summaryrefslogtreecommitdiff
path: root/libgfortran/intrinsics/c99_functions.c
diff options
context:
space:
mode:
Diffstat (limited to 'libgfortran/intrinsics/c99_functions.c')
-rw-r--r--libgfortran/intrinsics/c99_functions.c695
1 files changed, 695 insertions, 0 deletions
diff --git a/libgfortran/intrinsics/c99_functions.c b/libgfortran/intrinsics/c99_functions.c
index 11c5caf8106..8083f776df5 100644
--- a/libgfortran/intrinsics/c99_functions.c
+++ b/libgfortran/intrinsics/c99_functions.c
@@ -31,10 +31,13 @@ Boston, MA 02110-1301, USA. */
#include <sys/types.h>
#include <float.h>
#include <math.h>
+
+#define C99_PROTOS_H WE_DONT_WANT_PROTOS_NOW
#include "libgfortran.h"
#ifndef HAVE_ACOSF
+#define HAVE_ACOSF
float
acosf(float x)
{
@@ -43,6 +46,7 @@ acosf(float x)
#endif
#ifndef HAVE_ASINF
+#define HAVE_ASINF
float
asinf(float x)
{
@@ -51,6 +55,7 @@ asinf(float x)
#endif
#ifndef HAVE_ATAN2F
+#define HAVE_ATAN2F
float
atan2f(float y, float x)
{
@@ -59,6 +64,7 @@ atan2f(float y, float x)
#endif
#ifndef HAVE_ATANF
+#define HAVE_ATANF
float
atanf(float x)
{
@@ -67,6 +73,7 @@ atanf(float x)
#endif
#ifndef HAVE_CEILF
+#define HAVE_CEILF
float
ceilf(float x)
{
@@ -75,6 +82,7 @@ ceilf(float x)
#endif
#ifndef HAVE_COPYSIGNF
+#define HAVE_COPYSIGNF
float
copysignf(float x, float y)
{
@@ -83,6 +91,7 @@ copysignf(float x, float y)
#endif
#ifndef HAVE_COSF
+#define HAVE_COSF
float
cosf(float x)
{
@@ -91,6 +100,7 @@ cosf(float x)
#endif
#ifndef HAVE_COSHF
+#define HAVE_COSHF
float
coshf(float x)
{
@@ -99,6 +109,7 @@ coshf(float x)
#endif
#ifndef HAVE_EXPF
+#define HAVE_EXPF
float
expf(float x)
{
@@ -107,6 +118,7 @@ expf(float x)
#endif
#ifndef HAVE_FABSF
+#define HAVE_FABSF
float
fabsf(float x)
{
@@ -115,6 +127,7 @@ fabsf(float x)
#endif
#ifndef HAVE_FLOORF
+#define HAVE_FLOORF
float
floorf(float x)
{
@@ -123,6 +136,7 @@ floorf(float x)
#endif
#ifndef HAVE_FREXPF
+#define HAVE_FREXPF
float
frexpf(float x, int *exp)
{
@@ -131,6 +145,7 @@ frexpf(float x, int *exp)
#endif
#ifndef HAVE_HYPOTF
+#define HAVE_HYPOTF
float
hypotf(float x, float y)
{
@@ -139,6 +154,7 @@ hypotf(float x, float y)
#endif
#ifndef HAVE_LOGF
+#define HAVE_LOGF
float
logf(float x)
{
@@ -147,6 +163,7 @@ logf(float x)
#endif
#ifndef HAVE_LOG10F
+#define HAVE_LOG10F
float
log10f(float x)
{
@@ -155,6 +172,7 @@ log10f(float x)
#endif
#ifndef HAVE_SCALBN
+#define HAVE_SCALBN
double
scalbn(double x, int y)
{
@@ -163,6 +181,7 @@ scalbn(double x, int y)
#endif
#ifndef HAVE_SCALBNF
+#define HAVE_SCALBNF
float
scalbnf(float x, int y)
{
@@ -171,6 +190,7 @@ scalbnf(float x, int y)
#endif
#ifndef HAVE_SINF
+#define HAVE_SINF
float
sinf(float x)
{
@@ -179,6 +199,7 @@ sinf(float x)
#endif
#ifndef HAVE_SINHF
+#define HAVE_SINHF
float
sinhf(float x)
{
@@ -187,6 +208,7 @@ sinhf(float x)
#endif
#ifndef HAVE_SQRTF
+#define HAVE_SQRTF
float
sqrtf(float x)
{
@@ -195,6 +217,7 @@ sqrtf(float x)
#endif
#ifndef HAVE_TANF
+#define HAVE_TANF
float
tanf(float x)
{
@@ -203,6 +226,7 @@ tanf(float x)
#endif
#ifndef HAVE_TANHF
+#define HAVE_TANHF
float
tanhf(float x)
{
@@ -211,6 +235,7 @@ tanhf(float x)
#endif
#ifndef HAVE_TRUNC
+#define HAVE_TRUNC
double
trunc(double x)
{
@@ -225,6 +250,7 @@ trunc(double x)
#endif
#ifndef HAVE_TRUNCF
+#define HAVE_TRUNCF
float
truncf(float x)
{
@@ -233,6 +259,7 @@ truncf(float x)
#endif
#ifndef HAVE_NEXTAFTERF
+#define HAVE_NEXTAFTERF
/* This is a portable implementation of nextafterf that is intended to be
independent of the floating point format or its in memory representation.
This implementation works correctly with denormalized values. */
@@ -296,6 +323,7 @@ nextafterf(float x, float y)
#ifndef HAVE_POWF
+#define HAVE_POWF
float
powf(float x, float y)
{
@@ -308,6 +336,7 @@ powf(float x, float y)
/* Algorithm by Steven G. Kargl. */
#ifndef HAVE_ROUND
+#define HAVE_ROUND
/* Round to nearest integral value. If the argument is halfway between two
integral values then round away from zero. */
@@ -340,6 +369,7 @@ round(double x)
#endif
#ifndef HAVE_ROUNDF
+#define HAVE_ROUNDF
/* Round to nearest integral value. If the argument is halfway between two
integral values then round away from zero. */
@@ -373,6 +403,7 @@ roundf(float x)
#endif
#ifndef HAVE_LOG10L
+#define HAVE_LOG10L
/* log10 function for long double variables. The version provided here
reduces the argument until it fits into a double, then use log10. */
long double
@@ -409,3 +440,667 @@ log10l(long double x)
return log10 (x);
}
#endif
+
+
+#if !defined(HAVE_CABSF)
+#define HAVE_CABSF
+float
+cabsf (float complex z)
+{
+ return hypotf (REALPART (z), IMAGPART (z));
+}
+#endif
+
+#if !defined(HAVE_CABS)
+#define HAVE_CABS
+double
+cabs (double complex z)
+{
+ return hypot (REALPART (z), IMAGPART (z));
+}
+#endif
+
+#if !defined(HAVE_CABSL) && defined(HAVE_HYPOTL)
+#define HAVE_CABSL
+long double
+cabsl (long double complex z)
+{
+ return hypotl (REALPART (z), IMAGPART (z));
+}
+#endif
+
+
+#if !defined(HAVE_CARGF)
+#define HAVE_CARGF
+float
+cargf (float complex z)
+{
+ return atan2f (IMAGPART (z), REALPART (z));
+}
+#endif
+
+#if !defined(HAVE_CARG)
+#define HAVE_CARG
+double
+carg (double complex z)
+{
+ return atan2 (IMAGPART (z), REALPART (z));
+}
+#endif
+
+#if !defined(HAVE_CARGL) && defined(HAVE_ATAN2L)
+#define HAVE_CARGL
+long double
+cargl (long double complex z)
+{
+ return atan2l (IMAGPART (z), REALPART (z));
+}
+#endif
+
+
+/* exp(z) = exp(a)*(cos(b) + i sin(b)) */
+#if !defined(HAVE_CEXPF)
+#define HAVE_CEXPF
+float complex
+cexpf (float complex z)
+{
+ float a, b;
+ float complex v;
+
+ a = REALPART (z);
+ b = IMAGPART (z);
+ COMPLEX_ASSIGN (v, cosf (b), sinf (b));
+ return expf (a) * v;
+}
+#endif
+
+#if !defined(HAVE_CEXP)
+#define HAVE_CEXP
+double complex
+cexp (double complex z)
+{
+ double a, b;
+ double complex v;
+
+ a = REALPART (z);
+ b = IMAGPART (z);
+ COMPLEX_ASSIGN (v, cos (b), sin (b));
+ return exp (a) * v;
+}
+#endif
+
+#if !defined(HAVE_CEXPL) && defined(HAVE_COSL) && defined(HAVE_SINL) && defined(EXPL)
+#define HAVE_CEXPL
+long double complex
+cexpl (long double complex z)
+{
+ long double a, b;
+ long double complex v;
+
+ a = REALPART (z);
+ b = IMAGPART (z);
+ COMPLEX_ASSIGN (v, cosl (b), sinl (b));
+ return expl (a) * v;
+}
+#endif
+
+
+/* log(z) = log (cabs(z)) + i*carg(z) */
+#if !defined(HAVE_CLOGF)
+#define HAVE_CLOGF
+float complex
+clogf (float complex z)
+{
+ float complex v;
+
+ COMPLEX_ASSIGN (v, logf (cabsf (z)), cargf (z));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CLOG)
+#define HAVE_CLOG
+double complex
+clog (double complex z)
+{
+ double complex v;
+
+ COMPLEX_ASSIGN (v, log (cabs (z)), carg (z));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CLOGL) && defined(HAVE_LOGL) && defined(HAVE_CABSL) && defined(HAVE_CARGL)
+#define HAVE_CLOGL
+long double complex
+clogl (long double complex z)
+{
+ long double complex v;
+
+ COMPLEX_ASSIGN (v, logl (cabsl (z)), cargl (z));
+ return v;
+}
+#endif
+
+
+/* log10(z) = log10 (cabs(z)) + i*carg(z) */
+#if !defined(HAVE_CLOG10F)
+#define HAVE_CLOG10F
+float complex
+clog10f (float complex z)
+{
+ float complex v;
+
+ COMPLEX_ASSIGN (v, log10f (cabsf (z)), cargf (z));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CLOG10)
+#define HAVE_CLOG10
+double complex
+clog10 (double complex z)
+{
+ double complex v;
+
+ COMPLEX_ASSIGN (v, log10 (cabs (z)), carg (z));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CLOG10L) && defined(HAVE_LOG10L) && defined(HAVE_CABSL) && defined(HAVE_CARGL)
+#define HAVE_CLOG10L
+long double complex
+clog10l (long double complex z)
+{
+ long double complex v;
+
+ COMPLEX_ASSIGN (v, log10l (cabsl (z)), cargl (z));
+ return v;
+}
+#endif
+
+
+/* pow(base, power) = cexp (power * clog (base)) */
+#if !defined(HAVE_CPOWF)
+#define HAVE_CPOWF
+float complex
+cpowf (float complex base, float complex power)
+{
+ return cexpf (power * clogf (base));
+}
+#endif
+
+#if !defined(HAVE_CPOW)
+#define HAVE_CPOW
+double complex
+cpow (double complex base, double complex power)
+{
+ return cexp (power * clog (base));
+}
+#endif
+
+#if !defined(HAVE_CPOWL) && defined(HAVE_CEXPL) && defined(HAVE_CLOGL)
+#define HAVE_CPOWL
+long double complex
+cpowl (long double complex base, long double complex power)
+{
+ return cexpl (power * clogl (base));
+}
+#endif
+
+
+/* sqrt(z). Algorithm pulled from glibc. */
+#if !defined(HAVE_CSQRTF)
+#define HAVE_CSQRTF
+float complex
+csqrtf (float complex z)
+{
+ float re, im;
+ float complex v;
+
+ re = REALPART (z);
+ im = IMAGPART (z);
+ if (im == 0)
+ {
+ if (re < 0)
+ {
+ COMPLEX_ASSIGN (v, 0, copysignf (sqrtf (-re), im));
+ }
+ else
+ {
+ COMPLEX_ASSIGN (v, fabsf (sqrtf (re)), copysignf (0, im));
+ }
+ }
+ else if (re == 0)
+ {
+ float r;
+
+ r = sqrtf (0.5 * fabsf (im));
+
+ COMPLEX_ASSIGN (v, copysignf (r, im), r);
+ }
+ else
+ {
+ float d, r, s;
+
+ d = hypotf (re, im);
+ /* Use the identity 2 Re res Im res = Im x
+ to avoid cancellation error in d +/- Re x. */
+ if (re > 0)
+ {
+ r = sqrtf (0.5 * d + 0.5 * re);
+ s = (0.5 * im) / r;
+ }
+ else
+ {
+ s = sqrtf (0.5 * d - 0.5 * re);
+ r = fabsf ((0.5 * im) / s);
+ }
+
+ COMPLEX_ASSIGN (v, r, copysignf (s, im));
+ }
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CSQRT)
+#define HAVE_CSQRT
+double complex
+csqrt (double complex z)
+{
+ double re, im;
+ double complex v;
+
+ re = REALPART (z);
+ im = IMAGPART (z);
+ if (im == 0)
+ {
+ if (re < 0)
+ {
+ COMPLEX_ASSIGN (v, 0, copysign (sqrt (-re), im));
+ }
+ else
+ {
+ COMPLEX_ASSIGN (v, fabs (sqrt (re)), copysign (0, im));
+ }
+ }
+ else if (re == 0)
+ {
+ double r;
+
+ r = sqrt (0.5 * fabs (im));
+
+ COMPLEX_ASSIGN (v, copysign (r, im), r);
+ }
+ else
+ {
+ double d, r, s;
+
+ d = hypot (re, im);
+ /* Use the identity 2 Re res Im res = Im x
+ to avoid cancellation error in d +/- Re x. */
+ if (re > 0)
+ {
+ r = sqrt (0.5 * d + 0.5 * re);
+ s = (0.5 * im) / r;
+ }
+ else
+ {
+ s = sqrt (0.5 * d - 0.5 * re);
+ r = fabs ((0.5 * im) / s);
+ }
+
+ COMPLEX_ASSIGN (v, r, copysign (s, im));
+ }
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CSQRTL) && defined(HAVE_COPYSIGNL) && defined(HAVE_SQRTL) && defined(HAVE_FABSL) && defined(HAVE_HYPOTL)
+#define HAVE_CSQRTL
+long double complex
+csqrtl (long double complex z)
+{
+ long double re, im;
+ long double complex v;
+
+ re = REALPART (z);
+ im = IMAGPART (z);
+ if (im == 0)
+ {
+ if (re < 0)
+ {
+ COMPLEX_ASSIGN (v, 0, copysignl (sqrtl (-re), im));
+ }
+ else
+ {
+ COMPLEX_ASSIGN (v, fabsl (sqrtl (re)), copysignl (0, im));
+ }
+ }
+ else if (re == 0)
+ {
+ long double r;
+
+ r = sqrtl (0.5 * fabsl (im));
+
+ COMPLEX_ASSIGN (v, copysignl (r, im), r);
+ }
+ else
+ {
+ long double d, r, s;
+
+ d = hypotl (re, im);
+ /* Use the identity 2 Re res Im res = Im x
+ to avoid cancellation error in d +/- Re x. */
+ if (re > 0)
+ {
+ r = sqrtl (0.5 * d + 0.5 * re);
+ s = (0.5 * im) / r;
+ }
+ else
+ {
+ s = sqrtl (0.5 * d - 0.5 * re);
+ r = fabsl ((0.5 * im) / s);
+ }
+
+ COMPLEX_ASSIGN (v, r, copysignl (s, im));
+ }
+ return v;
+}
+#endif
+
+
+/* sinh(a + i b) = sinh(a) cos(b) + i cosh(a) sin(b) */
+#if !defined(HAVE_CSINHF)
+#define HAVE_CSINHF
+float complex
+csinhf (float complex a)
+{
+ float r, i;
+ float complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, sinhf (r) * cosf (i), coshf (r) * sinf (i));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CSINH)
+#define HAVE_CSINH
+double complex
+csinh (double complex a)
+{
+ double r, i;
+ double complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, sinh (r) * cos (i), cosh (r) * sin (i));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CSINHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
+#define HAVE_CSINHL
+long double complex
+csinhl (long double complex a)
+{
+ long double r, i;
+ long double complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, sinhl (r) * cosl (i), coshl (r) * sinl (i));
+ return v;
+}
+#endif
+
+
+/* cosh(a + i b) = cosh(a) cos(b) - i sinh(a) sin(b) */
+#if !defined(HAVE_CCOSHF)
+#define HAVE_CCOSHF
+float complex
+ccoshf (float complex a)
+{
+ float r, i;
+ float complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, coshf (r) * cosf (i), - (sinhf (r) * sinf (i)));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CCOSH)
+#define HAVE_CCOSH
+double complex
+ccosh (double complex a)
+{
+ double r, i;
+ double complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, cosh (r) * cos (i), - (sinh (r) * sin (i)));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CCOSHL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
+#define HAVE_CCOSHL
+long double complex
+ccoshl (long double complex a)
+{
+ long double r, i;
+ long double complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, coshl (r) * cosl (i), - (sinhl (r) * sinl (i)));
+ return v;
+}
+#endif
+
+
+/* tanh(a + i b) = (tanh(a) + i tan(b)) / (1 - i tanh(a) tan(b)) */
+#if !defined(HAVE_CTANHF)
+#define HAVE_CTANHF
+float complex
+ctanhf (float complex a)
+{
+ float rt, it;
+ float complex n, d;
+
+ rt = tanhf (REALPART (a));
+ it = tanf (IMAGPART (a));
+ COMPLEX_ASSIGN (n, rt, it);
+ COMPLEX_ASSIGN (d, 1, - (rt * it));
+
+ return n / d;
+}
+#endif
+
+#if !defined(HAVE_CTANH)
+#define HAVE_CTANH
+double complex
+ctanh (double complex a)
+{
+ double rt, it;
+ double complex n, d;
+
+ rt = tanh (REALPART (a));
+ it = tan (IMAGPART (a));
+ COMPLEX_ASSIGN (n, rt, it);
+ COMPLEX_ASSIGN (d, 1, - (rt * it));
+
+ return n / d;
+}
+#endif
+
+#if !defined(HAVE_CTANHL) && defined(HAVE_TANL) && defined(HAVE_TANHL)
+#define HAVE_CTANHL
+long double complex
+ctanhl (long double complex a)
+{
+ long double rt, it;
+ long double complex n, d;
+
+ rt = tanhl (REALPART (a));
+ it = tanl (IMAGPART (a));
+ COMPLEX_ASSIGN (n, rt, it);
+ COMPLEX_ASSIGN (d, 1, - (rt * it));
+
+ return n / d;
+}
+#endif
+
+
+/* sin(a + i b) = sin(a) cosh(b) + i cos(a) sinh(b) */
+#if !defined(HAVE_CSINF)
+#define HAVE_CSINF
+float complex
+csinf (float complex a)
+{
+ float r, i;
+ float complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, sinf (r) * coshf (i), cosf (r) * sinhf (i));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CSIN)
+#define HAVE_CSIN
+double complex
+csin (double complex a)
+{
+ double r, i;
+ double complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, sin (r) * cosh (i), cos (r) * sinh (i));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CSINL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
+#define HAVE_CSINL
+long double complex
+csinl (long double complex a)
+{
+ long double r, i;
+ long double complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, sinl (r) * coshl (i), cosl (r) * sinhl (i));
+ return v;
+}
+#endif
+
+
+/* cos(a + i b) = cos(a) cosh(b) - i sin(a) sinh(b) */
+#if !defined(HAVE_CCOSF)
+#define HAVE_CCOSF
+float complex
+ccosf (float complex a)
+{
+ float r, i;
+ float complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, cosf (r) * coshf (i), - (sinf (r) * sinhf (i)));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CCOS)
+#define HAVE_CCOS
+double complex
+ccos (double complex a)
+{
+ double r, i;
+ double complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, cos (r) * cosh (i), - (sin (r) * sinh (i)));
+ return v;
+}
+#endif
+
+#if !defined(HAVE_CCOSL) && defined(HAVE_COSL) && defined(HAVE_COSHL) && defined(HAVE_SINL) && defined(HAVE_SINHL)
+#define HAVE_CCOSL
+long double complex
+ccosl (long double complex a)
+{
+ long double r, i;
+ long double complex v;
+
+ r = REALPART (a);
+ i = IMAGPART (a);
+ COMPLEX_ASSIGN (v, cosl (r) * coshl (i), - (sinl (r) * sinhl (i)));
+ return v;
+}
+#endif
+
+
+/* tan(a + i b) = (tan(a) + i tanh(b)) / (1 - i tan(a) tanh(b)) */
+#if !defined(HAVE_CTANF)
+#define HAVE_CTANF
+float complex
+ctanf (float complex a)
+{
+ float rt, it;
+ float complex n, d;
+
+ rt = tanf (REALPART (a));
+ it = tanhf (IMAGPART (a));
+ COMPLEX_ASSIGN (n, rt, it);
+ COMPLEX_ASSIGN (d, 1, - (rt * it));
+
+ return n / d;
+}
+#endif
+
+#if !defined(HAVE_CTAN)
+#define HAVE_CTAN
+double complex
+ctan (double complex a)
+{
+ double rt, it;
+ double complex n, d;
+
+ rt = tan (REALPART (a));
+ it = tanh (IMAGPART (a));
+ COMPLEX_ASSIGN (n, rt, it);
+ COMPLEX_ASSIGN (d, 1, - (rt * it));
+
+ return n / d;
+}
+#endif
+
+#if !defined(HAVE_CTANL) && defined(HAVE_TANL) && defined(HAVE_TANHL)
+#define HAVE_CTANL
+long double complex
+ctanl (long double complex a)
+{
+ long double rt, it;
+ long double complex n, d;
+
+ rt = tanl (REALPART (a));
+ it = tanhl (IMAGPART (a));
+ COMPLEX_ASSIGN (n, rt, it);
+ COMPLEX_ASSIGN (d, 1, - (rt * it));
+
+ return n / d;
+}
+#endif
+