summaryrefslogtreecommitdiff
path: root/libgo/go/math
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/math')
-rw-r--r--libgo/go/math/all_test.go77
-rw-r--r--libgo/go/math/big/int.go56
-rw-r--r--libgo/go/math/big/int_test.go50
-rw-r--r--libgo/go/math/big/rat.go184
-rw-r--r--libgo/go/math/big/rat_test.go196
-rw-r--r--libgo/go/math/nextafter.go32
-rw-r--r--libgo/go/math/sqrt.go2
7 files changed, 500 insertions, 97 deletions
diff --git a/libgo/go/math/all_test.go b/libgo/go/math/all_test.go
index 0d8b10f67fa..763efb2e647 100644
--- a/libgo/go/math/all_test.go
+++ b/libgo/go/math/all_test.go
@@ -456,7 +456,19 @@ var modf = [][2]float64{
{1.0000000000000000e+00, 8.2530809168085506044576505e-01},
{-8.0000000000000000e+00, -6.8592476857560136238589621e-01},
}
-var nextafter = []float64{
+var nextafter32 = []float32{
+ 4.979012489318848e+00,
+ 7.738873004913330e+00,
+ -2.768800258636475e-01,
+ -5.010602951049805e+00,
+ 9.636294364929199e+00,
+ 2.926377534866333e+00,
+ 5.229084014892578e+00,
+ 2.727940082550049e+00,
+ 1.825308203697205e+00,
+ -8.685923576354980e+00,
+}
+var nextafter64 = []float64{
4.97901192488367438926388786e+00,
7.73887247457810545370193722e+00,
-2.7688005719200153853520874e-01,
@@ -1331,7 +1343,32 @@ var modfSC = [][2]float64{
{NaN(), NaN()},
}
-var vfnextafterSC = [][2]float64{
+var vfnextafter32SC = [][2]float32{
+ {0, 0},
+ {0, float32(Copysign(0, -1))},
+ {0, -1},
+ {0, float32(NaN())},
+ {float32(Copysign(0, -1)), 1},
+ {float32(Copysign(0, -1)), 0},
+ {float32(Copysign(0, -1)), float32(Copysign(0, -1))},
+ {float32(Copysign(0, -1)), -1},
+ {float32(NaN()), 0},
+ {float32(NaN()), float32(NaN())},
+}
+var nextafter32SC = []float32{
+ 0,
+ 0,
+ -1.401298464e-45, // Float32frombits(0x80000001)
+ float32(NaN()),
+ 1.401298464e-45, // Float32frombits(0x00000001)
+ float32(Copysign(0, -1)),
+ float32(Copysign(0, -1)),
+ -1.401298464e-45, // Float32frombits(0x80000001)
+ float32(NaN()),
+ float32(NaN()),
+}
+
+var vfnextafter64SC = [][2]float64{
{0, 0},
{0, Copysign(0, -1)},
{0, -1},
@@ -1343,7 +1380,7 @@ var vfnextafterSC = [][2]float64{
{NaN(), 0},
{NaN(), NaN()},
}
-var nextafterSC = []float64{
+var nextafter64SC = []float64{
0,
0,
-4.9406564584124654418e-324, // Float64frombits(0x8000000000000001)
@@ -2303,15 +2340,29 @@ func TestModf(t *testing.T) {
}
}
-func TestNextafter(t *testing.T) {
+func TestNextafter32(t *testing.T) {
+ for i := 0; i < len(vf); i++ {
+ vfi := float32(vf[i])
+ if f := Nextafter32(vfi, 10); nextafter32[i] != f {
+ t.Errorf("Nextafter32(%g, %g) = %g want %g", vfi, 10.0, f, nextafter32[i])
+ }
+ }
+ for i := 0; i < len(vfnextafter32SC); i++ {
+ if f := Nextafter32(vfnextafter32SC[i][0], vfnextafter32SC[i][1]); !alike(float64(nextafter32SC[i]), float64(f)) {
+ t.Errorf("Nextafter32(%g, %g) = %g want %g", vfnextafter32SC[i][0], vfnextafter32SC[i][1], f, nextafter32SC[i])
+ }
+ }
+}
+
+func TestNextafter64(t *testing.T) {
for i := 0; i < len(vf); i++ {
- if f := Nextafter(vf[i], 10); nextafter[i] != f {
- t.Errorf("Nextafter(%g, %g) = %g want %g", vf[i], 10.0, f, nextafter[i])
+ if f := Nextafter(vf[i], 10); nextafter64[i] != f {
+ t.Errorf("Nextafter64(%g, %g) = %g want %g", vf[i], 10.0, f, nextafter64[i])
}
}
- for i := 0; i < len(vfnextafterSC); i++ {
- if f := Nextafter(vfnextafterSC[i][0], vfnextafterSC[i][1]); !alike(nextafterSC[i], f) {
- t.Errorf("Nextafter(%g, %g) = %g want %g", vfnextafterSC[i][0], vfnextafterSC[i][1], f, nextafterSC[i])
+ for i := 0; i < len(vfnextafter64SC); i++ {
+ if f := Nextafter(vfnextafter64SC[i][0], vfnextafter64SC[i][1]); !alike(nextafter64SC[i], f) {
+ t.Errorf("Nextafter64(%g, %g) = %g want %g", vfnextafter64SC[i][0], vfnextafter64SC[i][1], f, nextafter64SC[i])
}
}
}
@@ -2827,7 +2878,13 @@ func BenchmarkModf(b *testing.B) {
}
}
-func BenchmarkNextafter(b *testing.B) {
+func BenchmarkNextafter32(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Nextafter32(.5, 1)
+ }
+}
+
+func BenchmarkNextafter64(b *testing.B) {
for i := 0; i < b.N; i++ {
Nextafter(.5, 1)
}
diff --git a/libgo/go/math/big/int.go b/libgo/go/math/big/int.go
index 269949d6160..d22e39e7c94 100644
--- a/libgo/go/math/big/int.go
+++ b/libgo/go/math/big/int.go
@@ -510,10 +510,30 @@ func (z *Int) Scan(s fmt.ScanState, ch rune) error {
return err
}
+// low32 returns the least significant 32 bits of z.
+func low32(z nat) uint32 {
+ if len(z) == 0 {
+ return 0
+ }
+ return uint32(z[0])
+}
+
+// low64 returns the least significant 64 bits of z.
+func low64(z nat) uint64 {
+ if len(z) == 0 {
+ return 0
+ }
+ v := uint64(z[0])
+ if _W == 32 && len(z) > 1 {
+ v |= uint64(z[1]) << 32
+ }
+ return v
+}
+
// Int64 returns the int64 representation of x.
// If x cannot be represented in an int64, the result is undefined.
func (x *Int) Int64() int64 {
- v := int64(x.Uint64())
+ v := int64(low64(x.abs))
if x.neg {
v = -v
}
@@ -523,14 +543,7 @@ func (x *Int) Int64() int64 {
// Uint64 returns the uint64 representation of x.
// If x cannot be represented in a uint64, the result is undefined.
func (x *Int) Uint64() uint64 {
- if len(x.abs) == 0 {
- return 0
- }
- v := uint64(x.abs[0])
- if _W == 32 && len(x.abs) > 1 {
- v |= uint64(x.abs[1]) << 32
- }
- return v
+ return low64(x.abs)
}
// SetString sets z to the value of s, interpreted in the given base,
@@ -592,6 +605,12 @@ func (z *Int) Exp(x, y, m *Int) *Int {
z.abs = z.abs.expNN(x.abs, yWords, mWords)
z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
+ if z.neg && len(mWords) > 0 {
+ // make modulus result positive
+ z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
+ z.neg = false
+ }
+
return z
}
@@ -733,15 +752,16 @@ func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
return z
}
-// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where
-// p is a prime) and returns z.
-func (z *Int) ModInverse(g, p *Int) *Int {
+// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
+// and returns z. If g and n are not relatively prime, the result is undefined.
+func (z *Int) ModInverse(g, n *Int) *Int {
var d Int
- d.GCD(z, nil, g, p)
- // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
- // that modulo p results in g*x = 1, therefore x is the inverse element.
+ d.GCD(z, nil, g, n)
+ // x and y are such that g*x + n*y = d. Since g and n are
+ // relatively prime, d = 1. Taking that modulo n results in
+ // g*x = 1, therefore x is the inverse element.
if z.neg {
- z.Add(z, p)
+ z.Add(z, n)
}
return z
}
@@ -997,12 +1017,12 @@ func (z *Int) UnmarshalJSON(text []byte) error {
return nil
}
-// MarshalText implements the encoding.TextMarshaler interface
+// MarshalText implements the encoding.TextMarshaler interface.
func (z *Int) MarshalText() (text []byte, err error) {
return []byte(z.String()), nil
}
-// UnmarshalText implements the encoding.TextUnmarshaler interface
+// UnmarshalText implements the encoding.TextUnmarshaler interface.
func (z *Int) UnmarshalText(text []byte) error {
if _, ok := z.SetString(string(text), 0); !ok {
return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
diff --git a/libgo/go/math/big/int_test.go b/libgo/go/math/big/int_test.go
index 299dc72fb1a..6070cf325d2 100644
--- a/libgo/go/math/big/int_test.go
+++ b/libgo/go/math/big/int_test.go
@@ -787,6 +787,7 @@ var expTests = []struct {
{"-5", "0", "", "1"},
{"5", "1", "", "5"},
{"-5", "1", "", "-5"},
+ {"-5", "1", "7", "2"},
{"-2", "3", "2", "0"},
{"5", "2", "", "25"},
{"1", "65537", "2", "1"},
@@ -802,6 +803,13 @@ var expTests = []struct {
"29834729834729834729347290846729561262544958723956495615629569234729836259263598127342374289365912465901365498236492183464",
"23537740700184054162508175125554701713153216681790245129157191391322321508055833908509185839069455749219131480588829346291",
},
+ // test case for issue 8822
+ {
+ "-0x1BCE04427D8032319A89E5C4136456671AC620883F2C4139E57F91307C485AD2D6204F4F87A58262652DB5DBBAC72B0613E51B835E7153BEC6068F5C8D696B74DBD18FEC316AEF73985CF0475663208EB46B4F17DD9DA55367B03323E5491A70997B90C059FB34809E6EE55BCFBD5F2F52233BFE62E6AA9E4E26A1D4C2439883D14F2633D55D8AA66A1ACD5595E778AC3A280517F1157989E70C1A437B849F1877B779CC3CDDEDE2DAA6594A6C66D181A00A5F777EE60596D8773998F6E988DEAE4CCA60E4DDCF9590543C89F74F603259FCAD71660D30294FBBE6490300F78A9D63FA660DC9417B8B9DDA28BEB3977B621B988E23D4D954F322C3540541BC649ABD504C50FADFD9F0987D58A2BF689313A285E773FF02899A6EF887D1D4A0D2",
+ "0xB08FFB20760FFED58FADA86DFEF71AD72AA0FA763219618FE022C197E54708BB1191C66470250FCE8879487507CEE41381CA4D932F81C2B3F1AB20B539D50DCD",
+ "0xAC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC3192943DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310DCD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FBD5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF747359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E7303CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB694B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F9E4AFF73",
+ "21484252197776302499639938883777710321993113097987201050501182909581359357618579566746556372589385361683610524730509041328855066514963385522570894839035884713051640171474186548713546686476761306436434146475140156284389181808675016576845833340494848283681088886584219750554408060556769486628029028720727393293111678826356480455433909233520504112074401376133077150471237549474149190242010469539006449596611576612573955754349042329130631128234637924786466585703488460540228477440853493392086251021228087076124706778899179648655221663765993962724699135217212118535057766739392069738618682722216712319320435674779146070442",
+ },
}
func TestExp(t *testing.T) {
@@ -833,12 +841,12 @@ func TestExp(t *testing.T) {
}
if m == nil {
- // the result should be the same as for m == 0;
- // specifically, there should be no div-zero panic
+ // The result should be the same as for m == 0;
+ // specifically, there should be no div-zero panic.
m = &Int{abs: nat{}} // m != nil && len(m.abs) == 0
z2 := new(Int).Exp(x, y, m)
if z2.Cmp(z1) != 0 {
- t.Errorf("#%d: got %s want %s", i, z1, z2)
+ t.Errorf("#%d: got %s want %s", i, z2, z1)
}
}
}
@@ -1440,24 +1448,40 @@ func TestNot(t *testing.T) {
var modInverseTests = []struct {
element string
- prime string
+ modulus string
}{
- {"1", "7"},
- {"1", "13"},
+ {"1234567", "458948883992"},
{"239487239847", "2410312426921032588552076022197566074856950548502459942654116941958108831682612228890093858261341614673227141477904012196503648957050582631942730706805009223062734745341073406696246014589361659774041027169249453200378729434170325843778659198143763193776859869524088940195577346119843545301547043747207749969763750084308926339295559968882457872412993810129130294592999947926365264059284647209730384947211681434464714438488520940127459844288859336526896320919633919"},
}
func TestModInverse(t *testing.T) {
- var element, prime Int
+ var element, modulus, gcd, inverse Int
one := NewInt(1)
for i, test := range modInverseTests {
(&element).SetString(test.element, 10)
- (&prime).SetString(test.prime, 10)
- inverse := new(Int).ModInverse(&element, &prime)
- inverse.Mul(inverse, &element)
- inverse.Mod(inverse, &prime)
- if inverse.Cmp(one) != 0 {
- t.Errorf("#%d: failed (e·e^(-1)=%s)", i, inverse)
+ (&modulus).SetString(test.modulus, 10)
+ (&inverse).ModInverse(&element, &modulus)
+ (&inverse).Mul(&inverse, &element)
+ (&inverse).Mod(&inverse, &modulus)
+ if (&inverse).Cmp(one) != 0 {
+ t.Errorf("#%d: failed (e·e^(-1)=%s)", i, &inverse)
+ }
+ }
+ // exhaustive test for small values
+ for n := 2; n < 100; n++ {
+ (&modulus).SetInt64(int64(n))
+ for x := 1; x < n; x++ {
+ (&element).SetInt64(int64(x))
+ (&gcd).GCD(nil, nil, &element, &modulus)
+ if (&gcd).Cmp(one) != 0 {
+ continue
+ }
+ (&inverse).ModInverse(&element, &modulus)
+ (&inverse).Mul(&inverse, &element)
+ (&inverse).Mod(&inverse, &modulus)
+ if (&inverse).Cmp(one) != 0 {
+ t.Errorf("ModInverse(%d,%d)*%d%%%d=%d, not 1", &element, &modulus, &element, &modulus, &inverse)
+ }
}
}
}
diff --git a/libgo/go/math/big/rat.go b/libgo/go/math/big/rat.go
index f0973b3902f..c5339fe4431 100644
--- a/libgo/go/math/big/rat.go
+++ b/libgo/go/math/big/rat.go
@@ -64,28 +64,125 @@ func (z *Rat) SetFloat64(f float64) *Rat {
return z.norm()
}
-// isFinite reports whether f represents a finite rational value.
-// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
-func isFinite(f float64) bool {
- return math.Abs(f) <= math.MaxFloat64
-}
+// quotToFloat32 returns the non-negative float32 value
+// nearest to the quotient a/b, using round-to-even in
+// halfway cases. It does not mutate its arguments.
+// Preconditions: b is non-zero; a and b have no common factors.
+func quotToFloat32(a, b nat) (f float32, exact bool) {
+ const (
+ // float size in bits
+ Fsize = 32
+
+ // mantissa
+ Msize = 23
+ Msize1 = Msize + 1 // incl. implicit 1
+ Msize2 = Msize1 + 1
+
+ // exponent
+ Esize = Fsize - Msize1
+ Ebias = 1<<(Esize-1) - 1
+ Emin = 1 - Ebias
+ Emax = Ebias
+ )
-// low64 returns the least significant 64 bits of natural number z.
-func low64(z nat) uint64 {
- if len(z) == 0 {
- return 0
+ // TODO(adonovan): specialize common degenerate cases: 1.0, integers.
+ alen := a.bitLen()
+ if alen == 0 {
+ return 0, true
}
- if _W == 32 && len(z) > 1 {
- return uint64(z[1])<<32 | uint64(z[0])
+ blen := b.bitLen()
+ if blen == 0 {
+ panic("division by zero")
}
- return uint64(z[0])
+
+ // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
+ // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
+ // This is 2 or 3 more than the float32 mantissa field width of Msize:
+ // - the optional extra bit is shifted away in step 3 below.
+ // - the high-order 1 is omitted in "normal" representation;
+ // - the low-order 1 will be used during rounding then discarded.
+ exp := alen - blen
+ var a2, b2 nat
+ a2 = a2.set(a)
+ b2 = b2.set(b)
+ if shift := Msize2 - exp; shift > 0 {
+ a2 = a2.shl(a2, uint(shift))
+ } else if shift < 0 {
+ b2 = b2.shl(b2, uint(-shift))
+ }
+
+ // 2. Compute quotient and remainder (q, r). NB: due to the
+ // extra shift, the low-order bit of q is logically the
+ // high-order bit of r.
+ var q nat
+ q, r := q.div(a2, a2, b2) // (recycle a2)
+ mantissa := low32(q)
+ haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
+
+ // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
+ // (in effect---we accomplish this incrementally).
+ if mantissa>>Msize2 == 1 {
+ if mantissa&1 == 1 {
+ haveRem = true
+ }
+ mantissa >>= 1
+ exp++
+ }
+ if mantissa>>Msize1 != 1 {
+ panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
+ }
+
+ // 4. Rounding.
+ if Emin-Msize <= exp && exp <= Emin {
+ // Denormal case; lose 'shift' bits of precision.
+ shift := uint(Emin - (exp - 1)) // [1..Esize1)
+ lostbits := mantissa & (1<<shift - 1)
+ haveRem = haveRem || lostbits != 0
+ mantissa >>= shift
+ exp = 2 - Ebias // == exp + shift
+ }
+ // Round q using round-half-to-even.
+ exact = !haveRem
+ if mantissa&1 != 0 {
+ exact = false
+ if haveRem || mantissa&2 != 0 {
+ if mantissa++; mantissa >= 1<<Msize2 {
+ // Complete rollover 11...1 => 100...0, so shift is safe
+ mantissa >>= 1
+ exp++
+ }
+ }
+ }
+ mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1.
+
+ f = float32(math.Ldexp(float64(mantissa), exp-Msize1))
+ if math.IsInf(float64(f), 0) {
+ exact = false
+ }
+ return
}
-// quotToFloat returns the non-negative IEEE 754 double-precision
-// value nearest to the quotient a/b, using round-to-even in halfway
-// cases. It does not mutate its arguments.
+// quotToFloat64 returns the non-negative float64 value
+// nearest to the quotient a/b, using round-to-even in
+// halfway cases. It does not mutate its arguments.
// Preconditions: b is non-zero; a and b have no common factors.
-func quotToFloat(a, b nat) (f float64, exact bool) {
+func quotToFloat64(a, b nat) (f float64, exact bool) {
+ const (
+ // float size in bits
+ Fsize = 64
+
+ // mantissa
+ Msize = 52
+ Msize1 = Msize + 1 // incl. implicit 1
+ Msize2 = Msize1 + 1
+
+ // exponent
+ Esize = Fsize - Msize1
+ Ebias = 1<<(Esize-1) - 1
+ Emin = 1 - Ebias
+ Emax = Ebias
+ )
+
// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
alen := a.bitLen()
if alen == 0 {
@@ -96,17 +193,17 @@ func quotToFloat(a, b nat) (f float64, exact bool) {
panic("division by zero")
}
- // 1. Left-shift A or B such that quotient A/B is in [1<<53, 1<<55).
- // (54 bits if A<B when they are left-aligned, 55 bits if A>=B.)
- // This is 2 or 3 more than the float64 mantissa field width of 52:
+ // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
+ // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
+ // This is 2 or 3 more than the float64 mantissa field width of Msize:
// - the optional extra bit is shifted away in step 3 below.
- // - the high-order 1 is omitted in float64 "normal" representation;
+ // - the high-order 1 is omitted in "normal" representation;
// - the low-order 1 will be used during rounding then discarded.
exp := alen - blen
var a2, b2 nat
a2 = a2.set(a)
b2 = b2.set(b)
- if shift := 54 - exp; shift > 0 {
+ if shift := Msize2 - exp; shift > 0 {
a2 = a2.shl(a2, uint(shift))
} else if shift < 0 {
b2 = b2.shl(b2, uint(-shift))
@@ -120,49 +217,65 @@ func quotToFloat(a, b nat) (f float64, exact bool) {
mantissa := low64(q)
haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
- // 3. If quotient didn't fit in 54 bits, re-do division by b2<<1
+ // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
// (in effect---we accomplish this incrementally).
- if mantissa>>54 == 1 {
+ if mantissa>>Msize2 == 1 {
if mantissa&1 == 1 {
haveRem = true
}
mantissa >>= 1
exp++
}
- if mantissa>>53 != 1 {
- panic("expected exactly 54 bits of result")
+ if mantissa>>Msize1 != 1 {
+ panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
}
// 4. Rounding.
- if -1022-52 <= exp && exp <= -1022 {
+ if Emin-Msize <= exp && exp <= Emin {
// Denormal case; lose 'shift' bits of precision.
- shift := uint64(-1022 - (exp - 1)) // [1..53)
+ shift := uint(Emin - (exp - 1)) // [1..Esize1)
lostbits := mantissa & (1<<shift - 1)
haveRem = haveRem || lostbits != 0
mantissa >>= shift
- exp = -1023 + 2
+ exp = 2 - Ebias // == exp + shift
}
// Round q using round-half-to-even.
exact = !haveRem
if mantissa&1 != 0 {
exact = false
if haveRem || mantissa&2 != 0 {
- if mantissa++; mantissa >= 1<<54 {
+ if mantissa++; mantissa >= 1<<Msize2 {
// Complete rollover 11...1 => 100...0, so shift is safe
mantissa >>= 1
exp++
}
}
}
- mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 2^53.
+ mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1.
- f = math.Ldexp(float64(mantissa), exp-53)
+ f = math.Ldexp(float64(mantissa), exp-Msize1)
if math.IsInf(f, 0) {
exact = false
}
return
}
+// Float32 returns the nearest float32 value for x and a bool indicating
+// whether f represents x exactly. If the magnitude of x is too large to
+// be represented by a float32, f is an infinity and exact is false.
+// The sign of f always matches the sign of x, even if f == 0.
+func (x *Rat) Float32() (f float32, exact bool) {
+ b := x.b.abs
+ if len(b) == 0 {
+ b = b.set(natOne) // materialize denominator
+ }
+ f, exact = quotToFloat32(x.a.abs, b)
+ if x.a.neg {
+ f = -f
+ }
+ return
+}
+
// Float64 returns the nearest float64 value for x and a bool indicating
// whether f represents x exactly. If the magnitude of x is too large to
// be represented by a float64, f is an infinity and exact is false.
@@ -172,7 +285,7 @@ func (x *Rat) Float64() (f float64, exact bool) {
if len(b) == 0 {
b = b.set(natOne) // materialize denominator
}
- f, exact = quotToFloat(x.a.abs, b)
+ f, exact = quotToFloat64(x.a.abs, b)
if x.a.neg {
f = -f
}
@@ -439,6 +552,9 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
return nil, false
}
+ if len(z.b.abs) == 0 {
+ return nil, false
+ }
return z.norm(), true
}
@@ -586,12 +702,12 @@ func (z *Rat) GobDecode(buf []byte) error {
return nil
}
-// MarshalText implements the encoding.TextMarshaler interface
+// MarshalText implements the encoding.TextMarshaler interface.
func (r *Rat) MarshalText() (text []byte, err error) {
return []byte(r.RatString()), nil
}
-// UnmarshalText implements the encoding.TextUnmarshaler interface
+// UnmarshalText implements the encoding.TextUnmarshaler interface.
func (r *Rat) UnmarshalText(text []byte) error {
if _, ok := r.SetString(string(text)); !ok {
return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text)
diff --git a/libgo/go/math/big/rat_test.go b/libgo/go/math/big/rat_test.go
index 414a67d419d..5dbbb3510f0 100644
--- a/libgo/go/math/big/rat_test.go
+++ b/libgo/go/math/big/rat_test.go
@@ -89,6 +89,7 @@ var setStringTests = []struct {
{"53/70893980658822810696", "53/70893980658822810696", true},
{"106/141787961317645621392", "53/70893980658822810696", true},
{"204211327800791583.81095", "4084226556015831676219/20000", true},
+ {in: "1/0", ok: false},
}
func TestRatSetString(t *testing.T) {
@@ -751,7 +752,6 @@ var float64inputs = []string{
// http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
"2.2250738585072012e-308",
// http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
-
"2.2250738585072011e-308",
// A very large number (initially wrongly parsed by the fast algorithm).
@@ -790,6 +790,68 @@ var float64inputs = []string{
"1/3",
}
+// isFinite reports whether f represents a finite rational value.
+// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
+func isFinite(f float64) bool {
+ return math.Abs(f) <= math.MaxFloat64
+}
+
+func TestFloat32SpecialCases(t *testing.T) {
+ for _, input := range float64inputs {
+ if strings.HasPrefix(input, "long:") {
+ if testing.Short() {
+ continue
+ }
+ input = input[len("long:"):]
+ }
+
+ r, ok := new(Rat).SetString(input)
+ if !ok {
+ t.Errorf("Rat.SetString(%q) failed", input)
+ continue
+ }
+ f, exact := r.Float32()
+
+ // 1. Check string -> Rat -> float32 conversions are
+ // consistent with strconv.ParseFloat.
+ // Skip this check if the input uses "a/b" rational syntax.
+ if !strings.Contains(input, "/") {
+ e64, _ := strconv.ParseFloat(input, 32)
+ e := float32(e64)
+
+ // Careful: negative Rats too small for
+ // float64 become -0, but Rat obviously cannot
+ // preserve the sign from SetString("-0").
+ switch {
+ case math.Float32bits(e) == math.Float32bits(f):
+ // Ok: bitwise equal.
+ case f == 0 && r.Num().BitLen() == 0:
+ // Ok: Rat(0) is equivalent to both +/- float64(0).
+ default:
+ t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
+ }
+ }
+
+ if !isFinite(float64(f)) {
+ continue
+ }
+
+ // 2. Check f is best approximation to r.
+ if !checkIsBestApprox32(t, f, r) {
+ // Append context information.
+ t.Errorf("(input was %q)", input)
+ }
+
+ // 3. Check f->R->f roundtrip is non-lossy.
+ checkNonLossyRoundtrip32(t, f)
+
+ // 4. Check exactness using slow algorithm.
+ if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact {
+ t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact)
+ }
+ }
+}
+
func TestFloat64SpecialCases(t *testing.T) {
for _, input := range float64inputs {
if strings.HasPrefix(input, "long:") {
@@ -830,13 +892,13 @@ func TestFloat64SpecialCases(t *testing.T) {
}
// 2. Check f is best approximation to r.
- if !checkIsBestApprox(t, f, r) {
+ if !checkIsBestApprox64(t, f, r) {
// Append context information.
t.Errorf("(input was %q)", input)
}
// 3. Check f->R->f roundtrip is non-lossy.
- checkNonLossyRoundtrip(t, f)
+ checkNonLossyRoundtrip64(t, f)
// 4. Check exactness using slow algorithm.
if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact {
@@ -845,6 +907,54 @@ func TestFloat64SpecialCases(t *testing.T) {
}
}
+func TestFloat32Distribution(t *testing.T) {
+ // Generate a distribution of (sign, mantissa, exp) values
+ // broader than the float32 range, and check Rat.Float32()
+ // always picks the closest float32 approximation.
+ var add = []int64{
+ 0,
+ 1,
+ 3,
+ 5,
+ 7,
+ 9,
+ 11,
+ }
+ var winc, einc = uint64(1), 1 // soak test (~1.5s on x86-64)
+ if testing.Short() {
+ winc, einc = 5, 15 // quick test (~60ms on x86-64)
+ }
+
+ for _, sign := range "+-" {
+ for _, a := range add {
+ for wid := uint64(0); wid < 30; wid += winc {
+ b := 1<<wid + a
+ if sign == '-' {
+ b = -b
+ }
+ for exp := -150; exp < 150; exp += einc {
+ num, den := NewInt(b), NewInt(1)
+ if exp > 0 {
+ num.Lsh(num, uint(exp))
+ } else {
+ den.Lsh(den, uint(-exp))
+ }
+ r := new(Rat).SetFrac(num, den)
+ f, _ := r.Float32()
+
+ if !checkIsBestApprox32(t, f, r) {
+ // Append context information.
+ t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)",
+ b, exp, f, f, math.Ldexp(float64(b), exp), r)
+ }
+
+ checkNonLossyRoundtrip32(t, f)
+ }
+ }
+ }
+ }
+}
+
func TestFloat64Distribution(t *testing.T) {
// Generate a distribution of (sign, mantissa, exp) values
// broader than the float64 range, and check Rat.Float64()
@@ -858,7 +968,7 @@ func TestFloat64Distribution(t *testing.T) {
9,
11,
}
- var winc, einc = uint64(1), int(1) // soak test (~75s on x86-64)
+ var winc, einc = uint64(1), 1 // soak test (~75s on x86-64)
if testing.Short() {
winc, einc = 10, 500 // quick test (~12ms on x86-64)
}
@@ -866,7 +976,7 @@ func TestFloat64Distribution(t *testing.T) {
for _, sign := range "+-" {
for _, a := range add {
for wid := uint64(0); wid < 60; wid += winc {
- b := int64(1<<wid + a)
+ b := 1<<wid + a
if sign == '-' {
b = -b
}
@@ -880,20 +990,20 @@ func TestFloat64Distribution(t *testing.T) {
r := new(Rat).SetFrac(num, den)
f, _ := r.Float64()
- if !checkIsBestApprox(t, f, r) {
+ if !checkIsBestApprox64(t, f, r) {
// Append context information.
t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)",
b, exp, f, f, math.Ldexp(float64(b), exp), r)
}
- checkNonLossyRoundtrip(t, f)
+ checkNonLossyRoundtrip64(t, f)
}
}
}
}
}
-// TestFloat64NonFinite checks that SetFloat64 of a non-finite value
+// TestSetFloat64NonFinite checks that SetFloat64 of a non-finite value
// returns nil.
func TestSetFloat64NonFinite(t *testing.T) {
for _, f := range []float64{math.NaN(), math.Inf(+1), math.Inf(-1)} {
@@ -904,9 +1014,27 @@ func TestSetFloat64NonFinite(t *testing.T) {
}
}
-// checkNonLossyRoundtrip checks that a float->Rat->float roundtrip is
+// checkNonLossyRoundtrip32 checks that a float->Rat->float roundtrip is
// non-lossy for finite f.
-func checkNonLossyRoundtrip(t *testing.T, f float64) {
+func checkNonLossyRoundtrip32(t *testing.T, f float32) {
+ if !isFinite(float64(f)) {
+ return
+ }
+ r := new(Rat).SetFloat64(float64(f))
+ if r == nil {
+ t.Errorf("Rat.SetFloat64(float64(%g) (%b)) == nil", f, f)
+ return
+ }
+ f2, exact := r.Float32()
+ if f != f2 || !exact {
+ t.Errorf("Rat.SetFloat64(float64(%g)).Float32() = %g (%b), %v, want %g (%b), %v; delta = %b",
+ f, f2, f2, exact, f, f, true, f2-f)
+ }
+}
+
+// checkNonLossyRoundtrip64 checks that a float->Rat->float roundtrip is
+// non-lossy for finite f.
+func checkNonLossyRoundtrip64(t *testing.T, f float64) {
if !isFinite(f) {
return
}
@@ -928,10 +1056,47 @@ func delta(r *Rat, f float64) *Rat {
return d.Abs(d)
}
-// checkIsBestApprox checks that f is the best possible float64
+// checkIsBestApprox32 checks that f is the best possible float32
+// approximation of r.
+// Returns true on success.
+func checkIsBestApprox32(t *testing.T, f float32, r *Rat) bool {
+ if math.Abs(float64(f)) >= math.MaxFloat32 {
+ // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat32).
+ // But we have tests for these special cases.
+ return true
+ }
+
+ // r must be strictly between f0 and f1, the floats bracketing f.
+ f0 := math.Nextafter32(f, float32(math.Inf(-1)))
+ f1 := math.Nextafter32(f, float32(math.Inf(+1)))
+
+ // For f to be correct, r must be closer to f than to f0 or f1.
+ df := delta(r, float64(f))
+ df0 := delta(r, float64(f0))
+ df1 := delta(r, float64(f1))
+ if df.Cmp(df0) > 0 {
+ t.Errorf("Rat(%v).Float32() = %g (%b), but previous float32 %g (%b) is closer", r, f, f, f0, f0)
+ return false
+ }
+ if df.Cmp(df1) > 0 {
+ t.Errorf("Rat(%v).Float32() = %g (%b), but next float32 %g (%b) is closer", r, f, f, f1, f1)
+ return false
+ }
+ if df.Cmp(df0) == 0 && !isEven32(f) {
+ t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0)
+ return false
+ }
+ if df.Cmp(df1) == 0 && !isEven32(f) {
+ t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1)
+ return false
+ }
+ return true
+}
+
+// checkIsBestApprox64 checks that f is the best possible float64
// approximation of r.
// Returns true on success.
-func checkIsBestApprox(t *testing.T, f float64, r *Rat) bool {
+func checkIsBestApprox64(t *testing.T, f float64, r *Rat) bool {
if math.Abs(f) >= math.MaxFloat64 {
// Cannot check +Inf, -Inf, nor the float next to them (MaxFloat64).
// But we have tests for these special cases.
@@ -954,18 +1119,19 @@ func checkIsBestApprox(t *testing.T, f float64, r *Rat) bool {
t.Errorf("Rat(%v).Float64() = %g (%b), but next float64 %g (%b) is closer", r, f, f, f1, f1)
return false
}
- if df.Cmp(df0) == 0 && !isEven(f) {
+ if df.Cmp(df0) == 0 && !isEven64(f) {
t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0)
return false
}
- if df.Cmp(df1) == 0 && !isEven(f) {
+ if df.Cmp(df1) == 0 && !isEven64(f) {
t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1)
return false
}
return true
}
-func isEven(f float64) bool { return math.Float64bits(f)&1 == 0 }
+func isEven32(f float32) bool { return math.Float32bits(f)&1 == 0 }
+func isEven64(f float64) bool { return math.Float64bits(f)&1 == 0 }
func TestIsFinite(t *testing.T) {
finites := []float64{
diff --git a/libgo/go/math/nextafter.go b/libgo/go/math/nextafter.go
index 7c4b5bcdfef..bbb139986aa 100644
--- a/libgo/go/math/nextafter.go
+++ b/libgo/go/math/nextafter.go
@@ -4,12 +4,32 @@
package math
-// Nextafter returns the next representable value after x towards y.
-// If x == y, then x is returned.
-//
-// Special cases are:
-// Nextafter(NaN, y) = NaN
-// Nextafter(x, NaN) = NaN
+// Nextafter32 returns the next representable float32 value after x towards y.
+// Special cases:
+// Nextafter32(x, x) = x
+// Nextafter32(NaN, y) = NaN
+// Nextafter32(x, NaN) = NaN
+func Nextafter32(x, y float32) (r float32) {
+ switch {
+ case IsNaN(float64(x)) || IsNaN(float64(y)): // special case
+ r = float32(NaN())
+ case x == y:
+ r = x
+ case x == 0:
+ r = float32(Copysign(float64(Float32frombits(1)), float64(y)))
+ case (y > x) == (x > 0):
+ r = Float32frombits(Float32bits(x) + 1)
+ default:
+ r = Float32frombits(Float32bits(x) - 1)
+ }
+ return
+}
+
+// Nextafter returns the next representable float64 value after x towards y.
+// Special cases:
+// Nextafter64(x, x) = x
+// Nextafter64(NaN, y) = NaN
+// Nextafter64(x, NaN) = NaN
func Nextafter(x, y float64) (r float64) {
switch {
case IsNaN(x) || IsNaN(y): // special case
diff --git a/libgo/go/math/sqrt.go b/libgo/go/math/sqrt.go
index 78475973eb0..56122b59814 100644
--- a/libgo/go/math/sqrt.go
+++ b/libgo/go/math/sqrt.go
@@ -87,7 +87,7 @@ func Sqrt(x float64) float64 {
//
//
// Notes: Rounding mode detection omitted. The constants "mask", "shift",
-// and "bias" are found in src/pkg/math/bits.go
+// and "bias" are found in src/math/bits.go
// Sqrt returns the square root of x.
//