summaryrefslogtreecommitdiff
path: root/libgfortran/generated/matmul_i1.c
diff options
context:
space:
mode:
Diffstat (limited to 'libgfortran/generated/matmul_i1.c')
-rw-r--r--libgfortran/generated/matmul_i1.c2233
1 files changed, 2233 insertions, 0 deletions
diff --git a/libgfortran/generated/matmul_i1.c b/libgfortran/generated/matmul_i1.c
index 81c067b2ce1..2cce9d13b9f 100644
--- a/libgfortran/generated/matmul_i1.c
+++ b/libgfortran/generated/matmul_i1.c
@@ -75,6 +75,2233 @@ extern void matmul_i1 (gfc_array_i1 * const restrict retarray,
int blas_limit, blas_call gemm);
export_proto(matmul_i1);
+
+
+
+/* Put exhaustive list of possible architectures here here, ORed together. */
+
+#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F)
+
+#ifdef HAVE_AVX
+static void
+matmul_i1_avx (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx")));
+static void
+matmul_i1_avx (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_1 * restrict abase;
+ const GFC_INTEGER_1 * restrict bbase;
+ GFC_INTEGER_1 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_1 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_1 *a, *b;
+ GFC_INTEGER_1 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_1 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX */
+
+#ifdef HAVE_AVX2
+static void
+matmul_i1_avx2 (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx2")));
+static void
+matmul_i1_avx2 (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_1 * restrict abase;
+ const GFC_INTEGER_1 * restrict bbase;
+ GFC_INTEGER_1 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_1 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_1 *a, *b;
+ GFC_INTEGER_1 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_1 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX2 */
+
+#ifdef HAVE_AVX512F
+static void
+matmul_i1_avx512f (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) __attribute__((__target__("avx512f")));
+static void
+matmul_i1_avx512f (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_1 * restrict abase;
+ const GFC_INTEGER_1 * restrict bbase;
+ GFC_INTEGER_1 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_1 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_1 *a, *b;
+ GFC_INTEGER_1 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_1 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+#endif /* HAVE_AVX512F */
+
+/* Function to fall back to if there is no special processor-specific version. */
+static void
+matmul_i1_vanilla (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ const GFC_INTEGER_1 * restrict abase;
+ const GFC_INTEGER_1 * restrict bbase;
+ GFC_INTEGER_1 * restrict dest;
+
+ index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
+ index_type x, y, n, count, xcount, ycount;
+
+ assert (GFC_DESCRIPTOR_RANK (a) == 2
+ || GFC_DESCRIPTOR_RANK (b) == 2);
+
+/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
+
+ Either A or B (but not both) can be rank 1:
+
+ o One-dimensional argument A is implicitly treated as a row matrix
+ dimensioned [1,count], so xcount=1.
+
+ o One-dimensional argument B is implicitly treated as a column matrix
+ dimensioned [count, 1], so ycount=1.
+*/
+
+ if (retarray->base_addr == NULL)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+ }
+ else
+ {
+ GFC_DIMENSION_SET(retarray->dim[0], 0,
+ GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
+
+ GFC_DIMENSION_SET(retarray->dim[1], 0,
+ GFC_DESCRIPTOR_EXTENT(b,1) - 1,
+ GFC_DESCRIPTOR_EXTENT(retarray,0));
+ }
+
+ retarray->base_addr
+ = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1));
+ retarray->offset = 0;
+ }
+ else if (unlikely (compile_options.bounds_check))
+ {
+ index_type ret_extent, arg_extent;
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic: is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ else
+ {
+ arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 1:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+
+ arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
+ ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
+ if (arg_extent != ret_extent)
+ runtime_error ("Incorrect extent in return array in"
+ " MATMUL intrinsic for dimension 2:"
+ " is %ld, should be %ld",
+ (long int) ret_extent, (long int) arg_extent);
+ }
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (retarray) == 1)
+ {
+ /* One-dimensional result may be addressed in the code below
+ either as a row or a column matrix. We want both cases to
+ work. */
+ rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ }
+ else
+ {
+ rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
+ rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
+ }
+
+
+ if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ /* Treat it as a a row matrix A[1,count]. */
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = 1;
+
+ xcount = 1;
+ count = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+ else
+ {
+ axstride = GFC_DESCRIPTOR_STRIDE(a,0);
+ aystride = GFC_DESCRIPTOR_STRIDE(a,1);
+
+ count = GFC_DESCRIPTOR_EXTENT(a,1);
+ xcount = GFC_DESCRIPTOR_EXTENT(a,0);
+ }
+
+ if (count != GFC_DESCRIPTOR_EXTENT(b,0))
+ {
+ if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
+ runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
+ }
+
+ if (GFC_DESCRIPTOR_RANK (b) == 1)
+ {
+ /* Treat it as a column matrix B[count,1] */
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+
+ /* bystride should never be used for 1-dimensional b.
+ in case it is we want it to cause a segfault, rather than
+ an incorrect result. */
+ bystride = 0xDEADBEEF;
+ ycount = 1;
+ }
+ else
+ {
+ bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
+ bystride = GFC_DESCRIPTOR_STRIDE(b,1);
+ ycount = GFC_DESCRIPTOR_EXTENT(b,1);
+ }
+
+ abase = a->base_addr;
+ bbase = b->base_addr;
+ dest = retarray->base_addr;
+
+ /* Now that everything is set up, we perform the multiplication
+ itself. */
+
+#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+
+ if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
+ && (bxstride == 1 || bystride == 1)
+ && (((float) xcount) * ((float) ycount) * ((float) count)
+ > POW3(blas_limit)))
+ {
+ const int m = xcount, n = ycount, k = count, ldc = rystride;
+ const GFC_INTEGER_1 one = 1, zero = 0;
+ const int lda = (axstride == 1) ? aystride : axstride,
+ ldb = (bxstride == 1) ? bystride : bxstride;
+
+ if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
+ {
+ assert (gemm != NULL);
+ gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m,
+ &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest,
+ &ldc, 1, 1);
+ return;
+ }
+ }
+
+ if (rxstride == 1 && axstride == 1 && bxstride == 1)
+ {
+ /* This block of code implements a tuned matmul, derived from
+ Superscalar GEMM-based level 3 BLAS, Beta version 0.1
+
+ Bo Kagstrom and Per Ling
+ Department of Computing Science
+ Umea University
+ S-901 87 Umea, Sweden
+
+ from netlib.org, translated to C, and modified for matmul.m4. */
+
+ const GFC_INTEGER_1 *a, *b;
+ GFC_INTEGER_1 *c;
+ const index_type m = xcount, n = ycount, k = count;
+
+ /* System generated locals */
+ index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset,
+ i1, i2, i3, i4, i5, i6;
+
+ /* Local variables */
+ GFC_INTEGER_1 t1[65536], /* was [256][256] */
+ f11, f12, f21, f22, f31, f32, f41, f42,
+ f13, f14, f23, f24, f33, f34, f43, f44;
+ index_type i, j, l, ii, jj, ll;
+ index_type isec, jsec, lsec, uisec, ujsec, ulsec;
+
+ a = abase;
+ b = bbase;
+ c = retarray->base_addr;
+
+ /* Parameter adjustments */
+ c_dim1 = rystride;
+ c_offset = 1 + c_dim1;
+ c -= c_offset;
+ a_dim1 = aystride;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = bystride;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Early exit if possible */
+ if (m == 0 || n == 0 || k == 0)
+ return;
+
+ /* Empty c first. */
+ for (j=1; j<=n; j++)
+ for (i=1; i<=m; i++)
+ c[i + j * c_dim1] = (GFC_INTEGER_1)0;
+
+ /* Start turning the crank. */
+ i1 = n;
+ for (jj = 1; jj <= i1; jj += 512)
+ {
+ /* Computing MIN */
+ i2 = 512;
+ i3 = n - jj + 1;
+ jsec = min(i2,i3);
+ ujsec = jsec - jsec % 4;
+ i2 = k;
+ for (ll = 1; ll <= i2; ll += 256)
+ {
+ /* Computing MIN */
+ i3 = 256;
+ i4 = k - ll + 1;
+ lsec = min(i3,i4);
+ ulsec = lsec - lsec % 2;
+
+ i3 = m;
+ for (ii = 1; ii <= i3; ii += 256)
+ {
+ /* Computing MIN */
+ i4 = 256;
+ i5 = m - ii + 1;
+ isec = min(i4,i5);
+ uisec = isec - isec % 2;
+ i4 = ll + ulsec - 1;
+ for (l = ll; l <= i4; l += 2)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 2)
+ {
+ t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] =
+ a[i + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] =
+ a[i + (l + 1) * a_dim1];
+ t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + l * a_dim1];
+ t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] =
+ a[i + 1 + (l + 1) * a_dim1];
+ }
+ if (uisec < isec)
+ {
+ t1[l - ll + 1 + (isec << 8) - 257] =
+ a[ii + isec - 1 + l * a_dim1];
+ t1[l - ll + 2 + (isec << 8) - 257] =
+ a[ii + isec - 1 + (l + 1) * a_dim1];
+ }
+ }
+ if (ulsec < lsec)
+ {
+ i4 = ii + isec - 1;
+ for (i = ii; i<= i4; ++i)
+ {
+ t1[lsec + ((i - ii + 1) << 8) - 257] =
+ a[i + (ll + lsec - 1) * a_dim1];
+ }
+ }
+
+ uisec = isec - isec % 4;
+ i4 = jj + ujsec - 1;
+ for (j = jj; j <= i4; j += 4)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f22 = c[i + 1 + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f23 = c[i + 1 + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ f24 = c[i + 1 + (j + 3) * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ f32 = c[i + 2 + (j + 1) * c_dim1];
+ f42 = c[i + 3 + (j + 1) * c_dim1];
+ f33 = c[i + 2 + (j + 2) * c_dim1];
+ f43 = c[i + 3 + (j + 2) * c_dim1];
+ f34 = c[i + 2 + (j + 3) * c_dim1];
+ f44 = c[i + 3 + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + j * b_dim1];
+ f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 1) * b_dim1];
+ f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 2) * b_dim1];
+ f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257]
+ * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + 1 + (j + 1) * c_dim1] = f22;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + 1 + (j + 2) * c_dim1] = f23;
+ c[i + (j + 3) * c_dim1] = f14;
+ c[i + 1 + (j + 3) * c_dim1] = f24;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ c[i + 2 + (j + 1) * c_dim1] = f32;
+ c[i + 3 + (j + 1) * c_dim1] = f42;
+ c[i + 2 + (j + 2) * c_dim1] = f33;
+ c[i + 3 + (j + 2) * c_dim1] = f43;
+ c[i + 2 + (j + 3) * c_dim1] = f34;
+ c[i + 3 + (j + 3) * c_dim1] = f44;
+ }
+ if (uisec < isec)
+ {
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ f12 = c[i + (j + 1) * c_dim1];
+ f13 = c[i + (j + 2) * c_dim1];
+ f14 = c[i + (j + 3) * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 1) * b_dim1];
+ f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 2) * b_dim1];
+ f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + (j + 3) * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + (j + 1) * c_dim1] = f12;
+ c[i + (j + 2) * c_dim1] = f13;
+ c[i + (j + 3) * c_dim1] = f14;
+ }
+ }
+ }
+ if (ujsec < jsec)
+ {
+ i4 = jj + jsec - 1;
+ for (j = jj + ujsec; j <= i4; ++j)
+ {
+ i5 = ii + uisec - 1;
+ for (i = ii; i <= i5; i += 4)
+ {
+ f11 = c[i + j * c_dim1];
+ f21 = c[i + 1 + j * c_dim1];
+ f31 = c[i + 2 + j * c_dim1];
+ f41 = c[i + 3 + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) -
+ 257] * b[l + j * b_dim1];
+ f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) -
+ 257] * b[l + j * b_dim1];
+ f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ c[i + 1 + j * c_dim1] = f21;
+ c[i + 2 + j * c_dim1] = f31;
+ c[i + 3 + j * c_dim1] = f41;
+ }
+ i5 = ii + isec - 1;
+ for (i = ii + uisec; i <= i5; ++i)
+ {
+ f11 = c[i + j * c_dim1];
+ i6 = ll + lsec - 1;
+ for (l = ll; l <= i6; ++l)
+ {
+ f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) -
+ 257] * b[l + j * b_dim1];
+ }
+ c[i + j * c_dim1] = f11;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+ }
+ else if (rxstride == 1 && aystride == 1 && bxstride == 1)
+ {
+ if (GFC_DESCRIPTOR_RANK (a) != 1)
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n] * bbase_y[n];
+ dest_y[x] = s;
+ }
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n];
+ dest[y*rystride] = s;
+ }
+ }
+ }
+ else if (axstride < aystride)
+ {
+ for (y = 0; y < ycount; y++)
+ for (x = 0; x < xcount; x++)
+ dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0;
+
+ for (y = 0; y < ycount; y++)
+ for (n = 0; n < count; n++)
+ for (x = 0; x < xcount; x++)
+ /* dest[x,y] += a[x,n] * b[n,y] */
+ dest[x*rxstride + y*rystride] +=
+ abase[x*axstride + n*aystride] *
+ bbase[n*bxstride + y*bystride];
+ }
+ else if (GFC_DESCRIPTOR_RANK (a) == 1)
+ {
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase[n*axstride] * bbase_y[n*bxstride];
+ dest[y*rxstride] = s;
+ }
+ }
+ else
+ {
+ const GFC_INTEGER_1 *restrict abase_x;
+ const GFC_INTEGER_1 *restrict bbase_y;
+ GFC_INTEGER_1 *restrict dest_y;
+ GFC_INTEGER_1 s;
+
+ for (y = 0; y < ycount; y++)
+ {
+ bbase_y = &bbase[y*bystride];
+ dest_y = &dest[y*rystride];
+ for (x = 0; x < xcount; x++)
+ {
+ abase_x = &abase[x*axstride];
+ s = (GFC_INTEGER_1) 0;
+ for (n = 0; n < count; n++)
+ s += abase_x[n*aystride] * bbase_y[n*bxstride];
+ dest_y[x*rxstride] = s;
+ }
+ }
+ }
+}
+#undef POW3
+#undef min
+#undef max
+
+
+/* Compiling main function, with selection code for the processor. */
+
+/* Currently, this is i386 only. Adjust for other architectures. */
+
+#include <config/i386/cpuinfo.h>
+void matmul_i1 (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm)
+{
+ static void (*matmul_p) (gfc_array_i1 * const restrict retarray,
+ gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
+ int blas_limit, blas_call gemm) = NULL;
+
+ if (matmul_p == NULL)
+ {
+ matmul_p = matmul_i1_vanilla;
+ if (__cpu_model.__cpu_vendor == VENDOR_INTEL)
+ {
+ /* Run down the available processors in order of preference. */
+#ifdef HAVE_AVX512F
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F))
+ {
+ matmul_p = matmul_i1_avx512f;
+ goto tailcall;
+ }
+
+#endif /* HAVE_AVX512F */
+
+#ifdef HAVE_AVX2
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2))
+ {
+ matmul_p = matmul_i1_avx2;
+ goto tailcall;
+ }
+
+#endif
+
+#ifdef HAVE_AVX
+ if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX))
+ {
+ matmul_p = matmul_i1_avx;
+ goto tailcall;
+ }
+#endif /* HAVE_AVX */
+ }
+ }
+
+tailcall:
+ (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm);
+}
+
+#else /* Just the vanilla function. */
+
void
matmul_i1 (gfc_array_i1 * const restrict retarray,
gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas,
@@ -607,4 +2834,10 @@ matmul_i1 (gfc_array_i1 * const restrict retarray,
}
}
}
+#undef POW3
+#undef min
+#undef max
+
#endif
+#endif
+