summaryrefslogtreecommitdiff
path: root/libgcc/soft-fp/op-1.h
diff options
context:
space:
mode:
Diffstat (limited to 'libgcc/soft-fp/op-1.h')
-rw-r--r--libgcc/soft-fp/op-1.h288
1 files changed, 150 insertions, 138 deletions
diff --git a/libgcc/soft-fp/op-1.h b/libgcc/soft-fp/op-1.h
index 33682cf51e1..177705caa32 100644
--- a/libgcc/soft-fp/op-1.h
+++ b/libgcc/soft-fp/op-1.h
@@ -50,8 +50,8 @@
#define _FP_FRAC_SRL_1(X, N) (X##_f >>= N)
/* Right shift with sticky-lsb. */
-#define _FP_FRAC_SRST_1(X, S, N, sz) __FP_FRAC_SRST_1 (X##_f, S, N, sz)
-#define _FP_FRAC_SRS_1(X, N, sz) __FP_FRAC_SRS_1 (X##_f, N, sz)
+#define _FP_FRAC_SRST_1(X, S, N, sz) __FP_FRAC_SRST_1 (X##_f, S, (N), (sz))
+#define _FP_FRAC_SRS_1(X, N, sz) __FP_FRAC_SRS_1 (X##_f, (N), (sz))
#define __FP_FRAC_SRST_1(X, S, N, sz) \
do \
@@ -71,9 +71,9 @@
#define _FP_FRAC_ADD_1(R, X, Y) (R##_f = X##_f + Y##_f)
#define _FP_FRAC_SUB_1(R, X, Y) (R##_f = X##_f - Y##_f)
#define _FP_FRAC_DEC_1(X, Y) (X##_f -= Y##_f)
-#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ (z, X##_f)
+#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ ((z), X##_f)
-/* Predicates */
+/* Predicates. */
#define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE) X##_f < 0)
#define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
#define _FP_FRAC_OVERP_1(fs, X) (X##_f & _FP_OVERFLOW_##fs)
@@ -87,66 +87,62 @@
#define _FP_MINFRAC_1 1
#define _FP_MAXFRAC_1 (~(_FP_WS_TYPE) 0)
-/*
- * Unpack the raw bits of a native fp value. Do not classify or
- * normalize the data.
- */
+/* Unpack the raw bits of a native fp value. Do not classify or
+ normalize the data. */
-#define _FP_UNPACK_RAW_1(fs, X, val) \
- do \
- { \
- union _FP_UNION_##fs _flo; \
- _flo.flt = (val); \
- \
- X##_f = _flo.bits.frac; \
- X##_e = _flo.bits.exp; \
- X##_s = _flo.bits.sign; \
- } \
+#define _FP_UNPACK_RAW_1(fs, X, val) \
+ do \
+ { \
+ union _FP_UNION_##fs _FP_UNPACK_RAW_1_flo; \
+ _FP_UNPACK_RAW_1_flo.flt = (val); \
+ \
+ X##_f = _FP_UNPACK_RAW_1_flo.bits.frac; \
+ X##_e = _FP_UNPACK_RAW_1_flo.bits.exp; \
+ X##_s = _FP_UNPACK_RAW_1_flo.bits.sign; \
+ } \
while (0)
-#define _FP_UNPACK_RAW_1_P(fs, X, val) \
- do \
- { \
- union _FP_UNION_##fs *_flo = (union _FP_UNION_##fs *) (val); \
- \
- X##_f = _flo->bits.frac; \
- X##_e = _flo->bits.exp; \
- X##_s = _flo->bits.sign; \
- } \
+#define _FP_UNPACK_RAW_1_P(fs, X, val) \
+ do \
+ { \
+ union _FP_UNION_##fs *_FP_UNPACK_RAW_1_P_flo \
+ = (union _FP_UNION_##fs *) (val); \
+ \
+ X##_f = _FP_UNPACK_RAW_1_P_flo->bits.frac; \
+ X##_e = _FP_UNPACK_RAW_1_P_flo->bits.exp; \
+ X##_s = _FP_UNPACK_RAW_1_P_flo->bits.sign; \
+ } \
while (0)
-/*
- * Repack the raw bits of a native fp value.
- */
+/* Repack the raw bits of a native fp value. */
#define _FP_PACK_RAW_1(fs, val, X) \
do \
{ \
- union _FP_UNION_##fs _flo; \
+ union _FP_UNION_##fs _FP_PACK_RAW_1_flo; \
\
- _flo.bits.frac = X##_f; \
- _flo.bits.exp = X##_e; \
- _flo.bits.sign = X##_s; \
+ _FP_PACK_RAW_1_flo.bits.frac = X##_f; \
+ _FP_PACK_RAW_1_flo.bits.exp = X##_e; \
+ _FP_PACK_RAW_1_flo.bits.sign = X##_s; \
\
- (val) = _flo.flt; \
+ (val) = _FP_PACK_RAW_1_flo.flt; \
} \
while (0)
-#define _FP_PACK_RAW_1_P(fs, val, X) \
- do \
- { \
- union _FP_UNION_##fs *_flo = (union _FP_UNION_##fs *) (val); \
- \
- _flo->bits.frac = X##_f; \
- _flo->bits.exp = X##_e; \
- _flo->bits.sign = X##_s; \
- } \
+#define _FP_PACK_RAW_1_P(fs, val, X) \
+ do \
+ { \
+ union _FP_UNION_##fs *_FP_PACK_RAW_1_P_flo \
+ = (union _FP_UNION_##fs *) (val); \
+ \
+ _FP_PACK_RAW_1_P_flo->bits.frac = X##_f; \
+ _FP_PACK_RAW_1_P_flo->bits.exp = X##_e; \
+ _FP_PACK_RAW_1_P_flo->bits.sign = X##_s; \
+ } \
while (0)
-/*
- * Multiplication algorithms:
- */
+/* Multiplication algorithms: */
/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
multiplication immediately. */
@@ -161,11 +157,11 @@
#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
do \
{ \
- _FP_MUL_MEAT_DW_1_imm (wfracbits, R, X, Y); \
+ _FP_MUL_MEAT_DW_1_imm ((wfracbits), R, X, Y); \
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_1 (R, wfracbits-1, 2*wfracbits); \
+ _FP_FRAC_SRS_1 (R, (wfracbits)-1, 2*(wfracbits)); \
} \
while (0)
@@ -181,13 +177,15 @@
#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
do \
{ \
- _FP_FRAC_DECL_2 (_Z); \
- _FP_MUL_MEAT_DW_1_wide (wfracbits, _Z, X, Y, doit); \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_wide_Z); \
+ _FP_MUL_MEAT_DW_1_wide ((wfracbits), _FP_MUL_MEAT_1_wide_Z, \
+ X, Y, doit); \
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
- _FP_FRAC_SRS_2 (_Z, wfracbits-1, 2*wfracbits); \
- R##_f = _Z_f0; \
+ _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_wide_Z, (wfracbits)-1, \
+ 2*(wfracbits)); \
+ R##_f = _FP_MUL_MEAT_1_wide_Z_f0; \
} \
while (0)
@@ -196,62 +194,70 @@
#define _FP_MUL_MEAT_DW_1_hard(wfracbits, R, X, Y) \
do \
{ \
- _FP_W_TYPE _xh, _xl, _yh, _yl; \
- _FP_FRAC_DECL_2 (_a); \
+ _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_xh, _FP_MUL_MEAT_DW_1_hard_xl; \
+ _FP_W_TYPE _FP_MUL_MEAT_DW_1_hard_yh, _FP_MUL_MEAT_DW_1_hard_yl; \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_DW_1_hard_a); \
\
- /* split the words in half */ \
- _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
- _xl = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
- _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
- _yl = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
+ /* Split the words in half. */ \
+ _FP_MUL_MEAT_DW_1_hard_xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
+ _FP_MUL_MEAT_DW_1_hard_xl \
+ = X##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
+ _FP_MUL_MEAT_DW_1_hard_yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
+ _FP_MUL_MEAT_DW_1_hard_yl \
+ = Y##_f & (((_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2)) - 1); \
\
- /* multiply the pieces */ \
- R##_f0 = _xl * _yl; \
- _a_f0 = _xh * _yl; \
- _a_f1 = _xl * _yh; \
- R##_f1 = _xh * _yh; \
+ /* Multiply the pieces. */ \
+ R##_f0 = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yl; \
+ _FP_MUL_MEAT_DW_1_hard_a_f0 \
+ = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yl; \
+ _FP_MUL_MEAT_DW_1_hard_a_f1 \
+ = _FP_MUL_MEAT_DW_1_hard_xl * _FP_MUL_MEAT_DW_1_hard_yh; \
+ R##_f1 = _FP_MUL_MEAT_DW_1_hard_xh * _FP_MUL_MEAT_DW_1_hard_yh; \
\
- /* reassemble into two full words */ \
- if ((_a_f0 += _a_f1) < _a_f1) \
+ /* Reassemble into two full words. */ \
+ if ((_FP_MUL_MEAT_DW_1_hard_a_f0 += _FP_MUL_MEAT_DW_1_hard_a_f1) \
+ < _FP_MUL_MEAT_DW_1_hard_a_f1) \
R##_f1 += (_FP_W_TYPE) 1 << (_FP_W_TYPE_SIZE/2); \
- _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
- _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
- _FP_FRAC_ADD_2 (R, R, _a); \
+ _FP_MUL_MEAT_DW_1_hard_a_f1 \
+ = _FP_MUL_MEAT_DW_1_hard_a_f0 >> (_FP_W_TYPE_SIZE/2); \
+ _FP_MUL_MEAT_DW_1_hard_a_f0 \
+ = _FP_MUL_MEAT_DW_1_hard_a_f0 << (_FP_W_TYPE_SIZE/2); \
+ _FP_FRAC_ADD_2 (R, R, _FP_MUL_MEAT_DW_1_hard_a); \
} \
while (0)
-#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
- do \
- { \
- _FP_FRAC_DECL_2 (_z); \
- _FP_MUL_MEAT_DW_1_hard (wfracbits, _z, X, Y); \
- \
- /* normalize */ \
- _FP_FRAC_SRS_2 (_z, wfracbits - 1, 2*wfracbits); \
- R##_f = _z_f0; \
- } \
+#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
+ do \
+ { \
+ _FP_FRAC_DECL_2 (_FP_MUL_MEAT_1_hard_z); \
+ _FP_MUL_MEAT_DW_1_hard ((wfracbits), \
+ _FP_MUL_MEAT_1_hard_z, X, Y); \
+ \
+ /* Normalize. */ \
+ _FP_FRAC_SRS_2 (_FP_MUL_MEAT_1_hard_z, \
+ (wfracbits) - 1, 2*(wfracbits)); \
+ R##_f = _FP_MUL_MEAT_1_hard_z_f0; \
+ } \
while (0)
-/*
- * Division algorithms:
- */
+/* Division algorithms: */
/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
division immediately. Give this macro either _FP_DIV_HELP_imm for
C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
choose will depend on what the compiler does with divrem4. */
-#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
- do \
- { \
- _FP_W_TYPE _q, _r; \
- X##_f <<= (X##_f < Y##_f \
- ? R##_e--, _FP_WFRACBITS_##fs \
- : _FP_WFRACBITS_##fs - 1); \
- doit (_q, _r, X##_f, Y##_f); \
- R##_f = _q | (_r != 0); \
- } \
+#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
+ do \
+ { \
+ _FP_W_TYPE _FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r; \
+ X##_f <<= (X##_f < Y##_f \
+ ? R##_e--, _FP_WFRACBITS_##fs \
+ : _FP_WFRACBITS_##fs - 1); \
+ doit (_FP_DIV_MEAT_1_imm_q, _FP_DIV_MEAT_1_imm_r, X##_f, Y##_f); \
+ R##_f = _FP_DIV_MEAT_1_imm_q | (_FP_DIV_MEAT_1_imm_r != 0); \
+ } \
while (0)
/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
@@ -262,70 +268,80 @@
#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
do \
{ \
- _FP_W_TYPE _nh, _nl, _q, _r, _y; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nh; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_nl; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_q; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_r; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_norm_y; \
\
/* Normalize Y -- i.e. make the most significant bit set. */ \
- _y = Y##_f << _FP_WFRACXBITS_##fs; \
+ _FP_DIV_MEAT_1_udiv_norm_y = Y##_f << _FP_WFRACXBITS_##fs; \
\
/* Shift X op correspondingly high, that is, up one full word. */ \
if (X##_f < Y##_f) \
{ \
R##_e--; \
- _nl = 0; \
- _nh = X##_f; \
+ _FP_DIV_MEAT_1_udiv_norm_nl = 0; \
+ _FP_DIV_MEAT_1_udiv_norm_nh = X##_f; \
} \
else \
{ \
- _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
- _nh = X##_f >> 1; \
+ _FP_DIV_MEAT_1_udiv_norm_nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
+ _FP_DIV_MEAT_1_udiv_norm_nh = X##_f >> 1; \
} \
\
- udiv_qrnnd (_q, _r, _nh, _nl, _y); \
- R##_f = _q | (_r != 0); \
+ udiv_qrnnd (_FP_DIV_MEAT_1_udiv_norm_q, \
+ _FP_DIV_MEAT_1_udiv_norm_r, \
+ _FP_DIV_MEAT_1_udiv_norm_nh, \
+ _FP_DIV_MEAT_1_udiv_norm_nl, \
+ _FP_DIV_MEAT_1_udiv_norm_y); \
+ R##_f = (_FP_DIV_MEAT_1_udiv_norm_q \
+ | (_FP_DIV_MEAT_1_udiv_norm_r != 0)); \
} \
while (0)
-#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
- do \
- { \
- _FP_W_TYPE _nh, _nl, _q, _r; \
- if (X##_f < Y##_f) \
- { \
- R##_e--; \
- _nl = X##_f << _FP_WFRACBITS_##fs; \
- _nh = X##_f >> _FP_WFRACXBITS_##fs; \
- } \
- else \
- { \
- _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
- _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
- } \
- udiv_qrnnd (_q, _r, _nh, _nl, Y##_f); \
- R##_f = _q | (_r != 0); \
- } \
+#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
+ do \
+ { \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl; \
+ _FP_W_TYPE _FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r; \
+ if (X##_f < Y##_f) \
+ { \
+ R##_e--; \
+ _FP_DIV_MEAT_1_udiv_nl = X##_f << _FP_WFRACBITS_##fs; \
+ _FP_DIV_MEAT_1_udiv_nh = X##_f >> _FP_WFRACXBITS_##fs; \
+ } \
+ else \
+ { \
+ _FP_DIV_MEAT_1_udiv_nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
+ _FP_DIV_MEAT_1_udiv_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
+ } \
+ udiv_qrnnd (_FP_DIV_MEAT_1_udiv_q, _FP_DIV_MEAT_1_udiv_r, \
+ _FP_DIV_MEAT_1_udiv_nh, _FP_DIV_MEAT_1_udiv_nl, \
+ Y##_f); \
+ R##_f = _FP_DIV_MEAT_1_udiv_q | (_FP_DIV_MEAT_1_udiv_r != 0); \
+ } \
while (0)
-/*
- * Square root algorithms:
- * We have just one right now, maybe Newton approximation
- * should be added for those machines where division is fast.
- */
+/* Square root algorithms:
+ We have just one right now, maybe Newton approximation
+ should be added for those machines where division is fast. */
#define _FP_SQRT_MEAT_1(R, S, T, X, q) \
do \
{ \
- while (q != _FP_WORK_ROUND) \
+ while ((q) != _FP_WORK_ROUND) \
{ \
- T##_f = S##_f + q; \
+ T##_f = S##_f + (q); \
if (T##_f <= X##_f) \
{ \
- S##_f = T##_f + q; \
+ S##_f = T##_f + (q); \
X##_f -= T##_f; \
- R##_f += q; \
+ R##_f += (q); \
} \
_FP_FRAC_SLL_1 (X, 1); \
- q >>= 1; \
+ (q) >>= 1; \
} \
if (X##_f) \
{ \
@@ -336,17 +352,13 @@
} \
while (0)
-/*
- * Assembly/disassembly for converting to/from integral types.
- * No shifting or overflow handled here.
- */
+/* Assembly/disassembly for converting to/from integral types.
+ No shifting or overflow handled here. */
-#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
-#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
+#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) ((r) = X##_f)
+#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = (r))
-/*
- * Convert FP values between word sizes
- */
+/* Convert FP values between word sizes. */
#define _FP_FRAC_COPY_1_1(D, S) (D##_f = S##_f)