diff options
Diffstat (limited to 'libio/floatconv.c')
-rw-r--r-- | libio/floatconv.c | 2375 |
1 files changed, 2375 insertions, 0 deletions
diff --git a/libio/floatconv.c b/libio/floatconv.c new file mode 100644 index 00000000000..9503187b5d5 --- /dev/null +++ b/libio/floatconv.c @@ -0,0 +1,2375 @@ +/* +Copyright (C) 1993, 1994 Free Software Foundation + +This file is part of the GNU IO Library. This library is free +software; you can redistribute it and/or modify it under the +terms of the GNU General Public License as published by the +Free Software Foundation; either version 2, or (at your option) +any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this library; see the file COPYING. If not, write to the Free +Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + +As a special exception, if you link this library with files +compiled with a GNU compiler to produce an executable, this does not cause +the resulting executable to be covered by the GNU General Public License. +This exception does not however invalidate any other reasons why +the executable file might be covered by the GNU General Public License. */ + +#include <libioP.h> +#ifdef _IO_USE_DTOA +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991 by AT&T. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Some cleaning up by Per Bothner, bothner@cygnus.com, 1992, 1993. + Re-written to not need static variables + (except result, result_k, HIWORD, LOWORD). */ + +/* Note that the checking of _DOUBLE_IS_32BITS is for use with the + cross targets that employ the newlib ieeefp.h header. -- brendan */ + +/* Please send bug reports to + David M. Gay + AT&T Bell Laboratories, Room 2C-463 + 600 Mountain Avenue + Murray Hill, NJ 07974-2070 + U.S.A. + dmg@research.att.com or research!dmg + */ + +/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. + * + * This strtod returns a nearest machine number to the input decimal + * string (or sets errno to ERANGE). With IEEE arithmetic, ties are + * broken by the IEEE round-even rule. Otherwise ties are broken by + * biased rounding (add half and chop). + * + * Inspired loosely by William D. Clinger's paper "How to Read Floating + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * + * 1. We only require IEEE, IBM, or VAX double-precision + * arithmetic (not IEEE double-extended). + * 2. We get by with floating-point arithmetic in a case that + * Clinger missed -- when we're computing d * 10^n + * for a small integer d and the integer n is not too + * much larger than 22 (the maximum integer k for which + * we can represent 10^k exactly), we may be able to + * compute (d*10^k) * 10^(e-k) with just one roundoff. + * 3. Rather than a bit-at-a-time adjustment of the binary + * result in the hard case, we use floating-point + * arithmetic to determine the adjustment to within + * one bit; only in really hard cases do we need to + * compute a second residual. + * 4. Because of 3., we don't need a large table of powers of 10 + * for ten-to-e (just some small tables, e.g. of 10^k + * for 0 <= k <= 22). + */ + +/* + * #define IEEE_8087 for IEEE-arithmetic machines where the least + * significant byte has the lowest address. + * #define IEEE_MC68k for IEEE-arithmetic machines where the most + * significant byte has the lowest address. + * #define Sudden_Underflow for IEEE-format machines without gradual + * underflow (i.e., that flush to zero on underflow). + * #define IBM for IBM mainframe-style floating-point arithmetic. + * #define VAX for VAX-style floating-point arithmetic. + * #define Unsigned_Shifts if >> does treats its left operand as unsigned. + * #define No_leftright to omit left-right logic in fast floating-point + * computation of dtoa. + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines + * that use extended-precision instructions to compute rounded + * products and quotients) with IBM. + * #define ROUND_BIASED for IEEE-format with biased rounding. + * #define Inaccurate_Divide for IEEE-format with correctly rounded + * products but inaccurate quotients, e.g., for Intel i860. + * #define KR_headers for old-style C function headers. + */ + +#ifdef DEBUG +#include <stdio.h> +#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} +#endif + +#ifdef __STDC__ +#include <stdlib.h> +#include <string.h> +#include <float.h> +#define CONST const +#else +#define CONST +#define KR_headers + +/* In this case, we assume IEEE floats. */ +#define FLT_ROUNDS 1 +#define FLT_RADIX 2 +#define DBL_MANT_DIG 53 +#define DBL_DIG 15 +#define DBL_MAX_10_EXP 308 +#define DBL_MAX_EXP 1024 +#endif + +#include <errno.h> +#ifndef __MATH_H__ +#include <math.h> +#endif + +#ifdef Unsigned_Shifts +#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000; +#else +#define Sign_Extend(a,b) /*no-op*/ +#endif + +#if defined(__i386__) || defined(__i860__) || defined(clipper) +#define IEEE_8087 +#endif +#if defined(MIPSEL) || defined(__alpha__) +#define IEEE_8087 +#endif +#if defined(__sparc__) || defined(sparc) || defined(MIPSEB) +#define IEEE_MC68k +#endif + +#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 + +#ifndef _DOUBLE_IS_32BITS +#if FLT_RADIX==16 +#define IBM +#else +#if DBL_MANT_DIG==56 +#define VAX +#else +#if DBL_MANT_DIG==53 && DBL_MAX_10_EXP==308 +#define IEEE_Unknown +#else +Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. +#endif +#endif +#endif +#endif /* !_DOUBLE_IS_32BITS */ +#endif + +typedef _G_uint32_t unsigned32; + +union doubleword { + double d; + unsigned32 u[2]; +}; + +#ifdef IEEE_8087 +#define HIWORD 1 +#define LOWORD 0 +#define TEST_ENDIANNESS /* nothing */ +#else +#if defined(IEEE_MC68k) +#define HIWORD 0 +#define LOWORD 1 +#define TEST_ENDIANNESS /* nothing */ +#else +static int HIWORD = -1, LOWORD; +static void test_endianness() +{ + union doubleword dw; + dw.d = 10; + if (dw.u[0] != 0) /* big-endian */ + HIWORD=0, LOWORD=1; + else + HIWORD=1, LOWORD=0; +} +#define TEST_ENDIANNESS if (HIWORD<0) test_endianness(); +#endif +#endif + +#if 0 +union doubleword _temp; +#endif +#if defined(__GNUC__) && !defined(_DOUBLE_IS_32BITS) +#define word0(x) ({ union doubleword _du; _du.d = (x); _du.u[HIWORD]; }) +#define word1(x) ({ union doubleword _du; _du.d = (x); _du.u[LOWORD]; }) +#define setword0(D,W) \ + ({ union doubleword _du; _du.d = (D); _du.u[HIWORD]=(W); (D)=_du.d; }) +#define setword1(D,W) \ + ({ union doubleword _du; _du.d = (D); _du.u[LOWORD]=(W); (D)=_du.d; }) +#define setwords(D,W0,W1) ({ union doubleword _du; \ + _du.u[HIWORD]=(W0); _du.u[LOWORD]=(W1); (D)=_du.d; }) +#define addword0(D,W) \ + ({ union doubleword _du; _du.d = (D); _du.u[HIWORD]+=(W); (D)=_du.d; }) +#else +#define word0(x) ((unsigned32 *)&x)[HIWORD] +#ifndef _DOUBLE_IS_32BITS +#define word1(x) ((unsigned32 *)&x)[LOWORD] +#else +#define word1(x) 0 +#endif +#define setword0(D,W) word0(D) = (W) +#ifndef _DOUBLE_IS_32BITS +#define setword1(D,W) word1(D) = (W) +#define setwords(D,W0,W1) (setword0(D,W0),setword1(D,W1)) +#else +#define setword1(D,W) +#define setwords(D,W0,W1) (setword0(D,W0)) +#endif +#define addword0(D,X) (word0(D) += (X)) +#endif + +/* The following definition of Storeinc is appropriate for MIPS processors. */ +#if defined(IEEE_8087) + defined(VAX) +#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ +((unsigned short *)a)[0] = (unsigned short)c, a++) +#else +#if defined(IEEE_MC68k) +#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ +((unsigned short *)a)[1] = (unsigned short)c, a++) +#else +#define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) +#endif +#endif + +/* #define P DBL_MANT_DIG */ +/* Ten_pmax = floor(P*log(2)/log(5)) */ +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ + +#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(IEEE_Unknown) +#define Exp_shift 20 +#define Exp_shift1 20 +#define Exp_msk1 0x100000 +#define Exp_msk11 0x100000 +#define Exp_mask 0x7ff00000 +#define P 53 +#define Bias 1023 +#define IEEE_Arith +#define Emin (-1022) +#define Exp_1 0x3ff00000 +#define Exp_11 0x3ff00000 +#define Ebits 11 +#define Frac_mask 0xfffff +#define Frac_mask1 0xfffff +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask 0xfffff +#define Bndry_mask1 0xfffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 +#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */ +#else +#undef Sudden_Underflow +#define Sudden_Underflow +#ifdef IBM +#define Exp_shift 24 +#define Exp_shift1 24 +#define Exp_msk1 0x1000000 +#define Exp_msk11 0x1000000 +#define Exp_mask 0x7f000000 +#define P 14 +#define Bias 65 +#define Exp_1 0x41000000 +#define Exp_11 0x41000000 +#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ +#define Frac_mask 0xffffff +#define Frac_mask1 0xffffff +#define Bletch 4 +#define Ten_pmax 22 +#define Bndry_mask 0xefffff +#define Bndry_mask1 0xffffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 4 +#define Tiny0 0x100000 +#define Tiny1 0 +#define Quick_max 14 +#define Int_max 15 +#else /* VAX */ +#define Exp_shift 23 +#define Exp_shift1 7 +#define Exp_msk1 0x80 +#define Exp_msk11 0x800000 +#define Exp_mask 0x7f80 +#define P 56 +#define Bias 129 +#define Exp_1 0x40800000 +#define Exp_11 0x4080 +#define Ebits 8 +#define Frac_mask 0x7fffff +#define Frac_mask1 0xffff007f +#define Ten_pmax 24 +#define Bletch 2 +#define Bndry_mask 0xffff007f +#define Bndry_mask1 0xffff007f +#define LSB 0x10000 +#define Sign_bit 0x8000 +#define Log2P 1 +#define Tiny0 0x80 +#define Tiny1 0 +#define Quick_max 15 +#define Int_max 15 +#endif +#endif + +#ifndef IEEE_Arith +#define ROUND_BIASED +#endif + +#ifdef RND_PRODQUOT +#define rounded_product(a,b) a = rnd_prod(a, b) +#define rounded_quotient(a,b) a = rnd_quot(a, b) +extern double rnd_prod(double, double), rnd_quot(double, double); +#else +#define rounded_product(a,b) a *= b +#define rounded_quotient(a,b) a /= b +#endif + +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) +#define Big1 0xffffffff + +#define Kmax 15 + +/* (1<<BIGINT_MINIMUM_K) is the minimum number of words to allocate + in a Bigint. dtoa usually manages with 1<<2, and has not been + known to need more than 1<<3. */ + +#define BIGINT_MINIMUM_K 3 + +struct Bigint { + struct Bigint *next; + int k; /* Parameter given to Balloc(k) */ + int maxwds; /* Allocated space: equals 1<<k. */ + short on_stack; /* 1 if stack-allocated. */ + short sign; /* 0 if value is positive or zero; 1 if negative. */ + int wds; /* Current length. */ + unsigned32 x[1<<BIGINT_MINIMUM_K]; /* Actually: x[maxwds] */ +}; + +#define BIGINT_HEADER_SIZE \ + (sizeof(Bigint) - (1<<BIGINT_MINIMUM_K) * sizeof(unsigned32)) + +typedef struct Bigint Bigint; + +/* Initialize a stack-allocated Bigint. */ + +static Bigint * +Binit +#ifdef KR_headers + (v) Bigint *v; +#else + (Bigint *v) +#endif +{ + v->on_stack = 1; + v->k = BIGINT_MINIMUM_K; + v->maxwds = 1 << BIGINT_MINIMUM_K; + v->sign = v->wds = 0; + return v; +} + +/* Allocate a Bigint with '1<<k' big digits. */ + +static Bigint * +Balloc +#ifdef KR_headers + (k) int k; +#else + (int k) +#endif +{ + int x; + Bigint *rv; + + if (k < BIGINT_MINIMUM_K) + k = BIGINT_MINIMUM_K; + + x = 1 << k; + rv = (Bigint *) + malloc(BIGINT_HEADER_SIZE + x * sizeof(unsigned32)); + rv->k = k; + rv->maxwds = x; + rv->sign = rv->wds = 0; + rv->on_stack = 0; + return rv; +} + +static void +Bfree +#ifdef KR_headers + (v) Bigint *v; +#else + (Bigint *v) +#endif +{ + if (v && !v->on_stack) + free (v); +} + +static void +Bcopy +#ifdef KR_headers + (x, y) Bigint *x, *y; +#else + (Bigint *x, Bigint *y) +#endif +{ + register unsigned32 *xp, *yp; + register int i = y->wds; + x->sign = y->sign; + x->wds = i; + for (xp = x->x, yp = y->x; --i >= 0; ) + *xp++ = *yp++; +} + +/* Make sure b has room for at least 1<<k big digits. */ + +static Bigint * +Brealloc +#ifdef KR_headers + (b, k) Bigint *b; int k; +#else + (Bigint * b, int k) +#endif +{ + if (b == NULL) + return Balloc(k); + if (b->k >= k) + return b; + else + { + Bigint *rv = Balloc (k); + Bcopy(rv, b); + Bfree(b); + return rv; + } +} + +/* Return b*m+a. b is modified. + Assumption: 0xFFFF*m+a fits in 32 bits. */ + +static Bigint * +multadd +#ifdef KR_headers + (b, m, a) Bigint *b; int m, a; +#else + (Bigint *b, int m, int a) +#endif +{ + int i, wds; + unsigned32 *x, y; + unsigned32 xi, z; + + wds = b->wds; + x = b->x; + i = 0; + do { + xi = *x; + y = (xi & 0xffff) * m + a; + z = (xi >> 16) * m + (y >> 16); + a = (int)(z >> 16); + *x++ = (z << 16) + (y & 0xffff); + } + while(++i < wds); + if (a) { + if (wds >= b->maxwds) + b = Brealloc(b, b->k+1); + b->x[wds++] = a; + b->wds = wds; + } + return b; + } + +static Bigint * +s2b +#ifdef KR_headers + (result, s, nd0, nd, y9) + Bigint *result; CONST char *s; int nd0, nd; unsigned32 y9; +#else + (Bigint *result, CONST char *s, int nd0, int nd, unsigned32 y9) +#endif +{ + int i, k; + _G_int32_t x, y; + + x = (nd + 8) / 9; + for(k = 0, y = 1; x > y; y <<= 1, k++) ; + result = Brealloc(result, k); + result->x[0] = y9; + result->wds = 1; + + i = 9; + if (9 < nd0) + { + s += 9; + do + result = multadd(result, 10, *s++ - '0'); + while (++i < nd0); + s++; + } + else + s += 10; + for(; i < nd; i++) + result = multadd(result, 10, *s++ - '0'); + return result; +} + +static int +hi0bits +#ifdef KR_headers + (x) register unsigned32 x; +#else + (register unsigned32 x) +#endif +{ + register int k = 0; + + if (!(x & 0xffff0000)) { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) { + k++; + if (!(x & 0x40000000)) + return 32; + } + return k; + } + +static int +lo0bits +#ifdef KR_headers + (y) unsigned32 *y; +#else + (unsigned32 *y) +#endif +{ + register int k; + register unsigned32 x = *y; + + if (x & 7) { + if (x & 1) + return 0; + if (x & 2) { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) { + k += 2; + x >>= 2; + } + if (!(x & 1)) { + k++; + x >>= 1; + if (!x & 1) + return 32; + } + *y = x; + return k; + } + +static Bigint * +i2b +#ifdef KR_headers + (result, i) Bigint *result; int i; +#else + (Bigint* result, int i) +#endif +{ + result = Brealloc(result, 1); + result->x[0] = i; + result->wds = 1; + return result; +} + +/* Do: c = a * b. */ + +static Bigint * +mult +#ifdef KR_headers + (c, a, b) Bigint *a, *b, *c; +#else + (Bigint *c, Bigint *a, Bigint *b) +#endif +{ + int k, wa, wb, wc; + unsigned32 carry, y, z; + unsigned32 *x, *xa, *xae, *xb, *xbe, *xc, *xc0; + unsigned32 z2; + if (a->wds < b->wds) { + Bigint *tmp = a; + a = b; + b = tmp; + } + k = a->k; + wa = a->wds; + wb = b->wds; + wc = wa + wb; + if (wc > a->maxwds) + k++; + c = Brealloc(c, k); + for(x = c->x, xa = x + wc; x < xa; x++) + *x = 0; + xa = a->x; + xae = xa + wa; + xb = b->x; + xbe = xb + wb; + xc0 = c->x; + for(; xb < xbe; xb++, xc0++) { + if ((y = *xb & 0xffff)) { + x = xa; + xc = xc0; + carry = 0; + do { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + Storeinc(xc, z2, z); + } + while(x < xae); + *xc = carry; + } + if ((y = *xb >> 16)) { + x = xa; + xc = xc0; + carry = 0; + z2 = *xc; + do { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + Storeinc(xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } + while(x < xae); + *xc = z2; + } + } + for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; + c->wds = wc; + return c; + } + +/* Returns b*(5**k). b is modified. */ +/* Re-written by Per Bothner to not need a static list. */ + +static Bigint * +pow5mult +#ifdef KR_headers + (b, k) Bigint *b; int k; +#else + (Bigint *b, int k) +#endif +{ + static int p05[6] = { 5, 25, 125, 625, 3125, 15625 }; + + for (; k > 6; k -= 6) + b = multadd(b, 15625, 0); /* b *= 5**6 */ + if (k == 0) + return b; + else + return multadd(b, p05[k-1], 0); +} + +/* Re-written by Per Bothner so shift can be in place. */ + +static Bigint * +lshift +#ifdef KR_headers + (b, k) Bigint *b; int k; +#else + (Bigint *b, int k) +#endif +{ + int i; + unsigned32 *x, *x1, *xe; + int old_wds = b->wds; + int n = k >> 5; + int k1 = b->k; + int n1 = n + old_wds + 1; + + if (k == 0) + return b; + + for(i = b->maxwds; n1 > i; i <<= 1) + k1++; + b = Brealloc(b, k1); + + xe = b->x; /* Source limit */ + x = xe + old_wds; /* Source pointer */ + x1 = x + n; /* Destination pointer */ + if (k &= 0x1f) { + int k1 = 32 - k; + unsigned32 z = *--x; + if ((*x1 = (z >> k1)) != 0) { + ++n1; + } + while (x > xe) { + unsigned32 w = *--x; + *--x1 = (z << k) | (w >> k1); + z = w; + } + *--x1 = z << k; + } + else + do { + *--x1 = *--x; + } while(x > xe); + while (x1 > xe) + *--x1 = 0; + b->wds = n1 - 1; + return b; +} + +static int +cmp +#ifdef KR_headers + (a, b) Bigint *a, *b; +#else + (Bigint *a, Bigint *b) +#endif +{ + unsigned32 *xa, *xa0, *xb, *xb0; + int i, j; + + i = a->wds; + j = b->wds; +#ifdef DEBUG + if (i > 1 && !a->x[i-1]) + Bug("cmp called with a->x[a->wds-1] == 0"); + if (j > 1 && !b->x[j-1]) + Bug("cmp called with b->x[b->wds-1] == 0"); +#endif + if (i -= j) + return i; + xa0 = a->x; + xa = xa0 + j; + xb0 = b->x; + xb = xb0 + j; + for(;;) { + if (*--xa != *--xb) + return *xa < *xb ? -1 : 1; + if (xa <= xa0) + break; + } + return 0; + } + +/* Do: c = a-b. */ + +static Bigint * +diff +#ifdef KR_headers + (c, a, b) Bigint *c, *a, *b; +#else + (Bigint *c, Bigint *a, Bigint *b) +#endif +{ + int i, wa, wb; + _G_int32_t borrow, y; /* We need signed shifts here. */ + unsigned32 *xa, *xae, *xb, *xbe, *xc; + _G_int32_t z; + + i = cmp(a,b); + if (!i) { + c = Brealloc(c, 0); + c->wds = 1; + c->x[0] = 0; + return c; + } + if (i < 0) { + Bigint *tmp = a; + a = b; + b = tmp; + i = 1; + } + else + i = 0; + c = Brealloc(c, a->k); + c->sign = i; + wa = a->wds; + xa = a->x; + xae = xa + wa; + wb = b->wds; + xb = b->x; + xbe = xb + wb; + xc = c->x; + borrow = 0; + do { + y = (*xa & 0xffff) - (*xb & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend(borrow, y); + z = (*xa++ >> 16) - (*xb++ >> 16) + borrow; + borrow = z >> 16; + Sign_Extend(borrow, z); + Storeinc(xc, z, y); + } + while(xb < xbe); + while(xa < xae) { + y = (*xa & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend(borrow, y); + z = (*xa++ >> 16) + borrow; + borrow = z >> 16; + Sign_Extend(borrow, z); + Storeinc(xc, z, y); + } + while(!*--xc) + wa--; + c->wds = wa; + return c; + } + +static double +ulp +#ifdef KR_headers + (x) double x; +#else + (double x) +#endif +{ + register _G_int32_t L; + double a; + + L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; +#ifndef Sudden_Underflow + if (L > 0) { +#endif +#ifdef IBM + L |= Exp_msk1 >> 4; +#endif + setwords(a, L, 0); +#ifndef Sudden_Underflow + } + else { + L = -L >> Exp_shift; + if (L < Exp_shift) + setwords(a, 0x80000 >> L, 0); + else { + L -= Exp_shift; + setwords(a, 0, L >= 31 ? 1 : 1 << (31 - L)); + } + } +#endif + return a; + } + +static double +b2d +#ifdef KR_headers + (a, e) Bigint *a; int *e; +#else + (Bigint *a, int *e) +#endif +{ + unsigned32 *xa, *xa0, w, y, z; + int k; + double d; + unsigned32 d0, d1; + + xa0 = a->x; + xa = xa0 + a->wds; + y = *--xa; +#ifdef DEBUG + if (!y) Bug("zero y in b2d"); +#endif + k = hi0bits(y); + *e = 32 - k; + if (k < Ebits) { + d0 = Exp_1 | y >> (Ebits - k); + w = xa > xa0 ? *--xa : 0; +#ifndef _DOUBLE_IS_32BITS + d1 = y << ((32-Ebits) + k) | w >> (Ebits - k); +#endif + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) { + d0 = Exp_1 | y << k | z >> (32 - k); + y = xa > xa0 ? *--xa : 0; +#ifndef _DOUBLE_IS_32BITS + d1 = z << k | y >> (32 - k); +#endif + } + else { + d0 = Exp_1 | y; +#ifndef _DOUBLE_IS_32BITS + d1 = z; +#endif + } + ret_d: +#ifdef VAX + setwords(d, d0 >> 16 | d0 << 16, d1 >> 16 | d1 << 16); +#else + setwords (d, d0, d1); +#endif + return d; + } + +static Bigint * +d2b +#ifdef KR_headers + (result, d, e, bits) Bigint *result; double d; _G_int32_t *e, *bits; +#else + (Bigint *result, double d, _G_int32_t *e, _G_int32_t *bits) +#endif +{ + int de, i, k; + unsigned32 *x, y, z; + unsigned32 d0, d1; +#ifdef VAX + d0 = word0(d) >> 16 | word0(d) << 16; + d1 = word1(d) >> 16 | word1(d) << 16; +#else + d0 = word0(d); + d1 = word1(d); +#endif + + result = Brealloc(result, 1); + x = result->x; + + z = d0 & Frac_mask; + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ + + de = (int)(d0 >> Exp_shift); /* The exponent part of d. */ + + /* Put back the suppressed high-order bit, if normalized. */ +#ifndef IBM +#ifndef Sudden_Underflow + if (de) +#endif + z |= Exp_msk11; +#endif + +#ifndef _DOUBLE_IS_32BITS + if ((y = d1)) { + if ((k = lo0bits(&y))) { + x[0] = y | z << (32 - k); + z >>= k; + } + else + x[0] = y; + i = result->wds = (x[1] = z) ? 2 : 1; + } + else { +#endif /* !_DOUBLE_IS_32BITS */ +#ifdef DEBUG + if (!z) + Bug("Zero passed to d2b"); +#endif + k = lo0bits(&z); + x[0] = z; + i = result->wds = 1; +#ifndef _DOUBLE_IS_32BITS + k += 32; + } +#endif +#ifndef Sudden_Underflow + if (de) { +#endif +#ifdef IBM + *e = (de - Bias - (P-1) << 2) + k; + *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); +#else + *e = de - Bias - (P-1) + k; + *bits = P - k; +#endif +#ifndef Sudden_Underflow + } + else { + *e = de - Bias - (P-1) + 1 + k; + *bits = 32*i - hi0bits(x[i-1]); + } +#endif + return result; + } + +static double +ratio +#ifdef KR_headers + (a, b) Bigint *a, *b; +#else + (Bigint *a, Bigint *b) +#endif +{ + double da, db; + int k, ka, kb; + + da = b2d(a, &ka); + db = b2d(b, &kb); + k = ka - kb + 32*(a->wds - b->wds); +#ifdef IBM + if (k > 0) { + addword0(da, (k >> 2)*Exp_msk1); + if (k &= 3) + da *= 1 << k; + } + else { + k = -k; + addword0(db,(k >> 2)*Exp_msk1); + if (k &= 3) + db *= 1 << k; + } +#else + if (k > 0) + addword0(da, k*Exp_msk1); + else { + k = -k; + addword0(db, k*Exp_msk1); + } +#endif + return da / db; + } + +static CONST double +tens[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +#ifdef VAX + , 1e23, 1e24 +#endif + }; + +#ifdef IEEE_Arith +static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 }; +#define n_bigtens 5 +#else +#ifdef IBM +static CONST double bigtens[] = { 1e16, 1e32, 1e64 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; +#define n_bigtens 3 +#else +/* Also used for the case when !_DOUBLE_IS_32BITS. */ +static CONST double bigtens[] = { 1e16, 1e32 }; +static CONST double tinytens[] = { 1e-16, 1e-32 }; +#define n_bigtens 2 +#endif +#endif + + double +_IO_strtod +#ifdef KR_headers + (s00, se) CONST char *s00; char **se; +#else + (CONST char *s00, char **se) +#endif +{ + _G_int32_t bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, + e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; + CONST char *s, *s0, *s1; + double aadj, aadj1, adj, rv, rv0; + _G_int32_t L; + unsigned32 y, z; + Bigint _bb, _b_avail, _bd, _bd0, _bs, _delta; + Bigint *bb = Binit(&_bb); + Bigint *bd = Binit(&_bd); + Bigint *bd0 = Binit(&_bd0); + Bigint *bs = Binit(&_bs); + Bigint *b_avail = Binit(&_b_avail); + Bigint *delta = Binit(&_delta); + + TEST_ENDIANNESS; + sign = nz0 = nz = 0; + rv = 0.; + (void)&rv; /* Force rv into the stack */ + for(s = s00;;s++) switch(*s) { + case '-': + sign = 1; + /* no break */ + case '+': + if (*++s) + goto break2; + /* no break */ + case 0: + /* "+" and "-" should be reported as an error? */ + sign = 0; + s = s00; + goto ret; + case '\t': + case '\n': + case '\v': + case '\f': + case '\r': + case ' ': + continue; + default: + goto break2; + } + break2: + if (*s == '0') { + nz0 = 1; + while(*++s == '0') ; + if (!*s) + goto ret; + } + s0 = s; + y = z = 0; + for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) + if (nd < 9) + y = 10*y + c - '0'; + else if (nd < 16) + z = 10*z + c - '0'; + nd0 = nd; + if (c == '.') { + c = *++s; + if (!nd) { + for(; c == '0'; c = *++s) + nz++; + if (c > '0' && c <= '9') { + s0 = s; + nf += nz; + nz = 0; + goto have_dig; + } + goto dig_done; + } + for(; c >= '0' && c <= '9'; c = *++s) { + have_dig: + nz++; + if (c -= '0') { + nf += nz; + for(i = 1; i < nz; i++) + if (nd++ < 9) + y *= 10; + else if (nd <= DBL_DIG + 1) + z *= 10; + if (nd++ < 9) + y = 10*y + c; + else if (nd <= DBL_DIG + 1) + z = 10*z + c; + nz = 0; + } + } + } + dig_done: + e = 0; + if (c == 'e' || c == 'E') { + if (!nd && !nz && !nz0) { + s = s00; + goto ret; + } + s00 = s; + esign = 0; + switch(c = *++s) { + case '-': + esign = 1; + case '+': + c = *++s; + } + if (c >= '0' && c <= '9') { + while(c == '0') + c = *++s; + if (c > '0' && c <= '9') { + e = c - '0'; + s1 = s; + while((c = *++s) >= '0' && c <= '9') + e = 10*e + c - '0'; + if (s - s1 > 8) + /* Avoid confusion from exponents + * so large that e might overflow. + */ + e = 9999999; + if (esign) + e = -e; + } + else + e = 0; + } + else + s = s00; + } + if (!nd) { + if (!nz && !nz0) + s = s00; + goto ret; + } + e1 = e -= nf; + + /* Now we have nd0 digits, starting at s0, followed by a + * decimal point, followed by nd-nd0 digits. The number we're + * after is the integer represented by those digits times + * 10**e */ + + if (!nd0) + nd0 = nd; + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; + rv = y; + if (k > 9) + rv = tens[k - 9] * rv + z; + if (nd <= DBL_DIG +#ifndef RND_PRODQUOT + && FLT_ROUNDS == 1 +#endif + ) { + if (!e) + goto ret; + if (e > 0) { + if (e <= Ten_pmax) { +#ifdef VAX + goto vax_ovfl_check; +#else + /* rv = */ rounded_product(rv, tens[e]); + goto ret; +#endif + } + i = DBL_DIG - nd; + if (e <= Ten_pmax + i) { + /* A fancier test would sometimes let us do + * this for larger i values. + */ + e -= i; + rv *= tens[i]; +#ifdef VAX + /* VAX exponent range is so narrow we must + * worry about overflow here... + */ + vax_ovfl_check: + addword0(rv, - P*Exp_msk1); + /* rv = */ rounded_product(rv, tens[e]); + if ((word0(rv) & Exp_mask) + > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) + goto ovfl; + addword0(rv, P*Exp_msk1); +#else + /* rv = */ rounded_product(rv, tens[e]); +#endif + goto ret; + } + } +#ifndef Inaccurate_Divide + else if (e >= -Ten_pmax) { + /* rv = */ rounded_quotient(rv, tens[-e]); + goto ret; + } +#endif + } + e1 += nd - k; + + /* Get starting approximation = rv * 10**e1 */ + + if (e1 > 0) { + if ((i = e1 & 15)) + rv *= tens[i]; + if (e1 &= ~15) { + if (e1 > DBL_MAX_10_EXP) { + ovfl: + errno = ERANGE; +#if defined(sun) && !defined(__svr4__) +/* SunOS defines HUGE_VAL as __infinity(), which is in libm. */ +#undef HUGE_VAL +#endif +#ifndef HUGE_VAL +#define HUGE_VAL 1.7976931348623157E+308 +#endif + rv = HUGE_VAL; + goto ret; + } + if (e1 >>= 4) { + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + rv *= bigtens[j]; + /* The last multiplication could overflow. */ + addword0(rv, -P*Exp_msk1); + rv *= bigtens[j]; + if ((z = word0(rv) & Exp_mask) + > Exp_msk1*(DBL_MAX_EXP+Bias-P)) + goto ovfl; + if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { + /* set to largest number */ + /* (Can't trust DBL_MAX) */ + setwords(rv, Big0, Big1); + } + else + addword0(rv, P*Exp_msk1); + } + + } + } + else if (e1 < 0) { + e1 = -e1; + if ((i = e1 & 15)) + rv /= tens[i]; + if (e1 &= ~15) { + e1 >>= 4; + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + rv *= tinytens[j]; + /* The last multiplication could underflow. */ + rv0 = rv; + rv *= tinytens[j]; + if (!rv) { + rv = 2.*rv0; + rv *= tinytens[j]; + if (!rv) { + undfl: + rv = 0.; + errno = ERANGE; + goto ret; + } + setwords(rv, Tiny0, Tiny1); + /* The refinement below will clean + * this approximation up. + */ + } + } + } + + /* Now the hard part -- adjusting rv to the correct value.*/ + + /* Put digits into bd: true value = bd * 10^e */ + + bd0 = s2b(bd0, s0, nd0, nd, y); + bd = Brealloc(bd, bd0->k); + + for(;;) { + Bcopy(bd, bd0); + bb = d2b(bb, rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ + bs = i2b(bs, 1); + + if (e >= 0) { + bb2 = bb5 = 0; + bd2 = bd5 = e; + } + else { + bb2 = bb5 = -e; + bd2 = bd5 = 0; + } + if (bbe >= 0) + bb2 += bbe; + else + bd2 -= bbe; + bs2 = bb2; +#ifdef Sudden_Underflow +#ifdef IBM + j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); +#else + j = P + 1 - bbbits; +#endif +#else + i = bbe + bbbits - 1; /* logb(rv) */ + if (i < Emin) /* denormal */ + j = bbe + (P-Emin); + else + j = P + 1 - bbbits; +#endif + bb2 += j; + bd2 += j; + i = bb2 < bd2 ? bb2 : bd2; + if (i > bs2) + i = bs2; + if (i > 0) { + bb2 -= i; + bd2 -= i; + bs2 -= i; + } + if (bb5 > 0) { + Bigint *b_tmp; + bs = pow5mult(bs, bb5); + b_tmp = mult(b_avail, bs, bb); + b_avail = bb; + bb = b_tmp; + } + if (bb2 > 0) + bb = lshift(bb, bb2); + if (bd5 > 0) + bd = pow5mult(bd, bd5); + if (bd2 > 0) + bd = lshift(bd, bd2); + if (bs2 > 0) + bs = lshift(bs, bs2); + delta = diff(delta, bb, bd); + dsign = delta->sign; + delta->sign = 0; + i = cmp(delta, bs); + if (i < 0) { + /* Error is less than half an ulp -- check for + * special case of mantissa a power of two. + */ + if (dsign || word1(rv) || word0(rv) & Bndry_mask) + break; + delta = lshift(delta,Log2P); + if (cmp(delta, bs) > 0) + goto drop_down; + break; + } + if (i == 0) { + /* exactly half-way between */ + if (dsign) { + if ((word0(rv) & Bndry_mask1) == Bndry_mask1 + && word1(rv) == 0xffffffff) { + /*boundary case -- increment exponent*/ + setword0(rv, (word0(rv) & Exp_mask) + + Exp_msk1); +#ifdef IBM + setword0 (rv, + word0(rv) | (Exp_msk1 >> 4)); +#endif + setword1(rv, 0); + break; + } + } + else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { + drop_down: + /* boundary case -- decrement exponent */ +#ifdef Sudden_Underflow + L = word0(rv) & Exp_mask; +#ifdef IBM + if (L < Exp_msk1) +#else + if (L <= Exp_msk1) +#endif + goto undfl; + L -= Exp_msk1; +#else + L = (word0(rv) & Exp_mask) - Exp_msk1; +#endif + setwords(rv, L | Bndry_mask1, 0xffffffff); +#ifdef IBM + continue; +#else + break; +#endif + } +#ifndef ROUND_BIASED + if (!(word1(rv) & LSB)) + break; +#endif + if (dsign) + rv += ulp(rv); +#ifndef ROUND_BIASED + else { + rv -= ulp(rv); +#ifndef Sudden_Underflow + if (!rv) + goto undfl; +#endif + } +#endif + break; + } + if ((aadj = ratio(delta, bs)) <= 2.) { + if (dsign) + aadj = aadj1 = 1.; + else if (word1(rv) || word0(rv) & Bndry_mask) { +#ifndef Sudden_Underflow + if (word1(rv) == Tiny1 && !word0(rv)) + goto undfl; +#endif + aadj = 1.; + aadj1 = -1.; + } + else { + /* special case -- power of FLT_RADIX to be */ + /* rounded down... */ + + if (aadj < 2./FLT_RADIX) + aadj = 1./FLT_RADIX; + else + aadj *= 0.5; + aadj1 = -aadj; + } + } + else { + aadj *= 0.5; + aadj1 = dsign ? aadj : -aadj; +#ifdef Check_FLT_ROUNDS + switch(FLT_ROUNDS) { + case 2: /* towards +infinity */ + aadj1 -= 0.5; + break; + case 0: /* towards 0 */ + case 3: /* towards -infinity */ + aadj1 += 0.5; + } +#else + if (FLT_ROUNDS == 0) + aadj1 += 0.5; +#endif + } + y = word0(rv) & Exp_mask; + + /* Check for overflow */ + + if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { + rv0 = rv; + addword0(rv, - P*Exp_msk1); + adj = aadj1 * ulp(rv); + rv += adj; + if ((word0(rv) & Exp_mask) >= + Exp_msk1*(DBL_MAX_EXP+Bias-P)) { + if (word0(rv0) == Big0 && word1(rv0) == Big1) + goto ovfl; + setwords(rv, Big0, Big1); + continue; + } + else + addword0(rv, P*Exp_msk1); + } + else { +#ifdef Sudden_Underflow + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { + rv0 = rv; + addword0(rv, P*Exp_msk1); + adj = aadj1 * ulp(rv); + rv += adj; +#ifdef IBM + if ((word0(rv) & Exp_mask) < P*Exp_msk1) +#else + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) +#endif + { + if (word0(rv0) == Tiny0 + && word1(rv0) == Tiny1) + goto undfl; + setwords(rv, Tiny0, Tiny1); + continue; + } + else + addword0(rv, -P*Exp_msk1); + } + else { + adj = aadj1 * ulp(rv); + rv += adj; + } +#else + /* Compute adj so that the IEEE rounding rules will + * correctly round rv + adj in some half-way cases. + * If rv * ulp(rv) is denormalized (i.e., + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid + * trouble from bits lost to denormalization; + * example: 1.2e-307 . + */ + if (y <= (P-1)*Exp_msk1 && aadj >= 1.) { + aadj1 = (double)(int)(aadj + 0.5); + if (!dsign) + aadj1 = -aadj1; + } + adj = aadj1 * ulp(rv); + rv += adj; +#endif + } + z = word0(rv) & Exp_mask; + if (y == z) { + /* Can we stop now? */ + L = (_G_int32_t)aadj; + aadj -= L; + /* The tolerances below are conservative. */ + if (dsign || word1(rv) || word0(rv) & Bndry_mask) { + if (aadj < .4999999 || aadj > .5000001) + break; + } + else if (aadj < .4999999/FLT_RADIX) + break; + } + } + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(bd0); + Bfree(delta); + Bfree(b_avail); + ret: + if (se) + *se = (char *)s; + return sign ? -rv : rv; + } + +static int +quorem +#ifdef KR_headers + (b, S) Bigint *b, *S; +#else + (Bigint *b, Bigint *S) +#endif +{ + int n; + _G_int32_t borrow, y; + unsigned32 carry, q, ys; + unsigned32 *bx, *bxe, *sx, *sxe; + _G_int32_t z; + unsigned32 si, zs; + + n = S->wds; +#ifdef DEBUG + /*debug*/ if (b->wds > n) + /*debug*/ Bug("oversize b in quorem"); +#endif + if (b->wds < n) + return 0; + sx = S->x; + sxe = sx + --n; + bx = b->x; + bxe = bx + n; + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ +#ifdef DEBUG + /*debug*/ if (q > 9) + /*debug*/ Bug("oversized quotient in quorem"); +#endif + if (q) { + borrow = 0; + carry = 0; + do { + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend(borrow, y); + z = (*bx >> 16) - (zs & 0xffff) + borrow; + borrow = z >> 16; + Sign_Extend(borrow, z); + Storeinc(bx, z, y); + } + while(sx <= sxe); + if (!*bxe) { + bx = b->x; + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + if (cmp(b, S) >= 0) { + q++; + borrow = 0; + carry = 0; + bx = b->x; + sx = S->x; + do { + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) + borrow; + borrow = y >> 16; + Sign_Extend(borrow, y); + z = (*bx >> 16) - (zs & 0xffff) + borrow; + borrow = z >> 16; + Sign_Extend(borrow, z); + Storeinc(bx, z, y); + } + while(sx <= sxe); + bx = b->x; + bxe = bx + n; + if (!*bxe) { + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + return q; + } + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the long + * calculation. + */ + + char * +_IO_dtoa +#ifdef KR_headers + (d, mode, ndigits, decpt, sign, rve) + double d; int mode, ndigits, *decpt, *sign; char **rve; +#else + (double d, int mode, int ndigits, int *decpt, int *sign, char **rve) +#endif +{ + /* Arguments ndigits, decpt, sign are similar to those + of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. + + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4-9 should give the same return values as 2-3, i.e., + 4 <= mode <= 9 ==> same return as mode + 2 + (mode & 1). These modes are mainly for + debugging; often they run slower but sometimes + faster than modes 2-3. + 4,5,8,9 ==> left-to-right digit generation. + 6-9 ==> don't try fast floating-point estimate + (if applicable). + + Values of mode other than 0-9 are treated as mode 0. + + Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + */ + + _G_int32_t bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, + j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, + spec_case, try_quick; + _G_int32_t L; +#ifndef Sudden_Underflow + int denorm; +#endif + Bigint _b_avail, _b, _mhi, _mlo, _S; + Bigint *b_avail = Binit(&_b_avail); + Bigint *b = Binit(&_b); + Bigint *S = Binit(&_S); + /* mhi and mlo are only set and used if leftright. */ + Bigint *mhi = NULL, *mlo = NULL; + double d2, ds, eps; + char *s, *s0; + static Bigint *result = NULL; + static int result_k; + + TEST_ENDIANNESS; + if (result) { + /* result is contains a string, so its fields (interpreted + as a Bigint have been trashed. Restore them. + This is a really ugly interface - result should + not be static, since that is not thread-safe. FIXME. */ + result->k = result_k; + result->maxwds = 1 << result_k; + result->on_stack = 0; + } + + if (word0(d) & Sign_bit) { + /* set sign for everything, including 0's and NaNs */ + *sign = 1; + setword0(d, word0(d) & ~Sign_bit); /* clear sign bit */ + } + else + *sign = 0; + +#if defined(IEEE_Arith) + defined(VAX) +#ifdef IEEE_Arith + if ((word0(d) & Exp_mask) == Exp_mask) +#else + if (word0(d) == 0x8000) +#endif + { + /* Infinity or NaN */ + *decpt = 9999; +#ifdef IEEE_Arith + if (!word1(d) && !(word0(d) & 0xfffff)) + { + s = "Infinity"; + if (rve) + *rve = s + 8; + } + else +#endif + { + s = "NaN"; + if (rve) + *rve = s +3; + } + return s; + } +#endif +#ifdef IBM + d += 0; /* normalize */ +#endif + if (!d) { + *decpt = 1; + s = "0"; + if (rve) + *rve = s + 1; + return s; + } + + b = d2b(b, d, &be, &bbits); + i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); +#ifndef Sudden_Underflow + if (i) { +#endif + d2 = d; + setword0(d2, (word0(d2) & Frac_mask1) | Exp_11); +#ifdef IBM + if (j = 11 - hi0bits(word0(d2) & Frac_mask)) + d2 /= 1 << j; +#endif + + i -= Bias; +#ifdef IBM + i <<= 2; + i += j; +#endif +#ifndef Sudden_Underflow + denorm = 0; + } + else { + /* d is denormalized */ + unsigned32 x; + + i = bbits + be + (Bias + (P-1) - 1); + x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) + : word1(d) << (32 - i); + d2 = x; + addword0(d2, - 31*Exp_msk1); /* adjust exponent */ + i -= (Bias + (P-1) - 1) + 1; + denorm = 1; + } +#endif + + /* Now i is the unbiased base-2 exponent. */ + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = i*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = i*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i) by 0.301029995663981; since |i| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ + + ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; + k = (int)ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; + if (k >= 0 && k <= Ten_pmax) { + if (d < tens[k]) + k--; + k_check = 0; + } + j = bbits - i - 1; + if (j >= 0) { + b2 = 0; + s2 = j; + } + else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } + else { + b2 -= k; + b5 = -k; + s5 = 0; + } + if (mode < 0 || mode > 9) + mode = 0; + try_quick = 1; + if (mode > 5) { + mode -= 4; + try_quick = 0; + } + leftright = 1; + switch(mode) { + case 0: + case 1: + ilim = ilim1 = -1; + i = 18; + ndigits = 0; + break; + case 2: + leftright = 0; + /* no break */ + case 4: + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + break; + case 3: + leftright = 0; + /* no break */ + case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + /* i is now an upper bound of the number of digits to generate. */ + j = sizeof(unsigned32) * (1<<BIGINT_MINIMUM_K); + /* The test is <= so as to allow room for the final '\0'. */ + for(result_k = BIGINT_MINIMUM_K; BIGINT_HEADER_SIZE + j <= i; + j <<= 1) result_k++; + if (!result || result_k > result->k) + { + Bfree (result); + result = Balloc(result_k); + } + s = s0 = (char *)result; + + if (ilim >= 0 && ilim <= Quick_max && try_quick) { + + /* Try to get by with floating-point arithmetic. */ + + i = 0; + d2 = d; + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + if (k > 0) { + ds = tens[k&0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + d /= bigtens[n_bigtens-1]; + ieps++; + } + for(; j; j >>= 1, i++) + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + d /= ds; + } + else if ((j1 = -k)) { + d *= tens[j1 & 0xf]; + for(j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) { + ieps++; + d *= bigtens[i]; + } + } + if (k_check && d < 1. && ilim > 0) { + if (ilim1 <= 0) + goto fast_failed; + ilim = ilim1; + k--; + d *= 10.; + ieps++; + } + eps = ieps*d + 7.; + addword0(eps, - (P-1)*Exp_msk1); + if (ilim == 0) { + d -= 5.; + if (d > eps) + goto one_digit; + if (d < -eps) + goto no_digits; + goto fast_failed; + } +#ifndef No_leftright + if (leftright) { + /* Use Steele & White method of only + * generating digits needed. + */ + eps = 0.5/tens[ilim-1] - eps; + for(i = 0;;) { + L = (_G_int32_t)d; + d -= L; + *s++ = '0' + (int)L; + if (d < eps) + goto ret1; + if (1. - d < eps) + goto bump_up; + if (++i >= ilim) + break; + eps *= 10.; + d *= 10.; + } + } + else { +#endif + /* Generate ilim digits, then fix them up. */ + eps *= tens[ilim-1]; + for(i = 1;; i++, d *= 10.) { + L = (_G_int32_t)d; + d -= L; + *s++ = '0' + (int)L; + if (i == ilim) { + if (d > 0.5 + eps) + goto bump_up; + else if (d < 0.5 - eps) { + while(*--s == '0'); + s++; + goto ret1; + } + break; + } + } +#ifndef No_leftright + } +#endif + fast_failed: + s = s0; + d = d2; + k = k0; + ilim = ilim0; + } + + /* Do we have a "small" integer? */ + + if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + if (ilim < 0 || d <= 5*ds) + goto no_digits; + goto one_digit; + } + for(i = 1;; i++) { + L = (_G_int32_t)(d / ds); + d -= L*ds; +#ifdef Check_FLT_ROUNDS + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ + if (d < 0) { + L--; + d += ds; + } +#endif + *s++ = '0' + (int)L; + if (i == ilim) { + d += d; + if (d > ds || (d == ds && L & 1)) { + bump_up: + while(*--s == '9') + if (s == s0) { + k++; + *s = '0'; + break; + } + ++*s++; + } + break; + } + if (!(d *= 10.)) + break; + } + goto ret1; + } + + m2 = b2; + m5 = b5; + if (leftright) { + if (mode < 2) { + i = +#ifndef Sudden_Underflow + denorm ? be + (Bias + (P-1) - 1 + 1) : +#endif +#ifdef IBM + 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); +#else + 1 + P - bbits; +#endif + } + else { + j = ilim - 1; + if (m5 >= j) + m5 -= j; + else { + s5 += j -= m5; + b5 += j; + m5 = 0; + } + if ((i = ilim) < 0) { + m2 -= i; + i = 0; + } + } + b2 += i; + s2 += i; + mhi = i2b(Binit(&_mhi), 1); + } + if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } + if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + Bigint *b_tmp; + mhi = pow5mult(mhi, m5); + b_tmp = mult(b_avail, mhi, b); + b_avail = b; + b = b_tmp; + } + if ((j = b5 - m5)) + b = pow5mult(b, j); + } + else + b = pow5mult(b, b5); + } + S = i2b(S, 1); + if (s5 > 0) + S = pow5mult(S, s5); + + /* Check for special case that d is a normalized power of 2. */ + + if (mode < 2) { + if (!word1(d) && !(word0(d) & Bndry_mask) +#ifndef Sudden_Underflow + && word0(d) & Exp_mask +#endif + ) { + /* The special case */ + b2 += Log2P; + s2 += Log2P; + spec_case = 1; + } + else + spec_case = 0; + } + + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ + if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)) + i = 32 - i; + if (i > 4) { + i -= 4; + b2 += i; + m2 += i; + s2 += i; + } + else if (i < 4) { + i += 28; + b2 += i; + m2 += i; + s2 += i; + } + if (b2 > 0) + b = lshift(b, b2); + if (s2 > 0) + S = lshift(S, s2); + if (k_check) { + if (cmp(b,S) < 0) { + k--; + b = multadd(b, 10, 0); /* we botched the k estimate */ + if (leftright) + mhi = multadd(mhi, 10, 0); + ilim = ilim1; + } + } + if (ilim <= 0 && mode > 2) { + if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { + /* no digits, fcvt style */ + no_digits: + k = -1 - ndigits; + goto ret; + } + one_digit: + *s++ = '1'; + k++; + goto ret; + } + if (leftright) { + if (m2 > 0) + mhi = lshift(mhi, m2); + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + if (spec_case) { + mlo = Brealloc(Binit(&_mlo), mhi->k); + Bcopy(mlo, mhi); + mhi = lshift(mhi, Log2P); + } + else + mlo = mhi; + + for(i = 1;;i++) { + dig = quorem(b,S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + b_avail = diff(b_avail, S, mhi); /* b_avail = S - mi */ + j1 = b_avail->sign ? 1 : cmp(b, b_avail); +#ifndef ROUND_BIASED + if (j1 == 0 && !mode && !(word1(d) & 1)) { + if (dig == '9') + goto round_9_up; + if (j > 0) + dig++; + *s++ = dig; + goto ret; + } +#endif + if (j < 0 || (j == 0 && !mode +#ifndef ROUND_BIASED + && !(word1(d) & 1) +#endif + )) { + if (j1 > 0) { + b = lshift(b, 1); + j1 = cmp(b, S); + if ((j1 > 0 || (j1 == 0 && dig & 1)) + && dig++ == '9') + goto round_9_up; + } + *s++ = dig; + goto ret; + } + if (j1 > 0) { + if (dig == '9') { /* possible if i == 1 */ + round_9_up: + *s++ = '9'; + goto roundoff; + } + *s++ = dig + 1; + goto ret; + } + *s++ = dig; + if (i == ilim) + break; + b = multadd(b, 10, 0); + if (mlo == mhi) + mlo = mhi = multadd(mhi, 10, 0); + else { + mlo = multadd(mlo, 10, 0); + mhi = multadd(mhi, 10, 0); + } + } + } + else + for(i = 1;; i++) { + *s++ = dig = quorem(b,S) + '0'; + if (i >= ilim) + break; + b = multadd(b, 10, 0); + } + + /* Round off last digit */ + + b = lshift(b, 1); + j = cmp(b, S); + if (j > 0 || (j == 0 && dig & 1)) { + roundoff: + while(*--s == '9') + if (s == s0) { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; + } + else { + while(*--s == '0'); + s++; + } + ret: + Bfree(b_avail); + Bfree(S); + if (mhi) { + if (mlo && mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } + ret1: + Bfree(b); + *s = 0; + *decpt = k + 1; + if (rve) + *rve = s; + return s0; + } +#endif /* _IO_USE_DTOA */ |