summaryrefslogtreecommitdiff
path: root/libgfortran/generated/maxloc0_4_r4.c
diff options
context:
space:
mode:
Diffstat (limited to 'libgfortran/generated/maxloc0_4_r4.c')
-rw-r--r--libgfortran/generated/maxloc0_4_r4.c230
1 files changed, 230 insertions, 0 deletions
diff --git a/libgfortran/generated/maxloc0_4_r4.c b/libgfortran/generated/maxloc0_4_r4.c
new file mode 100644
index 00000000000..cb77fa6eeca
--- /dev/null
+++ b/libgfortran/generated/maxloc0_4_r4.c
@@ -0,0 +1,230 @@
+/* Implementation of the MAXLOC intrinsic
+ Copyright 2002 Free Software Foundation, Inc.
+ Contributed by Paul Brook <paul@nowt.org>
+
+This file is part of the GNU Fortran 95 runtime library (libgfor).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 2.1 of the License, or (at your option) any later version.
+
+Libgfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU Lesser General Public License for more details.
+
+You should have received a copy of the GNU Lesser General Public
+License along with libgfor; see the file COPYING.LIB. If not,
+write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "config.h"
+#include <stdlib.h>
+#include <assert.h>
+#include <float.h>
+#include <limits.h>
+#include "libgfortran.h"
+
+
+
+void
+__maxloc0_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 *array)
+{
+ index_type count[GFC_MAX_DIMENSIONS];
+ index_type extent[GFC_MAX_DIMENSIONS];
+ index_type sstride[GFC_MAX_DIMENSIONS];
+ index_type dstride;
+ GFC_REAL_4 *base;
+ GFC_INTEGER_4 *dest;
+ index_type rank;
+ index_type n;
+
+ rank = GFC_DESCRIPTOR_RANK (array);
+ assert (rank > 0);
+ assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
+ assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
+ if (array->dim[0].stride == 0)
+ array->dim[0].stride = 1;
+ if (retarray->dim[0].stride == 0)
+ retarray->dim[0].stride = 1;
+
+ dstride = retarray->dim[0].stride;
+ dest = retarray->data;
+ for (n = 0; n < rank; n++)
+ {
+ sstride[n] = array->dim[n].stride;
+ extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
+ count[n] = 0;
+ if (extent[n] <= 0)
+ {
+ /* Set the return value. */
+ for (n = 0; n < rank; n++)
+ dest[n * dstride] = 0;
+ return;
+ }
+ }
+
+ base = array->data;
+
+ /* Initialize the return value. */
+ for (n = 0; n < rank; n++)
+ dest[n * dstride] = 1;
+ {
+
+ GFC_REAL_4 maxval;
+
+ maxval = -GFC_REAL_4_HUGE;
+
+ while (base)
+ {
+ {
+ /* Implementation start. */
+
+ if (*base > maxval)
+ {
+ maxval = *base;
+ for (n = 0; n < rank; n++)
+ dest[n * dstride] = count[n] + 1;
+ }
+ /* Implementation end. */
+ }
+ /* Advance to the next element. */
+ count[0]++;
+ base += sstride[0];
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it and increment
+ the next dimension. */
+ count[n] = 0;
+ /* We could precalculate these products, but this is a less
+ frequently used path so proabably not worth it. */
+ base -= sstride[n] * extent[n];
+ n++;
+ if (n == rank)
+ {
+ /* Break out of the loop. */
+ base = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ base += sstride[n];
+ }
+ }
+ }
+ }
+}
+
+void
+__mmaxloc0_4_r4 (gfc_array_i4 * retarray, gfc_array_r4 *array, gfc_array_l4 * mask)
+{
+ index_type count[GFC_MAX_DIMENSIONS];
+ index_type extent[GFC_MAX_DIMENSIONS];
+ index_type sstride[GFC_MAX_DIMENSIONS];
+ index_type mstride[GFC_MAX_DIMENSIONS];
+ index_type dstride;
+ GFC_INTEGER_4 *dest;
+ GFC_REAL_4 *base;
+ GFC_LOGICAL_4 *mbase;
+ int rank;
+ index_type n;
+
+ rank = GFC_DESCRIPTOR_RANK (array);
+ assert (rank > 0);
+ assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
+ assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
+ assert (GFC_DESCRIPTOR_RANK (mask) == rank);
+
+ if (array->dim[0].stride == 0)
+ array->dim[0].stride = 1;
+ if (retarray->dim[0].stride == 0)
+ retarray->dim[0].stride = 1;
+ if (retarray->dim[0].stride == 0)
+ retarray->dim[0].stride = 1;
+
+ dstride = retarray->dim[0].stride;
+ dest = retarray->data;
+ for (n = 0; n < rank; n++)
+ {
+ sstride[n] = array->dim[n].stride;
+ mstride[n] = mask->dim[n].stride;
+ extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
+ count[n] = 0;
+ if (extent[n] <= 0)
+ {
+ /* Set the return value. */
+ for (n = 0; n < rank; n++)
+ dest[n * dstride] = 0;
+ return;
+ }
+ }
+
+ base = array->data;
+ mbase = mask->data;
+
+ if (GFC_DESCRIPTOR_SIZE (mask) != 4)
+ {
+ /* This allows the same loop to be used for all logical types. */
+ assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
+ for (n = 0; n < rank; n++)
+ mstride[n] <<= 1;
+ mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
+ }
+
+
+ /* Initialize the return value. */
+ for (n = 0; n < rank; n++)
+ dest[n * dstride] = 1;
+ {
+
+ GFC_REAL_4 maxval;
+
+ maxval = -GFC_REAL_4_HUGE;
+
+ while (base)
+ {
+ {
+ /* Implementation start. */
+
+ if (*mbase && *base > maxval)
+ {
+ maxval = *base;
+ for (n = 0; n < rank; n++)
+ dest[n * dstride] = count[n] + 1;
+ }
+ /* Implementation end. */
+ }
+ /* Advance to the next element. */
+ count[0]++;
+ base += sstride[0];
+ mbase += mstride[0];
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it and increment
+ the next dimension. */
+ count[n] = 0;
+ /* We could precalculate these products, but this is a less
+ frequently used path so proabably not worth it. */
+ base -= sstride[n] * extent[n];
+ mbase -= mstride[n] * extent[n];
+ n++;
+ if (n == rank)
+ {
+ /* Break out of the loop. */
+ base = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ base += sstride[n];
+ mbase += mstride[n];
+ }
+ }
+ }
+ }
+}