summaryrefslogtreecommitdiff
path: root/libgo/go/math/big/int.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/math/big/int.go')
-rw-r--r--libgo/go/math/big/int.go83
1 files changed, 53 insertions, 30 deletions
diff --git a/libgo/go/math/big/int.go b/libgo/go/math/big/int.go
index 35e2e294183..cd2cd0e2da0 100644
--- a/libgo/go/math/big/int.go
+++ b/libgo/go/math/big/int.go
@@ -65,6 +65,26 @@ func (z *Int) Set(x *Int) *Int {
return z
}
+// Bits provides raw (unchecked but fast) access to x by returning its
+// absolute value as a little-endian Word slice. The result and x share
+// the same underlying array.
+// Bits is intended to support implementation of missing low-level Int
+// functionality outside this package; it should be avoided otherwise.
+func (x *Int) Bits() []Word {
+ return x.abs
+}
+
+// SetBits provides raw (unchecked but fast) access to z by setting its
+// value to abs, interpreted as a little-endian Word slice, and returning
+// z. The result and abs share the same underlying array.
+// SetBits is intended to support implementation of missing low-level Int
+// functionality outside this package; it should be avoided otherwise.
+func (z *Int) SetBits(abs []Word) *Int {
+ z.abs = nat(abs).norm()
+ z.neg = false
+ return z
+}
+
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
z.Set(x)
@@ -191,6 +211,7 @@ func (z *Int) Rem(x, y *Int) *Int {
// r = x - y*q
//
// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
+// See DivMod for Euclidean division and modulus (unlike Go).
//
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
@@ -248,6 +269,7 @@ func (z *Int) Mod(x, y *Int) *Int {
// div and mod''. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
+// See QuoRem for T-division and modulus (like Go).
//
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
y0 := y // save y
@@ -528,18 +550,18 @@ func (z *Int) SetBytes(buf []byte) *Int {
}
// Bytes returns the absolute value of z as a big-endian byte slice.
-func (z *Int) Bytes() []byte {
- buf := make([]byte, len(z.abs)*_S)
- return buf[z.abs.bytes(buf):]
+func (x *Int) Bytes() []byte {
+ buf := make([]byte, len(x.abs)*_S)
+ return buf[x.abs.bytes(buf):]
}
// BitLen returns the length of the absolute value of z in bits.
// The bit length of 0 is 0.
-func (z *Int) BitLen() int {
- return z.abs.bitLen()
+func (x *Int) BitLen() int {
+ return x.abs.bitLen()
}
-// Exp sets z = x**y mod m. If m is nil, z = x**y.
+// Exp sets z = x**y mod m and returns z. If m is nil, z = x**y.
// See Knuth, volume 2, section 4.6.3.
func (z *Int) Exp(x, y, m *Int) *Int {
if y.neg || len(y.abs) == 0 {
@@ -559,20 +581,20 @@ func (z *Int) Exp(x, y, m *Int) *Int {
return z
}
-// GcdInt sets d to the greatest common divisor of a and b, which must be
-// positive numbers.
-// If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y.
-// If either a or b is not positive, GcdInt sets d = x = y = 0.
-func GcdInt(d, x, y, a, b *Int) {
+// GCD sets z to the greatest common divisor of a and b, which must be
+// positive numbers, and returns z.
+// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
+// If either a or b is not positive, GCD sets z = x = y = 0.
+func (z *Int) GCD(x, y, a, b *Int) *Int {
if a.neg || b.neg {
- d.SetInt64(0)
+ z.SetInt64(0)
if x != nil {
x.SetInt64(0)
}
if y != nil {
y.SetInt64(0)
}
- return
+ return z
}
A := new(Int).Set(a)
@@ -614,14 +636,15 @@ func GcdInt(d, x, y, a, b *Int) {
*y = *lastY
}
- *d = *A
+ *z = *A
+ return z
}
-// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime.
-// If it returns true, z is prime with probability 1 - 1/4^n.
-// If it returns false, z is not prime.
-func ProbablyPrime(z *Int, n int) bool {
- return !z.neg && z.abs.probablyPrime(n)
+// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
+// If it returns true, x is prime with probability 1 - 1/4^n.
+// If it returns false, x is not prime.
+func (x *Int) ProbablyPrime(n int) bool {
+ return !x.neg && x.abs.probablyPrime(n)
}
// Rand sets z to a pseudo-random number in [0, n) and returns z.
@@ -639,7 +662,7 @@ func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
// p is a prime) and returns z.
func (z *Int) ModInverse(g, p *Int) *Int {
var d Int
- GcdInt(&d, z, nil, g, p)
+ d.GCD(z, nil, g, p)
// x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
// that modulo p results in g*x = 1, therefore x is the inverse element.
if z.neg {
@@ -671,18 +694,18 @@ func (z *Int) Rsh(x *Int, n uint) *Int {
return z
}
-// Bit returns the value of the i'th bit of z. That is, it
-// returns (z>>i)&1. The bit index i must be >= 0.
-func (z *Int) Bit(i int) uint {
+// Bit returns the value of the i'th bit of x. That is, it
+// returns (x>>i)&1. The bit index i must be >= 0.
+func (x *Int) Bit(i int) uint {
if i < 0 {
panic("negative bit index")
}
- if z.neg {
- t := nat(nil).sub(z.abs, natOne)
+ if x.neg {
+ t := nat(nil).sub(x.abs, natOne)
return t.bit(uint(i)) ^ 1
}
- return z.abs.bit(uint(i))
+ return x.abs.bit(uint(i))
}
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
@@ -847,11 +870,11 @@ func (z *Int) Not(x *Int) *Int {
const intGobVersion byte = 1
// GobEncode implements the gob.GobEncoder interface.
-func (z *Int) GobEncode() ([]byte, error) {
- buf := make([]byte, 1+len(z.abs)*_S) // extra byte for version and sign bit
- i := z.abs.bytes(buf) - 1 // i >= 0
+func (x *Int) GobEncode() ([]byte, error) {
+ buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
+ i := x.abs.bytes(buf) - 1 // i >= 0
b := intGobVersion << 1 // make space for sign bit
- if z.neg {
+ if x.neg {
b |= 1
}
buf[i] = b