summaryrefslogtreecommitdiff
path: root/libgo/go/image/ycbcr/ycbcr.go
diff options
context:
space:
mode:
Diffstat (limited to 'libgo/go/image/ycbcr/ycbcr.go')
-rw-r--r--libgo/go/image/ycbcr/ycbcr.go184
1 files changed, 0 insertions, 184 deletions
diff --git a/libgo/go/image/ycbcr/ycbcr.go b/libgo/go/image/ycbcr/ycbcr.go
deleted file mode 100644
index 84a35a3fb5e..00000000000
--- a/libgo/go/image/ycbcr/ycbcr.go
+++ /dev/null
@@ -1,184 +0,0 @@
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package ycbcr provides images from the Y'CbCr color model.
-//
-// JPEG, VP8, the MPEG family and other codecs use this color model. Such
-// codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
-// speaking, the term YUV applies only to analog video signals.
-//
-// Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
-// different formulae for converting between the two. This package follows
-// the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf.
-package ycbcr
-
-import (
- "image"
- "image/color"
-)
-
-// RGBToYCbCr converts an RGB triple to a YCbCr triple. All components lie
-// within the range [0, 255].
-func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
- // The JFIF specification says:
- // Y' = 0.2990*R + 0.5870*G + 0.1140*B
- // Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
- // Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128
- // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
- r1 := int(r)
- g1 := int(g)
- b1 := int(b)
- yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
- cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
- cr := (32768*r1 - 27440*g1 - 5328*b1 + 257<<15) >> 16
- if yy < 0 {
- yy = 0
- } else if yy > 255 {
- yy = 255
- }
- if cb < 0 {
- cb = 0
- } else if cb > 255 {
- cb = 255
- }
- if cr < 0 {
- cr = 0
- } else if cr > 255 {
- cr = 255
- }
- return uint8(yy), uint8(cb), uint8(cr)
-}
-
-// YCbCrToRGB converts a YCbCr triple to an RGB triple. All components lie
-// within the range [0, 255].
-func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
- // The JFIF specification says:
- // R = Y' + 1.40200*(Cr-128)
- // G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
- // B = Y' + 1.77200*(Cb-128)
- // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
- yy1 := int(y)<<16 + 1<<15
- cb1 := int(cb) - 128
- cr1 := int(cr) - 128
- r := (yy1 + 91881*cr1) >> 16
- g := (yy1 - 22554*cb1 - 46802*cr1) >> 16
- b := (yy1 + 116130*cb1) >> 16
- if r < 0 {
- r = 0
- } else if r > 255 {
- r = 255
- }
- if g < 0 {
- g = 0
- } else if g > 255 {
- g = 255
- }
- if b < 0 {
- b = 0
- } else if b > 255 {
- b = 255
- }
- return uint8(r), uint8(g), uint8(b)
-}
-
-// YCbCrColor represents a fully opaque 24-bit Y'CbCr color, having 8 bits for
-// each of one luma and two chroma components.
-type YCbCrColor struct {
- Y, Cb, Cr uint8
-}
-
-func (c YCbCrColor) RGBA() (uint32, uint32, uint32, uint32) {
- r, g, b := YCbCrToRGB(c.Y, c.Cb, c.Cr)
- return uint32(r) * 0x101, uint32(g) * 0x101, uint32(b) * 0x101, 0xffff
-}
-
-func toYCbCrColor(c color.Color) color.Color {
- if _, ok := c.(YCbCrColor); ok {
- return c
- }
- r, g, b, _ := c.RGBA()
- y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
- return YCbCrColor{y, u, v}
-}
-
-// YCbCrColorModel is the color model for YCbCrColor.
-var YCbCrColorModel color.Model = color.ModelFunc(toYCbCrColor)
-
-// SubsampleRatio is the chroma subsample ratio used in a YCbCr image.
-type SubsampleRatio int
-
-const (
- SubsampleRatio444 SubsampleRatio = iota
- SubsampleRatio422
- SubsampleRatio420
-)
-
-// YCbCr is an in-memory image of YCbCr colors. There is one Y sample per pixel,
-// but each Cb and Cr sample can span one or more pixels.
-// YStride is the Y slice index delta between vertically adjacent pixels.
-// CStride is the Cb and Cr slice index delta between vertically adjacent pixels
-// that map to separate chroma samples.
-// It is not an absolute requirement, but YStride and len(Y) are typically
-// multiples of 8, and:
-// For 4:4:4, CStride == YStride/1 && len(Cb) == len(Cr) == len(Y)/1.
-// For 4:2:2, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/2.
-// For 4:2:0, CStride == YStride/2 && len(Cb) == len(Cr) == len(Y)/4.
-type YCbCr struct {
- Y []uint8
- Cb []uint8
- Cr []uint8
- YStride int
- CStride int
- SubsampleRatio SubsampleRatio
- Rect image.Rectangle
-}
-
-func (p *YCbCr) ColorModel() color.Model {
- return YCbCrColorModel
-}
-
-func (p *YCbCr) Bounds() image.Rectangle {
- return p.Rect
-}
-
-func (p *YCbCr) At(x, y int) color.Color {
- if !(image.Point{x, y}.In(p.Rect)) {
- return YCbCrColor{}
- }
- switch p.SubsampleRatio {
- case SubsampleRatio422:
- i := x / 2
- return YCbCrColor{
- p.Y[y*p.YStride+x],
- p.Cb[y*p.CStride+i],
- p.Cr[y*p.CStride+i],
- }
- case SubsampleRatio420:
- i, j := x/2, y/2
- return YCbCrColor{
- p.Y[y*p.YStride+x],
- p.Cb[j*p.CStride+i],
- p.Cr[j*p.CStride+i],
- }
- }
- // Default to 4:4:4 subsampling.
- return YCbCrColor{
- p.Y[y*p.YStride+x],
- p.Cb[y*p.CStride+x],
- p.Cr[y*p.CStride+x],
- }
-}
-
-// SubImage returns an image representing the portion of the image p visible
-// through r. The returned value shares pixels with the original image.
-func (p *YCbCr) SubImage(r image.Rectangle) image.Image {
- q := new(YCbCr)
- *q = *p
- q.Rect = q.Rect.Intersect(r)
- return q
-}
-
-func (p *YCbCr) Opaque() bool {
- return true
-}