summaryrefslogtreecommitdiff
path: root/libgo/go/math/exp_port.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/math/exp_port.go')
-rw-r--r--libgo/go/math/exp_port.go191
1 files changed, 0 insertions, 191 deletions
diff --git a/libgo/go/math/exp_port.go b/libgo/go/math/exp_port.go
deleted file mode 100644
index 618c31a5d11..00000000000
--- a/libgo/go/math/exp_port.go
+++ /dev/null
@@ -1,191 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package math
-
-// The original C code, the long comment, and the constants
-// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
-// and came with this notice. The go code is a simplified
-// version of the original C.
-//
-// ====================================================
-// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
-//
-// Permission to use, copy, modify, and distribute this
-// software is freely granted, provided that this notice
-// is preserved.
-// ====================================================
-//
-//
-// exp(x)
-// Returns the exponential of x.
-//
-// Method
-// 1. Argument reduction:
-// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
-// Given x, find r and integer k such that
-//
-// x = k*ln2 + r, |r| <= 0.5*ln2.
-//
-// Here r will be represented as r = hi-lo for better
-// accuracy.
-//
-// 2. Approximation of exp(r) by a special rational function on
-// the interval [0,0.34658]:
-// Write
-// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
-// We use a special Remes algorithm on [0,0.34658] to generate
-// a polynomial of degree 5 to approximate R. The maximum error
-// of this polynomial approximation is bounded by 2**-59. In
-// other words,
-// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
-// (where z=r*r, and the values of P1 to P5 are listed below)
-// and
-// | 5 | -59
-// | 2.0+P1*z+...+P5*z - R(z) | <= 2
-// | |
-// The computation of exp(r) thus becomes
-// 2*r
-// exp(r) = 1 + -------
-// R - r
-// r*R1(r)
-// = 1 + r + ----------- (for better accuracy)
-// 2 - R1(r)
-// where
-// 2 4 10
-// R1(r) = r - (P1*r + P2*r + ... + P5*r ).
-//
-// 3. Scale back to obtain exp(x):
-// From step 1, we have
-// exp(x) = 2**k * exp(r)
-//
-// Special cases:
-// exp(INF) is INF, exp(NaN) is NaN;
-// exp(-INF) is 0, and
-// for finite argument, only exp(0)=1 is exact.
-//
-// Accuracy:
-// according to an error analysis, the error is always less than
-// 1 ulp (unit in the last place).
-//
-// Misc. info.
-// For IEEE double
-// if x > 7.09782712893383973096e+02 then exp(x) overflow
-// if x < -7.45133219101941108420e+02 then exp(x) underflow
-//
-// Constants:
-// The hexadecimal values are the intended ones for the following
-// constants. The decimal values may be used, provided that the
-// compiler will convert from decimal to binary accurately enough
-// to produce the hexadecimal values shown.
-
-// Exp returns e**x, the base-e exponential of x.
-//
-// Special cases are:
-// Exp(+Inf) = +Inf
-// Exp(NaN) = NaN
-// Very large values overflow to 0 or +Inf.
-// Very small values underflow to 1.
-func expGo(x float64) float64 {
- const (
- Ln2Hi = 6.93147180369123816490e-01
- Ln2Lo = 1.90821492927058770002e-10
- Log2e = 1.44269504088896338700e+00
-
- Overflow = 7.09782712893383973096e+02
- Underflow = -7.45133219101941108420e+02
- NearZero = 1.0 / (1 << 28) // 2**-28
- )
-
- // TODO(rsc): Remove manual inlining of IsNaN, IsInf
- // when compiler does it for us
- // special cases
- switch {
- case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
- return x
- case x < -MaxFloat64: // IsInf(x, -1):
- return 0
- case x > Overflow:
- return Inf(1)
- case x < Underflow:
- return 0
- case -NearZero < x && x < NearZero:
- return 1 + x
- }
-
- // reduce; computed as r = hi - lo for extra precision.
- var k int
- switch {
- case x < 0:
- k = int(Log2e*x - 0.5)
- case x > 0:
- k = int(Log2e*x + 0.5)
- }
- hi := x - float64(k)*Ln2Hi
- lo := float64(k) * Ln2Lo
-
- // compute
- return exp(hi, lo, k)
-}
-
-// Exp2 returns 2**x, the base-2 exponential of x.
-//
-// Special cases are the same as Exp.
-func exp2Go(x float64) float64 {
- const (
- Ln2Hi = 6.93147180369123816490e-01
- Ln2Lo = 1.90821492927058770002e-10
-
- Overflow = 1.0239999999999999e+03
- Underflow = -1.0740e+03
- )
-
- // TODO: remove manual inlining of IsNaN and IsInf
- // when compiler does it for us
- // special cases
- switch {
- case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1):
- return x
- case x < -MaxFloat64: // IsInf(x, -1):
- return 0
- case x > Overflow:
- return Inf(1)
- case x < Underflow:
- return 0
- }
-
- // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
- // computed as r = hi - lo for extra precision.
- var k int
- switch {
- case x > 0:
- k = int(x + 0.5)
- case x < 0:
- k = int(x - 0.5)
- }
- t := x - float64(k)
- hi := t * Ln2Hi
- lo := -t * Ln2Lo
-
- // compute
- return exp(hi, lo, k)
-}
-
-// exp returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
-func exp(hi, lo float64, k int) float64 {
- const (
- P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */
- P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
- P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */
- P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
- P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */
- )
-
- r := hi - lo
- t := r * r
- c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
- y := 1 - ((lo - (r*c)/(2-c)) - hi)
- // TODO(rsc): make sure Ldexp can handle boundary k
- return Ldexp(y, k)
-}