diff options
Diffstat (limited to 'libgo/go/crypto/rsa/rsa.go')
-rw-r--r-- | libgo/go/crypto/rsa/rsa.go | 33 |
1 files changed, 16 insertions, 17 deletions
diff --git a/libgo/go/crypto/rsa/rsa.go b/libgo/go/crypto/rsa/rsa.go index 3df88e06915..c9344ffadff 100644 --- a/libgo/go/crypto/rsa/rsa.go +++ b/libgo/go/crypto/rsa/rsa.go @@ -11,9 +11,9 @@ import ( "big" "crypto/rand" "crypto/subtle" + "errors" "hash" "io" - "os" ) var bigZero = big.NewInt(0) @@ -55,16 +55,15 @@ type CRTValue struct { } // Validate performs basic sanity checks on the key. -// It returns nil if the key is valid, or else an os.Error describing a problem. - -func (priv *PrivateKey) Validate() os.Error { +// It returns nil if the key is valid, or else an error describing a problem. +func (priv *PrivateKey) Validate() error { // Check that the prime factors are actually prime. Note that this is // just a sanity check. Since the random witnesses chosen by // ProbablyPrime are deterministic, given the candidate number, it's // easy for an attack to generate composites that pass this test. for _, prime := range priv.Primes { if !big.ProbablyPrime(prime, 20) { - return os.NewError("prime factor is composite") + return errors.New("prime factor is composite") } } @@ -74,7 +73,7 @@ func (priv *PrivateKey) Validate() os.Error { modulus.Mul(modulus, prime) } if modulus.Cmp(priv.N) != 0 { - return os.NewError("invalid modulus") + return errors.New("invalid modulus") } // Check that e and totient(Πprimes) are coprime. totient := new(big.Int).Set(bigOne) @@ -88,19 +87,19 @@ func (priv *PrivateKey) Validate() os.Error { y := new(big.Int) big.GcdInt(gcd, x, y, totient, e) if gcd.Cmp(bigOne) != 0 { - return os.NewError("invalid public exponent E") + return errors.New("invalid public exponent E") } // Check that de ≡ 1 (mod totient(Πprimes)) de := new(big.Int).Mul(priv.D, e) de.Mod(de, totient) if de.Cmp(bigOne) != 0 { - return os.NewError("invalid private exponent D") + return errors.New("invalid private exponent D") } return nil } // GenerateKey generates an RSA keypair of the given bit size. -func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err os.Error) { +func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) { return GenerateMultiPrimeKey(random, 2, bits) } @@ -114,12 +113,12 @@ func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err os.Error) { // // [1] US patent 4405829 (1972, expired) // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf -func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err os.Error) { +func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) { priv = new(PrivateKey) priv.E = 65537 if nprimes < 2 { - return nil, os.NewError("rsa.GenerateMultiPrimeKey: nprimes must be >= 2") + return nil, errors.New("rsa.GenerateMultiPrimeKey: nprimes must be >= 2") } primes := make([]*big.Int, nprimes) @@ -210,7 +209,7 @@ func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { // is too large for the size of the public key. type MessageTooLongError struct{} -func (MessageTooLongError) String() string { +func (MessageTooLongError) Error() string { return "message too long for RSA public key size" } @@ -223,7 +222,7 @@ func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { // EncryptOAEP encrypts the given message with RSA-OAEP. // The message must be no longer than the length of the public modulus less // twice the hash length plus 2. -func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) { +func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) { hash.Reset() k := (pub.N.BitLen() + 7) / 8 if len(msg) > k-2*hash.Size()-2 { @@ -270,13 +269,13 @@ func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, l // It is deliberately vague to avoid adaptive attacks. type DecryptionError struct{} -func (DecryptionError) String() string { return "RSA decryption error" } +func (DecryptionError) Error() string { return "RSA decryption error" } // A VerificationError represents a failure to verify a signature. // It is deliberately vague to avoid adaptive attacks. type VerificationError struct{} -func (VerificationError) String() string { return "RSA verification error" } +func (VerificationError) Error() string { return "RSA verification error" } // modInverse returns ia, the inverse of a in the multiplicative group of prime // order n. It requires that a be a member of the group (i.e. less than n). @@ -335,7 +334,7 @@ func (priv *PrivateKey) Precompute() { // decrypt performs an RSA decryption, resulting in a plaintext integer. If a // random source is given, RSA blinding is used. -func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) { +func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { // TODO(agl): can we get away with reusing blinds? if c.Cmp(priv.N) > 0 { err = DecryptionError{} @@ -413,7 +412,7 @@ func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os // DecryptOAEP decrypts ciphertext using RSA-OAEP. // If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks. -func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) { +func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) { k := (priv.N.BitLen() + 7) / 8 if len(ciphertext) > k || k < hash.Size()*2+2 { |