diff options
Diffstat (limited to 'libgo/go/math/exp_port.go')
-rw-r--r-- | libgo/go/math/exp_port.go | 191 |
1 files changed, 0 insertions, 191 deletions
diff --git a/libgo/go/math/exp_port.go b/libgo/go/math/exp_port.go deleted file mode 100644 index 618c31a5d11..00000000000 --- a/libgo/go/math/exp_port.go +++ /dev/null @@ -1,191 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package math - -// The original C code, the long comment, and the constants -// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c -// and came with this notice. The go code is a simplified -// version of the original C. -// -// ==================================================== -// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. -// -// Permission to use, copy, modify, and distribute this -// software is freely granted, provided that this notice -// is preserved. -// ==================================================== -// -// -// exp(x) -// Returns the exponential of x. -// -// Method -// 1. Argument reduction: -// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. -// Given x, find r and integer k such that -// -// x = k*ln2 + r, |r| <= 0.5*ln2. -// -// Here r will be represented as r = hi-lo for better -// accuracy. -// -// 2. Approximation of exp(r) by a special rational function on -// the interval [0,0.34658]: -// Write -// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... -// We use a special Remes algorithm on [0,0.34658] to generate -// a polynomial of degree 5 to approximate R. The maximum error -// of this polynomial approximation is bounded by 2**-59. In -// other words, -// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 -// (where z=r*r, and the values of P1 to P5 are listed below) -// and -// | 5 | -59 -// | 2.0+P1*z+...+P5*z - R(z) | <= 2 -// | | -// The computation of exp(r) thus becomes -// 2*r -// exp(r) = 1 + ------- -// R - r -// r*R1(r) -// = 1 + r + ----------- (for better accuracy) -// 2 - R1(r) -// where -// 2 4 10 -// R1(r) = r - (P1*r + P2*r + ... + P5*r ). -// -// 3. Scale back to obtain exp(x): -// From step 1, we have -// exp(x) = 2**k * exp(r) -// -// Special cases: -// exp(INF) is INF, exp(NaN) is NaN; -// exp(-INF) is 0, and -// for finite argument, only exp(0)=1 is exact. -// -// Accuracy: -// according to an error analysis, the error is always less than -// 1 ulp (unit in the last place). -// -// Misc. info. -// For IEEE double -// if x > 7.09782712893383973096e+02 then exp(x) overflow -// if x < -7.45133219101941108420e+02 then exp(x) underflow -// -// Constants: -// The hexadecimal values are the intended ones for the following -// constants. The decimal values may be used, provided that the -// compiler will convert from decimal to binary accurately enough -// to produce the hexadecimal values shown. - -// Exp returns e**x, the base-e exponential of x. -// -// Special cases are: -// Exp(+Inf) = +Inf -// Exp(NaN) = NaN -// Very large values overflow to 0 or +Inf. -// Very small values underflow to 1. -func expGo(x float64) float64 { - const ( - Ln2Hi = 6.93147180369123816490e-01 - Ln2Lo = 1.90821492927058770002e-10 - Log2e = 1.44269504088896338700e+00 - - Overflow = 7.09782712893383973096e+02 - Underflow = -7.45133219101941108420e+02 - NearZero = 1.0 / (1 << 28) // 2**-28 - ) - - // TODO(rsc): Remove manual inlining of IsNaN, IsInf - // when compiler does it for us - // special cases - switch { - case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1): - return x - case x < -MaxFloat64: // IsInf(x, -1): - return 0 - case x > Overflow: - return Inf(1) - case x < Underflow: - return 0 - case -NearZero < x && x < NearZero: - return 1 + x - } - - // reduce; computed as r = hi - lo for extra precision. - var k int - switch { - case x < 0: - k = int(Log2e*x - 0.5) - case x > 0: - k = int(Log2e*x + 0.5) - } - hi := x - float64(k)*Ln2Hi - lo := float64(k) * Ln2Lo - - // compute - return exp(hi, lo, k) -} - -// Exp2 returns 2**x, the base-2 exponential of x. -// -// Special cases are the same as Exp. -func exp2Go(x float64) float64 { - const ( - Ln2Hi = 6.93147180369123816490e-01 - Ln2Lo = 1.90821492927058770002e-10 - - Overflow = 1.0239999999999999e+03 - Underflow = -1.0740e+03 - ) - - // TODO: remove manual inlining of IsNaN and IsInf - // when compiler does it for us - // special cases - switch { - case x != x || x > MaxFloat64: // IsNaN(x) || IsInf(x, 1): - return x - case x < -MaxFloat64: // IsInf(x, -1): - return 0 - case x > Overflow: - return Inf(1) - case x < Underflow: - return 0 - } - - // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2. - // computed as r = hi - lo for extra precision. - var k int - switch { - case x > 0: - k = int(x + 0.5) - case x < 0: - k = int(x - 0.5) - } - t := x - float64(k) - hi := t * Ln2Hi - lo := -t * Ln2Lo - - // compute - return exp(hi, lo, k) -} - -// exp returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2. -func exp(hi, lo float64, k int) float64 { - const ( - P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */ - P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */ - P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */ - P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */ - P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */ - ) - - r := hi - lo - t := r * r - c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))) - y := 1 - ((lo - (r*c)/(2-c)) - hi) - // TODO(rsc): make sure Ldexp can handle boundary k - return Ldexp(y, k) -} |