summaryrefslogtreecommitdiff
path: root/libgo/go/text/template/exec.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/text/template/exec.go')
-rw-r--r--libgo/go/text/template/exec.go673
1 files changed, 673 insertions, 0 deletions
diff --git a/libgo/go/text/template/exec.go b/libgo/go/text/template/exec.go
new file mode 100644
index 00000000000..19108825d58
--- /dev/null
+++ b/libgo/go/text/template/exec.go
@@ -0,0 +1,673 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package template
+
+import (
+ "fmt"
+ "io"
+ "reflect"
+ "runtime"
+ "strings"
+ "text/template/parse"
+)
+
+// state represents the state of an execution. It's not part of the
+// template so that multiple executions of the same template
+// can execute in parallel.
+type state struct {
+ tmpl *Template
+ wr io.Writer
+ line int // line number for errors
+ vars []variable // push-down stack of variable values.
+}
+
+// variable holds the dynamic value of a variable such as $, $x etc.
+type variable struct {
+ name string
+ value reflect.Value
+}
+
+// push pushes a new variable on the stack.
+func (s *state) push(name string, value reflect.Value) {
+ s.vars = append(s.vars, variable{name, value})
+}
+
+// mark returns the length of the variable stack.
+func (s *state) mark() int {
+ return len(s.vars)
+}
+
+// pop pops the variable stack up to the mark.
+func (s *state) pop(mark int) {
+ s.vars = s.vars[0:mark]
+}
+
+// setVar overwrites the top-nth variable on the stack. Used by range iterations.
+func (s *state) setVar(n int, value reflect.Value) {
+ s.vars[len(s.vars)-n].value = value
+}
+
+// varValue returns the value of the named variable.
+func (s *state) varValue(name string) reflect.Value {
+ for i := s.mark() - 1; i >= 0; i-- {
+ if s.vars[i].name == name {
+ return s.vars[i].value
+ }
+ }
+ s.errorf("undefined variable: %s", name)
+ return zero
+}
+
+var zero reflect.Value
+
+// errorf formats the error and terminates processing.
+func (s *state) errorf(format string, args ...interface{}) {
+ format = fmt.Sprintf("template: %s:%d: %s", s.tmpl.Name(), s.line, format)
+ panic(fmt.Errorf(format, args...))
+}
+
+// error terminates processing.
+func (s *state) error(err error) {
+ s.errorf("%s", err)
+}
+
+// errRecover is the handler that turns panics into returns from the top
+// level of Parse.
+func errRecover(errp *error) {
+ e := recover()
+ if e != nil {
+ if _, ok := e.(runtime.Error); ok {
+ panic(e)
+ }
+ *errp = e.(error)
+ }
+}
+
+// Execute applies a parsed template to the specified data object,
+// writing the output to wr.
+func (t *Template) Execute(wr io.Writer, data interface{}) (err error) {
+ defer errRecover(&err)
+ value := reflect.ValueOf(data)
+ state := &state{
+ tmpl: t,
+ wr: wr,
+ line: 1,
+ vars: []variable{{"$", value}},
+ }
+ if t.Tree == nil || t.Root == nil {
+ state.errorf("must be parsed before execution")
+ }
+ state.walk(value, t.Root)
+ return
+}
+
+// Walk functions step through the major pieces of the template structure,
+// generating output as they go.
+func (s *state) walk(dot reflect.Value, n parse.Node) {
+ switch n := n.(type) {
+ case *parse.ActionNode:
+ s.line = n.Line
+ // Do not pop variables so they persist until next end.
+ // Also, if the action declares variables, don't print the result.
+ val := s.evalPipeline(dot, n.Pipe)
+ if len(n.Pipe.Decl) == 0 {
+ s.printValue(n, val)
+ }
+ case *parse.IfNode:
+ s.line = n.Line
+ s.walkIfOrWith(parse.NodeIf, dot, n.Pipe, n.List, n.ElseList)
+ case *parse.ListNode:
+ for _, node := range n.Nodes {
+ s.walk(dot, node)
+ }
+ case *parse.RangeNode:
+ s.line = n.Line
+ s.walkRange(dot, n)
+ case *parse.TemplateNode:
+ s.line = n.Line
+ s.walkTemplate(dot, n)
+ case *parse.TextNode:
+ if _, err := s.wr.Write(n.Text); err != nil {
+ s.error(err)
+ }
+ case *parse.WithNode:
+ s.line = n.Line
+ s.walkIfOrWith(parse.NodeWith, dot, n.Pipe, n.List, n.ElseList)
+ default:
+ s.errorf("unknown node: %s", n)
+ }
+}
+
+// walkIfOrWith walks an 'if' or 'with' node. The two control structures
+// are identical in behavior except that 'with' sets dot.
+func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
+ defer s.pop(s.mark())
+ val := s.evalPipeline(dot, pipe)
+ truth, ok := isTrue(val)
+ if !ok {
+ s.errorf("if/with can't use %v", val)
+ }
+ if truth {
+ if typ == parse.NodeWith {
+ s.walk(val, list)
+ } else {
+ s.walk(dot, list)
+ }
+ } else if elseList != nil {
+ s.walk(dot, elseList)
+ }
+}
+
+// isTrue returns whether the value is 'true', in the sense of not the zero of its type,
+// and whether the value has a meaningful truth value.
+func isTrue(val reflect.Value) (truth, ok bool) {
+ if !val.IsValid() {
+ // Something like var x interface{}, never set. It's a form of nil.
+ return false, true
+ }
+ switch val.Kind() {
+ case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
+ truth = val.Len() > 0
+ case reflect.Bool:
+ truth = val.Bool()
+ case reflect.Complex64, reflect.Complex128:
+ truth = val.Complex() != 0
+ case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
+ truth = !val.IsNil()
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ truth = val.Int() != 0
+ case reflect.Float32, reflect.Float64:
+ truth = val.Float() != 0
+ case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+ truth = val.Uint() != 0
+ case reflect.Struct:
+ truth = true // Struct values are always true.
+ default:
+ return
+ }
+ return truth, true
+}
+
+func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
+ defer s.pop(s.mark())
+ val, _ := indirect(s.evalPipeline(dot, r.Pipe))
+ // mark top of stack before any variables in the body are pushed.
+ mark := s.mark()
+ oneIteration := func(index, elem reflect.Value) {
+ // Set top var (lexically the second if there are two) to the element.
+ if len(r.Pipe.Decl) > 0 {
+ s.setVar(1, elem)
+ }
+ // Set next var (lexically the first if there are two) to the index.
+ if len(r.Pipe.Decl) > 1 {
+ s.setVar(2, index)
+ }
+ s.walk(elem, r.List)
+ s.pop(mark)
+ }
+ switch val.Kind() {
+ case reflect.Array, reflect.Slice:
+ if val.Len() == 0 {
+ break
+ }
+ for i := 0; i < val.Len(); i++ {
+ oneIteration(reflect.ValueOf(i), val.Index(i))
+ }
+ return
+ case reflect.Map:
+ if val.Len() == 0 {
+ break
+ }
+ for _, key := range val.MapKeys() {
+ oneIteration(key, val.MapIndex(key))
+ }
+ return
+ case reflect.Chan:
+ if val.IsNil() {
+ break
+ }
+ i := 0
+ for ; ; i++ {
+ elem, ok := val.Recv()
+ if !ok {
+ break
+ }
+ oneIteration(reflect.ValueOf(i), elem)
+ }
+ if i == 0 {
+ break
+ }
+ return
+ case reflect.Invalid:
+ break // An invalid value is likely a nil map, etc. and acts like an empty map.
+ default:
+ s.errorf("range can't iterate over %v", val)
+ }
+ if r.ElseList != nil {
+ s.walk(dot, r.ElseList)
+ }
+}
+
+func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
+ set := s.tmpl.set
+ if set == nil {
+ s.errorf("no set defined in which to invoke template named %q", t.Name)
+ }
+ tmpl := set.tmpl[t.Name]
+ if tmpl == nil {
+ s.errorf("template %q not in set", t.Name)
+ }
+ // Variables declared by the pipeline persist.
+ dot = s.evalPipeline(dot, t.Pipe)
+ newState := *s
+ newState.tmpl = tmpl
+ // No dynamic scoping: template invocations inherit no variables.
+ newState.vars = []variable{{"$", dot}}
+ newState.walk(dot, tmpl.Root)
+}
+
+// Eval functions evaluate pipelines, commands, and their elements and extract
+// values from the data structure by examining fields, calling methods, and so on.
+// The printing of those values happens only through walk functions.
+
+// evalPipeline returns the value acquired by evaluating a pipeline. If the
+// pipeline has a variable declaration, the variable will be pushed on the
+// stack. Callers should therefore pop the stack after they are finished
+// executing commands depending on the pipeline value.
+func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
+ if pipe == nil {
+ return
+ }
+ for _, cmd := range pipe.Cmds {
+ value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
+ // If the object has type interface{}, dig down one level to the thing inside.
+ if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
+ value = reflect.ValueOf(value.Interface()) // lovely!
+ }
+ }
+ for _, variable := range pipe.Decl {
+ s.push(variable.Ident[0], value)
+ }
+ return value
+}
+
+func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
+ if len(args) > 1 || final.IsValid() {
+ s.errorf("can't give argument to non-function %s", args[0])
+ }
+}
+
+func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
+ firstWord := cmd.Args[0]
+ switch n := firstWord.(type) {
+ case *parse.FieldNode:
+ return s.evalFieldNode(dot, n, cmd.Args, final)
+ case *parse.IdentifierNode:
+ // Must be a function.
+ return s.evalFunction(dot, n.Ident, cmd.Args, final)
+ case *parse.VariableNode:
+ return s.evalVariableNode(dot, n, cmd.Args, final)
+ }
+ s.notAFunction(cmd.Args, final)
+ switch word := firstWord.(type) {
+ case *parse.BoolNode:
+ return reflect.ValueOf(word.True)
+ case *parse.DotNode:
+ return dot
+ case *parse.NumberNode:
+ return s.idealConstant(word)
+ case *parse.StringNode:
+ return reflect.ValueOf(word.Text)
+ }
+ s.errorf("can't evaluate command %q", firstWord)
+ panic("not reached")
+}
+
+// idealConstant is called to return the value of a number in a context where
+// we don't know the type. In that case, the syntax of the number tells us
+// its type, and we use Go rules to resolve. Note there is no such thing as
+// a uint ideal constant in this situation - the value must be of int type.
+func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
+ // These are ideal constants but we don't know the type
+ // and we have no context. (If it was a method argument,
+ // we'd know what we need.) The syntax guides us to some extent.
+ switch {
+ case constant.IsComplex:
+ return reflect.ValueOf(constant.Complex128) // incontrovertible.
+ case constant.IsFloat && strings.IndexAny(constant.Text, ".eE") >= 0:
+ return reflect.ValueOf(constant.Float64)
+ case constant.IsInt:
+ n := int(constant.Int64)
+ if int64(n) != constant.Int64 {
+ s.errorf("%s overflows int", constant.Text)
+ }
+ return reflect.ValueOf(n)
+ case constant.IsUint:
+ s.errorf("%s overflows int", constant.Text)
+ }
+ return zero
+}
+
+func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
+ return s.evalFieldChain(dot, dot, field.Ident, args, final)
+}
+
+func (s *state) evalVariableNode(dot reflect.Value, v *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
+ // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
+ value := s.varValue(v.Ident[0])
+ if len(v.Ident) == 1 {
+ return value
+ }
+ return s.evalFieldChain(dot, value, v.Ident[1:], args, final)
+}
+
+// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
+// dot is the environment in which to evaluate arguments, while
+// receiver is the value being walked along the chain.
+func (s *state) evalFieldChain(dot, receiver reflect.Value, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
+ n := len(ident)
+ for i := 0; i < n-1; i++ {
+ receiver = s.evalField(dot, ident[i], nil, zero, receiver)
+ }
+ // Now if it's a method, it gets the arguments.
+ return s.evalField(dot, ident[n-1], args, final, receiver)
+}
+
+func (s *state) evalFunction(dot reflect.Value, name string, args []parse.Node, final reflect.Value) reflect.Value {
+ function, ok := findFunction(name, s.tmpl, s.tmpl.set)
+ if !ok {
+ s.errorf("%q is not a defined function", name)
+ }
+ return s.evalCall(dot, function, name, args, final)
+}
+
+// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
+// The 'final' argument represents the return value from the preceding
+// value of the pipeline, if any.
+func (s *state) evalField(dot reflect.Value, fieldName string, args []parse.Node, final, receiver reflect.Value) reflect.Value {
+ if !receiver.IsValid() {
+ return zero
+ }
+ typ := receiver.Type()
+ receiver, _ = indirect(receiver)
+ // Unless it's an interface, need to get to a value of type *T to guarantee
+ // we see all methods of T and *T.
+ ptr := receiver
+ if ptr.Kind() != reflect.Interface && ptr.CanAddr() {
+ ptr = ptr.Addr()
+ }
+ if method, ok := methodByName(ptr, fieldName); ok {
+ return s.evalCall(dot, method, fieldName, args, final)
+ }
+ hasArgs := len(args) > 1 || final.IsValid()
+ // It's not a method; is it a field of a struct?
+ receiver, isNil := indirect(receiver)
+ if receiver.Kind() == reflect.Struct {
+ tField, ok := receiver.Type().FieldByName(fieldName)
+ if ok {
+ field := receiver.FieldByIndex(tField.Index)
+ if hasArgs {
+ s.errorf("%s is not a method but has arguments", fieldName)
+ }
+ if tField.PkgPath == "" { // field is exported
+ return field
+ }
+ }
+ }
+ // If it's a map, attempt to use the field name as a key.
+ if receiver.Kind() == reflect.Map {
+ nameVal := reflect.ValueOf(fieldName)
+ if nameVal.Type().AssignableTo(receiver.Type().Key()) {
+ if hasArgs {
+ s.errorf("%s is not a method but has arguments", fieldName)
+ }
+ return receiver.MapIndex(nameVal)
+ }
+ }
+ if isNil {
+ s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
+ }
+ s.errorf("can't evaluate field %s in type %s", fieldName, typ)
+ panic("not reached")
+}
+
+// TODO: delete when reflect's own MethodByName is released.
+func methodByName(receiver reflect.Value, name string) (reflect.Value, bool) {
+ typ := receiver.Type()
+ for i := 0; i < typ.NumMethod(); i++ {
+ if typ.Method(i).Name == name {
+ return receiver.Method(i), true // This value includes the receiver.
+ }
+ }
+ return zero, false
+}
+
+var (
+ errorType = reflect.TypeOf((*error)(nil)).Elem()
+ fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
+)
+
+// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
+// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
+// as the function itself.
+func (s *state) evalCall(dot, fun reflect.Value, name string, args []parse.Node, final reflect.Value) reflect.Value {
+ if args != nil {
+ args = args[1:] // Zeroth arg is function name/node; not passed to function.
+ }
+ typ := fun.Type()
+ numIn := len(args)
+ if final.IsValid() {
+ numIn++
+ }
+ numFixed := len(args)
+ if typ.IsVariadic() {
+ numFixed = typ.NumIn() - 1 // last arg is the variadic one.
+ if numIn < numFixed {
+ s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
+ }
+ } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
+ s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
+ }
+ if !goodFunc(typ) {
+ s.errorf("can't handle multiple results from method/function %q", name)
+ }
+ // Build the arg list.
+ argv := make([]reflect.Value, numIn)
+ // Args must be evaluated. Fixed args first.
+ i := 0
+ for ; i < numFixed; i++ {
+ argv[i] = s.evalArg(dot, typ.In(i), args[i])
+ }
+ // Now the ... args.
+ if typ.IsVariadic() {
+ argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
+ for ; i < len(args); i++ {
+ argv[i] = s.evalArg(dot, argType, args[i])
+ }
+ }
+ // Add final value if necessary.
+ if final.IsValid() {
+ argv[i] = final
+ }
+ result := fun.Call(argv)
+ // If we have an error that is not nil, stop execution and return that error to the caller.
+ if len(result) == 2 && !result[1].IsNil() {
+ s.errorf("error calling %s: %s", name, result[1].Interface().(error))
+ }
+ return result[0]
+}
+
+// validateType guarantees that the value is valid and assignable to the type.
+func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
+ if !value.IsValid() {
+ s.errorf("invalid value; expected %s", typ)
+ }
+ if !value.Type().AssignableTo(typ) {
+ // Does one dereference or indirection work? We could do more, as we
+ // do with method receivers, but that gets messy and method receivers
+ // are much more constrained, so it makes more sense there than here.
+ // Besides, one is almost always all you need.
+ switch {
+ case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
+ value = value.Elem()
+ case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
+ value = value.Addr()
+ default:
+ s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
+ }
+ }
+ return value
+}
+
+func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
+ switch arg := n.(type) {
+ case *parse.DotNode:
+ return s.validateType(dot, typ)
+ case *parse.FieldNode:
+ return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
+ case *parse.VariableNode:
+ return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
+ }
+ switch typ.Kind() {
+ case reflect.Bool:
+ return s.evalBool(typ, n)
+ case reflect.Complex64, reflect.Complex128:
+ return s.evalComplex(typ, n)
+ case reflect.Float32, reflect.Float64:
+ return s.evalFloat(typ, n)
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ return s.evalInteger(typ, n)
+ case reflect.Interface:
+ if typ.NumMethod() == 0 {
+ return s.evalEmptyInterface(dot, n)
+ }
+ case reflect.String:
+ return s.evalString(typ, n)
+ case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+ return s.evalUnsignedInteger(typ, n)
+ }
+ s.errorf("can't handle %s for arg of type %s", n, typ)
+ panic("not reached")
+}
+
+func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
+ if n, ok := n.(*parse.BoolNode); ok {
+ value := reflect.New(typ).Elem()
+ value.SetBool(n.True)
+ return value
+ }
+ s.errorf("expected bool; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
+ if n, ok := n.(*parse.StringNode); ok {
+ value := reflect.New(typ).Elem()
+ value.SetString(n.Text)
+ return value
+ }
+ s.errorf("expected string; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
+ if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
+ value := reflect.New(typ).Elem()
+ value.SetInt(n.Int64)
+ return value
+ }
+ s.errorf("expected integer; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
+ if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
+ value := reflect.New(typ).Elem()
+ value.SetUint(n.Uint64)
+ return value
+ }
+ s.errorf("expected unsigned integer; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
+ if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
+ value := reflect.New(typ).Elem()
+ value.SetFloat(n.Float64)
+ return value
+ }
+ s.errorf("expected float; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
+ if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
+ value := reflect.New(typ).Elem()
+ value.SetComplex(n.Complex128)
+ return value
+ }
+ s.errorf("expected complex; found %s", n)
+ panic("not reached")
+}
+
+func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
+ switch n := n.(type) {
+ case *parse.BoolNode:
+ return reflect.ValueOf(n.True)
+ case *parse.DotNode:
+ return dot
+ case *parse.FieldNode:
+ return s.evalFieldNode(dot, n, nil, zero)
+ case *parse.IdentifierNode:
+ return s.evalFunction(dot, n.Ident, nil, zero)
+ case *parse.NumberNode:
+ return s.idealConstant(n)
+ case *parse.StringNode:
+ return reflect.ValueOf(n.Text)
+ case *parse.VariableNode:
+ return s.evalVariableNode(dot, n, nil, zero)
+ }
+ s.errorf("can't handle assignment of %s to empty interface argument", n)
+ panic("not reached")
+}
+
+// indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
+// We indirect through pointers and empty interfaces (only) because
+// non-empty interfaces have methods we might need.
+func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
+ for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
+ if v.IsNil() {
+ return v, true
+ }
+ if v.Kind() == reflect.Interface && v.NumMethod() > 0 {
+ break
+ }
+ }
+ return v, false
+}
+
+// printValue writes the textual representation of the value to the output of
+// the template.
+func (s *state) printValue(n parse.Node, v reflect.Value) {
+ if v.Kind() == reflect.Ptr {
+ v, _ = indirect(v) // fmt.Fprint handles nil.
+ }
+ if !v.IsValid() {
+ fmt.Fprint(s.wr, "<no value>")
+ return
+ }
+
+ if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
+ if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
+ v = v.Addr()
+ } else {
+ switch v.Kind() {
+ case reflect.Chan, reflect.Func:
+ s.errorf("can't print %s of type %s", n, v.Type())
+ }
+ }
+ }
+ fmt.Fprint(s.wr, v.Interface())
+}