diff options
Diffstat (limited to 'libgo/go/encoding/gob/encode.go')
-rw-r--r-- | libgo/go/encoding/gob/encode.go | 482 |
1 files changed, 209 insertions, 273 deletions
diff --git a/libgo/go/encoding/gob/encode.go b/libgo/go/encoding/gob/encode.go index 7831c02d139..f66279f1413 100644 --- a/libgo/go/encoding/gob/encode.go +++ b/libgo/go/encoding/gob/encode.go @@ -2,17 +2,19 @@ // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. +//go:generate go run encgen.go -output enc_helpers.go + package gob import ( - "bytes" "encoding" "math" "reflect" - "unsafe" ) -const uint64Size = int(unsafe.Sizeof(uint64(0))) +const uint64Size = 8 + +type encHelper func(state *encoderState, v reflect.Value) bool // encoderState is the global execution state of an instance of the encoder. // Field numbers are delta encoded and always increase. The field @@ -20,14 +22,46 @@ const uint64Size = int(unsafe.Sizeof(uint64(0))) // 0 terminates the structure. type encoderState struct { enc *Encoder - b *bytes.Buffer + b *encBuffer sendZero bool // encoding an array element or map key/value pair; send zero values fieldnum int // the last field number written. buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. next *encoderState // for free list } -func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState { +// encBuffer is an extremely simple, fast implementation of a write-only byte buffer. +// It never returns a non-nil error, but Write returns an error value so it matches io.Writer. +type encBuffer struct { + data []byte + scratch [64]byte +} + +func (e *encBuffer) WriteByte(c byte) { + e.data = append(e.data, c) +} + +func (e *encBuffer) Write(p []byte) (int, error) { + e.data = append(e.data, p...) + return len(p), nil +} + +func (e *encBuffer) WriteString(s string) { + e.data = append(e.data, s...) +} + +func (e *encBuffer) Len() int { + return len(e.data) +} + +func (e *encBuffer) Bytes() []byte { + return e.data +} + +func (e *encBuffer) Reset() { + e.data = e.data[0:0] +} + +func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState { e := enc.freeList if e == nil { e = new(encoderState) @@ -38,6 +72,9 @@ func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState { e.sendZero = false e.fieldnum = 0 e.b = b + if len(b.data) == 0 { + b.data = b.scratch[0:0] + } return e } @@ -54,10 +91,7 @@ func (enc *Encoder) freeEncoderState(e *encoderState) { // encodeUint writes an encoded unsigned integer to state.b. func (state *encoderState) encodeUint(x uint64) { if x <= 0x7F { - err := state.b.WriteByte(uint8(x)) - if err != nil { - error_(err) - } + state.b.WriteByte(uint8(x)) return } i := uint64Size @@ -67,10 +101,7 @@ func (state *encoderState) encodeUint(x uint64) { i-- } state.buf[i] = uint8(i - uint64Size) // = loop count, negated - _, err := state.b.Write(state.buf[i : uint64Size+1]) - if err != nil { - error_(err) - } + state.b.Write(state.buf[i : uint64Size+1]) } // encodeInt writes an encoded signed integer to state.w. @@ -87,14 +118,14 @@ func (state *encoderState) encodeInt(i int64) { } // encOp is the signature of an encoding operator for a given type. -type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer) +type encOp func(i *encInstr, state *encoderState, v reflect.Value) // The 'instructions' of the encoding machine type encInstr struct { - op encOp - field int // field number - indir int // how many pointer indirections to reach the value in the struct - offset uintptr // offset in the structure of the field to encode + op encOp + field int // field number in input + index []int // struct index + indir int // how many pointer indirections to reach the value in the struct } // update emits a field number and updates the state to record its value for delta encoding. @@ -115,20 +146,20 @@ func (state *encoderState) update(instr *encInstr) { // encoded integer, followed by the field data in its appropriate // format. -// encIndirect dereferences p indir times and returns the result. -func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { +// encIndirect dereferences pv indir times and returns the result. +func encIndirect(pv reflect.Value, indir int) reflect.Value { for ; indir > 0; indir-- { - p = *(*unsafe.Pointer)(p) - if p == nil { - return unsafe.Pointer(nil) + if pv.IsNil() { + break } + pv = pv.Elem() } - return p + return pv } -// encBool encodes the bool with address p as an unsigned 0 or 1. -func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) { - b := *(*bool)(p) +// encBool encodes the bool referenced by v as an unsigned 0 or 1. +func encBool(i *encInstr, state *encoderState, v reflect.Value) { + b := v.Bool() if b || state.sendZero { state.update(i) if b { @@ -139,102 +170,21 @@ func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) { } } -// encInt encodes the int with address p. -func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := int64(*(*int)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encUint encodes the uint with address p. -func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uint)(p)) - if v != 0 || state.sendZero { +// encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v. +func encInt(i *encInstr, state *encoderState, v reflect.Value) { + value := v.Int() + if value != 0 || state.sendZero { state.update(i) - state.encodeUint(v) + state.encodeInt(value) } } -// encInt8 encodes the int8 with address p. -func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := int64(*(*int8)(p)) - if v != 0 || state.sendZero { +// encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v. +func encUint(i *encInstr, state *encoderState, v reflect.Value) { + value := v.Uint() + if value != 0 || state.sendZero { state.update(i) - state.encodeInt(v) - } -} - -// encUint8 encodes the uint8 with address p. -func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uint8)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encInt16 encodes the int16 with address p. -func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := int64(*(*int16)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encUint16 encodes the uint16 with address p. -func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uint16)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encInt32 encodes the int32 with address p. -func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := int64(*(*int32)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encUint encodes the uint32 with address p. -func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uint32)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encInt64 encodes the int64 with address p. -func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := *(*int64)(p) - if v != 0 || state.sendZero { - state.update(i) - state.encodeInt(v) - } -} - -// encInt64 encodes the uint64 with address p. -func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := *(*uint64)(p) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) - } -} - -// encUintptr encodes the uintptr with address p. -func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) { - v := uint64(*(*uintptr)(p)) - if v != 0 || state.sendZero { - state.update(i) - state.encodeUint(v) + state.encodeUint(value) } } @@ -255,42 +205,20 @@ func floatBits(f float64) uint64 { return v } -// encFloat32 encodes the float32 with address p. -func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) { - f := *(*float32)(p) +// encFloat encodes the floating point value (float32 float64) referenced by v. +func encFloat(i *encInstr, state *encoderState, v reflect.Value) { + f := v.Float() if f != 0 || state.sendZero { - v := floatBits(float64(f)) + bits := floatBits(f) state.update(i) - state.encodeUint(v) + state.encodeUint(bits) } } -// encFloat64 encodes the float64 with address p. -func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) { - f := *(*float64)(p) - if f != 0 || state.sendZero { - state.update(i) - v := floatBits(f) - state.encodeUint(v) - } -} - -// encComplex64 encodes the complex64 with address p. +// encComplex encodes the complex value (complex64 complex128) referenced by v. // Complex numbers are just a pair of floating-point numbers, real part first. -func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) { - c := *(*complex64)(p) - if c != 0+0i || state.sendZero { - rpart := floatBits(float64(real(c))) - ipart := floatBits(float64(imag(c))) - state.update(i) - state.encodeUint(rpart) - state.encodeUint(ipart) - } -} - -// encComplex128 encodes the complex128 with address p. -func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) { - c := *(*complex128)(p) +func encComplex(i *encInstr, state *encoderState, v reflect.Value) { + c := v.Complex() if c != 0+0i || state.sendZero { rpart := floatBits(real(c)) ipart := floatBits(imag(c)) @@ -300,10 +228,10 @@ func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) { } } -// encUint8Array encodes the byte slice whose header has address p. +// encUint8Array encodes the byte array referenced by v. // Byte arrays are encoded as an unsigned count followed by the raw bytes. -func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) { - b := *(*[]byte)(p) +func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) { + b := v.Bytes() if len(b) > 0 || state.sendZero { state.update(i) state.encodeUint(uint64(len(b))) @@ -311,10 +239,10 @@ func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) { } } -// encString encodes the string whose header has address p. +// encString encodes the string referenced by v. // Strings are encoded as an unsigned count followed by the raw bytes. -func encString(i *encInstr, state *encoderState, p unsafe.Pointer) { - s := *(*string)(p) +func encString(i *encInstr, state *encoderState, v reflect.Value) { + s := v.String() if len(s) > 0 || state.sendZero { state.update(i) state.encodeUint(uint64(len(s))) @@ -324,7 +252,7 @@ func encString(i *encInstr, state *encoderState, p unsafe.Pointer) { // encStructTerminator encodes the end of an encoded struct // as delta field number of 0. -func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) { +func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) { state.encodeUint(0) } @@ -338,60 +266,83 @@ type encEngine struct { const singletonField = 0 +// valid reports whether the value is valid and a non-nil pointer. +// (Slices, maps, and chans take care of themselves.) +func valid(v reflect.Value) bool { + switch v.Kind() { + case reflect.Invalid: + return false + case reflect.Ptr: + return !v.IsNil() + } + return true +} + // encodeSingle encodes a single top-level non-struct value. -func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) { +func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) { state := enc.newEncoderState(b) + defer enc.freeEncoderState(state) state.fieldnum = singletonField // There is no surrounding struct to frame the transmission, so we must // generate data even if the item is zero. To do this, set sendZero. state.sendZero = true instr := &engine.instr[singletonField] - p := basep // offset will be zero if instr.indir > 0 { - if p = encIndirect(p, instr.indir); p == nil { - return - } + value = encIndirect(value, instr.indir) + } + if valid(value) { + instr.op(instr, state, value) } - instr.op(instr, state, p) - enc.freeEncoderState(state) } // encodeStruct encodes a single struct value. -func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) { +func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) { + if !valid(value) { + return + } state := enc.newEncoderState(b) + defer enc.freeEncoderState(state) state.fieldnum = -1 for i := 0; i < len(engine.instr); i++ { instr := &engine.instr[i] - p := unsafe.Pointer(uintptr(basep) + instr.offset) + if i >= value.NumField() { + // encStructTerminator + instr.op(instr, state, reflect.Value{}) + break + } + field := value.FieldByIndex(instr.index) if instr.indir > 0 { - if p = encIndirect(p, instr.indir); p == nil { + field = encIndirect(field, instr.indir) + // TODO: Is field guaranteed valid? If so we could avoid this check. + if !valid(field) { continue } } - instr.op(instr, state, p) + instr.op(instr, state, field) } - enc.freeEncoderState(state) } -// encodeArray encodes the array whose 0th element is at p. -func (enc *Encoder) encodeArray(b *bytes.Buffer, p unsafe.Pointer, op encOp, elemWid uintptr, elemIndir int, length int) { +// encodeArray encodes an array. +func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) { state := enc.newEncoderState(b) + defer enc.freeEncoderState(state) state.fieldnum = -1 state.sendZero = true state.encodeUint(uint64(length)) + if helper != nil && helper(state, value) { + return + } for i := 0; i < length; i++ { - elemp := p + elem := value.Index(i) if elemIndir > 0 { - up := encIndirect(elemp, elemIndir) - if up == nil { + elem = encIndirect(elem, elemIndir) + // TODO: Is elem guaranteed valid? If so we could avoid this check. + if !valid(elem) { errorf("encodeArray: nil element") } - elemp = up } - op(nil, state, elemp) - p = unsafe.Pointer(uintptr(p) + elemWid) + op(nil, state, elem) } - enc.freeEncoderState(state) } // encodeReflectValue is a helper for maps. It encodes the value v. @@ -402,13 +353,11 @@ func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir in if !v.IsValid() { errorf("encodeReflectValue: nil element") } - op(nil, state, unsafeAddr(v)) + op(nil, state, v) } // encodeMap encodes a map as unsigned count followed by key:value pairs. -// Because map internals are not exposed, we must use reflection rather than -// addresses. -func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { +func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { state := enc.newEncoderState(b) state.fieldnum = -1 state.sendZero = true @@ -426,7 +375,7 @@ func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp e // by the type identifier (which might require defining that type right now), followed // by the concrete value. A nil value gets sent as the empty string for the name, // followed by no value. -func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) { +func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) { // Gobs can encode nil interface values but not typed interface // values holding nil pointers, since nil pointers point to no value. elem := iv.Elem() @@ -450,10 +399,7 @@ func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) { } // Send the name. state.encodeUint(uint64(len(name))) - _, err := state.b.WriteString(name) - if err != nil { - error_(err) - } + state.b.WriteString(name) // Define the type id if necessary. enc.sendTypeDescriptor(enc.writer(), state, ut) // Send the type id. @@ -461,7 +407,7 @@ func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) { // Encode the value into a new buffer. Any nested type definitions // should be written to b, before the encoded value. enc.pushWriter(b) - data := new(bytes.Buffer) + data := new(encBuffer) data.Write(spaceForLength) enc.encode(data, elem, ut) if enc.err != nil { @@ -470,7 +416,7 @@ func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) { enc.popWriter() enc.writeMessage(b, data) if enc.err != nil { - error_(err) + error_(enc.err) } enc.freeEncoderState(state) } @@ -512,7 +458,7 @@ func isZero(val reflect.Value) bool { // encGobEncoder encodes a value that implements the GobEncoder interface. // The data is sent as a byte array. -func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, ut *userTypeInfo, v reflect.Value) { +func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) { // TODO: should we catch panics from the called method? var data []byte @@ -539,30 +485,30 @@ func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, ut *userTypeInfo, v reflec var encOpTable = [...]encOp{ reflect.Bool: encBool, reflect.Int: encInt, - reflect.Int8: encInt8, - reflect.Int16: encInt16, - reflect.Int32: encInt32, - reflect.Int64: encInt64, + reflect.Int8: encInt, + reflect.Int16: encInt, + reflect.Int32: encInt, + reflect.Int64: encInt, reflect.Uint: encUint, - reflect.Uint8: encUint8, - reflect.Uint16: encUint16, - reflect.Uint32: encUint32, - reflect.Uint64: encUint64, - reflect.Uintptr: encUintptr, - reflect.Float32: encFloat32, - reflect.Float64: encFloat64, - reflect.Complex64: encComplex64, - reflect.Complex128: encComplex128, + reflect.Uint8: encUint, + reflect.Uint16: encUint, + reflect.Uint32: encUint, + reflect.Uint64: encUint, + reflect.Uintptr: encUint, + reflect.Float32: encFloat, + reflect.Float64: encFloat, + reflect.Complex64: encComplex, + reflect.Complex128: encComplex, reflect.String: encString, } // encOpFor returns (a pointer to) the encoding op for the base type under rt and // the indirection count to reach it. -func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) { +func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) { ut := userType(rt) // If the type implements GobEncoder, we handle it without further processing. if ut.externalEnc != 0 { - return enc.gobEncodeOpFor(ut) + return gobEncodeOpFor(ut) } // If this type is already in progress, it's a recursive type (e.g. map[string]*T). // Return the pointer to the op we're already building. @@ -586,31 +532,27 @@ func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp break } // Slices have a header; we decode it to find the underlying array. - elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - slice := (*reflect.SliceHeader)(p) - if !state.sendZero && slice.Len == 0 { + elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) + helper := encSliceHelper[t.Elem().Kind()] + op = func(i *encInstr, state *encoderState, slice reflect.Value) { + if !state.sendZero && slice.Len() == 0 { return } state.update(i) - state.enc.encodeArray(state.b, unsafe.Pointer(slice.Data), *elemOp, t.Elem().Size(), elemIndir, int(slice.Len)) + state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper) } case reflect.Array: // True arrays have size in the type. - elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { + elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) + helper := encArrayHelper[t.Elem().Kind()] + op = func(i *encInstr, state *encoderState, array reflect.Value) { state.update(i) - state.enc.encodeArray(state.b, p, *elemOp, t.Elem().Size(), elemIndir, t.Len()) + state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper) } case reflect.Map: - keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress) - elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - // Maps cannot be accessed by moving addresses around the way - // that slices etc. can. We must recover a full reflection value for - // the iteration. - v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() - mv := reflect.Indirect(v) + keyOp, keyIndir := encOpFor(t.Key(), inProgress, building) + elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) + op = func(i *encInstr, state *encoderState, mv reflect.Value) { // We send zero-length (but non-nil) maps because the // receiver might want to use the map. (Maps don't use append.) if !state.sendZero && mv.IsNil() { @@ -621,19 +563,16 @@ func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp } case reflect.Struct: // Generate a closure that calls out to the engine for the nested type. - enc.getEncEngine(userType(typ)) + getEncEngine(userType(typ), building) info := mustGetTypeInfo(typ) - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { + op = func(i *encInstr, state *encoderState, sv reflect.Value) { state.update(i) // indirect through info to delay evaluation for recursive structs - state.enc.encodeStruct(state.b, info.encoder, p) + enc := info.encoder.Load().(*encEngine) + state.enc.encodeStruct(state.b, enc, sv) } case reflect.Interface: - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - // Interfaces transmit the name and contents of the concrete - // value they contain. - v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() - iv := reflect.Indirect(v) + op = func(i *encInstr, state *encoderState, iv reflect.Value) { if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { return } @@ -648,9 +587,8 @@ func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp return &op, indir } -// gobEncodeOpFor returns the op for a type that is known to implement -// GobEncoder. -func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { +// gobEncodeOpFor returns the op for a type that is known to implement GobEncoder. +func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { rt := ut.user if ut.encIndir == -1 { rt = reflect.PtrTo(rt) @@ -660,13 +598,13 @@ func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { } } var op encOp - op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { - var v reflect.Value + op = func(i *encInstr, state *encoderState, v reflect.Value) { if ut.encIndir == -1 { // Need to climb up one level to turn value into pointer. - v = reflect.NewAt(rt, unsafe.Pointer(&p)).Elem() - } else { - v = reflect.NewAt(rt, p).Elem() + if !v.CanAddr() { + errorf("unaddressable value of type %s", rt) + } + v = v.Addr() } if !state.sendZero && isZero(v) { return @@ -678,7 +616,7 @@ func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { } // compileEnc returns the engine to compile the type. -func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine { +func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { srt := ut.base engine := new(encEngine) seen := make(map[reflect.Type]*encOp) @@ -692,59 +630,57 @@ func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine { if !isSent(&f) { continue } - op, indir := enc.encOpFor(f.Type, seen) - engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)}) + op, indir := encOpFor(f.Type, seen, building) + engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir}) wireFieldNum++ } if srt.NumField() > 0 && len(engine.instr) == 0 { errorf("type %s has no exported fields", rt) } - engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0}) + engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0}) } else { engine.instr = make([]encInstr, 1) - op, indir := enc.encOpFor(rt, seen) - engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero + op, indir := encOpFor(rt, seen, building) + engine.instr[0] = encInstr{*op, singletonField, nil, indir} } return engine } // getEncEngine returns the engine to compile the type. -// typeLock must be held (or we're in initialization and guaranteed single-threaded). -func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine { - info, err1 := getTypeInfo(ut) - if err1 != nil { - error_(err1) - } - if info.encoder == nil { - // Assign the encEngine now, so recursive types work correctly. But... - info.encoder = new(encEngine) - // ... if we fail to complete building the engine, don't cache the half-built machine. - // Doing this here means we won't cache a type that is itself OK but - // that contains a nested type that won't compile. The result is consistent - // error behavior when Encode is called multiple times on the top-level type. - ok := false - defer func() { - if !ok { - info.encoder = nil - } - }() - info.encoder = enc.compileEnc(ut) - ok = true +func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { + info, err := getTypeInfo(ut) + if err != nil { + error_(err) } - return info.encoder + enc, ok := info.encoder.Load().(*encEngine) + if !ok { + enc = buildEncEngine(info, ut, building) + } + return enc } -// lockAndGetEncEngine is a function that locks and compiles. -// This lets us hold the lock only while compiling, not when encoding. -func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine { - typeLock.Lock() - defer typeLock.Unlock() - return enc.getEncEngine(ut) +func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { + // Check for recursive types. + if building != nil && building[info] { + return nil + } + info.encInit.Lock() + defer info.encInit.Unlock() + enc, ok := info.encoder.Load().(*encEngine) + if !ok { + if building == nil { + building = make(map[*typeInfo]bool) + } + building[info] = true + enc = compileEnc(ut, building) + info.encoder.Store(enc) + } + return enc } -func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) { +func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) { defer catchError(&enc.err) - engine := enc.lockAndGetEncEngine(ut) + engine := getEncEngine(ut, nil) indir := ut.indir if ut.externalEnc != 0 { indir = int(ut.encIndir) @@ -753,8 +689,8 @@ func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInf value = reflect.Indirect(value) } if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { - enc.encodeStruct(b, engine, unsafeAddr(value)) + enc.encodeStruct(b, engine, value) } else { - enc.encodeSingle(b, engine, unsafeAddr(value)) + enc.encodeSingle(b, engine, value) } } |