diff options
Diffstat (limited to 'libgfortran/generated/matmul_i1.c')
-rw-r--r-- | libgfortran/generated/matmul_i1.c | 2233 |
1 files changed, 2233 insertions, 0 deletions
diff --git a/libgfortran/generated/matmul_i1.c b/libgfortran/generated/matmul_i1.c index 81c067b2ce1..2cce9d13b9f 100644 --- a/libgfortran/generated/matmul_i1.c +++ b/libgfortran/generated/matmul_i1.c @@ -75,6 +75,2233 @@ extern void matmul_i1 (gfc_array_i1 * const restrict retarray, int blas_limit, blas_call gemm); export_proto(matmul_i1); + + + +/* Put exhaustive list of possible architectures here here, ORed together. */ + +#if defined(HAVE_AVX) || defined(HAVE_AVX2) || defined(HAVE_AVX512F) + +#ifdef HAVE_AVX +static void +matmul_i1_avx (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) __attribute__((__target__("avx"))); +static void +matmul_i1_avx (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) +{ + const GFC_INTEGER_1 * restrict abase; + const GFC_INTEGER_1 * restrict bbase; + GFC_INTEGER_1 * restrict dest; + + index_type rxstride, rystride, axstride, aystride, bxstride, bystride; + index_type x, y, n, count, xcount, ycount; + + assert (GFC_DESCRIPTOR_RANK (a) == 2 + || GFC_DESCRIPTOR_RANK (b) == 2); + +/* C[xcount,ycount] = A[xcount, count] * B[count,ycount] + + Either A or B (but not both) can be rank 1: + + o One-dimensional argument A is implicitly treated as a row matrix + dimensioned [1,count], so xcount=1. + + o One-dimensional argument B is implicitly treated as a column matrix + dimensioned [count, 1], so ycount=1. +*/ + + if (retarray->base_addr == NULL) + { + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); + } + else + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); + + GFC_DIMENSION_SET(retarray->dim[1], 0, + GFC_DESCRIPTOR_EXTENT(b,1) - 1, + GFC_DESCRIPTOR_EXTENT(retarray,0)); + } + + retarray->base_addr + = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1)); + retarray->offset = 0; + } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } + + + if (GFC_DESCRIPTOR_RANK (retarray) == 1) + { + /* One-dimensional result may be addressed in the code below + either as a row or a column matrix. We want both cases to + work. */ + rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); + } + else + { + rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); + rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); + } + + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + /* Treat it as a a row matrix A[1,count]. */ + axstride = GFC_DESCRIPTOR_STRIDE(a,0); + aystride = 1; + + xcount = 1; + count = GFC_DESCRIPTOR_EXTENT(a,0); + } + else + { + axstride = GFC_DESCRIPTOR_STRIDE(a,0); + aystride = GFC_DESCRIPTOR_STRIDE(a,1); + + count = GFC_DESCRIPTOR_EXTENT(a,1); + xcount = GFC_DESCRIPTOR_EXTENT(a,0); + } + + if (count != GFC_DESCRIPTOR_EXTENT(b,0)) + { + if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) + runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); + } + + if (GFC_DESCRIPTOR_RANK (b) == 1) + { + /* Treat it as a column matrix B[count,1] */ + bxstride = GFC_DESCRIPTOR_STRIDE(b,0); + + /* bystride should never be used for 1-dimensional b. + in case it is we want it to cause a segfault, rather than + an incorrect result. */ + bystride = 0xDEADBEEF; + ycount = 1; + } + else + { + bxstride = GFC_DESCRIPTOR_STRIDE(b,0); + bystride = GFC_DESCRIPTOR_STRIDE(b,1); + ycount = GFC_DESCRIPTOR_EXTENT(b,1); + } + + abase = a->base_addr; + bbase = b->base_addr; + dest = retarray->base_addr; + + /* Now that everything is set up, we perform the multiplication + itself. */ + +#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) + + if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) + && (bxstride == 1 || bystride == 1) + && (((float) xcount) * ((float) ycount) * ((float) count) + > POW3(blas_limit))) + { + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_1 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; + + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) + { + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; + } + } + + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_1 *a, *b; + GFC_INTEGER_1 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_1 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_1)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) + { + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) + { + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) + { + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } + } + } + } + return; + } + else if (rxstride == 1 && aystride == 1 && bxstride == 1) + { + if (GFC_DESCRIPTOR_RANK (a) != 1) + { + const GFC_INTEGER_1 *restrict abase_x; + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 *restrict dest_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + dest_y = &dest[y*rystride]; + for (x = 0; x < xcount; x++) + { + abase_x = &abase[x*axstride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase_x[n] * bbase_y[n]; + dest_y[x] = s; + } + } + } + else + { + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase[n*axstride] * bbase_y[n]; + dest[y*rystride] = s; + } + } + } + else if (axstride < aystride) + { + for (y = 0; y < ycount; y++) + for (x = 0; x < xcount; x++) + dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0; + + for (y = 0; y < ycount; y++) + for (n = 0; n < count; n++) + for (x = 0; x < xcount; x++) + /* dest[x,y] += a[x,n] * b[n,y] */ + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; + } + else if (GFC_DESCRIPTOR_RANK (a) == 1) + { + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase[n*axstride] * bbase_y[n*bxstride]; + dest[y*rxstride] = s; + } + } + else + { + const GFC_INTEGER_1 *restrict abase_x; + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 *restrict dest_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + dest_y = &dest[y*rystride]; + for (x = 0; x < xcount; x++) + { + abase_x = &abase[x*axstride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase_x[n*aystride] * bbase_y[n*bxstride]; + dest_y[x*rxstride] = s; + } + } + } +} +#undef POW3 +#undef min +#undef max + +#endif /* HAVE_AVX */ + +#ifdef HAVE_AVX2 +static void +matmul_i1_avx2 (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) __attribute__((__target__("avx2"))); +static void +matmul_i1_avx2 (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) +{ + const GFC_INTEGER_1 * restrict abase; + const GFC_INTEGER_1 * restrict bbase; + GFC_INTEGER_1 * restrict dest; + + index_type rxstride, rystride, axstride, aystride, bxstride, bystride; + index_type x, y, n, count, xcount, ycount; + + assert (GFC_DESCRIPTOR_RANK (a) == 2 + || GFC_DESCRIPTOR_RANK (b) == 2); + +/* C[xcount,ycount] = A[xcount, count] * B[count,ycount] + + Either A or B (but not both) can be rank 1: + + o One-dimensional argument A is implicitly treated as a row matrix + dimensioned [1,count], so xcount=1. + + o One-dimensional argument B is implicitly treated as a column matrix + dimensioned [count, 1], so ycount=1. +*/ + + if (retarray->base_addr == NULL) + { + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); + } + else + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); + + GFC_DIMENSION_SET(retarray->dim[1], 0, + GFC_DESCRIPTOR_EXTENT(b,1) - 1, + GFC_DESCRIPTOR_EXTENT(retarray,0)); + } + + retarray->base_addr + = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1)); + retarray->offset = 0; + } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } + + + if (GFC_DESCRIPTOR_RANK (retarray) == 1) + { + /* One-dimensional result may be addressed in the code below + either as a row or a column matrix. We want both cases to + work. */ + rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); + } + else + { + rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); + rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); + } + + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + /* Treat it as a a row matrix A[1,count]. */ + axstride = GFC_DESCRIPTOR_STRIDE(a,0); + aystride = 1; + + xcount = 1; + count = GFC_DESCRIPTOR_EXTENT(a,0); + } + else + { + axstride = GFC_DESCRIPTOR_STRIDE(a,0); + aystride = GFC_DESCRIPTOR_STRIDE(a,1); + + count = GFC_DESCRIPTOR_EXTENT(a,1); + xcount = GFC_DESCRIPTOR_EXTENT(a,0); + } + + if (count != GFC_DESCRIPTOR_EXTENT(b,0)) + { + if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) + runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); + } + + if (GFC_DESCRIPTOR_RANK (b) == 1) + { + /* Treat it as a column matrix B[count,1] */ + bxstride = GFC_DESCRIPTOR_STRIDE(b,0); + + /* bystride should never be used for 1-dimensional b. + in case it is we want it to cause a segfault, rather than + an incorrect result. */ + bystride = 0xDEADBEEF; + ycount = 1; + } + else + { + bxstride = GFC_DESCRIPTOR_STRIDE(b,0); + bystride = GFC_DESCRIPTOR_STRIDE(b,1); + ycount = GFC_DESCRIPTOR_EXTENT(b,1); + } + + abase = a->base_addr; + bbase = b->base_addr; + dest = retarray->base_addr; + + /* Now that everything is set up, we perform the multiplication + itself. */ + +#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) + + if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) + && (bxstride == 1 || bystride == 1) + && (((float) xcount) * ((float) ycount) * ((float) count) + > POW3(blas_limit))) + { + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_1 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; + + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) + { + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; + } + } + + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_1 *a, *b; + GFC_INTEGER_1 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_1 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_1)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) + { + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) + { + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) + { + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } + } + } + } + return; + } + else if (rxstride == 1 && aystride == 1 && bxstride == 1) + { + if (GFC_DESCRIPTOR_RANK (a) != 1) + { + const GFC_INTEGER_1 *restrict abase_x; + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 *restrict dest_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + dest_y = &dest[y*rystride]; + for (x = 0; x < xcount; x++) + { + abase_x = &abase[x*axstride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase_x[n] * bbase_y[n]; + dest_y[x] = s; + } + } + } + else + { + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase[n*axstride] * bbase_y[n]; + dest[y*rystride] = s; + } + } + } + else if (axstride < aystride) + { + for (y = 0; y < ycount; y++) + for (x = 0; x < xcount; x++) + dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0; + + for (y = 0; y < ycount; y++) + for (n = 0; n < count; n++) + for (x = 0; x < xcount; x++) + /* dest[x,y] += a[x,n] * b[n,y] */ + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; + } + else if (GFC_DESCRIPTOR_RANK (a) == 1) + { + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase[n*axstride] * bbase_y[n*bxstride]; + dest[y*rxstride] = s; + } + } + else + { + const GFC_INTEGER_1 *restrict abase_x; + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 *restrict dest_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + dest_y = &dest[y*rystride]; + for (x = 0; x < xcount; x++) + { + abase_x = &abase[x*axstride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase_x[n*aystride] * bbase_y[n*bxstride]; + dest_y[x*rxstride] = s; + } + } + } +} +#undef POW3 +#undef min +#undef max + +#endif /* HAVE_AVX2 */ + +#ifdef HAVE_AVX512F +static void +matmul_i1_avx512f (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) __attribute__((__target__("avx512f"))); +static void +matmul_i1_avx512f (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) +{ + const GFC_INTEGER_1 * restrict abase; + const GFC_INTEGER_1 * restrict bbase; + GFC_INTEGER_1 * restrict dest; + + index_type rxstride, rystride, axstride, aystride, bxstride, bystride; + index_type x, y, n, count, xcount, ycount; + + assert (GFC_DESCRIPTOR_RANK (a) == 2 + || GFC_DESCRIPTOR_RANK (b) == 2); + +/* C[xcount,ycount] = A[xcount, count] * B[count,ycount] + + Either A or B (but not both) can be rank 1: + + o One-dimensional argument A is implicitly treated as a row matrix + dimensioned [1,count], so xcount=1. + + o One-dimensional argument B is implicitly treated as a column matrix + dimensioned [count, 1], so ycount=1. +*/ + + if (retarray->base_addr == NULL) + { + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); + } + else + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); + + GFC_DIMENSION_SET(retarray->dim[1], 0, + GFC_DESCRIPTOR_EXTENT(b,1) - 1, + GFC_DESCRIPTOR_EXTENT(retarray,0)); + } + + retarray->base_addr + = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1)); + retarray->offset = 0; + } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } + + + if (GFC_DESCRIPTOR_RANK (retarray) == 1) + { + /* One-dimensional result may be addressed in the code below + either as a row or a column matrix. We want both cases to + work. */ + rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); + } + else + { + rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); + rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); + } + + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + /* Treat it as a a row matrix A[1,count]. */ + axstride = GFC_DESCRIPTOR_STRIDE(a,0); + aystride = 1; + + xcount = 1; + count = GFC_DESCRIPTOR_EXTENT(a,0); + } + else + { + axstride = GFC_DESCRIPTOR_STRIDE(a,0); + aystride = GFC_DESCRIPTOR_STRIDE(a,1); + + count = GFC_DESCRIPTOR_EXTENT(a,1); + xcount = GFC_DESCRIPTOR_EXTENT(a,0); + } + + if (count != GFC_DESCRIPTOR_EXTENT(b,0)) + { + if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) + runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); + } + + if (GFC_DESCRIPTOR_RANK (b) == 1) + { + /* Treat it as a column matrix B[count,1] */ + bxstride = GFC_DESCRIPTOR_STRIDE(b,0); + + /* bystride should never be used for 1-dimensional b. + in case it is we want it to cause a segfault, rather than + an incorrect result. */ + bystride = 0xDEADBEEF; + ycount = 1; + } + else + { + bxstride = GFC_DESCRIPTOR_STRIDE(b,0); + bystride = GFC_DESCRIPTOR_STRIDE(b,1); + ycount = GFC_DESCRIPTOR_EXTENT(b,1); + } + + abase = a->base_addr; + bbase = b->base_addr; + dest = retarray->base_addr; + + /* Now that everything is set up, we perform the multiplication + itself. */ + +#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) + + if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) + && (bxstride == 1 || bystride == 1) + && (((float) xcount) * ((float) ycount) * ((float) count) + > POW3(blas_limit))) + { + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_1 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; + + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) + { + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; + } + } + + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_1 *a, *b; + GFC_INTEGER_1 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_1 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_1)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) + { + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) + { + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) + { + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } + } + } + } + return; + } + else if (rxstride == 1 && aystride == 1 && bxstride == 1) + { + if (GFC_DESCRIPTOR_RANK (a) != 1) + { + const GFC_INTEGER_1 *restrict abase_x; + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 *restrict dest_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + dest_y = &dest[y*rystride]; + for (x = 0; x < xcount; x++) + { + abase_x = &abase[x*axstride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase_x[n] * bbase_y[n]; + dest_y[x] = s; + } + } + } + else + { + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase[n*axstride] * bbase_y[n]; + dest[y*rystride] = s; + } + } + } + else if (axstride < aystride) + { + for (y = 0; y < ycount; y++) + for (x = 0; x < xcount; x++) + dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0; + + for (y = 0; y < ycount; y++) + for (n = 0; n < count; n++) + for (x = 0; x < xcount; x++) + /* dest[x,y] += a[x,n] * b[n,y] */ + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; + } + else if (GFC_DESCRIPTOR_RANK (a) == 1) + { + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase[n*axstride] * bbase_y[n*bxstride]; + dest[y*rxstride] = s; + } + } + else + { + const GFC_INTEGER_1 *restrict abase_x; + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 *restrict dest_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + dest_y = &dest[y*rystride]; + for (x = 0; x < xcount; x++) + { + abase_x = &abase[x*axstride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase_x[n*aystride] * bbase_y[n*bxstride]; + dest_y[x*rxstride] = s; + } + } + } +} +#undef POW3 +#undef min +#undef max + +#endif /* HAVE_AVX512F */ + +/* Function to fall back to if there is no special processor-specific version. */ +static void +matmul_i1_vanilla (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) +{ + const GFC_INTEGER_1 * restrict abase; + const GFC_INTEGER_1 * restrict bbase; + GFC_INTEGER_1 * restrict dest; + + index_type rxstride, rystride, axstride, aystride, bxstride, bystride; + index_type x, y, n, count, xcount, ycount; + + assert (GFC_DESCRIPTOR_RANK (a) == 2 + || GFC_DESCRIPTOR_RANK (b) == 2); + +/* C[xcount,ycount] = A[xcount, count] * B[count,ycount] + + Either A or B (but not both) can be rank 1: + + o One-dimensional argument A is implicitly treated as a row matrix + dimensioned [1,count], so xcount=1. + + o One-dimensional argument B is implicitly treated as a column matrix + dimensioned [count, 1], so ycount=1. +*/ + + if (retarray->base_addr == NULL) + { + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); + } + else + { + GFC_DIMENSION_SET(retarray->dim[0], 0, + GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); + + GFC_DIMENSION_SET(retarray->dim[1], 0, + GFC_DESCRIPTOR_EXTENT(b,1) - 1, + GFC_DESCRIPTOR_EXTENT(retarray,0)); + } + + retarray->base_addr + = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1)); + retarray->offset = 0; + } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } + + + if (GFC_DESCRIPTOR_RANK (retarray) == 1) + { + /* One-dimensional result may be addressed in the code below + either as a row or a column matrix. We want both cases to + work. */ + rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0); + } + else + { + rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); + rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); + } + + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + /* Treat it as a a row matrix A[1,count]. */ + axstride = GFC_DESCRIPTOR_STRIDE(a,0); + aystride = 1; + + xcount = 1; + count = GFC_DESCRIPTOR_EXTENT(a,0); + } + else + { + axstride = GFC_DESCRIPTOR_STRIDE(a,0); + aystride = GFC_DESCRIPTOR_STRIDE(a,1); + + count = GFC_DESCRIPTOR_EXTENT(a,1); + xcount = GFC_DESCRIPTOR_EXTENT(a,0); + } + + if (count != GFC_DESCRIPTOR_EXTENT(b,0)) + { + if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0) + runtime_error ("dimension of array B incorrect in MATMUL intrinsic"); + } + + if (GFC_DESCRIPTOR_RANK (b) == 1) + { + /* Treat it as a column matrix B[count,1] */ + bxstride = GFC_DESCRIPTOR_STRIDE(b,0); + + /* bystride should never be used for 1-dimensional b. + in case it is we want it to cause a segfault, rather than + an incorrect result. */ + bystride = 0xDEADBEEF; + ycount = 1; + } + else + { + bxstride = GFC_DESCRIPTOR_STRIDE(b,0); + bystride = GFC_DESCRIPTOR_STRIDE(b,1); + ycount = GFC_DESCRIPTOR_EXTENT(b,1); + } + + abase = a->base_addr; + bbase = b->base_addr; + dest = retarray->base_addr; + + /* Now that everything is set up, we perform the multiplication + itself. */ + +#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) + + if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) + && (bxstride == 1 || bystride == 1) + && (((float) xcount) * ((float) ycount) * ((float) count) + > POW3(blas_limit))) + { + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_1 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; + + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) + { + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; + } + } + + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_1 *a, *b; + GFC_INTEGER_1 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_1 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_1)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) + { + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) + { + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) + { + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } + } + } + } + return; + } + else if (rxstride == 1 && aystride == 1 && bxstride == 1) + { + if (GFC_DESCRIPTOR_RANK (a) != 1) + { + const GFC_INTEGER_1 *restrict abase_x; + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 *restrict dest_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + dest_y = &dest[y*rystride]; + for (x = 0; x < xcount; x++) + { + abase_x = &abase[x*axstride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase_x[n] * bbase_y[n]; + dest_y[x] = s; + } + } + } + else + { + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase[n*axstride] * bbase_y[n]; + dest[y*rystride] = s; + } + } + } + else if (axstride < aystride) + { + for (y = 0; y < ycount; y++) + for (x = 0; x < xcount; x++) + dest[x*rxstride + y*rystride] = (GFC_INTEGER_1)0; + + for (y = 0; y < ycount; y++) + for (n = 0; n < count; n++) + for (x = 0; x < xcount; x++) + /* dest[x,y] += a[x,n] * b[n,y] */ + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; + } + else if (GFC_DESCRIPTOR_RANK (a) == 1) + { + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase[n*axstride] * bbase_y[n*bxstride]; + dest[y*rxstride] = s; + } + } + else + { + const GFC_INTEGER_1 *restrict abase_x; + const GFC_INTEGER_1 *restrict bbase_y; + GFC_INTEGER_1 *restrict dest_y; + GFC_INTEGER_1 s; + + for (y = 0; y < ycount; y++) + { + bbase_y = &bbase[y*bystride]; + dest_y = &dest[y*rystride]; + for (x = 0; x < xcount; x++) + { + abase_x = &abase[x*axstride]; + s = (GFC_INTEGER_1) 0; + for (n = 0; n < count; n++) + s += abase_x[n*aystride] * bbase_y[n*bxstride]; + dest_y[x*rxstride] = s; + } + } + } +} +#undef POW3 +#undef min +#undef max + + +/* Compiling main function, with selection code for the processor. */ + +/* Currently, this is i386 only. Adjust for other architectures. */ + +#include <config/i386/cpuinfo.h> +void matmul_i1 (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) +{ + static void (*matmul_p) (gfc_array_i1 * const restrict retarray, + gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, + int blas_limit, blas_call gemm) = NULL; + + if (matmul_p == NULL) + { + matmul_p = matmul_i1_vanilla; + if (__cpu_model.__cpu_vendor == VENDOR_INTEL) + { + /* Run down the available processors in order of preference. */ +#ifdef HAVE_AVX512F + if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX512F)) + { + matmul_p = matmul_i1_avx512f; + goto tailcall; + } + +#endif /* HAVE_AVX512F */ + +#ifdef HAVE_AVX2 + if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX2)) + { + matmul_p = matmul_i1_avx2; + goto tailcall; + } + +#endif + +#ifdef HAVE_AVX + if (__cpu_model.__cpu_features[0] & (1 << FEATURE_AVX)) + { + matmul_p = matmul_i1_avx; + goto tailcall; + } +#endif /* HAVE_AVX */ + } + } + +tailcall: + (*matmul_p) (retarray, a, b, try_blas, blas_limit, gemm); +} + +#else /* Just the vanilla function. */ + void matmul_i1 (gfc_array_i1 * const restrict retarray, gfc_array_i1 * const restrict a, gfc_array_i1 * const restrict b, int try_blas, @@ -607,4 +2834,10 @@ matmul_i1 (gfc_array_i1 * const restrict retarray, } } } +#undef POW3 +#undef min +#undef max + #endif +#endif + |