double curslope = Double.NaN;
+ int count = 0;
+ outer:
+ for (int i = 0; i < npoints; i++)
+ {
+ int priorx = curx;
+ int priory = cury;
+ double priorslope = curslope;
+ curx = xpoints[i];
+ cury = ypoints[i];
+ while (curx == priorx && cury == priory)
+ {
+ if (++i == npoints)
+ break outer;
+ curx = xpoints[i];
+ cury = ypoints[i];
+ }
+ curslope = (curx == priorx ? Double.POSITIVE_INFINITY
+ : (double) (cury - priory) / (curx - priorx));
+ if (priorslope == curslope)
+ {
+ if (count > 1 && condensed[(count << 1) - 3] == curx
+ && condensed[(count << 1) - 2] == cury)
+ {
+ count--;
+ continue;
+ }
+ }
+ else
+ count++;
+ condensed[(count << 1) - 1] = curx;
+ condensed[count << 1] = cury;
+ }
+ condensed[0] = count;
+ return count > 2;
}
-}
+} // class Polygon