summaryrefslogtreecommitdiff
path: root/libdecnumber/decNumber.c
diff options
context:
space:
mode:
Diffstat (limited to 'libdecnumber/decNumber.c')
-rw-r--r--libdecnumber/decNumber.c5939
1 files changed, 5939 insertions, 0 deletions
diff --git a/libdecnumber/decNumber.c b/libdecnumber/decNumber.c
new file mode 100644
index 00000000000..c2a89800680
--- /dev/null
+++ b/libdecnumber/decNumber.c
@@ -0,0 +1,5939 @@
+/* Decimal Number module for the decNumber C Library
+ Copyright (C) 2005 Free Software Foundation, Inc.
+ Contributed by IBM Corporation. Author Mike Cowlishaw.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it under
+ the terms of the GNU General Public License as published by the Free
+ Software Foundation; either version 2, or (at your option) any later
+ version.
+
+ GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+ WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GCC; see the file COPYING. If not, write to the Free
+ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+ 02111-1307, USA. */
+
+/* ------------------------------------------------------------------ */
+/* This module comprises the routines for Standard Decimal Arithmetic */
+/* as defined in the specification which may be found on the */
+/* http://www2.hursley.ibm.com/decimal web pages. It implements both */
+/* the full ('extended') arithmetic and the simpler ('subset') */
+/* arithmetic. */
+/* */
+/* Usage notes: */
+/* */
+/* 1. This code is ANSI C89 except: */
+/* */
+/* a) Line comments (double forward slash) are used. (Most C */
+/* compilers accept these. If yours does not, a simple script */
+/* can be used to convert them to ANSI C comments.) */
+/* */
+/* b) Types from C99 stdint.h are used. If you do not have this */
+/* header file, see the User's Guide section of the decNumber */
+/* documentation; this lists the necessary definitions. */
+/* */
+/* c) If DECDPUN>4, non-ANSI 64-bit 'long long' types are used. */
+/* To avoid these, set DECDPUN <= 4 (see documentation). */
+/* */
+/* 2. The decNumber format which this library uses is optimized for */
+/* efficient processing of relatively short numbers; in particular */
+/* it allows the use of fixed sized structures and minimizes copy */
+/* and move operations. It does, however, support arbitrary */
+/* precision (up to 999,999,999 digits) and arbitrary exponent */
+/* range (Emax in the range 0 through 999,999,999 and Emin in the */
+/* range -999,999,999 through 0). */
+/* */
+/* 3. Operands to operator functions are never modified unless they */
+/* are also specified to be the result number (which is always */
+/* permitted). Other than that case, operands may not overlap. */
+/* */
+/* 4. Error handling: the type of the error is ORed into the status */
+/* flags in the current context (decContext structure). The */
+/* SIGFPE signal is then raised if the corresponding trap-enabler */
+/* flag in the decContext is set (is 1). */
+/* */
+/* It is the responsibility of the caller to clear the status */
+/* flags as required. */
+/* */
+/* The result of any routine which returns a number will always */
+/* be a valid number (which may be a special value, such as an */
+/* Infinity or NaN). */
+/* */
+/* 5. The decNumber format is not an exchangeable concrete */
+/* representation as it comprises fields which may be machine- */
+/* dependent (big-endian or little-endian, for example). */
+/* Canonical conversions to and from strings are provided; other */
+/* conversions are available in separate modules. */
+/* */
+/* 6. Normally, input operands are assumed to be valid. Set DECCHECK */
+/* to 1 for extended operand checking (including NULL operands). */
+/* Results are undefined if a badly-formed structure (or a NULL */
+/* NULL pointer to a structure) is provided, though with DECCHECK */
+/* enabled the operator routines are protected against exceptions. */
+/* (Except if the result pointer is NULL, which is unrecoverable.) */
+/* */
+/* However, the routines will never cause exceptions if they are */
+/* given well-formed operands, even if the value of the operands */
+/* is inappropriate for the operation and DECCHECK is not set. */
+/* */
+/* 7. Subset arithmetic is available only if DECSUBSET is set to 1. */
+/* ------------------------------------------------------------------ */
+/* Implementation notes for maintenance of this module: */
+/* */
+/* 1. Storage leak protection: Routines which use malloc are not */
+/* permitted to use return for fastpath or error exits (i.e., */
+/* they follow strict structured programming conventions). */
+/* Instead they have a do{}while(0); construct surrounding the */
+/* code which is protected -- break may be used from this. */
+/* Other routines are allowed to use the return statement inline. */
+/* */
+/* Storage leak accounting can be enabled using DECALLOC. */
+/* */
+/* 2. All loops use the for(;;) construct. Any do construct is for */
+/* protection as just described. */
+/* */
+/* 3. Setting status in the context must always be the very last */
+/* action in a routine, as non-0 status may raise a trap and hence */
+/* the call to set status may not return (if the handler uses long */
+/* jump). Therefore all cleanup must be done first. In general, */
+/* to achieve this we accumulate status and only finally apply it */
+/* by calling decContextSetStatus (via decStatus). */
+/* */
+/* Routines which allocate storage cannot, therefore, use the */
+/* 'top level' routines which could cause a non-returning */
+/* transfer of control. The decXxxxOp routines are safe (do not */
+/* call decStatus even if traps are set in the context) and should */
+/* be used instead (they are also a little faster). */
+/* */
+/* 4. Exponent checking is minimized by allowing the exponent to */
+/* grow outside its limits during calculations, provided that */
+/* the decFinalize function is called later. Multiplication and */
+/* division, and intermediate calculations in exponentiation, */
+/* require more careful checks because of the risk of 31-bit */
+/* overflow (the most negative valid exponent is -1999999997, for */
+/* a 999999999-digit number with adjusted exponent of -999999999). */
+/* */
+/* 5. Rounding is deferred until finalization of results, with any */
+/* 'off to the right' data being represented as a single digit */
+/* residue (in the range -1 through 9). This avoids any double- */
+/* rounding when more than one shortening takes place (for */
+/* example, when a result is subnormal). */
+/* */
+/* 6. The digits count is allowed to rise to a multiple of DECDPUN */
+/* during many operations, so whole Units are handled and exact */
+/* accounting of digits is not needed. The correct digits value */
+/* is found by decGetDigits, which accounts for leading zeros. */
+/* This must be called before any rounding if the number of digits */
+/* is not known exactly. */
+/* */
+/* 7. We use the multiply-by-reciprocal 'trick' for partitioning */
+/* numbers up to four digits, using appropriate constants. This */
+/* is not useful for longer numbers because overflow of 32 bits */
+/* would lead to 4 multiplies, which is almost as expensive as */
+/* a divide (unless we assumed floating-point multiply available). */
+/* */
+/* 8. Unusual abbreviations possibly used in the commentary: */
+/* lhs -- left hand side (operand, of an operation) */
+/* lsd -- least significant digit (of coefficient) */
+/* lsu -- least significant Unit (of coefficient) */
+/* msd -- most significant digit (of coefficient) */
+/* msu -- most significant Unit (of coefficient) */
+/* rhs -- right hand side (operand, of an operation) */
+/* +ve -- positive */
+/* -ve -- negative */
+/* ------------------------------------------------------------------ */
+
+#include <stdlib.h> /* for malloc, free, etc. */
+#include <stdio.h> /* for printf [if needed] */
+#include <string.h> /* for strcpy */
+#include <ctype.h> /* for lower */
+#include "decNumber.h" /* base number library */
+#include "decNumberLocal.h" /* decNumber local types, etc. */
+
+/* Constants */
+/* Public constant array: powers of ten (powers[n]==10**n) */
+const uInt powers[] = { 1, 10, 100, 1000, 10000, 100000, 1000000,
+ 10000000, 100000000, 1000000000
+};
+
+/* Local constants */
+#define DIVIDE 0x80 /* Divide operators */
+#define REMAINDER 0x40 /* .. */
+#define DIVIDEINT 0x20 /* .. */
+#define REMNEAR 0x10 /* .. */
+#define COMPARE 0x01 /* Compare operators */
+#define COMPMAX 0x02 /* .. */
+#define COMPMIN 0x03 /* .. */
+#define COMPNAN 0x04 /* .. [NaN processing] */
+
+#define DEC_sNaN 0x40000000 /* local status: sNaN signal */
+#define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
+
+static Unit one[] = { 1 }; /* Unit array of 1, used for incrementing */
+
+/* Granularity-dependent code */
+#if DECDPUN<=4
+#define eInt Int /* extended integer */
+#define ueInt uInt /* unsigned extended integer */
+ /* Constant multipliers for divide-by-power-of five using reciprocal */
+ /* multiply, after removing powers of 2 by shifting, and final shift */
+ /* of 17 [we only need up to **4] */
+static const uInt multies[] = { 131073, 26215, 5243, 1049, 210 };
+
+ /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
+#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
+#else
+ /* For DECDPUN>4 we currently use non-ANSI 64-bit types. These could */
+ /* be replaced by subroutine calls later. */
+#ifdef long
+#undef long
+#endif
+typedef signed long long Long;
+typedef unsigned long long uLong;
+#define eInt Long /* extended integer */
+#define ueInt uLong /* unsigned extended integer */
+#endif
+
+/* Local routines */
+static decNumber *decAddOp (decNumber *, decNumber *, decNumber *,
+ decContext *, uByte, uInt *);
+static void decApplyRound (decNumber *, decContext *, Int, uInt *);
+static Int decCompare (decNumber * lhs, decNumber * rhs);
+static decNumber *decCompareOp (decNumber *, decNumber *, decNumber *,
+ decContext *, Flag, uInt *);
+static void decCopyFit (decNumber *, decNumber *, decContext *,
+ Int *, uInt *);
+static decNumber *decDivideOp (decNumber *, decNumber *, decNumber *,
+ decContext *, Flag, uInt *);
+static void decFinalize (decNumber *, decContext *, Int *, uInt *);
+static Int decGetDigits (Unit *, Int);
+#if DECSUBSET
+static Int decGetInt (decNumber *, decContext *);
+#else
+static Int decGetInt (decNumber *);
+#endif
+static decNumber *decMultiplyOp (decNumber *, decNumber *, decNumber *,
+ decContext *, uInt *);
+static decNumber *decNaNs (decNumber *, decNumber *, decNumber *, uInt *);
+static decNumber *decQuantizeOp (decNumber *, decNumber *, decNumber *,
+ decContext *, Flag, uInt *);
+static void decSetCoeff (decNumber *, decContext *, Unit *,
+ Int, Int *, uInt *);
+static void decSetOverflow (decNumber *, decContext *, uInt *);
+static void decSetSubnormal (decNumber *, decContext *, Int *, uInt *);
+static Int decShiftToLeast (Unit *, Int, Int);
+static Int decShiftToMost (Unit *, Int, Int);
+static void decStatus (decNumber *, uInt, decContext *);
+static Flag decStrEq (const char *, const char *);
+static void decToString (decNumber *, char[], Flag);
+static decNumber *decTrim (decNumber *, Flag, Int *);
+static Int decUnitAddSub (Unit *, Int, Unit *, Int, Int, Unit *, Int);
+static Int decUnitCompare (Unit *, Int, Unit *, Int, Int);
+
+#if !DECSUBSET
+/* decFinish == decFinalize when no subset arithmetic needed */
+#define decFinish(a,b,c,d) decFinalize(a,b,c,d)
+#else
+static void decFinish (decNumber *, decContext *, Int *, uInt *);
+static decNumber *decRoundOperand (decNumber *, decContext *, uInt *);
+#endif
+
+/* Diagnostic macros, etc. */
+#if DECALLOC
+/* Handle malloc/free accounting. If enabled, our accountable routines */
+/* are used; otherwise the code just goes straight to the system malloc */
+/* and free routines. */
+#define malloc(a) decMalloc(a)
+#define free(a) decFree(a)
+#define DECFENCE 0x5a /* corruption detector */
+/* 'Our' malloc and free: */
+static void *decMalloc (size_t);
+static void decFree (void *);
+uInt decAllocBytes = 0; /* count of bytes allocated */
+/* Note that DECALLOC code only checks for storage buffer overflow. */
+/* To check for memory leaks, the decAllocBytes variable should be */
+/* checked to be 0 at appropriate times (e.g., after the test */
+/* harness completes a set of tests). This checking may be unreliable */
+/* if the testing is done in a multi-thread environment. */
+#endif
+
+#if DECCHECK
+/* Optional operand checking routines. Enabling these means that */
+/* decNumber and decContext operands to operator routines are checked */
+/* for correctness. This roughly doubles the execution time of the */
+/* fastest routines (and adds 600+ bytes), so should not normally be */
+/* used in 'production'. */
+#define DECUNUSED (void *)(0xffffffff)
+static Flag decCheckOperands (decNumber *, decNumber *, decNumber *,
+ decContext *);
+static Flag decCheckNumber (decNumber *, decContext *);
+#endif
+
+#if DECTRACE || DECCHECK
+/* Optional trace/debugging routines. */
+void decNumberShow (decNumber *); /* displays the components of a number */
+static void decDumpAr (char, Unit *, Int);
+#endif
+
+/* ================================================================== */
+/* Conversions */
+/* ================================================================== */
+
+/* ------------------------------------------------------------------ */
+/* to-scientific-string -- conversion to numeric string */
+/* to-engineering-string -- conversion to numeric string */
+/* */
+/* decNumberToString(dn, string); */
+/* decNumberToEngString(dn, string); */
+/* */
+/* dn is the decNumber to convert */
+/* string is the string where the result will be laid out */
+/* */
+/* string must be at least dn->digits+14 characters long */
+/* */
+/* No error is possible, and no status can be set. */
+/* ------------------------------------------------------------------ */
+char *
+decNumberToString (decNumber * dn, char *string)
+{
+ decToString (dn, string, 0);
+ return string;
+}
+
+char *
+decNumberToEngString (decNumber * dn, char *string)
+{
+ decToString (dn, string, 1);
+ return string;
+}
+
+/* ------------------------------------------------------------------ */
+/* to-number -- conversion from numeric string */
+/* */
+/* decNumberFromString -- convert string to decNumber */
+/* dn -- the number structure to fill */
+/* chars[] -- the string to convert ('\0' terminated) */
+/* set -- the context used for processing any error, */
+/* determining the maximum precision available */
+/* (set.digits), determining the maximum and minimum */
+/* exponent (set.emax and set.emin), determining if */
+/* extended values are allowed, and checking the */
+/* rounding mode if overflow occurs or rounding is */
+/* needed. */
+/* */
+/* The length of the coefficient and the size of the exponent are */
+/* checked by this routine, so the correct error (Underflow or */
+/* Overflow) can be reported or rounding applied, as necessary. */
+/* */
+/* If bad syntax is detected, the result will be a quiet NaN. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberFromString (decNumber * dn, char chars[], decContext * set)
+{
+ Int exponent = 0; /* working exponent [assume 0] */
+ uByte bits = 0; /* working flags [assume +ve] */
+ Unit *res; /* where result will be built */
+ Unit resbuff[D2U (DECBUFFER + 1)]; /* local buffer in case need temporary */
+ Unit *allocres = NULL; /* -> allocated result, iff allocated */
+ Int need; /* units needed for result */
+ Int d = 0; /* count of digits found in decimal part */
+ char *dotchar = NULL; /* where dot was found */
+ char *cfirst; /* -> first character of decimal part */
+ char *last = NULL; /* -> last digit of decimal part */
+ char *firstexp; /* -> first significant exponent digit */
+ char *c; /* work */
+ Unit *up; /* .. */
+#if DECDPUN>1
+ Int i; /* .. */
+#endif
+ Int residue = 0; /* rounding residue */
+ uInt status = 0; /* error code */
+
+#if DECCHECK
+ if (decCheckOperands (DECUNUSED, DECUNUSED, DECUNUSED, set))
+ return decNumberZero (dn);
+#endif
+
+ do
+ { /* status & malloc protection */
+ c = chars; /* -> input character */
+ if (*c == '-')
+ { /* handle leading '-' */
+ bits = DECNEG;
+ c++;
+ }
+ else if (*c == '+')
+ c++; /* step over leading '+' */
+ /* We're at the start of the number [we think] */
+ cfirst = c; /* save */
+ for (;; c++)
+ {
+ if (*c >= '0' && *c <= '9')
+ { /* test for Arabic digit */
+ last = c;
+ d++; /* count of real digits */
+ continue; /* still in decimal part */
+ }
+ if (*c != '.')
+ break; /* done with decimal part */
+ /* dot: record, check, and ignore */
+ if (dotchar != NULL)
+ { /* two dots */
+ last = NULL; /* indicate bad */
+ break;
+ } /* .. and go report */
+ dotchar = c; /* offset into decimal part */
+ } /* c */
+
+ if (last == NULL)
+ { /* no decimal digits, or >1 . */
+#if DECSUBSET
+ /* If subset then infinities and NaNs are not allowed */
+ if (!set->extended)
+ {
+ status = DEC_Conversion_syntax;
+ break; /* all done */
+ }
+ else
+ {
+#endif
+ /* Infinities and NaNs are possible, here */
+ decNumberZero (dn); /* be optimistic */
+ if (decStrEq (c, "Infinity") || decStrEq (c, "Inf"))
+ {
+ dn->bits = bits | DECINF;
+ break; /* all done */
+ }
+ else
+ { /* a NaN expected */
+ /* 2003.09.10 NaNs are now permitted to have a sign */
+ status = DEC_Conversion_syntax; /* assume the worst */
+ dn->bits = bits | DECNAN; /* assume simple NaN */
+ if (*c == 's' || *c == 'S')
+ { /* looks like an` sNaN */
+ c++;
+ dn->bits = bits | DECSNAN;
+ }
+ if (*c != 'n' && *c != 'N')
+ break; /* check caseless "NaN" */
+ c++;
+ if (*c != 'a' && *c != 'A')
+ break; /* .. */
+ c++;
+ if (*c != 'n' && *c != 'N')
+ break; /* .. */
+ c++;
+ /* now nothing, or nnnn, expected */
+ /* -> start of integer and skip leading 0s [including plain 0] */
+ for (cfirst = c; *cfirst == '0';)
+ cfirst++;
+ if (*cfirst == '\0')
+ { /* "NaN" or "sNaN", maybe with all 0s */
+ status = 0; /* it's good */
+ break; /* .. */
+ }
+ /* something other than 0s; setup last and d as usual [no dots] */
+ for (c = cfirst;; c++, d++)
+ {
+ if (*c < '0' || *c > '9')
+ break; /* test for Arabic digit */
+ last = c;
+ }
+ if (*c != '\0')
+ break; /* not all digits */
+ if (d > set->digits)
+ break; /* too many digits */
+ /* good; drop through and convert the integer */
+ status = 0;
+ bits = dn->bits; /* for copy-back */
+ } /* NaN expected */
+#if DECSUBSET
+ }
+#endif
+ } /* last==NULL */
+
+ if (*c != '\0')
+ { /* more there; exponent expected... */
+ Flag nege = 0; /* 1=negative exponent */
+ if (*c != 'e' && *c != 'E')
+ {
+ status = DEC_Conversion_syntax;
+ break;
+ }
+
+ /* Found 'e' or 'E' -- now process explicit exponent */
+ /* 1998.07.11: sign no longer required */
+ c++; /* to (expected) sign */
+ if (*c == '-')
+ {
+ nege = 1;
+ c++;
+ }
+ else if (*c == '+')
+ c++;
+ if (*c == '\0')
+ {
+ status = DEC_Conversion_syntax;
+ break;
+ }
+
+ for (; *c == '0' && *(c + 1) != '\0';)
+ c++; /* strip insignificant zeros */
+ firstexp = c; /* save exponent digit place */
+ for (;; c++)
+ {
+ if (*c < '0' || *c > '9')
+ break; /* not a digit */
+ exponent = X10 (exponent) + (Int) * c - (Int) '0';
+ } /* c */
+ /* if we didn't end on '\0' must not be a digit */
+ if (*c != '\0')
+ {
+ status = DEC_Conversion_syntax;
+ break;
+ }
+
+ /* (this next test must be after the syntax check) */
+ /* if it was too long the exponent may have wrapped, so check */
+ /* carefully and set it to a certain overflow if wrap possible */
+ if (c >= firstexp + 9 + 1)
+ {
+ if (c > firstexp + 9 + 1 || *firstexp > '1')
+ exponent = DECNUMMAXE * 2;
+ /* [up to 1999999999 is OK, for example 1E-1000000998] */
+ }
+ if (nege)
+ exponent = -exponent; /* was negative */
+ } /* had exponent */
+ /* Here when all inspected; syntax is good */
+
+ /* Handle decimal point... */
+ if (dotchar != NULL && dotchar < last) /* embedded . found, so */
+ exponent = exponent - (last - dotchar); /* .. adjust exponent */
+ /* [we can now ignore the .] */
+
+ /* strip leading zeros/dot (leave final if all 0's) */
+ for (c = cfirst; c < last; c++)
+ {
+ if (*c == '0')
+ d--; /* 0 stripped */
+ else if (*c != '.')
+ break;
+ cfirst++; /* step past leader */
+ } /* c */
+
+#if DECSUBSET
+ /* We can now make a rapid exit for zeros if !extended */
+ if (*cfirst == '0' && !set->extended)
+ {
+ decNumberZero (dn); /* clean result */
+ break; /* [could be return] */
+ }
+#endif
+
+ /* OK, the digits string is good. Copy to the decNumber, or to
+ a temporary decNumber if rounding is needed */
+ if (d <= set->digits)
+ res = dn->lsu; /* fits into given decNumber */
+ else
+ { /* rounding needed */
+ need = D2U (d); /* units needed */
+ res = resbuff; /* assume use local buffer */
+ if (need * sizeof (Unit) > sizeof (resbuff))
+ { /* too big for local */
+ allocres = (Unit *) malloc (need * sizeof (Unit));
+ if (allocres == NULL)
+ {
+ status |= DEC_Insufficient_storage;
+ break;
+ }
+ res = allocres;
+ }
+ }
+ /* res now -> number lsu, buffer, or allocated storage for Unit array */
+
+ /* Place the coefficient into the selected Unit array */
+#if DECDPUN>1
+ i = d % DECDPUN; /* digits in top unit */
+ if (i == 0)
+ i = DECDPUN;
+ up = res + D2U (d) - 1; /* -> msu */
+ *up = 0;
+ for (c = cfirst;; c++)
+ { /* along the digits */
+ if (*c == '.')
+ { /* ignore . [don't decrement i] */
+ if (c != last)
+ continue;
+ break;
+ }
+ *up = (Unit) (X10 (*up) + (Int) * c - (Int) '0');
+ i--;
+ if (i > 0)
+ continue; /* more for this unit */
+ if (up == res)
+ break; /* just filled the last unit */
+ i = DECDPUN;
+ up--;
+ *up = 0;
+ } /* c */
+#else
+ /* DECDPUN==1 */
+ up = res; /* -> lsu */
+ for (c = last; c >= cfirst; c--)
+ { /* over each character, from least */
+ if (*c == '.')
+ continue; /* ignore . [don't step b] */
+ *up = (Unit) ((Int) * c - (Int) '0');
+ up++;
+ } /* c */
+#endif
+
+ dn->bits = bits;
+ dn->exponent = exponent;
+ dn->digits = d;
+
+ /* if not in number (too long) shorten into the number */
+ if (d > set->digits)
+ decSetCoeff (dn, set, res, d, &residue, &status);
+
+ /* Finally check for overflow or subnormal and round as needed */
+ decFinalize (dn, set, &residue, &status);
+ /* decNumberShow(dn); */
+ }
+ while (0); /* [for break] */
+
+ if (allocres != NULL)
+ free (allocres); /* drop any storage we used */
+ if (status != 0)
+ decStatus (dn, status, set);
+ return dn;
+}
+
+/* ================================================================== */
+/* Operators */
+/* ================================================================== */
+
+/* ------------------------------------------------------------------ */
+/* decNumberAbs -- absolute value operator */
+/* */
+/* This computes C = abs(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* This has the same effect as decNumberPlus unless A is negative, */
+/* in which case it has the same effect as decNumberMinus. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberAbs (decNumber * res, decNumber * rhs, decContext * set)
+{
+ decNumber dzero; /* for 0 */
+ uInt status = 0; /* accumulator */
+
+#if DECCHECK
+ if (decCheckOperands (res, DECUNUSED, rhs, set))
+ return res;
+#endif
+
+ decNumberZero (&dzero); /* set 0 */
+ dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
+ decAddOp (res, &dzero, rhs, set, (uByte) (rhs->bits & DECNEG), &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberAdd -- add two Numbers */
+/* */
+/* This computes C = A + B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* This just calls the routine shared with Subtract */
+decNumber *
+decNumberAdd (decNumber * res, decNumber * lhs, decNumber * rhs,
+ decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decAddOp (res, lhs, rhs, set, 0, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberCompare -- compare two Numbers */
+/* */
+/* This computes C = A ? B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for one digit. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberCompare (decNumber * res, decNumber * lhs, decNumber * rhs,
+ decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decCompareOp (res, lhs, rhs, set, COMPARE, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberDivide -- divide one number by another */
+/* */
+/* This computes C = A / B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberDivide (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decDivideOp (res, lhs, rhs, set, DIVIDE, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberDivideInteger -- divide and return integer quotient */
+/* */
+/* This computes C = A # B, where # is the integer divide operator */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X#X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberDivideInteger (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decDivideOp (res, lhs, rhs, set, DIVIDEINT, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberMax -- compare two Numbers and return the maximum */
+/* */
+/* This computes C = A ? B, returning the maximum or A if equal */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberMax (decNumber * res, decNumber * lhs, decNumber * rhs,
+ decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decCompareOp (res, lhs, rhs, set, COMPMAX, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberMin -- compare two Numbers and return the minimum */
+/* */
+/* This computes C = A ? B, returning the minimum or A if equal */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberMin (decNumber * res, decNumber * lhs, decNumber * rhs,
+ decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decCompareOp (res, lhs, rhs, set, COMPMIN, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberMinus -- prefix minus operator */
+/* */
+/* This computes C = 0 - A */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* We simply use AddOp for the subtract, which will do the necessary. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberMinus (decNumber * res, decNumber * rhs, decContext * set)
+{
+ decNumber dzero;
+ uInt status = 0; /* accumulator */
+
+#if DECCHECK
+ if (decCheckOperands (res, DECUNUSED, rhs, set))
+ return res;
+#endif
+
+ decNumberZero (&dzero); /* make 0 */
+ dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
+ decAddOp (res, &dzero, rhs, set, DECNEG, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberPlus -- prefix plus operator */
+/* */
+/* This computes C = 0 + A */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* We simply use AddOp; Add will take fast path after preparing A. */
+/* Performance is a concern here, as this routine is often used to */
+/* check operands and apply rounding and overflow/underflow testing. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberPlus (decNumber * res, decNumber * rhs, decContext * set)
+{
+ decNumber dzero;
+ uInt status = 0; /* accumulator */
+
+#if DECCHECK
+ if (decCheckOperands (res, DECUNUSED, rhs, set))
+ return res;
+#endif
+
+ decNumberZero (&dzero); /* make 0 */
+ dzero.exponent = rhs->exponent; /* [no coefficient expansion] */
+ decAddOp (res, &dzero, rhs, set, 0, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberMultiply -- multiply two Numbers */
+/* */
+/* This computes C = A x B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberMultiply (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decMultiplyOp (res, lhs, rhs, set, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberNormalize -- remove trailing zeros */
+/* */
+/* This computes C = 0 + A, and normalizes the result */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberNormalize (decNumber * res, decNumber * rhs, decContext * set)
+{
+ decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
+ uInt status = 0; /* as usual */
+ Int residue = 0; /* as usual */
+ Int dropped; /* work */
+
+#if DECCHECK
+ if (decCheckOperands (res, DECUNUSED, rhs, set))
+ return res;
+#endif
+
+ do
+ { /* protect allocated storage */
+#if DECSUBSET
+ if (!set->extended)
+ {
+ /* reduce operand and set lostDigits status, as needed */
+ if (rhs->digits > set->digits)
+ {
+ allocrhs = decRoundOperand (rhs, set, &status);
+ if (allocrhs == NULL)
+ break;
+ rhs = allocrhs;
+ }
+ }
+#endif
+ /* [following code does not require input rounding] */
+
+ /* specials copy through, except NaNs need care */
+ if (decNumberIsNaN (rhs))
+ {
+ decNaNs (res, rhs, NULL, &status);
+ break;
+ }
+
+ /* reduce result to the requested length and copy to result */
+ decCopyFit (res, rhs, set, &residue, &status); /* copy & round */
+ decFinish (res, set, &residue, &status); /* cleanup/set flags */
+ decTrim (res, 1, &dropped); /* normalize in place */
+ }
+ while (0); /* end protected */
+
+ if (allocrhs != NULL)
+ free (allocrhs); /* .. */
+ if (status != 0)
+ decStatus (res, status, set); /* then report status */
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberPower -- raise a number to an integer power */
+/* */
+/* This computes C = A ** B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X**X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Specification restriction: abs(n) must be <=999999999 */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberPower (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs = NULL; /* .., rhs */
+ decNumber *allocdac = NULL; /* -> allocated acc buffer, iff used */
+ decNumber *inrhs = rhs; /* save original rhs */
+ Int reqdigits = set->digits; /* requested DIGITS */
+ Int n; /* RHS in binary */
+ Int i; /* work */
+#if DECSUBSET
+ Int dropped; /* .. */
+#endif
+ uInt needbytes; /* buffer size needed */
+ Flag seenbit; /* seen a bit while powering */
+ Int residue = 0; /* rounding residue */
+ uInt status = 0; /* accumulator */
+ uByte bits = 0; /* result sign if errors */
+ decContext workset; /* working context */
+ decNumber dnOne; /* work value 1... */
+ /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
+ uByte dacbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
+ /* same again for possible 1/lhs calculation */
+ uByte lhsbuff[sizeof (decNumber) + D2U (DECBUFFER + 9) * sizeof (Unit)];
+ decNumber *dac = (decNumber *) dacbuff; /* -> result accumulator */
+
+#if DECCHECK
+ if (decCheckOperands (res, lhs, rhs, set))
+ return res;
+#endif
+
+ do
+ { /* protect allocated storage */
+#if DECSUBSET
+ if (!set->extended)
+ {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits > reqdigits)
+ {
+ alloclhs = decRoundOperand (lhs, set, &status);
+ if (alloclhs == NULL)
+ break;
+ lhs = alloclhs;
+ }
+ /* rounding won't affect the result, but we might signal lostDigits */
+ /* as well as the error for non-integer [x**y would need this too] */
+ if (rhs->digits > reqdigits)
+ {
+ allocrhs = decRoundOperand (rhs, set, &status);
+ if (allocrhs == NULL)
+ break;
+ rhs = allocrhs;
+ }
+ }
+#endif
+ /* [following code does not require input rounding] */
+
+ /* handle rhs Infinity */
+ if (decNumberIsInfinite (rhs))
+ {
+ status |= DEC_Invalid_operation; /* bad */
+ break;
+ }
+ /* handle NaNs */
+ if ((lhs->bits | rhs->bits) & (DECNAN | DECSNAN))
+ {
+ decNaNs (res, lhs, rhs, &status);
+ break;
+ }
+
+ /* Original rhs must be an integer that fits and is in range */
+#if DECSUBSET
+ n = decGetInt (inrhs, set);
+#else
+ n = decGetInt (inrhs);
+#endif
+ if (n == BADINT || n > 999999999 || n < -999999999)
+ {
+ status |= DEC_Invalid_operation;
+ break;
+ }
+ if (n < 0)
+ { /* negative */
+ n = -n; /* use the absolute value */
+ }
+ if (decNumberIsNegative (lhs) /* -x .. */
+ && (n & 0x00000001))
+ bits = DECNEG; /* .. to an odd power */
+
+ /* handle LHS infinity */
+ if (decNumberIsInfinite (lhs))
+ { /* [NaNs already handled] */
+ uByte rbits = rhs->bits; /* save */
+ decNumberZero (res);
+ if (n == 0)
+ *res->lsu = 1; /* [-]Inf**0 => 1 */
+ else
+ {
+ if (!(rbits & DECNEG))
+ bits |= DECINF; /* was not a **-n */
+ /* [otherwise will be 0 or -0] */
+ res->bits = bits;
+ }
+ break;
+ }
+
+ /* clone the context */
+ workset = *set; /* copy all fields */
+ /* calculate the working DIGITS */
+ workset.digits = reqdigits + (inrhs->digits + inrhs->exponent) + 1;
+ /* it's an error if this is more than we can handle */
+ if (workset.digits > DECNUMMAXP)
+ {
+ status |= DEC_Invalid_operation;
+ break;
+ }
+
+ /* workset.digits is the count of digits for the accumulator we need */
+ /* if accumulator is too long for local storage, then allocate */
+ needbytes =
+ sizeof (decNumber) + (D2U (workset.digits) - 1) * sizeof (Unit);
+ /* [needbytes also used below if 1/lhs needed] */
+ if (needbytes > sizeof (dacbuff))
+ {
+ allocdac = (decNumber *) malloc (needbytes);
+ if (allocdac == NULL)
+ { /* hopeless -- abandon */
+ status |= DEC_Insufficient_storage;
+ break;
+ }
+ dac = allocdac; /* use the allocated space */
+ }
+ decNumberZero (dac); /* acc=1 */
+ *dac->lsu = 1; /* .. */
+
+ if (n == 0)
+ { /* x**0 is usually 1 */
+ /* 0**0 is bad unless subset, when it becomes 1 */
+ if (ISZERO (lhs)
+#if DECSUBSET
+ && set->extended
+#endif
+ )
+ status |= DEC_Invalid_operation;
+ else
+ decNumberCopy (res, dac); /* copy the 1 */
+ break;
+ }
+
+ /* if a negative power we'll need the constant 1, and if not subset */
+ /* we'll invert the lhs now rather than inverting the result later */
+ if (decNumberIsNegative (rhs))
+ { /* was a **-n [hence digits>0] */
+ decNumberCopy (&dnOne, dac); /* dnOne=1; [needed now or later] */
+#if DECSUBSET
+ if (set->extended)
+ { /* need to calculate 1/lhs */
+#endif
+ /* divide lhs into 1, putting result in dac [dac=1/dac] */
+ decDivideOp (dac, &dnOne, lhs, &workset, DIVIDE, &status);
+ if (alloclhs != NULL)
+ {
+ free (alloclhs); /* done with intermediate */
+ alloclhs = NULL; /* indicate freed */
+ }
+ /* now locate or allocate space for the inverted lhs */
+ if (needbytes > sizeof (lhsbuff))
+ {
+ alloclhs = (decNumber *) malloc (needbytes);
+ if (alloclhs == NULL)
+ { /* hopeless -- abandon */
+ status |= DEC_Insufficient_storage;
+ break;
+ }
+ lhs = alloclhs; /* use the allocated space */
+ }
+ else
+ lhs = (decNumber *) lhsbuff; /* use stack storage */
+ /* [lhs now points to buffer or allocated storage] */
+ decNumberCopy (lhs, dac); /* copy the 1/lhs */
+ decNumberCopy (dac, &dnOne); /* restore acc=1 */
+#if DECSUBSET
+ }
+#endif
+ }
+
+ /* Raise-to-the-power loop... */
+ seenbit = 0; /* set once we've seen a 1-bit */
+ for (i = 1;; i++)
+ { /* for each bit [top bit ignored] */
+ /* abandon if we have had overflow or terminal underflow */
+ if (status & (DEC_Overflow | DEC_Underflow))
+ { /* interesting? */
+ if (status & DEC_Overflow || ISZERO (dac))
+ break;
+ }
+ /* [the following two lines revealed an optimizer bug in a C++ */
+ /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
+ n = n << 1; /* move next bit to testable position */
+ if (n < 0)
+ { /* top bit is set */
+ seenbit = 1; /* OK, we're off */
+ decMultiplyOp (dac, dac, lhs, &workset, &status); /* dac=dac*x */
+ }
+ if (i == 31)
+ break; /* that was the last bit */
+ if (!seenbit)
+ continue; /* we don't have to square 1 */
+ decMultiplyOp (dac, dac, dac, &workset, &status); /* dac=dac*dac [square] */
+ } /*i *//* 32 bits */
+
+ /* complete internal overflow or underflow processing */
+ if (status & (DEC_Overflow | DEC_Subnormal))
+ {
+#if DECSUBSET
+ /* If subset, and power was negative, reverse the kind of -erflow */
+ /* [1/x not yet done] */
+ if (!set->extended && decNumberIsNegative (rhs))
+ {
+ if (status & DEC_Overflow)
+ status ^= DEC_Overflow | DEC_Underflow | DEC_Subnormal;
+ else
+ { /* trickier -- Underflow may or may not be set */
+ status &= ~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
+ status |= DEC_Overflow;
+ }
+ }
+#endif
+ dac->bits = (dac->bits & ~DECNEG) | bits; /* force correct sign */
+ /* round subnormals [to set.digits rather than workset.digits] */
+ /* or set overflow result similarly as required */
+ decFinalize (dac, set, &residue, &status);
+ decNumberCopy (res, dac); /* copy to result (is now OK length) */
+ break;
+ }
+
+#if DECSUBSET
+ if (!set->extended && /* subset math */
+ decNumberIsNegative (rhs))
+ { /* was a **-n [hence digits>0] */
+ /* so divide result into 1 [dac=1/dac] */
+ decDivideOp (dac, &dnOne, dac, &workset, DIVIDE, &status);
+ }
+#endif
+
+ /* reduce result to the requested length and copy to result */
+ decCopyFit (res, dac, set, &residue, &status);
+ decFinish (res, set, &residue, &status); /* final cleanup */
+#if DECSUBSET
+ if (!set->extended)
+ decTrim (res, 0, &dropped); /* trailing zeros */
+#endif
+ }
+ while (0); /* end protected */
+
+ if (allocdac != NULL)
+ free (allocdac); /* drop any storage we used */
+ if (allocrhs != NULL)
+ free (allocrhs); /* .. */
+ if (alloclhs != NULL)
+ free (alloclhs); /* .. */
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberQuantize -- force exponent to requested value */
+/* */
+/* This computes C = op(A, B), where op adjusts the coefficient */
+/* of C (by rounding or shifting) such that the exponent (-scale) */
+/* of C has exponent of B. The numerical value of C will equal A, */
+/* except for the effects of any rounding that occurred. */
+/* */
+/* res is C, the result. C may be A or B */
+/* lhs is A, the number to adjust */
+/* rhs is B, the number with exponent to match */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Unless there is an error or the result is infinite, the exponent */
+/* after the operation is guaranteed to be equal to that of B. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberQuantize (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decQuantizeOp (res, lhs, rhs, set, 1, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberRescale -- force exponent to requested value */
+/* */
+/* This computes C = op(A, B), where op adjusts the coefficient */
+/* of C (by rounding or shifting) such that the exponent (-scale) */
+/* of C has the value B. The numerical value of C will equal A, */
+/* except for the effects of any rounding that occurred. */
+/* */
+/* res is C, the result. C may be A or B */
+/* lhs is A, the number to adjust */
+/* rhs is B, the requested exponent */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Unless there is an error or the result is infinite, the exponent */
+/* after the operation is guaranteed to be equal to B. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberRescale (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decQuantizeOp (res, lhs, rhs, set, 0, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberRemainder -- divide and return remainder */
+/* */
+/* This computes C = A % B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberRemainder (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decDivideOp (res, lhs, rhs, set, REMAINDER, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberRemainderNear -- divide and return remainder from nearest */
+/* */
+/* This computes C = A % B, where % is the IEEE remainder operator */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X%X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberRemainderNear (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ uInt status = 0; /* accumulator */
+ decDivideOp (res, lhs, rhs, set, REMNEAR, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberSameQuantum -- test for equal exponents */
+/* */
+/* res is the result number, which will contain either 0 or 1 */
+/* lhs is a number to test */
+/* rhs is the second (usually a pattern) */
+/* */
+/* No errors are possible and no context is needed. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberSameQuantum (decNumber * res, decNumber * lhs, decNumber * rhs)
+{
+ uByte merged; /* merged flags */
+ Unit ret = 0; /* return value */
+
+#if DECCHECK
+ if (decCheckOperands (res, lhs, rhs, DECUNUSED))
+ return res;
+#endif
+
+ merged = (lhs->bits | rhs->bits) & DECSPECIAL;
+ if (merged)
+ {
+ if (decNumberIsNaN (lhs) && decNumberIsNaN (rhs))
+ ret = 1;
+ else if (decNumberIsInfinite (lhs) && decNumberIsInfinite (rhs))
+ ret = 1;
+ /* [anything else with a special gives 0] */
+ }
+ else if (lhs->exponent == rhs->exponent)
+ ret = 1;
+
+ decNumberZero (res); /* OK to overwrite an operand */
+ *res->lsu = ret;
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberSquareRoot -- square root operator */
+/* */
+/* This computes C = squareroot(A) */
+/* */
+/* res is C, the result. C may be A */
+/* rhs is A */
+/* set is the context; note that rounding mode has no effect */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* This uses the following varying-precision algorithm in: */
+/* */
+/* Properly Rounded Variable Precision Square Root, T. E. Hull and */
+/* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
+/* pp229-237, ACM, September 1985. */
+/* */
+/* % [Reformatted original Numerical Turing source code follows.] */
+/* function sqrt(x : real) : real */
+/* % sqrt(x) returns the properly rounded approximation to the square */
+/* % root of x, in the precision of the calling environment, or it */
+/* % fails if x < 0. */
+/* % t e hull and a abrham, august, 1984 */
+/* if x <= 0 then */
+/* if x < 0 then */
+/* assert false */
+/* else */
+/* result 0 */
+/* end if */
+/* end if */
+/* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
+/* var e := getexp(x) % exponent part of x */
+/* var approx : real */
+/* if e mod 2 = 0 then */
+/* approx := .259 + .819 * f % approx to root of f */
+/* else */
+/* f := f/l0 % adjustments */
+/* e := e + 1 % for odd */
+/* approx := .0819 + 2.59 * f % exponent */
+/* end if */
+/* */
+/* var p:= 3 */
+/* const maxp := currentprecision + 2 */
+/* loop */
+/* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
+/* precision p */
+/* approx := .5 * (approx + f/approx) */
+/* exit when p = maxp */
+/* end loop */
+/* */
+/* % approx is now within 1 ulp of the properly rounded square root */
+/* % of f; to ensure proper rounding, compare squares of (approx - */
+/* % l/2 ulp) and (approx + l/2 ulp) with f. */
+/* p := currentprecision */
+/* begin */
+/* precision p + 2 */
+/* const approxsubhalf := approx - setexp(.5, -p) */
+/* if mulru(approxsubhalf, approxsubhalf) > f then */
+/* approx := approx - setexp(.l, -p + 1) */
+/* else */
+/* const approxaddhalf := approx + setexp(.5, -p) */
+/* if mulrd(approxaddhalf, approxaddhalf) < f then */
+/* approx := approx + setexp(.l, -p + 1) */
+/* end if */
+/* end if */
+/* end */
+/* result setexp(approx, e div 2) % fix exponent */
+/* end sqrt */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberSquareRoot (decNumber * res, decNumber * rhs, decContext * set)
+{
+ decContext workset, approxset; /* work contexts */
+ decNumber dzero; /* used for constant zero */
+ Int maxp = set->digits + 2; /* largest working precision */
+ Int residue = 0; /* rounding residue */
+ uInt status = 0, ignore = 0; /* status accumulators */
+ Int exp; /* working exponent */
+ Int ideal; /* ideal (preferred) exponent */
+ uInt needbytes; /* work */
+ Int dropped; /* .. */
+
+ decNumber *allocrhs = NULL; /* non-NULL if rounded rhs allocated */
+ /* buffer for f [needs +1 in case DECBUFFER 0] */
+ uByte buff[sizeof (decNumber) + (D2U (DECBUFFER + 1) - 1) * sizeof (Unit)];
+ /* buffer for a [needs +2 to match maxp] */
+ uByte bufa[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
+ /* buffer for temporary, b [must be same size as a] */
+ uByte bufb[sizeof (decNumber) + (D2U (DECBUFFER + 2) - 1) * sizeof (Unit)];
+ decNumber *allocbuff = NULL; /* -> allocated buff, iff allocated */
+ decNumber *allocbufa = NULL; /* -> allocated bufa, iff allocated */
+ decNumber *allocbufb = NULL; /* -> allocated bufb, iff allocated */
+ decNumber *f = (decNumber *) buff; /* reduced fraction */
+ decNumber *a = (decNumber *) bufa; /* approximation to result */
+ decNumber *b = (decNumber *) bufb; /* intermediate result */
+ /* buffer for temporary variable, up to 3 digits */
+ uByte buft[sizeof (decNumber) + (D2U (3) - 1) * sizeof (Unit)];
+ decNumber *t = (decNumber *) buft; /* up-to-3-digit constant or work */
+
+#if DECCHECK
+ if (decCheckOperands (res, DECUNUSED, rhs, set))
+ return res;
+#endif
+
+ do
+ { /* protect allocated storage */
+#if DECSUBSET
+ if (!set->extended)
+ {
+ /* reduce operand and set lostDigits status, as needed */
+ if (rhs->digits > set->digits)
+ {
+ allocrhs = decRoundOperand (rhs, set, &status);
+ if (allocrhs == NULL)
+ break;
+ /* [Note: 'f' allocation below could reuse this buffer if */
+ /* used, but as this is rare we keep them separate for clarity.] */
+ rhs = allocrhs;
+ }
+ }
+#endif
+ /* [following code does not require input rounding] */
+
+ /* handle infinities and NaNs */
+ if (rhs->bits & DECSPECIAL)
+ {
+ if (decNumberIsInfinite (rhs))
+ { /* an infinity */
+ if (decNumberIsNegative (rhs))
+ status |= DEC_Invalid_operation;
+ else
+ decNumberCopy (res, rhs); /* +Infinity */
+ }
+ else
+ decNaNs (res, rhs, NULL, &status); /* a NaN */
+ break;
+ }
+
+ /* calculate the ideal (preferred) exponent [floor(exp/2)] */
+ /* [We would like to write: ideal=rhs->exponent>>1, but this */
+ /* generates a compiler warning. Generated code is the same.] */
+ ideal = (rhs->exponent & ~1) / 2; /* target */
+
+ /* handle zeros */
+ if (ISZERO (rhs))
+ {
+ decNumberCopy (res, rhs); /* could be 0 or -0 */
+ res->exponent = ideal; /* use the ideal [safe] */
+ break;
+ }
+
+ /* any other -x is an oops */
+ if (decNumberIsNegative (rhs))
+ {
+ status |= DEC_Invalid_operation;
+ break;
+ }
+
+ /* we need space for three working variables */
+ /* f -- the same precision as the RHS, reduced to 0.01->0.99... */
+ /* a -- Hull's approx -- precision, when assigned, is */
+ /* currentprecision (we allow +2 for use as temporary) */
+ /* b -- intermediate temporary result */
+ /* if any is too long for local storage, then allocate */
+ needbytes =
+ sizeof (decNumber) + (D2U (rhs->digits) - 1) * sizeof (Unit);
+ if (needbytes > sizeof (buff))
+ {
+ allocbuff = (decNumber *) malloc (needbytes);
+ if (allocbuff == NULL)
+ { /* hopeless -- abandon */
+ status |= DEC_Insufficient_storage;
+ break;
+ }
+ f = allocbuff; /* use the allocated space */
+ }
+ /* a and b both need to be able to hold a maxp-length number */
+ needbytes = sizeof (decNumber) + (D2U (maxp) - 1) * sizeof (Unit);
+ if (needbytes > sizeof (bufa))
+ { /* [same applies to b] */
+ allocbufa = (decNumber *) malloc (needbytes);
+ allocbufb = (decNumber *) malloc (needbytes);
+ if (allocbufa == NULL || allocbufb == NULL)
+ { /* hopeless */
+ status |= DEC_Insufficient_storage;
+ break;
+ }
+ a = allocbufa; /* use the allocated space */
+ b = allocbufb; /* .. */
+ }
+
+ /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
+ decNumberCopy (f, rhs);
+ exp = f->exponent + f->digits; /* adjusted to Hull rules */
+ f->exponent = -(f->digits); /* to range */
+
+ /* set up working contexts (the second is used for Numerical */
+ /* Turing assignment) */
+ decContextDefault (&workset, DEC_INIT_DECIMAL64);
+ decContextDefault (&approxset, DEC_INIT_DECIMAL64);
+ approxset.digits = set->digits; /* approx's length */
+
+ /* [Until further notice, no error is possible and status bits */
+ /* (Rounded, etc.) should be ignored, not accumulated.] */
+
+ /* Calculate initial approximation, and allow for odd exponent */
+ workset.digits = set->digits; /* p for initial calculation */
+ t->bits = 0;
+ t->digits = 3;
+ a->bits = 0;
+ a->digits = 3;
+ if ((exp & 1) == 0)
+ { /* even exponent */
+ /* Set t=0.259, a=0.819 */
+ t->exponent = -3;
+ a->exponent = -3;
+#if DECDPUN>=3
+ t->lsu[0] = 259;
+ a->lsu[0] = 819;
+#elif DECDPUN==2
+ t->lsu[0] = 59;
+ t->lsu[1] = 2;
+ a->lsu[0] = 19;
+ a->lsu[1] = 8;
+#else
+ t->lsu[0] = 9;
+ t->lsu[1] = 5;
+ t->lsu[2] = 2;
+ a->lsu[0] = 9;
+ a->lsu[1] = 1;
+ a->lsu[2] = 8;
+#endif
+ }
+ else
+ { /* odd exponent */
+ /* Set t=0.0819, a=2.59 */
+ f->exponent--; /* f=f/10 */
+ exp++; /* e=e+1 */
+ t->exponent = -4;
+ a->exponent = -2;
+#if DECDPUN>=3
+ t->lsu[0] = 819;
+ a->lsu[0] = 259;
+#elif DECDPUN==2
+ t->lsu[0] = 19;
+ t->lsu[1] = 8;
+ a->lsu[0] = 59;
+ a->lsu[1] = 2;
+#else
+ t->lsu[0] = 9;
+ t->lsu[1] = 1;
+ t->lsu[2] = 8;
+ a->lsu[0] = 9;
+ a->lsu[1] = 5;
+ a->lsu[2] = 2;
+#endif
+ }
+ decMultiplyOp (a, a, f, &workset, &ignore); /* a=a*f */
+ decAddOp (a, a, t, &workset, 0, &ignore); /* ..+t */
+ /* [a is now the initial approximation for sqrt(f), calculated with */
+ /* currentprecision, which is also a's precision.] */
+
+ /* the main calculation loop */
+ decNumberZero (&dzero); /* make 0 */
+ decNumberZero (t); /* set t = 0.5 */
+ t->lsu[0] = 5; /* .. */
+ t->exponent = -1; /* .. */
+ workset.digits = 3; /* initial p */
+ for (;;)
+ {
+ /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
+ workset.digits = workset.digits * 2 - 2;
+ if (workset.digits > maxp)
+ workset.digits = maxp;
+ /* a = 0.5 * (a + f/a) */
+ /* [calculated at p then rounded to currentprecision] */
+ decDivideOp (b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
+ decAddOp (b, b, a, &workset, 0, &ignore); /* b=b+a */
+ decMultiplyOp (a, b, t, &workset, &ignore); /* a=b*0.5 */
+ /* assign to approx [round to length] */
+ decAddOp (a, &dzero, a, &approxset, 0, &ignore);
+ if (workset.digits == maxp)
+ break; /* just did final */
+ } /* loop */
+
+ /* a is now at currentprecision and within 1 ulp of the properly */
+ /* rounded square root of f; to ensure proper rounding, compare */
+ /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
+ /* Here workset.digits=maxp and t=0.5 */
+ workset.digits--; /* maxp-1 is OK now */
+ t->exponent = -set->digits - 1; /* make 0.5 ulp */
+ decNumberCopy (b, a);
+ decAddOp (b, b, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
+ workset.round = DEC_ROUND_UP;
+ decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulru(b, b) */
+ decCompareOp (b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
+ if (decNumberIsNegative (b))
+ { /* f < b [i.e., b > f] */
+ /* this is the more common adjustment, though both are rare */
+ t->exponent++; /* make 1.0 ulp */
+ t->lsu[0] = 1; /* .. */
+ decAddOp (a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
+ /* assign to approx [round to length] */
+ decAddOp (a, &dzero, a, &approxset, 0, &ignore);
+ }
+ else
+ {
+ decNumberCopy (b, a);
+ decAddOp (b, b, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
+ workset.round = DEC_ROUND_DOWN;
+ decMultiplyOp (b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
+ decCompareOp (b, b, f, &workset, COMPARE, &ignore); /* b ? f */
+ if (decNumberIsNegative (b))
+ { /* b < f */
+ t->exponent++; /* make 1.0 ulp */
+ t->lsu[0] = 1; /* .. */
+ decAddOp (a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
+ /* assign to approx [round to length] */
+ decAddOp (a, &dzero, a, &approxset, 0, &ignore);
+ }
+ }
+ /* [no errors are possible in the above, and rounding/inexact during */
+ /* estimation are irrelevant, so status was not accumulated] */
+
+ /* Here, 0.1 <= a < 1 [Hull] */
+ a->exponent += exp / 2; /* set correct exponent */
+
+ /* Process Subnormals */
+ decFinalize (a, set, &residue, &status);
+
+ /* count dropable zeros [after any subnormal rounding] */
+ decNumberCopy (b, a);
+ decTrim (b, 1, &dropped); /* [drops trailing zeros] */
+
+ /* Finally set Inexact and Rounded. The answer can only be exact if */
+ /* it is short enough so that squaring it could fit in set->digits, */
+ /* so this is the only (relatively rare) time we have to check */
+ /* carefully */
+ if (b->digits * 2 - 1 > set->digits)
+ { /* cannot fit */
+ status |= DEC_Inexact | DEC_Rounded;
+ }
+ else
+ { /* could be exact/unrounded */
+ uInt mstatus = 0; /* local status */
+ decMultiplyOp (b, b, b, &workset, &mstatus); /* try the multiply */
+ if (mstatus != 0)
+ { /* result won't fit */
+ status |= DEC_Inexact | DEC_Rounded;
+ }
+ else
+ { /* plausible */
+ decCompareOp (t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
+ if (!ISZERO (t))
+ {
+ status |= DEC_Inexact | DEC_Rounded;
+ }
+ else
+ { /* is Exact */
+ /* here, dropped is the count of trailing zeros in 'a' */
+ /* use closest exponent to ideal... */
+ Int todrop = ideal - a->exponent; /* most we can drop */
+
+ if (todrop < 0)
+ { /* ideally would add 0s */
+ status |= DEC_Rounded;
+ }
+ else
+ { /* unrounded */
+ if (dropped < todrop)
+ todrop = dropped; /* clamp to those available */
+ if (todrop > 0)
+ { /* OK, some to drop */
+ decShiftToLeast (a->lsu, D2U (a->digits), todrop);
+ a->exponent += todrop; /* maintain numerical value */
+ a->digits -= todrop; /* new length */
+ }
+ }
+ }
+ }
+ }
+ decNumberCopy (res, a); /* assume this is the result */
+ }
+ while (0); /* end protected */
+
+ if (allocbuff != NULL)
+ free (allocbuff); /* drop any storage we used */
+ if (allocbufa != NULL)
+ free (allocbufa); /* .. */
+ if (allocbufb != NULL)
+ free (allocbufb); /* .. */
+ if (allocrhs != NULL)
+ free (allocrhs); /* .. */
+ if (status != 0)
+ decStatus (res, status, set); /* then report status */
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberSubtract -- subtract two Numbers */
+/* */
+/* This computes C = A - B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X-X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberSubtract (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ uInt status = 0; /* accumulator */
+
+ decAddOp (res, lhs, rhs, set, DECNEG, &status);
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberToIntegralValue -- round-to-integral-value */
+/* */
+/* res is the result */
+/* rhs is input number */
+/* set is the context */
+/* */
+/* res must have space for any value of rhs. */
+/* */
+/* This implements the IEEE special operator and therefore treats */
+/* special values as valid, and also never sets Inexact. For finite */
+/* numbers it returns rescale(rhs, 0) if rhs->exponent is <0. */
+/* Otherwise the result is rhs (so no error is possible). */
+/* */
+/* The context is used for rounding mode and status after sNaN, but */
+/* the digits setting is ignored. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberToIntegralValue (decNumber * res, decNumber * rhs, decContext * set)
+{
+ decNumber dn;
+ decContext workset; /* working context */
+
+#if DECCHECK
+ if (decCheckOperands (res, DECUNUSED, rhs, set))
+ return res;
+#endif
+
+ /* handle infinities and NaNs */
+ if (rhs->bits & DECSPECIAL)
+ {
+ uInt status = 0;
+ if (decNumberIsInfinite (rhs))
+ decNumberCopy (res, rhs); /* an Infinity */
+ else
+ decNaNs (res, rhs, NULL, &status); /* a NaN */
+ if (status != 0)
+ decStatus (res, status, set);
+ return res;
+ }
+
+ /* we have a finite number; no error possible */
+ if (rhs->exponent >= 0)
+ return decNumberCopy (res, rhs);
+ /* that was easy, but if negative exponent we have work to do... */
+ workset = *set; /* clone rounding, etc. */
+ workset.digits = rhs->digits; /* no length rounding */
+ workset.traps = 0; /* no traps */
+ decNumberZero (&dn); /* make a number with exponent 0 */
+ return decNumberQuantize (res, rhs, &dn, &workset);
+}
+
+/* ================================================================== */
+/* Utility routines */
+/* ================================================================== */
+
+/* ------------------------------------------------------------------ */
+/* decNumberCopy -- copy a number */
+/* */
+/* dest is the target decNumber */
+/* src is the source decNumber */
+/* returns dest */
+/* */
+/* (dest==src is allowed and is a no-op) */
+/* All fields are updated as required. This is a utility operation, */
+/* so special values are unchanged and no error is possible. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberCopy (decNumber * dest, decNumber * src)
+{
+
+#if DECCHECK
+ if (src == NULL)
+ return decNumberZero (dest);
+#endif
+
+ if (dest == src)
+ return dest; /* no copy required */
+
+ /* We use explicit assignments here as structure assignment can copy */
+ /* more than just the lsu (for small DECDPUN). This would not affect */
+ /* the value of the results, but would disturb test harness spill */
+ /* checking. */
+ dest->bits = src->bits;
+ dest->exponent = src->exponent;
+ dest->digits = src->digits;
+ dest->lsu[0] = src->lsu[0];
+ if (src->digits > DECDPUN)
+ { /* more Units to come */
+ Unit *s, *d, *smsup; /* work */
+ /* memcpy for the remaining Units would be safe as they cannot */
+ /* overlap. However, this explicit loop is faster in short cases. */
+ d = dest->lsu + 1; /* -> first destination */
+ smsup = src->lsu + D2U (src->digits); /* -> source msu+1 */
+ for (s = src->lsu + 1; s < smsup; s++, d++)
+ *d = *s;
+ }
+ return dest;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberTrim -- remove insignificant zeros */
+/* */
+/* dn is the number to trim */
+/* returns dn */
+/* */
+/* All fields are updated as required. This is a utility operation, */
+/* so special values are unchanged and no error is possible. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decNumberTrim (decNumber * dn)
+{
+ Int dropped; /* work */
+ return decTrim (dn, 0, &dropped);
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberVersion -- return the name and version of this module */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+const char *
+decNumberVersion (void)
+{
+ return DECVERSION;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNumberZero -- set a number to 0 */
+/* */
+/* dn is the number to set, with space for one digit */
+/* returns dn */
+/* */
+/* No error is possible. */
+/* ------------------------------------------------------------------ */
+/* Memset is not used as it is much slower in some environments. */
+decNumber *
+decNumberZero (decNumber * dn)
+{
+
+#if DECCHECK
+ if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
+ return dn;
+#endif
+
+ dn->bits = 0;
+ dn->exponent = 0;
+ dn->digits = 1;
+ dn->lsu[0] = 0;
+ return dn;
+}
+
+/* ================================================================== */
+/* Local routines */
+/* ================================================================== */
+
+/* ------------------------------------------------------------------ */
+/* decToString -- lay out a number into a string */
+/* */
+/* dn is the number to lay out */
+/* string is where to lay out the number */
+/* eng is 1 if Engineering, 0 if Scientific */
+/* */
+/* str must be at least dn->digits+14 characters long */
+/* No error is possible. */
+/* */
+/* Note that this routine can generate a -0 or 0.000. These are */
+/* never generated in subset to-number or arithmetic, but can occur */
+/* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
+/* ------------------------------------------------------------------ */
+/* If DECCHECK is enabled the string "?" is returned if a number is */
+/* invalid. */
+
+/* TODIGIT -- macro to remove the leading digit from the unsigned */
+/* integer u at column cut (counting from the right, LSD=0) and place */
+/* it as an ASCII character into the character pointed to by c. Note */
+/* that cut must be <= 9, and the maximum value for u is 2,000,000,000 */
+/* (as is needed for negative exponents of subnormals). The unsigned */
+/* integer pow is used as a temporary variable. */
+#define TODIGIT(u, cut, c) { \
+ *(c)='0'; \
+ pow=powers[cut]*2; \
+ if ((u)>pow) { \
+ pow*=4; \
+ if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
+ pow/=2; \
+ if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
+ pow/=2; \
+ } \
+ if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
+ pow/=2; \
+ if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
+ }
+
+static void
+decToString (decNumber * dn, char *string, Flag eng)
+{
+ Int exp = dn->exponent; /* local copy */
+ Int e; /* E-part value */
+ Int pre; /* digits before the '.' */
+ Int cut; /* for counting digits in a Unit */
+ char *c = string; /* work [output pointer] */
+ Unit *up = dn->lsu + D2U (dn->digits) - 1; /* -> msu [input pointer] */
+ uInt u, pow; /* work */
+
+#if DECCHECK
+ if (decCheckOperands (DECUNUSED, dn, DECUNUSED, DECUNUSED))
+ {
+ strcpy (string, "?");
+ return;
+ }
+#endif
+
+ if (decNumberIsNegative (dn))
+ { /* Negatives get a minus (except */
+ *c = '-'; /* NaNs, which remove the '-' below) */
+ c++;
+ }
+ if (dn->bits & DECSPECIAL)
+ { /* Is a special value */
+ if (decNumberIsInfinite (dn))
+ {
+ strcpy (c, "Infinity");
+ return;
+ }
+ /* a NaN */
+ if (dn->bits & DECSNAN)
+ { /* signalling NaN */
+ *c = 's';
+ c++;
+ }
+ strcpy (c, "NaN");
+ c += 3; /* step past */
+ /* if not a clean non-zero coefficient, that's all we have in a */
+ /* NaN string */
+ if (exp != 0 || (*dn->lsu == 0 && dn->digits == 1))
+ return;
+ /* [drop through to add integer] */
+ }
+
+ /* calculate how many digits in msu, and hence first cut */
+ cut = dn->digits % DECDPUN;
+ if (cut == 0)
+ cut = DECDPUN; /* msu is full */
+ cut--; /* power of ten for digit */
+
+ if (exp == 0)
+ { /* simple integer [common fastpath, */
+ /* used for NaNs, too] */
+ for (; up >= dn->lsu; up--)
+ { /* each Unit from msu */
+ u = *up; /* contains DECDPUN digits to lay out */
+ for (; cut >= 0; c++, cut--)
+ TODIGIT (u, cut, c);
+ cut = DECDPUN - 1; /* next Unit has all digits */
+ }
+ *c = '\0'; /* terminate the string */
+ return;
+ }
+
+ /* non-0 exponent -- assume plain form */
+ pre = dn->digits + exp; /* digits before '.' */
+ e = 0; /* no E */
+ if ((exp > 0) || (pre < -5))
+ { /* need exponential form */
+ e = exp + dn->digits - 1; /* calculate E value */
+ pre = 1; /* assume one digit before '.' */
+ if (eng && (e != 0))
+ { /* may need to adjust */
+ Int adj; /* adjustment */
+ /* The C remainder operator is undefined for negative numbers, so */
+ /* we must use positive remainder calculation here */
+ if (e < 0)
+ {
+ adj = (-e) % 3;
+ if (adj != 0)
+ adj = 3 - adj;
+ }
+ else
+ { /* e>0 */
+ adj = e % 3;
+ }
+ e = e - adj;
+ /* if we are dealing with zero we will use exponent which is a */
+ /* multiple of three, as expected, but there will only be the */
+ /* one zero before the E, still. Otherwise note the padding. */
+ if (!ISZERO (dn))
+ pre += adj;
+ else
+ { /* is zero */
+ if (adj != 0)
+ { /* 0.00Esnn needed */
+ e = e + 3;
+ pre = -(2 - adj);
+ }
+ } /* zero */
+ } /* eng */
+ }
+
+ /* lay out the digits of the coefficient, adding 0s and . as needed */
+ u = *up;
+ if (pre > 0)
+ { /* xxx.xxx or xx00 (engineering) form */
+ for (; pre > 0; pre--, c++, cut--)
+ {
+ if (cut < 0)
+ { /* need new Unit */
+ if (up == dn->lsu)
+ break; /* out of input digits (pre>digits) */
+ up--;
+ cut = DECDPUN - 1;
+ u = *up;
+ }
+ TODIGIT (u, cut, c);
+ }
+ if (up > dn->lsu || (up == dn->lsu && cut >= 0))
+ { /* more to come, after '.' */
+ *c = '.';
+ c++;
+ for (;; c++, cut--)
+ {
+ if (cut < 0)
+ { /* need new Unit */
+ if (up == dn->lsu)
+ break; /* out of input digits */
+ up--;
+ cut = DECDPUN - 1;
+ u = *up;
+ }
+ TODIGIT (u, cut, c);
+ }
+ }
+ else
+ for (; pre > 0; pre--, c++)
+ *c = '0'; /* 0 padding (for engineering) needed */
+ }
+ else
+ { /* 0.xxx or 0.000xxx form */
+ *c = '0';
+ c++;
+ *c = '.';
+ c++;
+ for (; pre < 0; pre++, c++)
+ *c = '0'; /* add any 0's after '.' */
+ for (;; c++, cut--)
+ {
+ if (cut < 0)
+ { /* need new Unit */
+ if (up == dn->lsu)
+ break; /* out of input digits */
+ up--;
+ cut = DECDPUN - 1;
+ u = *up;
+ }
+ TODIGIT (u, cut, c);
+ }
+ }
+
+ /* Finally add the E-part, if needed. It will never be 0, has a
+ base maximum and minimum of +999999999 through -999999999, but
+ could range down to -1999999998 for subnormal numbers */
+ if (e != 0)
+ {
+ Flag had = 0; /* 1=had non-zero */
+ *c = 'E';
+ c++;
+ *c = '+';
+ c++; /* assume positive */
+ u = e; /* .. */
+ if (e < 0)
+ {
+ *(c - 1) = '-'; /* oops, need - */
+ u = -e; /* uInt, please */
+ }
+ /* layout the exponent (_itoa is not ANSI C) */
+ for (cut = 9; cut >= 0; cut--)
+ {
+ TODIGIT (u, cut, c);
+ if (*c == '0' && !had)
+ continue; /* skip leading zeros */
+ had = 1; /* had non-0 */
+ c++; /* step for next */
+ } /* cut */
+ }
+ *c = '\0'; /* terminate the string (all paths) */
+ return;
+}
+
+/* ------------------------------------------------------------------ */
+/* decAddOp -- add/subtract operation */
+/* */
+/* This computes C = A + B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X+X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* negate is DECNEG if rhs should be negated, or 0 otherwise */
+/* status accumulates status for the caller */
+/* */
+/* C must have space for set->digits digits. */
+/* ------------------------------------------------------------------ */
+/* If possible, we calculate the coefficient directly into C. */
+/* However, if: */
+/* -- we need a digits+1 calculation because numbers are unaligned */
+/* and span more than set->digits digits */
+/* -- a carry to digits+1 digits looks possible */
+/* -- C is the same as A or B, and the result would destructively */
+/* overlap the A or B coefficient */
+/* then we must calculate into a temporary buffer. In this latter */
+/* case we use the local (stack) buffer if possible, and only if too */
+/* long for that do we resort to malloc. */
+/* */
+/* Misalignment is handled as follows: */
+/* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
+/* BPad: Apply the padding by a combination of shifting (whole */
+/* units) and multiplication (part units). */
+/* */
+/* Addition, especially x=x+1, is speed-critical, so we take pains */
+/* to make returning as fast as possible, by flagging any allocation. */
+/* ------------------------------------------------------------------ */
+static decNumber *
+decAddOp (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set, uByte negate, uInt * status)
+{
+ decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs = NULL; /* .., rhs */
+ Int rhsshift; /* working shift (in Units) */
+ Int maxdigits; /* longest logical length */
+ Int mult; /* multiplier */
+ Int residue; /* rounding accumulator */
+ uByte bits; /* result bits */
+ Flag diffsign; /* non-0 if arguments have different sign */
+ Unit *acc; /* accumulator for result */
+ Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer [+1 is for possible */
+ /* final carry digit or DECBUFFER=0] */
+ Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
+ Flag alloced = 0; /* set non-0 if any allocations */
+ Int reqdigits = set->digits; /* local copy; requested DIGITS */
+ uByte merged; /* merged flags */
+ Int padding; /* work */
+
+#if DECCHECK
+ if (decCheckOperands (res, lhs, rhs, set))
+ return res;
+#endif
+
+ do
+ { /* protect allocated storage */
+#if DECSUBSET
+ if (!set->extended)
+ {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits > reqdigits)
+ {
+ alloclhs = decRoundOperand (lhs, set, status);
+ if (alloclhs == NULL)
+ break;
+ lhs = alloclhs;
+ alloced = 1;
+ }
+ if (rhs->digits > reqdigits)
+ {
+ allocrhs = decRoundOperand (rhs, set, status);
+ if (allocrhs == NULL)
+ break;
+ rhs = allocrhs;
+ alloced = 1;
+ }
+ }
+#endif
+ /* [following code does not require input rounding] */
+
+ /* note whether signs differ */
+ diffsign = (Flag) ((lhs->bits ^ rhs->bits ^ negate) & DECNEG);
+
+ /* handle infinities and NaNs */
+ merged = (lhs->bits | rhs->bits) & DECSPECIAL;
+ if (merged)
+ { /* a special bit set */
+ if (merged & (DECSNAN | DECNAN)) /* a NaN */
+ decNaNs (res, lhs, rhs, status);
+ else
+ { /* one or two infinities */
+ if (decNumberIsInfinite (lhs))
+ { /* LHS is infinity */
+ /* two infinities with different signs is invalid */
+ if (decNumberIsInfinite (rhs) && diffsign)
+ {
+ *status |= DEC_Invalid_operation;
+ break;
+ }
+ bits = lhs->bits & DECNEG; /* get sign from LHS */
+ }
+ else
+ bits = (rhs->bits ^ negate) & DECNEG; /* RHS must be Infinity */
+ bits |= DECINF;
+ decNumberZero (res);
+ res->bits = bits; /* set +/- infinity */
+ } /* an infinity */
+ break;
+ }
+
+ /* Quick exit for add 0s; return the non-0, modified as need be */
+ if (ISZERO (lhs))
+ {
+ Int adjust; /* work */
+ Int lexp = lhs->exponent; /* save in case LHS==RES */
+ bits = lhs->bits; /* .. */
+ residue = 0; /* clear accumulator */
+ decCopyFit (res, rhs, set, &residue, status); /* copy (as needed) */
+ res->bits ^= negate; /* flip if rhs was negated */
+#if DECSUBSET
+ if (set->extended)
+ { /* exponents on zeros count */
+#endif
+ /* exponent will be the lower of the two */
+ adjust = lexp - res->exponent; /* adjustment needed [if -ve] */
+ if (ISZERO (res))
+ { /* both 0: special IEEE 854 rules */
+ if (adjust < 0)
+ res->exponent = lexp; /* set exponent */
+ /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
+ if (diffsign)
+ {
+ if (set->round != DEC_ROUND_FLOOR)
+ res->bits = 0;
+ else
+ res->bits = DECNEG; /* preserve 0 sign */
+ }
+ }
+ else
+ { /* non-0 res */
+ if (adjust < 0)
+ { /* 0-padding needed */
+ if ((res->digits - adjust) > set->digits)
+ {
+ adjust = res->digits - set->digits; /* to fit exactly */
+ *status |= DEC_Rounded; /* [but exact] */
+ }
+ res->digits =
+ decShiftToMost (res->lsu, res->digits, -adjust);
+ res->exponent += adjust; /* set the exponent. */
+ }
+ } /* non-0 res */
+#if DECSUBSET
+ } /* extended */
+#endif
+ decFinish (res, set, &residue, status); /* clean and finalize */
+ break;
+ }
+
+ if (ISZERO (rhs))
+ { /* [lhs is non-zero] */
+ Int adjust; /* work */
+ Int rexp = rhs->exponent; /* save in case RHS==RES */
+ bits = rhs->bits; /* be clean */
+ residue = 0; /* clear accumulator */
+ decCopyFit (res, lhs, set, &residue, status); /* copy (as needed) */
+#if DECSUBSET
+ if (set->extended)
+ { /* exponents on zeros count */
+#endif
+ /* exponent will be the lower of the two */
+ /* [0-0 case handled above] */
+ adjust = rexp - res->exponent; /* adjustment needed [if -ve] */
+ if (adjust < 0)
+ { /* 0-padding needed */
+ if ((res->digits - adjust) > set->digits)
+ {
+ adjust = res->digits - set->digits; /* to fit exactly */
+ *status |= DEC_Rounded; /* [but exact] */
+ }
+ res->digits =
+ decShiftToMost (res->lsu, res->digits, -adjust);
+ res->exponent += adjust; /* set the exponent. */
+ }
+#if DECSUBSET
+ } /* extended */
+#endif
+ decFinish (res, set, &residue, status); /* clean and finalize */
+ break;
+ }
+ /* [both fastpath and mainpath code below assume these cases */
+ /* (notably 0-0) have already been handled] */
+
+ /* calculate the padding needed to align the operands */
+ padding = rhs->exponent - lhs->exponent;
+
+ /* Fastpath cases where the numbers are aligned and normal, the RHS */
+ /* is all in one unit, no operand rounding is needed, and no carry, */
+ /* lengthening, or borrow is needed */
+ if (rhs->digits <= DECDPUN && padding == 0 && rhs->exponent >= set->emin /* [some normals drop through] */
+ && rhs->digits <= reqdigits && lhs->digits <= reqdigits)
+ {
+ Int partial = *lhs->lsu;
+ if (!diffsign)
+ { /* adding */
+ Int maxv = DECDPUNMAX; /* highest no-overflow */
+ if (lhs->digits < DECDPUN)
+ maxv = powers[lhs->digits] - 1;
+ partial += *rhs->lsu;
+ if (partial <= maxv)
+ { /* no carry */
+ if (res != lhs)
+ decNumberCopy (res, lhs); /* not in place */
+ *res->lsu = (Unit) partial; /* [copy could have overwritten RHS] */
+ break;
+ }
+ /* else drop out for careful add */
+ }
+ else
+ { /* signs differ */
+ partial -= *rhs->lsu;
+ if (partial > 0)
+ { /* no borrow needed, and non-0 result */
+ if (res != lhs)
+ decNumberCopy (res, lhs); /* not in place */
+ *res->lsu = (Unit) partial;
+ /* this could have reduced digits [but result>0] */
+ res->digits = decGetDigits (res->lsu, D2U (res->digits));
+ break;
+ }
+ /* else drop out for careful subtract */
+ }
+ }
+
+ /* Now align (pad) the lhs or rhs so we can add or subtract them, as
+ necessary. If one number is much larger than the other (that is,
+ if in plain form there is a least one digit between the lowest
+ digit or one and the highest of the other) we need to pad with up
+ to DIGITS-1 trailing zeros, and then apply rounding (as exotic
+ rounding modes may be affected by the residue).
+ */
+ rhsshift = 0; /* rhs shift to left (padding) in Units */
+ bits = lhs->bits; /* assume sign is that of LHS */
+ mult = 1; /* likely multiplier */
+
+ /* if padding==0 the operands are aligned; no padding needed */
+ if (padding != 0)
+ {
+ /* some padding needed */
+ /* We always pad the RHS, as we can then effect any required */
+ /* padding by a combination of shifts and a multiply */
+ Flag swapped = 0;
+ if (padding < 0)
+ { /* LHS needs the padding */
+ decNumber *t;
+ padding = -padding; /* will be +ve */
+ bits = (uByte) (rhs->bits ^ negate); /* assumed sign is now that of RHS */
+ t = lhs;
+ lhs = rhs;
+ rhs = t;
+ swapped = 1;
+ }
+
+ /* If, after pad, rhs would be longer than lhs by digits+1 or */
+ /* more then lhs cannot affect the answer, except as a residue, */
+ /* so we only need to pad up to a length of DIGITS+1. */
+ if (rhs->digits + padding > lhs->digits + reqdigits + 1)
+ {
+ /* The RHS is sufficient */
+ /* for residue we use the relative sign indication... */
+ Int shift = reqdigits - rhs->digits; /* left shift needed */
+ residue = 1; /* residue for rounding */
+ if (diffsign)
+ residue = -residue; /* signs differ */
+ /* copy, shortening if necessary */
+ decCopyFit (res, rhs, set, &residue, status);
+ /* if it was already shorter, then need to pad with zeros */
+ if (shift > 0)
+ {
+ res->digits = decShiftToMost (res->lsu, res->digits, shift);
+ res->exponent -= shift; /* adjust the exponent. */
+ }
+ /* flip the result sign if unswapped and rhs was negated */
+ if (!swapped)
+ res->bits ^= negate;
+ decFinish (res, set, &residue, status); /* done */
+ break;
+ }
+
+ /* LHS digits may affect result */
+ rhsshift = D2U (padding + 1) - 1; /* this much by Unit shift .. */
+ mult = powers[padding - (rhsshift * DECDPUN)]; /* .. this by multiplication */
+ } /* padding needed */
+
+ if (diffsign)
+ mult = -mult; /* signs differ */
+
+ /* determine the longer operand */
+ maxdigits = rhs->digits + padding; /* virtual length of RHS */
+ if (lhs->digits > maxdigits)
+ maxdigits = lhs->digits;
+
+ /* Decide on the result buffer to use; if possible place directly */
+ /* into result. */
+ acc = res->lsu; /* assume build direct */
+ /* If destructive overlap, or the number is too long, or a carry or */
+ /* borrow to DIGITS+1 might be possible we must use a buffer. */
+ /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
+ if ((maxdigits >= reqdigits) /* is, or could be, too large */
+ || (res == rhs && rhsshift > 0))
+ { /* destructive overlap */
+ /* buffer needed; choose it */
+ /* we'll need units for maxdigits digits, +1 Unit for carry or borrow */
+ Int need = D2U (maxdigits) + 1;
+ acc = accbuff; /* assume use local buffer */
+ if (need * sizeof (Unit) > sizeof (accbuff))
+ {
+ allocacc = (Unit *) malloc (need * sizeof (Unit));
+ if (allocacc == NULL)
+ { /* hopeless -- abandon */
+ *status |= DEC_Insufficient_storage;
+ break;
+ }
+ acc = allocacc;
+ alloced = 1;
+ }
+ }
+
+ res->bits = (uByte) (bits & DECNEG); /* it's now safe to overwrite.. */
+ res->exponent = lhs->exponent; /* .. operands (even if aliased) */
+
+#if DECTRACE
+ decDumpAr ('A', lhs->lsu, D2U (lhs->digits));
+ decDumpAr ('B', rhs->lsu, D2U (rhs->digits));
+ printf (" :h: %d %d\n", rhsshift, mult);
+#endif
+
+ /* add [A+B*m] or subtract [A+B*(-m)] */
+ res->digits = decUnitAddSub (lhs->lsu, D2U (lhs->digits), rhs->lsu, D2U (rhs->digits), rhsshift, acc, mult) * DECDPUN; /* [units -> digits] */
+ if (res->digits < 0)
+ { /* we borrowed */
+ res->digits = -res->digits;
+ res->bits ^= DECNEG; /* flip the sign */
+ }
+#if DECTRACE
+ decDumpAr ('+', acc, D2U (res->digits));
+#endif
+
+ /* If we used a buffer we need to copy back, possibly shortening */
+ /* (If we didn't use buffer it must have fit, so can't need rounding */
+ /* and residue must be 0.) */
+ residue = 0; /* clear accumulator */
+ if (acc != res->lsu)
+ {
+#if DECSUBSET
+ if (set->extended)
+ { /* round from first significant digit */
+#endif
+ /* remove leading zeros that we added due to rounding up to */
+ /* integral Units -- before the test for rounding. */
+ if (res->digits > reqdigits)
+ res->digits = decGetDigits (acc, D2U (res->digits));
+ decSetCoeff (res, set, acc, res->digits, &residue, status);
+#if DECSUBSET
+ }
+ else
+ { /* subset arithmetic rounds from original significant digit */
+ /* We may have an underestimate. This only occurs when both */
+ /* numbers fit in DECDPUN digits and we are padding with a */
+ /* negative multiple (-10, -100...) and the top digit(s) become */
+ /* 0. (This only matters if we are using X3.274 rules where the */
+ /* leading zero could be included in the rounding.) */
+ if (res->digits < maxdigits)
+ {
+ *(acc + D2U (res->digits)) = 0; /* ensure leading 0 is there */
+ res->digits = maxdigits;
+ }
+ else
+ {
+ /* remove leading zeros that we added due to rounding up to */
+ /* integral Units (but only those in excess of the original */
+ /* maxdigits length, unless extended) before test for rounding. */
+ if (res->digits > reqdigits)
+ {
+ res->digits = decGetDigits (acc, D2U (res->digits));
+ if (res->digits < maxdigits)
+ res->digits = maxdigits;
+ }
+ }
+ decSetCoeff (res, set, acc, res->digits, &residue, status);
+ /* Now apply rounding if needed before removing leading zeros. */
+ /* This is safe because subnormals are not a possibility */
+ if (residue != 0)
+ {
+ decApplyRound (res, set, residue, status);
+ residue = 0; /* we did what we had to do */
+ }
+ } /* subset */
+#endif
+ } /* used buffer */
+
+ /* strip leading zeros [these were left on in case of subset subtract] */
+ res->digits = decGetDigits (res->lsu, D2U (res->digits));
+
+ /* apply checks and rounding */
+ decFinish (res, set, &residue, status);
+
+ /* "When the sum of two operands with opposite signs is exactly */
+ /* zero, the sign of that sum shall be '+' in all rounding modes */
+ /* except round toward -Infinity, in which mode that sign shall be */
+ /* '-'." [Subset zeros also never have '-', set by decFinish.] */
+ if (ISZERO (res) && diffsign
+#if DECSUBSET
+ && set->extended
+#endif
+ && (*status & DEC_Inexact) == 0)
+ {
+ if (set->round == DEC_ROUND_FLOOR)
+ res->bits |= DECNEG; /* sign - */
+ else
+ res->bits &= ~DECNEG; /* sign + */
+ }
+ }
+ while (0); /* end protected */
+
+ if (alloced)
+ {
+ if (allocacc != NULL)
+ free (allocacc); /* drop any storage we used */
+ if (allocrhs != NULL)
+ free (allocrhs); /* .. */
+ if (alloclhs != NULL)
+ free (alloclhs); /* .. */
+ }
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decDivideOp -- division operation */
+/* */
+/* This routine performs the calculations for all four division */
+/* operators (divide, divideInteger, remainder, remainderNear). */
+/* */
+/* C=A op B */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X/X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
+/* status is the usual accumulator */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* ------------------------------------------------------------------ */
+/* The underlying algorithm of this routine is the same as in the */
+/* 1981 S/370 implementation, that is, non-restoring long division */
+/* with bi-unit (rather than bi-digit) estimation for each unit */
+/* multiplier. In this pseudocode overview, complications for the */
+/* Remainder operators and division residues for exact rounding are */
+/* omitted for clarity. */
+/* */
+/* Prepare operands and handle special values */
+/* Test for x/0 and then 0/x */
+/* Exp =Exp1 - Exp2 */
+/* Exp =Exp +len(var1) -len(var2) */
+/* Sign=Sign1 * Sign2 */
+/* Pad accumulator (Var1) to double-length with 0's (pad1) */
+/* Pad Var2 to same length as Var1 */
+/* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
+/* have=0 */
+/* Do until (have=digits+1 OR residue=0) */
+/* if exp<0 then if integer divide/residue then leave */
+/* this_unit=0 */
+/* Do forever */
+/* compare numbers */
+/* if <0 then leave inner_loop */
+/* if =0 then (* quick exit without subtract *) do */
+/* this_unit=this_unit+1; output this_unit */
+/* leave outer_loop; end */
+/* Compare lengths of numbers (mantissae): */
+/* If same then tops2=msu2pair -- {units 1&2 of var2} */
+/* else tops2=msu2plus -- {0, unit 1 of var2} */
+/* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
+/* mult=tops1/tops2 -- Good and safe guess at divisor */
+/* if mult=0 then mult=1 */
+/* this_unit=this_unit+mult */
+/* subtract */
+/* end inner_loop */
+/* if have\=0 | this_unit\=0 then do */
+/* output this_unit */
+/* have=have+1; end */
+/* var2=var2/10 */
+/* exp=exp-1 */
+/* end outer_loop */
+/* exp=exp+1 -- set the proper exponent */
+/* if have=0 then generate answer=0 */
+/* Return (Result is defined by Var1) */
+/* */
+/* ------------------------------------------------------------------ */
+/* We need two working buffers during the long division; one (digits+ */
+/* 1) to accumulate the result, and the other (up to 2*digits+1) for */
+/* long subtractions. These are acc and var1 respectively. */
+/* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
+/* ------------------------------------------------------------------ */
+static decNumber *
+decDivideOp (decNumber * res,
+ decNumber * lhs, decNumber * rhs,
+ decContext * set, Flag op, uInt * status)
+{
+ decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs = NULL; /* .., rhs */
+ Unit accbuff[D2U (DECBUFFER + DECDPUN)]; /* local buffer */
+ Unit *acc = accbuff; /* -> accumulator array for result */
+ Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
+ Unit *accnext; /* -> where next digit will go */
+ Int acclength; /* length of acc needed [Units] */
+ Int accunits; /* count of units accumulated */
+ Int accdigits; /* count of digits accumulated */
+
+ Unit varbuff[D2U (DECBUFFER * 2 + DECDPUN) * sizeof (Unit)]; /* buffer for var1 */
+ Unit *var1 = varbuff; /* -> var1 array for long subtraction */
+ Unit *varalloc = NULL; /* -> allocated buffer, iff used */
+
+ Unit *var2; /* -> var2 array */
+
+ Int var1units, var2units; /* actual lengths */
+ Int var2ulen; /* logical length (units) */
+ Int var1initpad = 0; /* var1 initial padding (digits) */
+ Unit *msu1, *msu2; /* -> msu of each var */
+ Int msu2plus; /* msu2 plus one [does not vary] */
+ eInt msu2pair; /* msu2 pair plus one [does not vary] */
+ Int maxdigits; /* longest LHS or required acc length */
+ Int mult; /* multiplier for subtraction */
+ Unit thisunit; /* current unit being accumulated */
+ Int residue; /* for rounding */
+ Int reqdigits = set->digits; /* requested DIGITS */
+ Int exponent; /* working exponent */
+ Int maxexponent = 0; /* DIVIDE maximum exponent if unrounded */
+ uByte bits; /* working sign */
+ uByte merged; /* merged flags */
+ Unit *target, *source; /* work */
+ uInt const *pow; /* .. */
+ Int shift, cut; /* .. */
+#if DECSUBSET
+ Int dropped; /* work */
+#endif
+
+#if DECCHECK
+ if (decCheckOperands (res, lhs, rhs, set))
+ return res;
+#endif
+
+ do
+ { /* protect allocated storage */
+#if DECSUBSET
+ if (!set->extended)
+ {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits > reqdigits)
+ {
+ alloclhs = decRoundOperand (lhs, set, status);
+ if (alloclhs == NULL)
+ break;
+ lhs = alloclhs;
+ }
+ if (rhs->digits > reqdigits)
+ {
+ allocrhs = decRoundOperand (rhs, set, status);
+ if (allocrhs == NULL)
+ break;
+ rhs = allocrhs;
+ }
+ }
+#endif
+ /* [following code does not require input rounding] */
+
+ bits = (lhs->bits ^ rhs->bits) & DECNEG; /* assumed sign for divisions */
+
+ /* handle infinities and NaNs */
+ merged = (lhs->bits | rhs->bits) & DECSPECIAL;
+ if (merged)
+ { /* a special bit set */
+ if (merged & (DECSNAN | DECNAN))
+ { /* one or two NaNs */
+ decNaNs (res, lhs, rhs, status);
+ break;
+ }
+ /* one or two infinities */
+ if (decNumberIsInfinite (lhs))
+ { /* LHS (dividend) is infinite */
+ if (decNumberIsInfinite (rhs) || /* two infinities are invalid .. */
+ op & (REMAINDER | REMNEAR))
+ { /* as is remainder of infinity */
+ *status |= DEC_Invalid_operation;
+ break;
+ }
+ /* [Note that infinity/0 raises no exceptions] */
+ decNumberZero (res);
+ res->bits = bits | DECINF; /* set +/- infinity */
+ break;
+ }
+ else
+ { /* RHS (divisor) is infinite */
+ residue = 0;
+ if (op & (REMAINDER | REMNEAR))
+ {
+ /* result is [finished clone of] lhs */
+ decCopyFit (res, lhs, set, &residue, status);
+ }
+ else
+ { /* a division */
+ decNumberZero (res);
+ res->bits = bits; /* set +/- zero */
+ /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
+ /* is a 0 with infinitely negative exponent, clamped to minimum */
+ if (op & DIVIDE)
+ {
+ res->exponent = set->emin - set->digits + 1;
+ *status |= DEC_Clamped;
+ }
+ }
+ decFinish (res, set, &residue, status);
+ break;
+ }
+ }
+
+ /* handle 0 rhs (x/0) */
+ if (ISZERO (rhs))
+ { /* x/0 is always exceptional */
+ if (ISZERO (lhs))
+ {
+ decNumberZero (res); /* [after lhs test] */
+ *status |= DEC_Division_undefined; /* 0/0 will become NaN */
+ }
+ else
+ {
+ decNumberZero (res);
+ if (op & (REMAINDER | REMNEAR))
+ *status |= DEC_Invalid_operation;
+ else
+ {
+ *status |= DEC_Division_by_zero; /* x/0 */
+ res->bits = bits | DECINF; /* .. is +/- Infinity */
+ }
+ }
+ break;
+ }
+
+ /* handle 0 lhs (0/x) */
+ if (ISZERO (lhs))
+ { /* 0/x [x!=0] */
+#if DECSUBSET
+ if (!set->extended)
+ decNumberZero (res);
+ else
+ {
+#endif
+ if (op & DIVIDE)
+ {
+ residue = 0;
+ exponent = lhs->exponent - rhs->exponent; /* ideal exponent */
+ decNumberCopy (res, lhs); /* [zeros always fit] */
+ res->bits = bits; /* sign as computed */
+ res->exponent = exponent; /* exponent, too */
+ decFinalize (res, set, &residue, status); /* check exponent */
+ }
+ else if (op & DIVIDEINT)
+ {
+ decNumberZero (res); /* integer 0 */
+ res->bits = bits; /* sign as computed */
+ }
+ else
+ { /* a remainder */
+ exponent = rhs->exponent; /* [save in case overwrite] */
+ decNumberCopy (res, lhs); /* [zeros always fit] */
+ if (exponent < res->exponent)
+ res->exponent = exponent; /* use lower */
+ }
+#if DECSUBSET
+ }
+#endif
+ break;
+ }
+
+ /* Precalculate exponent. This starts off adjusted (and hence fits */
+ /* in 31 bits) and becomes the usual unadjusted exponent as the */
+ /* division proceeds. The order of evaluation is important, here, */
+ /* to avoid wrap. */
+ exponent =
+ (lhs->exponent + lhs->digits) - (rhs->exponent + rhs->digits);
+
+ /* If the working exponent is -ve, then some quick exits are */
+ /* possible because the quotient is known to be <1 */
+ /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
+ if (exponent < 0 && !(op == DIVIDE))
+ {
+ if (op & DIVIDEINT)
+ {
+ decNumberZero (res); /* integer part is 0 */
+#if DECSUBSET
+ if (set->extended)
+#endif
+ res->bits = bits; /* set +/- zero */
+ break;
+ }
+ /* we can fastpath remainders so long as the lhs has the */
+ /* smaller (or equal) exponent */
+ if (lhs->exponent <= rhs->exponent)
+ {
+ if (op & REMAINDER || exponent < -1)
+ {
+ /* It is REMAINDER or safe REMNEAR; result is [finished */
+ /* clone of] lhs (r = x - 0*y) */
+ residue = 0;
+ decCopyFit (res, lhs, set, &residue, status);
+ decFinish (res, set, &residue, status);
+ break;
+ }
+ /* [unsafe REMNEAR drops through] */
+ }
+ } /* fastpaths */
+
+ /* We need long (slow) division; roll up the sleeves... */
+
+ /* The accumulator will hold the quotient of the division. */
+ /* If it needs to be too long for stack storage, then allocate. */
+ acclength = D2U (reqdigits + DECDPUN); /* in Units */
+ if (acclength * sizeof (Unit) > sizeof (accbuff))
+ {
+ allocacc = (Unit *) malloc (acclength * sizeof (Unit));
+ if (allocacc == NULL)
+ { /* hopeless -- abandon */
+ *status |= DEC_Insufficient_storage;
+ break;
+ }
+ acc = allocacc; /* use the allocated space */
+ }
+
+ /* var1 is the padded LHS ready for subtractions. */
+ /* If it needs to be too long for stack storage, then allocate. */
+ /* The maximum units we need for var1 (long subtraction) is: */
+ /* Enough for */
+ /* (rhs->digits+reqdigits-1) -- to allow full slide to right */
+ /* or (lhs->digits) -- to allow for long lhs */
+ /* whichever is larger */
+ /* +1 -- for rounding of slide to right */
+ /* +1 -- for leading 0s */
+ /* +1 -- for pre-adjust if a remainder or DIVIDEINT */
+ /* [Note: unused units do not participate in decUnitAddSub data] */
+ maxdigits = rhs->digits + reqdigits - 1;
+ if (lhs->digits > maxdigits)
+ maxdigits = lhs->digits;
+ var1units = D2U (maxdigits) + 2;
+ /* allocate a guard unit above msu1 for REMAINDERNEAR */
+ if (!(op & DIVIDE))
+ var1units++;
+ if ((var1units + 1) * sizeof (Unit) > sizeof (varbuff))
+ {
+ varalloc = (Unit *) malloc ((var1units + 1) * sizeof (Unit));
+ if (varalloc == NULL)
+ { /* hopeless -- abandon */
+ *status |= DEC_Insufficient_storage;
+ break;
+ }
+ var1 = varalloc; /* use the allocated space */
+ }
+
+ /* Extend the lhs and rhs to full long subtraction length. The lhs */
+ /* is truly extended into the var1 buffer, with 0 padding, so we can */
+ /* subtract in place. The rhs (var2) has virtual padding */
+ /* (implemented by decUnitAddSub). */
+ /* We allocated one guard unit above msu1 for rem=rem+rem in REMAINDERNEAR */
+ msu1 = var1 + var1units - 1; /* msu of var1 */
+ source = lhs->lsu + D2U (lhs->digits) - 1; /* msu of input array */
+ for (target = msu1; source >= lhs->lsu; source--, target--)
+ *target = *source;
+ for (; target >= var1; target--)
+ *target = 0;
+
+ /* rhs (var2) is left-aligned with var1 at the start */
+ var2ulen = var1units; /* rhs logical length (units) */
+ var2units = D2U (rhs->digits); /* rhs actual length (units) */
+ var2 = rhs->lsu; /* -> rhs array */
+ msu2 = var2 + var2units - 1; /* -> msu of var2 [never changes] */
+ /* now set up the variables which we'll use for estimating the */
+ /* multiplication factor. If these variables are not exact, we add */
+ /* 1 to make sure that we never overestimate the multiplier. */
+ msu2plus = *msu2; /* it's value .. */
+ if (var2units > 1)
+ msu2plus++; /* .. +1 if any more */
+ msu2pair = (eInt) * msu2 * (DECDPUNMAX + 1); /* top two pair .. */
+ if (var2units > 1)
+ { /* .. [else treat 2nd as 0] */
+ msu2pair += *(msu2 - 1); /* .. */
+ if (var2units > 2)
+ msu2pair++; /* .. +1 if any more */
+ }
+
+ /* Since we are working in units, the units may have leading zeros, */
+ /* but we calculated the exponent on the assumption that they are */
+ /* both left-aligned. Adjust the exponent to compensate: add the */
+ /* number of leading zeros in var1 msu and subtract those in var2 msu. */
+ /* [We actually do this by counting the digits and negating, as */
+ /* lead1=DECDPUN-digits1, and similarly for lead2.] */
+ for (pow = &powers[1]; *msu1 >= *pow; pow++)
+ exponent--;
+ for (pow = &powers[1]; *msu2 >= *pow; pow++)
+ exponent++;
+
+ /* Now, if doing an integer divide or remainder, we want to ensure */
+ /* that the result will be Unit-aligned. To do this, we shift the */
+ /* var1 accumulator towards least if need be. (It's much easier to */
+ /* do this now than to reassemble the residue afterwards, if we are */
+ /* doing a remainder.) Also ensure the exponent is not negative. */
+ if (!(op & DIVIDE))
+ {
+ Unit *u;
+ /* save the initial 'false' padding of var1, in digits */
+ var1initpad = (var1units - D2U (lhs->digits)) * DECDPUN;
+ /* Determine the shift to do. */
+ if (exponent < 0)
+ cut = -exponent;
+ else
+ cut = DECDPUN - exponent % DECDPUN;
+ decShiftToLeast (var1, var1units, cut);
+ exponent += cut; /* maintain numerical value */
+ var1initpad -= cut; /* .. and reduce padding */
+ /* clean any most-significant units we just emptied */
+ for (u = msu1; cut >= DECDPUN; cut -= DECDPUN, u--)
+ *u = 0;
+ } /* align */
+ else
+ { /* is DIVIDE */
+ maxexponent = lhs->exponent - rhs->exponent; /* save */
+ /* optimization: if the first iteration will just produce 0, */
+ /* preadjust to skip it [valid for DIVIDE only] */
+ if (*msu1 < *msu2)
+ {
+ var2ulen--; /* shift down */
+ exponent -= DECDPUN; /* update the exponent */
+ }
+ }
+
+ /* ---- start the long-division loops ------------------------------ */
+ accunits = 0; /* no units accumulated yet */
+ accdigits = 0; /* .. or digits */
+ accnext = acc + acclength - 1; /* -> msu of acc [NB: allows digits+1] */
+ for (;;)
+ { /* outer forever loop */
+ thisunit = 0; /* current unit assumed 0 */
+ /* find the next unit */
+ for (;;)
+ { /* inner forever loop */
+ /* strip leading zero units [from either pre-adjust or from */
+ /* subtract last time around]. Leave at least one unit. */
+ for (; *msu1 == 0 && msu1 > var1; msu1--)
+ var1units--;
+
+ if (var1units < var2ulen)
+ break; /* var1 too low for subtract */
+ if (var1units == var2ulen)
+ { /* unit-by-unit compare needed */
+ /* compare the two numbers, from msu */
+ Unit *pv1, *pv2, v2; /* units to compare */
+ pv2 = msu2; /* -> msu */
+ for (pv1 = msu1;; pv1--, pv2--)
+ {
+ /* v1=*pv1 -- always OK */
+ v2 = 0; /* assume in padding */
+ if (pv2 >= var2)
+ v2 = *pv2; /* in range */
+ if (*pv1 != v2)
+ break; /* no longer the same */
+ if (pv1 == var1)
+ break; /* done; leave pv1 as is */
+ }
+ /* here when all inspected or a difference seen */
+ if (*pv1 < v2)
+ break; /* var1 too low to subtract */
+ if (*pv1 == v2)
+ { /* var1 == var2 */
+ /* reach here if var1 and var2 are identical; subtraction */
+ /* would increase digit by one, and the residue will be 0 so */
+ /* we are done; leave the loop with residue set to 0. */
+ thisunit++; /* as though subtracted */
+ *var1 = 0; /* set var1 to 0 */
+ var1units = 1; /* .. */
+ break; /* from inner */
+ } /* var1 == var2 */
+ /* *pv1>v2. Prepare for real subtraction; the lengths are equal */
+ /* Estimate the multiplier (there's always a msu1-1)... */
+ /* Bring in two units of var2 to provide a good estimate. */
+ mult =
+ (Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
+ *(msu1 - 1)) / msu2pair);
+ } /* lengths the same */
+ else
+ { /* var1units > var2ulen, so subtraction is safe */
+ /* The var2 msu is one unit towards the lsu of the var1 msu, */
+ /* so we can only use one unit for var2. */
+ mult =
+ (Int) (((eInt) * msu1 * (DECDPUNMAX + 1) +
+ *(msu1 - 1)) / msu2plus);
+ }
+ if (mult == 0)
+ mult = 1; /* must always be at least 1 */
+ /* subtraction needed; var1 is > var2 */
+ thisunit = (Unit) (thisunit + mult); /* accumulate */
+ /* subtract var1-var2, into var1; only the overlap needs */
+ /* processing, as we are in place */
+ shift = var2ulen - var2units;
+#if DECTRACE
+ decDumpAr ('1', &var1[shift], var1units - shift);
+ decDumpAr ('2', var2, var2units);
+ printf ("m=%d\n", -mult);
+#endif
+ decUnitAddSub (&var1[shift], var1units - shift,
+ var2, var2units, 0, &var1[shift], -mult);
+#if DECTRACE
+ decDumpAr ('#', &var1[shift], var1units - shift);
+#endif
+ /* var1 now probably has leading zeros; these are removed at the */
+ /* top of the inner loop. */
+ } /* inner loop */
+
+ /* We have the next unit; unless it's a leading zero, add to acc */
+ if (accunits != 0 || thisunit != 0)
+ { /* put the unit we got */
+ *accnext = thisunit; /* store in accumulator */
+ /* account exactly for the digits we got */
+ if (accunits == 0)
+ {
+ accdigits++; /* at least one */
+ for (pow = &powers[1]; thisunit >= *pow; pow++)
+ accdigits++;
+ }
+ else
+ accdigits += DECDPUN;
+ accunits++; /* update count */
+ accnext--; /* ready for next */
+ if (accdigits > reqdigits)
+ break; /* we have all we need */
+ }
+
+ /* if the residue is zero, we're done (unless divide or */
+ /* divideInteger and we haven't got enough digits yet) */
+ if (*var1 == 0 && var1units == 1)
+ { /* residue is 0 */
+ if (op & (REMAINDER | REMNEAR))
+ break;
+ if ((op & DIVIDE) && (exponent <= maxexponent))
+ break;
+ /* [drop through if divideInteger] */
+ }
+ /* we've also done enough if calculating remainder or integer */
+ /* divide and we just did the last ('units') unit */
+ if (exponent == 0 && !(op & DIVIDE))
+ break;
+
+ /* to get here, var1 is less than var2, so divide var2 by the per- */
+ /* Unit power of ten and go for the next digit */
+ var2ulen--; /* shift down */
+ exponent -= DECDPUN; /* update the exponent */
+ } /* outer loop */
+
+ /* ---- division is complete --------------------------------------- */
+ /* here: acc has at least reqdigits+1 of good results (or fewer */
+ /* if early stop), starting at accnext+1 (its lsu) */
+ /* var1 has any residue at the stopping point */
+ /* accunits is the number of digits we collected in acc */
+ if (accunits == 0)
+ { /* acc is 0 */
+ accunits = 1; /* show we have one .. */
+ accdigits = 1; /* .. */
+ *accnext = 0; /* .. whose value is 0 */
+ }
+ else
+ accnext++; /* back to last placed */
+ /* accnext now -> lowest unit of result */
+
+ residue = 0; /* assume no residue */
+ if (op & DIVIDE)
+ {
+ /* record the presence of any residue, for rounding */
+ if (*var1 != 0 || var1units > 1)
+ residue = 1;
+ else
+ { /* no residue */
+ /* We had an exact division; clean up spurious trailing 0s. */
+ /* There will be at most DECDPUN-1, from the final multiply, */
+ /* and then only if the result is non-0 (and even) and the */
+ /* exponent is 'loose'. */
+#if DECDPUN>1
+ Unit lsu = *accnext;
+ if (!(lsu & 0x01) && (lsu != 0))
+ {
+ /* count the trailing zeros */
+ Int drop = 0;
+ for (;; drop++)
+ { /* [will terminate because lsu!=0] */
+ if (exponent >= maxexponent)
+ break; /* don't chop real 0s */
+#if DECDPUN<=4
+ if ((lsu - QUOT10 (lsu, drop + 1)
+ * powers[drop + 1]) != 0)
+ break; /* found non-0 digit */
+#else
+ if (lsu % powers[drop + 1] != 0)
+ break; /* found non-0 digit */
+#endif
+ exponent++;
+ }
+ if (drop > 0)
+ {
+ accunits = decShiftToLeast (accnext, accunits, drop);
+ accdigits = decGetDigits (accnext, accunits);
+ accunits = D2U (accdigits);
+ /* [exponent was adjusted in the loop] */
+ }
+ } /* neither odd nor 0 */
+#endif
+ } /* exact divide */
+ } /* divide */
+ else /* op!=DIVIDE */
+ {
+ /* check for coefficient overflow */
+ if (accdigits + exponent > reqdigits)
+ {
+ *status |= DEC_Division_impossible;
+ break;
+ }
+ if (op & (REMAINDER | REMNEAR))
+ {
+ /* [Here, the exponent will be 0, because we adjusted var1 */
+ /* appropriately.] */
+ Int postshift; /* work */
+ Flag wasodd = 0; /* integer was odd */
+ Unit *quotlsu; /* for save */
+ Int quotdigits; /* .. */
+
+ /* Fastpath when residue is truly 0 is worthwhile [and */
+ /* simplifies the code below] */
+ if (*var1 == 0 && var1units == 1)
+ { /* residue is 0 */
+ Int exp = lhs->exponent; /* save min(exponents) */
+ if (rhs->exponent < exp)
+ exp = rhs->exponent;
+ decNumberZero (res); /* 0 coefficient */
+#if DECSUBSET
+ if (set->extended)
+#endif
+ res->exponent = exp; /* .. with proper exponent */
+ break;
+ }
+ /* note if the quotient was odd */
+ if (*accnext & 0x01)
+ wasodd = 1; /* acc is odd */
+ quotlsu = accnext; /* save in case need to reinspect */
+ quotdigits = accdigits; /* .. */
+
+ /* treat the residue, in var1, as the value to return, via acc */
+ /* calculate the unused zero digits. This is the smaller of: */
+ /* var1 initial padding (saved above) */
+ /* var2 residual padding, which happens to be given by: */
+ postshift =
+ var1initpad + exponent - lhs->exponent + rhs->exponent;
+ /* [the 'exponent' term accounts for the shifts during divide] */
+ if (var1initpad < postshift)
+ postshift = var1initpad;
+
+ /* shift var1 the requested amount, and adjust its digits */
+ var1units = decShiftToLeast (var1, var1units, postshift);
+ accnext = var1;
+ accdigits = decGetDigits (var1, var1units);
+ accunits = D2U (accdigits);
+
+ exponent = lhs->exponent; /* exponent is smaller of lhs & rhs */
+ if (rhs->exponent < exponent)
+ exponent = rhs->exponent;
+ bits = lhs->bits; /* remainder sign is always as lhs */
+
+ /* Now correct the result if we are doing remainderNear; if it */
+ /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
+ /* the integer was odd then the result should be rem-rhs. */
+ if (op & REMNEAR)
+ {
+ Int compare, tarunits; /* work */
+ Unit *up; /* .. */
+
+
+ /* calculate remainder*2 into the var1 buffer (which has */
+ /* 'headroom' of an extra unit and hence enough space) */
+ /* [a dedicated 'double' loop would be faster, here] */
+ tarunits =
+ decUnitAddSub (accnext, accunits, accnext, accunits, 0,
+ accnext, 1);
+ /* decDumpAr('r', accnext, tarunits); */
+
+ /* Here, accnext (var1) holds tarunits Units with twice the */
+ /* remainder's coefficient, which we must now compare to the */
+ /* RHS. The remainder's exponent may be smaller than the RHS's. */
+ compare =
+ decUnitCompare (accnext, tarunits, rhs->lsu,
+ D2U (rhs->digits),
+ rhs->exponent - exponent);
+ if (compare == BADINT)
+ { /* deep trouble */
+ *status |= DEC_Insufficient_storage;
+ break;
+ }
+
+ /* now restore the remainder by dividing by two; we know the */
+ /* lsu is even. */
+ for (up = accnext; up < accnext + tarunits; up++)
+ {
+ Int half; /* half to add to lower unit */
+ half = *up & 0x01;
+ *up /= 2; /* [shift] */
+ if (!half)
+ continue;
+ *(up - 1) += (DECDPUNMAX + 1) / 2;
+ }
+ /* [accunits still describes the original remainder length] */
+
+ if (compare > 0 || (compare == 0 && wasodd))
+ { /* adjustment needed */
+ Int exp, expunits, exprem; /* work */
+ /* This is effectively causing round-up of the quotient, */
+ /* so if it was the rare case where it was full and all */
+ /* nines, it would overflow and hence division-impossible */
+ /* should be raised */
+ Flag allnines = 0; /* 1 if quotient all nines */
+ if (quotdigits == reqdigits)
+ { /* could be borderline */
+ for (up = quotlsu;; up++)
+ {
+ if (quotdigits > DECDPUN)
+ {
+ if (*up != DECDPUNMAX)
+ break; /* non-nines */
+ }
+ else
+ { /* this is the last Unit */
+ if (*up == powers[quotdigits] - 1)
+ allnines = 1;
+ break;
+ }
+ quotdigits -= DECDPUN; /* checked those digits */
+ } /* up */
+ } /* borderline check */
+ if (allnines)
+ {
+ *status |= DEC_Division_impossible;
+ break;
+ }
+
+ /* we need rem-rhs; the sign will invert. Again we can */
+ /* safely use var1 for the working Units array. */
+ exp = rhs->exponent - exponent; /* RHS padding needed */
+ /* Calculate units and remainder from exponent. */
+ expunits = exp / DECDPUN;
+ exprem = exp % DECDPUN;
+ /* subtract [A+B*(-m)]; the result will always be negative */
+ accunits = -decUnitAddSub (accnext, accunits,
+ rhs->lsu, D2U (rhs->digits),
+ expunits, accnext,
+ -(Int) powers[exprem]);
+ accdigits = decGetDigits (accnext, accunits); /* count digits exactly */
+ accunits = D2U (accdigits); /* and recalculate the units for copy */
+ /* [exponent is as for original remainder] */
+ bits ^= DECNEG; /* flip the sign */
+ }
+ } /* REMNEAR */
+ } /* REMAINDER or REMNEAR */
+ } /* not DIVIDE */
+
+ /* Set exponent and bits */
+ res->exponent = exponent;
+ res->bits = (uByte) (bits & DECNEG); /* [cleaned] */
+
+ /* Now the coefficient. */
+ decSetCoeff (res, set, accnext, accdigits, &residue, status);
+
+ decFinish (res, set, &residue, status); /* final cleanup */
+
+#if DECSUBSET
+ /* If a divide then strip trailing zeros if subset [after round] */
+ if (!set->extended && (op == DIVIDE))
+ decTrim (res, 0, &dropped);
+#endif
+ }
+ while (0); /* end protected */
+
+ if (varalloc != NULL)
+ free (varalloc); /* drop any storage we used */
+ if (allocacc != NULL)
+ free (allocacc); /* .. */
+ if (allocrhs != NULL)
+ free (allocrhs); /* .. */
+ if (alloclhs != NULL)
+ free (alloclhs); /* .. */
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decMultiplyOp -- multiplication operation */
+/* */
+/* This routine performs the multiplication C=A x B. */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X*X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* status is the usual accumulator */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* ------------------------------------------------------------------ */
+/* Note: We use 'long' multiplication rather than Karatsuba, as the */
+/* latter would give only a minor improvement for the short numbers */
+/* we expect to handle most (and uses much more memory). */
+/* */
+/* We always have to use a buffer for the accumulator. */
+/* ------------------------------------------------------------------ */
+static decNumber *
+decMultiplyOp (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set, uInt * status)
+{
+ decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs = NULL; /* .., rhs */
+ Unit accbuff[D2U (DECBUFFER * 2 + 1)]; /* local buffer (+1 in case DECBUFFER==0) */
+ Unit *acc = accbuff; /* -> accumulator array for exact result */
+ Unit *allocacc = NULL; /* -> allocated buffer, iff allocated */
+ Unit *mer, *mermsup; /* work */
+ Int accunits; /* Units of accumulator in use */
+ Int madlength; /* Units in multiplicand */
+ Int shift; /* Units to shift multiplicand by */
+ Int need; /* Accumulator units needed */
+ Int exponent; /* work */
+ Int residue = 0; /* rounding residue */
+ uByte bits; /* result sign */
+ uByte merged; /* merged flags */
+
+#if DECCHECK
+ if (decCheckOperands (res, lhs, rhs, set))
+ return res;
+#endif
+
+ do
+ { /* protect allocated storage */
+#if DECSUBSET
+ if (!set->extended)
+ {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits > set->digits)
+ {
+ alloclhs = decRoundOperand (lhs, set, status);
+ if (alloclhs == NULL)
+ break;
+ lhs = alloclhs;
+ }
+ if (rhs->digits > set->digits)
+ {
+ allocrhs = decRoundOperand (rhs, set, status);
+ if (allocrhs == NULL)
+ break;
+ rhs = allocrhs;
+ }
+ }
+#endif
+ /* [following code does not require input rounding] */
+
+ /* precalculate result sign */
+ bits = (uByte) ((lhs->bits ^ rhs->bits) & DECNEG);
+
+ /* handle infinities and NaNs */
+ merged = (lhs->bits | rhs->bits) & DECSPECIAL;
+ if (merged)
+ { /* a special bit set */
+ if (merged & (DECSNAN | DECNAN))
+ { /* one or two NaNs */
+ decNaNs (res, lhs, rhs, status);
+ break;
+ }
+ /* one or two infinities. Infinity * 0 is invalid */
+ if (((lhs->bits & DECSPECIAL) == 0 && ISZERO (lhs))
+ || ((rhs->bits & DECSPECIAL) == 0 && ISZERO (rhs)))
+ {
+ *status |= DEC_Invalid_operation;
+ break;
+ }
+ decNumberZero (res);
+ res->bits = bits | DECINF; /* infinity */
+ break;
+ }
+
+ /* For best speed, as in DMSRCN, we use the shorter number as the */
+ /* multiplier (rhs) and the longer as the multiplicand (lhs) */
+ if (lhs->digits < rhs->digits)
+ { /* swap... */
+ decNumber *hold = lhs;
+ lhs = rhs;
+ rhs = hold;
+ }
+
+ /* if accumulator is too long for local storage, then allocate */
+ need = D2U (lhs->digits) + D2U (rhs->digits); /* maximum units in result */
+ if (need * sizeof (Unit) > sizeof (accbuff))
+ {
+ allocacc = (Unit *) malloc (need * sizeof (Unit));
+ if (allocacc == NULL)
+ {
+ *status |= DEC_Insufficient_storage;
+ break;
+ }
+ acc = allocacc; /* use the allocated space */
+ }
+
+ /* Now the main long multiplication loop */
+ /* Unlike the equivalent in the IBM Java implementation, there */
+ /* is no advantage in calculating from msu to lsu. So we do it */
+ /* by the book, as it were. */
+ /* Each iteration calculates ACC=ACC+MULTAND*MULT */
+ accunits = 1; /* accumulator starts at '0' */
+ *acc = 0; /* .. (lsu=0) */
+ shift = 0; /* no multiplicand shift at first */
+ madlength = D2U (lhs->digits); /* we know this won't change */
+ mermsup = rhs->lsu + D2U (rhs->digits); /* -> msu+1 of multiplier */
+
+ for (mer = rhs->lsu; mer < mermsup; mer++)
+ {
+ /* Here, *mer is the next Unit in the multiplier to use */
+ /* If non-zero [optimization] add it... */
+ if (*mer != 0)
+ {
+ accunits =
+ decUnitAddSub (&acc[shift], accunits - shift, lhs->lsu,
+ madlength, 0, &acc[shift], *mer) + shift;
+ }
+ else
+ { /* extend acc with a 0; we'll use it shortly */
+ /* [this avoids length of <=0 later] */
+ *(acc + accunits) = 0;
+ accunits++;
+ }
+ /* multiply multiplicand by 10**DECDPUN for next Unit to left */
+ shift++; /* add this for 'logical length' */
+ } /* n */
+#if DECTRACE
+ /* Show exact result */
+ decDumpAr ('*', acc, accunits);
+#endif
+
+ /* acc now contains the exact result of the multiplication */
+ /* Build a decNumber from it, noting if any residue */
+ res->bits = bits; /* set sign */
+ res->digits = decGetDigits (acc, accunits); /* count digits exactly */
+
+ /* We might have a 31-bit wrap in calculating the exponent. */
+ /* This can only happen if both input exponents are negative and */
+ /* both their magnitudes are large. If we did wrap, we set a safe */
+ /* very negative exponent, from which decFinalize() will raise a */
+ /* hard underflow. */
+ exponent = lhs->exponent + rhs->exponent; /* calculate exponent */
+ if (lhs->exponent < 0 && rhs->exponent < 0 && exponent > 0)
+ exponent = -2 * DECNUMMAXE; /* force underflow */
+ res->exponent = exponent; /* OK to overwrite now */
+
+ /* Set the coefficient. If any rounding, residue records */
+ decSetCoeff (res, set, acc, res->digits, &residue, status);
+
+ decFinish (res, set, &residue, status); /* final cleanup */
+ }
+ while (0); /* end protected */
+
+ if (allocacc != NULL)
+ free (allocacc); /* drop any storage we used */
+ if (allocrhs != NULL)
+ free (allocrhs); /* .. */
+ if (alloclhs != NULL)
+ free (alloclhs); /* .. */
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decQuantizeOp -- force exponent to requested value */
+/* */
+/* This computes C = op(A, B), where op adjusts the coefficient */
+/* of C (by rounding or shifting) such that the exponent (-scale) */
+/* of C has the value B or matches the exponent of B. */
+/* The numerical value of C will equal A, except for the effects of */
+/* any rounding that occurred. */
+/* */
+/* res is C, the result. C may be A or B */
+/* lhs is A, the number to adjust */
+/* rhs is B, the requested exponent */
+/* set is the context */
+/* quant is 1 for quantize or 0 for rescale */
+/* status is the status accumulator (this can be called without */
+/* risk of control loss) */
+/* */
+/* C must have space for set->digits digits. */
+/* */
+/* Unless there is an error or the result is infinite, the exponent */
+/* after the operation is guaranteed to be that requested. */
+/* ------------------------------------------------------------------ */
+static decNumber *
+decQuantizeOp (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set, Flag quant, uInt * status)
+{
+ decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs = NULL; /* .., rhs */
+ decNumber *inrhs = rhs; /* save original rhs */
+ Int reqdigits = set->digits; /* requested DIGITS */
+ Int reqexp; /* requested exponent [-scale] */
+ Int residue = 0; /* rounding residue */
+ uByte merged; /* merged flags */
+ Int etiny = set->emin - (set->digits - 1);
+
+#if DECCHECK
+ if (decCheckOperands (res, lhs, rhs, set))
+ return res;
+#endif
+
+ do
+ { /* protect allocated storage */
+#if DECSUBSET
+ if (!set->extended)
+ {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits > reqdigits)
+ {
+ alloclhs = decRoundOperand (lhs, set, status);
+ if (alloclhs == NULL)
+ break;
+ lhs = alloclhs;
+ }
+ if (rhs->digits > reqdigits)
+ { /* [this only checks lostDigits] */
+ allocrhs = decRoundOperand (rhs, set, status);
+ if (allocrhs == NULL)
+ break;
+ rhs = allocrhs;
+ }
+ }
+#endif
+ /* [following code does not require input rounding] */
+
+ /* Handle special values */
+ merged = (lhs->bits | rhs->bits) & DECSPECIAL;
+ if ((lhs->bits | rhs->bits) & DECSPECIAL)
+ {
+ /* NaNs get usual processing */
+ if (merged & (DECSNAN | DECNAN))
+ decNaNs (res, lhs, rhs, status);
+ /* one infinity but not both is bad */
+ else if ((lhs->bits ^ rhs->bits) & DECINF)
+ *status |= DEC_Invalid_operation;
+ /* both infinity: return lhs */
+ else
+ decNumberCopy (res, lhs); /* [nop if in place] */
+ break;
+ }
+
+ /* set requested exponent */
+ if (quant)
+ reqexp = inrhs->exponent; /* quantize -- match exponents */
+ else
+ { /* rescale -- use value of rhs */
+ /* Original rhs must be an integer that fits and is in range */
+#if DECSUBSET
+ reqexp = decGetInt (inrhs, set);
+#else
+ reqexp = decGetInt (inrhs);
+#endif
+ }
+
+#if DECSUBSET
+ if (!set->extended)
+ etiny = set->emin; /* no subnormals */
+#endif
+
+ if (reqexp == BADINT /* bad (rescale only) or .. */
+ || (reqexp < etiny) /* < lowest */
+ || (reqexp > set->emax))
+ { /* > Emax */
+ *status |= DEC_Invalid_operation;
+ break;
+ }
+
+ /* we've processed the RHS, so we can overwrite it now if necessary */
+ if (ISZERO (lhs))
+ { /* zero coefficient unchanged */
+ decNumberCopy (res, lhs); /* [nop if in place] */
+ res->exponent = reqexp; /* .. just set exponent */
+#if DECSUBSET
+ if (!set->extended)
+ res->bits = 0; /* subset specification; no -0 */
+#endif
+ }
+ else
+ { /* non-zero lhs */
+ Int adjust = reqexp - lhs->exponent; /* digit adjustment needed */
+ /* if adjusted coefficient will not fit, give up now */
+ if ((lhs->digits - adjust) > reqdigits)
+ {
+ *status |= DEC_Invalid_operation;
+ break;
+ }
+
+ if (adjust > 0)
+ { /* increasing exponent */
+ /* this will decrease the length of the coefficient by adjust */
+ /* digits, and must round as it does so */
+ decContext workset; /* work */
+ workset = *set; /* clone rounding, etc. */
+ workset.digits = lhs->digits - adjust; /* set requested length */
+ /* [note that the latter can be <1, here] */
+ decCopyFit (res, lhs, &workset, &residue, status); /* fit to result */
+ decApplyRound (res, &workset, residue, status); /* .. and round */
+ residue = 0; /* [used] */
+ /* If we rounded a 999s case, exponent will be off by one; */
+ /* adjust back if so. */
+ if (res->exponent > reqexp)
+ {
+ res->digits = decShiftToMost (res->lsu, res->digits, 1); /* shift */
+ res->exponent--; /* (re)adjust the exponent. */
+ }
+#if DECSUBSET
+ if (ISZERO (res) && !set->extended)
+ res->bits = 0; /* subset; no -0 */
+#endif
+ } /* increase */
+ else /* adjust<=0 */
+ { /* decreasing or = exponent */
+ /* this will increase the length of the coefficient by -adjust */
+ /* digits, by adding trailing zeros. */
+ decNumberCopy (res, lhs); /* [it will fit] */
+ /* if padding needed (adjust<0), add it now... */
+ if (adjust < 0)
+ {
+ res->digits =
+ decShiftToMost (res->lsu, res->digits, -adjust);
+ res->exponent += adjust; /* adjust the exponent */
+ }
+ } /* decrease */
+ } /* non-zero */
+
+ /* Check for overflow [do not use Finalize in this case, as an */
+ /* overflow here is a "don't fit" situation] */
+ if (res->exponent > set->emax - res->digits + 1)
+ { /* too big */
+ *status |= DEC_Invalid_operation;
+ break;
+ }
+ else
+ {
+ decFinalize (res, set, &residue, status); /* set subnormal flags */
+ *status &= ~DEC_Underflow; /* suppress Underflow [754r] */
+ }
+ }
+ while (0); /* end protected */
+
+ if (allocrhs != NULL)
+ free (allocrhs); /* drop any storage we used */
+ if (alloclhs != NULL)
+ free (alloclhs); /* .. */
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decCompareOp -- compare, min, or max two Numbers */
+/* */
+/* This computes C = A ? B and returns the signum (as a Number) */
+/* for COMPARE or the maximum or minimum (for COMPMAX and COMPMIN). */
+/* */
+/* res is C, the result. C may be A and/or B (e.g., X=X?X) */
+/* lhs is A */
+/* rhs is B */
+/* set is the context */
+/* op is the operation flag */
+/* status is the usual accumulator */
+/* */
+/* C must have space for one digit for COMPARE or set->digits for */
+/* COMPMAX and COMPMIN. */
+/* ------------------------------------------------------------------ */
+/* The emphasis here is on speed for common cases, and avoiding */
+/* coefficient comparison if possible. */
+/* ------------------------------------------------------------------ */
+decNumber *
+decCompareOp (decNumber * res, decNumber * lhs, decNumber * rhs,
+ decContext * set, Flag op, uInt * status)
+{
+ decNumber *alloclhs = NULL; /* non-NULL if rounded lhs allocated */
+ decNumber *allocrhs = NULL; /* .., rhs */
+ Int result = 0; /* default result value */
+ uByte merged; /* merged flags */
+ uByte bits = 0; /* non-0 for NaN */
+
+#if DECCHECK
+ if (decCheckOperands (res, lhs, rhs, set))
+ return res;
+#endif
+
+ do
+ { /* protect allocated storage */
+#if DECSUBSET
+ if (!set->extended)
+ {
+ /* reduce operands and set lostDigits status, as needed */
+ if (lhs->digits > set->digits)
+ {
+ alloclhs = decRoundOperand (lhs, set, status);
+ if (alloclhs == NULL)
+ {
+ result = BADINT;
+ break;
+ }
+ lhs = alloclhs;
+ }
+ if (rhs->digits > set->digits)
+ {
+ allocrhs = decRoundOperand (rhs, set, status);
+ if (allocrhs == NULL)
+ {
+ result = BADINT;
+ break;
+ }
+ rhs = allocrhs;
+ }
+ }
+#endif
+ /* [following code does not require input rounding] */
+
+ /* handle NaNs now; let infinities drop through */
+ /* +++ review sNaN handling with 754r, for now assumes sNaN */
+ /* (even just one) leads to NaN. */
+ merged = (lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
+ if (merged)
+ { /* a NaN bit set */
+ if (op == COMPARE);
+ else if (merged & DECSNAN);
+ else
+ { /* 754r rules for MIN and MAX ignore single NaN */
+ /* here if MIN or MAX, and one or two quiet NaNs */
+ if (lhs->bits & rhs->bits & DECNAN);
+ else
+ { /* just one quiet NaN */
+ /* force choice to be the non-NaN operand */
+ op = COMPMAX;
+ if (lhs->bits & DECNAN)
+ result = -1; /* pick rhs */
+ else
+ result = +1; /* pick lhs */
+ break;
+ }
+ }
+ op = COMPNAN; /* use special path */
+ decNaNs (res, lhs, rhs, status);
+ break;
+ }
+
+ result = decCompare (lhs, rhs); /* we have numbers */
+ }
+ while (0); /* end protected */
+
+ if (result == BADINT)
+ *status |= DEC_Insufficient_storage; /* rare */
+ else
+ {
+ if (op == COMPARE)
+ { /* return signum */
+ decNumberZero (res); /* [always a valid result] */
+ if (result == 0)
+ res->bits = bits; /* (maybe qNaN) */
+ else
+ {
+ *res->lsu = 1;
+ if (result < 0)
+ res->bits = DECNEG;
+ }
+ }
+ else if (op == COMPNAN); /* special, drop through */
+ else
+ { /* MAX or MIN, non-NaN result */
+ Int residue = 0; /* rounding accumulator */
+ /* choose the operand for the result */
+ decNumber *choice;
+ if (result == 0)
+ { /* operands are numerically equal */
+ /* choose according to sign then exponent (see 754r) */
+ uByte slhs = (lhs->bits & DECNEG);
+ uByte srhs = (rhs->bits & DECNEG);
+#if DECSUBSET
+ if (!set->extended)
+ { /* subset: force left-hand */
+ op = COMPMAX;
+ result = +1;
+ }
+ else
+#endif
+ if (slhs != srhs)
+ { /* signs differ */
+ if (slhs)
+ result = -1; /* rhs is max */
+ else
+ result = +1; /* lhs is max */
+ }
+ else if (slhs && srhs)
+ { /* both negative */
+ if (lhs->exponent < rhs->exponent)
+ result = +1;
+ else
+ result = -1;
+ /* [if equal, we use lhs, technically identical] */
+ }
+ else
+ { /* both positive */
+ if (lhs->exponent > rhs->exponent)
+ result = +1;
+ else
+ result = -1;
+ /* [ditto] */
+ }
+ } /* numerically equal */
+ /* here result will be non-0 */
+ if (op == COMPMIN)
+ result = -result; /* reverse if looking for MIN */
+ choice = (result > 0 ? lhs : rhs); /* choose */
+ /* copy chosen to result, rounding if need be */
+ decCopyFit (res, choice, set, &residue, status);
+ decFinish (res, set, &residue, status);
+ }
+ }
+ if (allocrhs != NULL)
+ free (allocrhs); /* free any storage we used */
+ if (alloclhs != NULL)
+ free (alloclhs); /* .. */
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decCompare -- compare two decNumbers by numerical value */
+/* */
+/* This routine compares A ? B without altering them. */
+/* */
+/* Arg1 is A, a decNumber which is not a NaN */
+/* Arg2 is B, a decNumber which is not a NaN */
+/* */
+/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
+/* (the only possible failure is an allocation error) */
+/* ------------------------------------------------------------------ */
+/* This could be merged into decCompareOp */
+static Int
+decCompare (decNumber * lhs, decNumber * rhs)
+{
+ Int result; /* result value */
+ Int sigr; /* rhs signum */
+ Int compare; /* work */
+ result = 1; /* assume signum(lhs) */
+ if (ISZERO (lhs))
+ result = 0;
+ else if (decNumberIsNegative (lhs))
+ result = -1;
+ sigr = 1; /* compute signum(rhs) */
+ if (ISZERO (rhs))
+ sigr = 0;
+ else if (decNumberIsNegative (rhs))
+ sigr = -1;
+ if (result > sigr)
+ return +1; /* L > R, return 1 */
+ if (result < sigr)
+ return -1; /* R < L, return -1 */
+
+ /* signums are the same */
+ if (result == 0)
+ return 0; /* both 0 */
+ /* Both non-zero */
+ if ((lhs->bits | rhs->bits) & DECINF)
+ { /* one or more infinities */
+ if (lhs->bits == rhs->bits)
+ result = 0; /* both the same */
+ else if (decNumberIsInfinite (rhs))
+ result = -result;
+ return result;
+ }
+
+ /* we must compare the coefficients, allowing for exponents */
+ if (lhs->exponent > rhs->exponent)
+ { /* LHS exponent larger */
+ /* swap sides, and sign */
+ decNumber *temp = lhs;
+ lhs = rhs;
+ rhs = temp;
+ result = -result;
+ }
+
+ compare = decUnitCompare (lhs->lsu, D2U (lhs->digits),
+ rhs->lsu, D2U (rhs->digits),
+ rhs->exponent - lhs->exponent);
+
+ if (compare != BADINT)
+ compare *= result; /* comparison succeeded */
+ return compare; /* what we got */
+}
+
+/* ------------------------------------------------------------------ */
+/* decUnitCompare -- compare two >=0 integers in Unit arrays */
+/* */
+/* This routine compares A ? B*10**E where A and B are unit arrays */
+/* A is a plain integer */
+/* B has an exponent of E (which must be non-negative) */
+/* */
+/* Arg1 is A first Unit (lsu) */
+/* Arg2 is A length in Units */
+/* Arg3 is B first Unit (lsu) */
+/* Arg4 is B length in Units */
+/* Arg5 is E */
+/* */
+/* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
+/* (the only possible failure is an allocation error) */
+/* ------------------------------------------------------------------ */
+static Int
+decUnitCompare (Unit * a, Int alength, Unit * b, Int blength, Int exp)
+{
+ Unit *acc; /* accumulator for result */
+ Unit accbuff[D2U (DECBUFFER + 1)]; /* local buffer */
+ Unit *allocacc = NULL; /* -> allocated acc buffer, iff allocated */
+ Int accunits, need; /* units in use or needed for acc */
+ Unit *l, *r, *u; /* work */
+ Int expunits, exprem, result; /* .. */
+
+ if (exp == 0)
+ { /* aligned; fastpath */
+ if (alength > blength)
+ return 1;
+ if (alength < blength)
+ return -1;
+ /* same number of units in both -- need unit-by-unit compare */
+ l = a + alength - 1;
+ r = b + alength - 1;
+ for (; l >= a; l--, r--)
+ {
+ if (*l > *r)
+ return 1;
+ if (*l < *r)
+ return -1;
+ }
+ return 0; /* all units match */
+ } /* aligned */
+
+ /* Unaligned. If one is >1 unit longer than the other, padded */
+ /* approximately, then we can return easily */
+ if (alength > blength + (Int) D2U (exp))
+ return 1;
+ if (alength + 1 < blength + (Int) D2U (exp))
+ return -1;
+
+ /* We need to do a real subtract. For this, we need a result buffer */
+ /* even though we only are interested in the sign. Its length needs */
+ /* to be the larger of alength and padded blength, +2 */
+ need = blength + D2U (exp); /* maximum real length of B */
+ if (need < alength)
+ need = alength;
+ need += 2;
+ acc = accbuff; /* assume use local buffer */
+ if (need * sizeof (Unit) > sizeof (accbuff))
+ {
+ allocacc = (Unit *) malloc (need * sizeof (Unit));
+ if (allocacc == NULL)
+ return BADINT; /* hopeless -- abandon */
+ acc = allocacc;
+ }
+ /* Calculate units and remainder from exponent. */
+ expunits = exp / DECDPUN;
+ exprem = exp % DECDPUN;
+ /* subtract [A+B*(-m)] */
+ accunits = decUnitAddSub (a, alength, b, blength, expunits, acc,
+ -(Int) powers[exprem]);
+ /* [UnitAddSub result may have leading zeros, even on zero] */
+ if (accunits < 0)
+ result = -1; /* negative result */
+ else
+ { /* non-negative result */
+ /* check units of the result before freeing any storage */
+ for (u = acc; u < acc + accunits - 1 && *u == 0;)
+ u++;
+ result = (*u == 0 ? 0 : +1);
+ }
+ /* clean up and return the result */
+ if (allocacc != NULL)
+ free (allocacc); /* drop any storage we used */
+ return result;
+}
+
+/* ------------------------------------------------------------------ */
+/* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
+/* */
+/* This routine performs the calculation: */
+/* */
+/* C=A+(B*M) */
+/* */
+/* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
+/* */
+/* A may be shorter or longer than B. */
+/* */
+/* Leading zeros are not removed after a calculation. The result is */
+/* either the same length as the longer of A and B (adding any */
+/* shift), or one Unit longer than that (if a Unit carry occurred). */
+/* */
+/* A and B content are not altered unless C is also A or B. */
+/* C may be the same array as A or B, but only if no zero padding is */
+/* requested (that is, C may be B only if bshift==0). */
+/* C is filled from the lsu; only those units necessary to complete */
+/* the calculation are referenced. */
+/* */
+/* Arg1 is A first Unit (lsu) */
+/* Arg2 is A length in Units */
+/* Arg3 is B first Unit (lsu) */
+/* Arg4 is B length in Units */
+/* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
+/* Arg6 is C first Unit (lsu) */
+/* Arg7 is M, the multiplier */
+/* */
+/* returns the count of Units written to C, which will be non-zero */
+/* and negated if the result is negative. That is, the sign of the */
+/* returned Int is the sign of the result (positive for zero) and */
+/* the absolute value of the Int is the count of Units. */
+/* */
+/* It is the caller's responsibility to make sure that C size is */
+/* safe, allowing space if necessary for a one-Unit carry. */
+/* */
+/* This routine is severely performance-critical; *any* change here */
+/* must be measured (timed) to assure no performance degradation. */
+/* In particular, trickery here tends to be counter-productive, as */
+/* increased complexity of code hurts register optimizations on */
+/* register-poor architectures. Avoiding divisions is nearly */
+/* always a Good Idea, however. */
+/* */
+/* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
+/* (IBM Warwick, UK) for some of the ideas used in this routine. */
+/* ------------------------------------------------------------------ */
+static Int
+decUnitAddSub (Unit * a, Int alength,
+ Unit * b, Int blength, Int bshift, Unit * c, Int m)
+{
+ Unit *alsu = a; /* A lsu [need to remember it] */
+ Unit *clsu = c; /* C ditto */
+ Unit *minC; /* low water mark for C */
+ Unit *maxC; /* high water mark for C */
+ eInt carry = 0; /* carry integer (could be Long) */
+ Int add; /* work */
+#if DECDPUN==4 /* myriadal */
+ Int est; /* estimated quotient */
+#endif
+
+#if DECTRACE
+ if (alength < 1 || blength < 1)
+ printf ("decUnitAddSub: alen blen m %d %d [%d]\n", alength, blength, m);
+#endif
+
+ maxC = c + alength; /* A is usually the longer */
+ minC = c + blength; /* .. and B the shorter */
+ if (bshift != 0)
+ { /* B is shifted; low As copy across */
+ minC += bshift;
+ /* if in place [common], skip copy unless there's a gap [rare] */
+ if (a == c && bshift <= alength)
+ {
+ c += bshift;
+ a += bshift;
+ }
+ else
+ for (; c < clsu + bshift; a++, c++)
+ { /* copy needed */
+ if (a < alsu + alength)
+ *c = *a;
+ else
+ *c = 0;
+ }
+ }
+ if (minC > maxC)
+ { /* swap */
+ Unit *hold = minC;
+ minC = maxC;
+ maxC = hold;
+ }
+
+ /* For speed, we do the addition as two loops; the first where both A */
+ /* and B contribute, and the second (if necessary) where only one or */
+ /* other of the numbers contribute. */
+ /* Carry handling is the same (i.e., duplicated) in each case. */
+ for (; c < minC; c++)
+ {
+ carry += *a;
+ a++;
+ carry += ((eInt) * b) * m; /* [special-casing m=1/-1 */
+ b++; /* here is not a win] */
+ /* here carry is new Unit of digits; it could be +ve or -ve */
+ if ((ueInt) carry <= DECDPUNMAX)
+ { /* fastpath 0-DECDPUNMAX */
+ *c = (Unit) carry;
+ carry = 0;
+ continue;
+ }
+ /* remainder operator is undefined if negative, so we must test */
+#if DECDPUN==4 /* use divide-by-multiply */
+ if (carry >= 0)
+ {
+ est = (((ueInt) carry >> 11) * 53687) >> 18;
+ *c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
+ carry = est; /* likely quotient [89%] */
+ if (*c < DECDPUNMAX + 1)
+ continue; /* estimate was correct */
+ carry++;
+ *c -= DECDPUNMAX + 1;
+ continue;
+ }
+ /* negative case */
+ carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
+ est = (((ueInt) carry >> 11) * 53687) >> 18;
+ *c = (Unit) (carry - est * (DECDPUNMAX + 1));
+ carry = est - (DECDPUNMAX + 1); /* correctly negative */
+ if (*c < DECDPUNMAX + 1)
+ continue; /* was OK */
+ carry++;
+ *c -= DECDPUNMAX + 1;
+#else
+ if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
+ { /* fastpath carry +1 */
+ *c = (Unit) (carry - (DECDPUNMAX + 1)); /* [helps additions] */
+ carry = 1;
+ continue;
+ }
+ if (carry >= 0)
+ {
+ *c = (Unit) (carry % (DECDPUNMAX + 1));
+ carry = carry / (DECDPUNMAX + 1);
+ continue;
+ }
+ /* negative case */
+ carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
+ *c = (Unit) (carry % (DECDPUNMAX + 1));
+ carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
+#endif
+ } /* c */
+
+ /* we now may have one or other to complete */
+ /* [pretest to avoid loop setup/shutdown] */
+ if (c < maxC)
+ for (; c < maxC; c++)
+ {
+ if (a < alsu + alength)
+ { /* still in A */
+ carry += *a;
+ a++;
+ }
+ else
+ { /* inside B */
+ carry += ((eInt) * b) * m;
+ b++;
+ }
+ /* here carry is new Unit of digits; it could be +ve or -ve and */
+ /* magnitude up to DECDPUNMAX squared */
+ if ((ueInt) carry <= DECDPUNMAX)
+ { /* fastpath 0-DECDPUNMAX */
+ *c = (Unit) carry;
+ carry = 0;
+ continue;
+ }
+ /* result for this unit is negative or >DECDPUNMAX */
+#if DECDPUN==4 /* use divide-by-multiply */
+ /* remainder is undefined if negative, so we must test */
+ if (carry >= 0)
+ {
+ est = (((ueInt) carry >> 11) * 53687) >> 18;
+ *c = (Unit) (carry - est * (DECDPUNMAX + 1)); /* remainder */
+ carry = est; /* likely quotient [79.7%] */
+ if (*c < DECDPUNMAX + 1)
+ continue; /* estimate was correct */
+ carry++;
+ *c -= DECDPUNMAX + 1;
+ continue;
+ }
+ /* negative case */
+ carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
+ est = (((ueInt) carry >> 11) * 53687) >> 18;
+ *c = (Unit) (carry - est * (DECDPUNMAX + 1));
+ carry = est - (DECDPUNMAX + 1); /* correctly negative */
+ if (*c < DECDPUNMAX + 1)
+ continue; /* was OK */
+ carry++;
+ *c -= DECDPUNMAX + 1;
+#else
+ if ((ueInt) carry < (DECDPUNMAX + 1) * 2)
+ { /* fastpath carry 1 */
+ *c = (Unit) (carry - (DECDPUNMAX + 1));
+ carry = 1;
+ continue;
+ }
+ /* remainder is undefined if negative, so we must test */
+ if (carry >= 0)
+ {
+ *c = (Unit) (carry % (DECDPUNMAX + 1));
+ carry = carry / (DECDPUNMAX + 1);
+ continue;
+ }
+ /* negative case */
+ carry = carry + (eInt) (DECDPUNMAX + 1) * (DECDPUNMAX + 1); /* make positive */
+ *c = (Unit) (carry % (DECDPUNMAX + 1));
+ carry = carry / (DECDPUNMAX + 1) - (DECDPUNMAX + 1);
+#endif
+ } /* c */
+
+ /* OK, all A and B processed; might still have carry or borrow */
+ /* return number of Units in the result, negated if a borrow */
+ if (carry == 0)
+ return c - clsu; /* no carry, we're done */
+ if (carry > 0)
+ { /* positive carry */
+ *c = (Unit) carry; /* place as new unit */
+ c++; /* .. */
+ return c - clsu;
+ }
+ /* -ve carry: it's a borrow; complement needed */
+ add = 1; /* temporary carry... */
+ for (c = clsu; c < maxC; c++)
+ {
+ add = DECDPUNMAX + add - *c;
+ if (add <= DECDPUNMAX)
+ {
+ *c = (Unit) add;
+ add = 0;
+ }
+ else
+ {
+ *c = 0;
+ add = 1;
+ }
+ }
+ /* add an extra unit iff it would be non-zero */
+#if DECTRACE
+ printf ("UAS borrow: add %d, carry %d\n", add, carry);
+#endif
+ if ((add - carry - 1) != 0)
+ {
+ *c = (Unit) (add - carry - 1);
+ c++; /* interesting, include it */
+ }
+ return clsu - c; /* -ve result indicates borrowed */
+}
+
+/* ------------------------------------------------------------------ */
+/* decTrim -- trim trailing zeros or normalize */
+/* */
+/* dn is the number to trim or normalize */
+/* all is 1 to remove all trailing zeros, 0 for just fraction ones */
+/* dropped returns the number of discarded trailing zeros */
+/* returns dn */
+/* */
+/* All fields are updated as required. This is a utility operation, */
+/* so special values are unchanged and no error is possible. */
+/* ------------------------------------------------------------------ */
+static decNumber *
+decTrim (decNumber * dn, Flag all, Int * dropped)
+{
+ Int d, exp; /* work */
+ uInt cut; /* .. */
+ Unit *up; /* -> current Unit */
+
+#if DECCHECK
+ if (decCheckOperands (dn, DECUNUSED, DECUNUSED, DECUNUSED))
+ return dn;
+#endif
+
+ *dropped = 0; /* assume no zeros dropped */
+ if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
+ || (*dn->lsu & 0x01))
+ return dn; /* .. or odd */
+ if (ISZERO (dn))
+ { /* .. or 0 */
+ dn->exponent = 0; /* (sign is preserved) */
+ return dn;
+ }
+
+ /* we have a finite number which is even */
+ exp = dn->exponent;
+ cut = 1; /* digit (1-DECDPUN) in Unit */
+ up = dn->lsu; /* -> current Unit */
+ for (d = 0; d < dn->digits - 1; d++)
+ { /* [don't strip the final digit] */
+ /* slice by powers */
+#if DECDPUN<=4
+ uInt quot = QUOT10 (*up, cut);
+ if ((*up - quot * powers[cut]) != 0)
+ break; /* found non-0 digit */
+#else
+ if (*up % powers[cut] != 0)
+ break; /* found non-0 digit */
+#endif
+ /* have a trailing 0 */
+ if (!all)
+ { /* trimming */
+ /* [if exp>0 then all trailing 0s are significant for trim] */
+ if (exp <= 0)
+ { /* if digit might be significant */
+ if (exp == 0)
+ break; /* then quit */
+ exp++; /* next digit might be significant */
+ }
+ }
+ cut++; /* next power */
+ if (cut > DECDPUN)
+ { /* need new Unit */
+ up++;
+ cut = 1;
+ }
+ } /* d */
+ if (d == 0)
+ return dn; /* none dropped */
+
+ /* effect the drop */
+ decShiftToLeast (dn->lsu, D2U (dn->digits), d);
+ dn->exponent += d; /* maintain numerical value */
+ dn->digits -= d; /* new length */
+ *dropped = d; /* report the count */
+ return dn;
+}
+
+/* ------------------------------------------------------------------ */
+/* decShiftToMost -- shift digits in array towards most significant */
+/* */
+/* uar is the array */
+/* digits is the count of digits in use in the array */
+/* shift is the number of zeros to pad with (least significant); */
+/* it must be zero or positive */
+/* */
+/* returns the new length of the integer in the array, in digits */
+/* */
+/* No overflow is permitted (that is, the uar array must be known to */
+/* be large enough to hold the result, after shifting). */
+/* ------------------------------------------------------------------ */
+static Int
+decShiftToMost (Unit * uar, Int digits, Int shift)
+{
+ Unit *target, *source, *first; /* work */
+ uInt rem; /* for division */
+ Int cut; /* odd 0's to add */
+ uInt next; /* work */
+
+ if (shift == 0)
+ return digits; /* [fastpath] nothing to do */
+ if ((digits + shift) <= DECDPUN)
+ { /* [fastpath] single-unit case */
+ *uar = (Unit) (*uar * powers[shift]);
+ return digits + shift;
+ }
+
+ cut = (DECDPUN - shift % DECDPUN) % DECDPUN;
+ source = uar + D2U (digits) - 1; /* where msu comes from */
+ first = uar + D2U (digits + shift) - 1; /* where msu of source will end up */
+ target = source + D2U (shift); /* where upper part of first cut goes */
+ next = 0;
+
+ for (; source >= uar; source--, target--)
+ {
+ /* split the source Unit and accumulate remainder for next */
+#if DECDPUN<=4
+ uInt quot = QUOT10 (*source, cut);
+ rem = *source - quot * powers[cut];
+ next += quot;
+#else
+ rem = *source % powers[cut];
+ next += *source / powers[cut];
+#endif
+ if (target <= first)
+ *target = (Unit) next; /* write to target iff valid */
+ next = rem * powers[DECDPUN - cut]; /* save remainder for next Unit */
+ }
+ /* propagate to one below and clear the rest */
+ for (; target >= uar; target--)
+ {
+ *target = (Unit) next;
+ next = 0;
+ }
+ return digits + shift;
+}
+
+/* ------------------------------------------------------------------ */
+/* decShiftToLeast -- shift digits in array towards least significant */
+/* */
+/* uar is the array */
+/* units is length of the array, in units */
+/* shift is the number of digits to remove from the lsu end; it */
+/* must be zero or positive and less than units*DECDPUN. */
+/* */
+/* returns the new length of the integer in the array, in units */
+/* */
+/* Removed digits are discarded (lost). Units not required to hold */
+/* the final result are unchanged. */
+/* ------------------------------------------------------------------ */
+static Int
+decShiftToLeast (Unit * uar, Int units, Int shift)
+{
+ Unit *target, *up; /* work */
+ Int cut, count; /* work */
+ Int quot, rem; /* for division */
+
+ if (shift == 0)
+ return units; /* [fastpath] nothing to do */
+
+ up = uar + shift / DECDPUN; /* source; allow for whole Units */
+ cut = shift % DECDPUN; /* odd 0's to drop */
+ target = uar; /* both paths */
+ if (cut == 0)
+ { /* whole units shift */
+ for (; up < uar + units; target++, up++)
+ *target = *up;
+ return target - uar;
+ }
+ /* messier */
+ count = units * DECDPUN - shift; /* the maximum new length */
+#if DECDPUN<=4
+ quot = QUOT10 (*up, cut);
+#else
+ quot = *up / powers[cut];
+#endif
+ for (;; target++)
+ {
+ *target = (Unit) quot;
+ count -= (DECDPUN - cut);
+ if (count <= 0)
+ break;
+ up++;
+ quot = *up;
+#if DECDPUN<=4
+ quot = QUOT10 (quot, cut);
+ rem = *up - quot * powers[cut];
+#else
+ rem = quot % powers[cut];
+ quot = quot / powers[cut];
+#endif
+ *target = (Unit) (*target + rem * powers[DECDPUN - cut]);
+ count -= cut;
+ if (count <= 0)
+ break;
+ }
+ return target - uar + 1;
+}
+
+#if DECSUBSET
+/* ------------------------------------------------------------------ */
+/* decRoundOperand -- round an operand [used for subset only] */
+/* */
+/* dn is the number to round (dn->digits is > set->digits) */
+/* set is the relevant context */
+/* status is the status accumulator */
+/* */
+/* returns an allocated decNumber with the rounded result. */
+/* */
+/* lostDigits and other status may be set by this. */
+/* */
+/* Since the input is an operand, we are not permitted to modify it. */
+/* We therefore return an allocated decNumber, rounded as required. */
+/* It is the caller's responsibility to free the allocated storage. */
+/* */
+/* If no storage is available then the result cannot be used, so NULL */
+/* is returned. */
+/* ------------------------------------------------------------------ */
+static decNumber *
+decRoundOperand (decNumber * dn, decContext * set, uInt * status)
+{
+ decNumber *res; /* result structure */
+ uInt newstatus = 0; /* status from round */
+ Int residue = 0; /* rounding accumulator */
+
+ /* Allocate storage for the returned decNumber, big enough for the */
+ /* length specified by the context */
+ res = (decNumber *) malloc (sizeof (decNumber)
+ + (D2U (set->digits) - 1) * sizeof (Unit));
+ if (res == NULL)
+ {
+ *status |= DEC_Insufficient_storage;
+ return NULL;
+ }
+ decCopyFit (res, dn, set, &residue, &newstatus);
+ decApplyRound (res, set, residue, &newstatus);
+
+ /* If that set Inexact then we "lost digits" */
+ if (newstatus & DEC_Inexact)
+ newstatus |= DEC_Lost_digits;
+ *status |= newstatus;
+ return res;
+}
+#endif
+
+/* ------------------------------------------------------------------ */
+/* decCopyFit -- copy a number, shortening the coefficient if needed */
+/* */
+/* dest is the target decNumber */
+/* src is the source decNumber */
+/* set is the context [used for length (digits) and rounding mode] */
+/* residue is the residue accumulator */
+/* status contains the current status to be updated */
+/* */
+/* (dest==src is allowed and will be a no-op if fits) */
+/* All fields are updated as required. */
+/* ------------------------------------------------------------------ */
+static void
+decCopyFit (decNumber * dest, decNumber * src, decContext * set,
+ Int * residue, uInt * status)
+{
+ dest->bits = src->bits;
+ dest->exponent = src->exponent;
+ decSetCoeff (dest, set, src->lsu, src->digits, residue, status);
+}
+
+/* ------------------------------------------------------------------ */
+/* decSetCoeff -- set the coefficient of a number */
+/* */
+/* dn is the number whose coefficient array is to be set. */
+/* It must have space for set->digits digits */
+/* set is the context [for size] */
+/* lsu -> lsu of the source coefficient [may be dn->lsu] */
+/* len is digits in the source coefficient [may be dn->digits] */
+/* residue is the residue accumulator. This has values as in */
+/* decApplyRound, and will be unchanged unless the */
+/* target size is less than len. In this case, the */
+/* coefficient is truncated and the residue is updated to */
+/* reflect the previous residue and the dropped digits. */
+/* status is the status accumulator, as usual */
+/* */
+/* The coefficient may already be in the number, or it can be an */
+/* external intermediate array. If it is in the number, lsu must == */
+/* dn->lsu and len must == dn->digits. */
+/* */
+/* Note that the coefficient length (len) may be < set->digits, and */
+/* in this case this merely copies the coefficient (or is a no-op */
+/* if dn->lsu==lsu). */
+/* */
+/* Note also that (only internally, from decNumberRescale and */
+/* decSetSubnormal) the value of set->digits may be less than one, */
+/* indicating a round to left. */
+/* This routine handles that case correctly; caller ensures space. */
+/* */
+/* dn->digits, dn->lsu (and as required), and dn->exponent are */
+/* updated as necessary. dn->bits (sign) is unchanged. */
+/* */
+/* DEC_Rounded status is set if any digits are discarded. */
+/* DEC_Inexact status is set if any non-zero digits are discarded, or */
+/* incoming residue was non-0 (implies rounded) */
+/* ------------------------------------------------------------------ */
+/* mapping array: maps 0-9 to canonical residues, so that we can */
+/* adjust by a residue in range [-1, +1] and achieve correct rounding */
+/* 0 1 2 3 4 5 6 7 8 9 */
+static const uByte resmap[10] = { 0, 3, 3, 3, 3, 5, 7, 7, 7, 7 };
+static void
+decSetCoeff (decNumber * dn, decContext * set, Unit * lsu,
+ Int len, Int * residue, uInt * status)
+{
+ Int discard; /* number of digits to discard */
+ uInt discard1; /* first discarded digit */
+ uInt cut; /* cut point in Unit */
+ uInt quot, rem; /* for divisions */
+ Unit *up, *target; /* work */
+ Int count; /* .. */
+#if DECDPUN<=4
+ uInt temp; /* .. */
+#endif
+
+ discard = len - set->digits; /* digits to discard */
+ if (discard <= 0)
+ { /* no digits are being discarded */
+ if (dn->lsu != lsu)
+ { /* copy needed */
+ /* copy the coefficient array to the result number; no shift needed */
+ up = lsu;
+ for (target = dn->lsu; target < dn->lsu + D2U (len); target++, up++)
+ {
+ *target = *up;
+ }
+ dn->digits = len; /* set the new length */
+ }
+ /* dn->exponent and residue are unchanged */
+ if (*residue != 0)
+ *status |= (DEC_Inexact | DEC_Rounded); /* record inexactitude */
+ return;
+ }
+
+ /* we have to discard some digits */
+ *status |= DEC_Rounded; /* accumulate Rounded status */
+ if (*residue > 1)
+ *residue = 1; /* previous residue now to right, so -1 to +1 */
+
+ if (discard > len)
+ { /* everything, +1, is being discarded */
+ /* guard digit is 0 */
+ /* residue is all the number [NB could be all 0s] */
+ if (*residue <= 0)
+ for (up = lsu + D2U (len) - 1; up >= lsu; up--)
+ {
+ if (*up != 0)
+ { /* found a non-0 */
+ *residue = 1;
+ break; /* no need to check any others */
+ }
+ }
+ if (*residue != 0)
+ *status |= DEC_Inexact; /* record inexactitude */
+ *dn->lsu = 0; /* coefficient will now be 0 */
+ dn->digits = 1; /* .. */
+ dn->exponent += discard; /* maintain numerical value */
+ return;
+ } /* total discard */
+
+ /* partial discard [most common case] */
+ /* here, at least the first (most significant) discarded digit exists */
+
+ /* spin up the number, noting residue as we pass, until we get to */
+ /* the Unit with the first discarded digit. When we get there, */
+ /* extract it and remember where we're at */
+ count = 0;
+ for (up = lsu;; up++)
+ {
+ count += DECDPUN;
+ if (count >= discard)
+ break; /* full ones all checked */
+ if (*up != 0)
+ *residue = 1;
+ } /* up */
+
+ /* here up -> Unit with discarded digit */
+ cut = discard - (count - DECDPUN) - 1;
+ if (cut == DECDPUN - 1)
+ { /* discard digit is at top */
+#if DECDPUN<=4
+ discard1 = QUOT10 (*up, DECDPUN - 1);
+ rem = *up - discard1 * powers[DECDPUN - 1];
+#else
+ rem = *up % powers[DECDPUN - 1];
+ discard1 = *up / powers[DECDPUN - 1];
+#endif
+ if (rem != 0)
+ *residue = 1;
+ up++; /* move to next */
+ cut = 0; /* bottom digit of result */
+ quot = 0; /* keep a certain compiler happy */
+ }
+ else
+ {
+ /* discard digit is in low digit(s), not top digit */
+ if (cut == 0)
+ quot = *up;
+ else /* cut>0 */
+ { /* it's not at bottom of Unit */
+#if DECDPUN<=4
+ quot = QUOT10 (*up, cut);
+ rem = *up - quot * powers[cut];
+#else
+ rem = *up % powers[cut];
+ quot = *up / powers[cut];
+#endif
+ if (rem != 0)
+ *residue = 1;
+ }
+ /* discard digit is now at bottom of quot */
+#if DECDPUN<=4
+ temp = (quot * 6554) >> 16; /* fast /10 */
+ /* Vowels algorithm here not a win (9 instructions) */
+ discard1 = quot - X10 (temp);
+ quot = temp;
+#else
+ discard1 = quot % 10;
+ quot = quot / 10;
+#endif
+ cut++; /* update cut */
+ }
+
+ /* here: up -> Unit of the array with discarded digit */
+ /* cut is the division point for each Unit */
+ /* quot holds the uncut high-order digits for the current */
+ /* Unit, unless cut==0 in which case it's still in *up */
+ /* copy the coefficient array to the result number, shifting as we go */
+ count = set->digits; /* digits to end up with */
+ if (count <= 0)
+ { /* special for Rescale/Subnormal :-( */
+ *dn->lsu = 0; /* .. result is 0 */
+ dn->digits = 1; /* .. */
+ }
+ else
+ { /* shift to least */
+ /* [this is similar to decShiftToLeast code, with copy] */
+ dn->digits = count; /* set the new length */
+ if (cut == 0)
+ {
+ /* on unit boundary, so simple shift down copy loop suffices */
+ for (target = dn->lsu; target < dn->lsu + D2U (count);
+ target++, up++)
+ {
+ *target = *up;
+ }
+ }
+ else
+ for (target = dn->lsu;; target++)
+ {
+ *target = (Unit) quot;
+ count -= (DECDPUN - cut);
+ if (count <= 0)
+ break;
+ up++;
+ quot = *up;
+#if DECDPUN<=4
+ quot = QUOT10 (quot, cut);
+ rem = *up - quot * powers[cut];
+#else
+ rem = quot % powers[cut];
+ quot = quot / powers[cut];
+#endif
+ *target = (Unit) (*target + rem * powers[DECDPUN - cut]);
+ count -= cut;
+ if (count <= 0)
+ break;
+ }
+ } /* shift to least needed */
+ dn->exponent += discard; /* maintain numerical value */
+
+ /* here, discard1 is the guard digit, and residue is everything else */
+ /* [use mapping to accumulate residue safely] */
+ *residue += resmap[discard1];
+
+ if (*residue != 0)
+ *status |= DEC_Inexact; /* record inexactitude */
+ return;
+}
+
+/* ------------------------------------------------------------------ */
+/* decApplyRound -- apply pending rounding to a number */
+/* */
+/* dn is the number, with space for set->digits digits */
+/* set is the context [for size and rounding mode] */
+/* residue indicates pending rounding, being any accumulated */
+/* guard and sticky information. It may be: */
+/* 6-9: rounding digit is >5 */
+/* 5: rounding digit is exactly half-way */
+/* 1-4: rounding digit is <5 and >0 */
+/* 0: the coefficient is exact */
+/* -1: as 1, but the hidden digits are subtractive, that */
+/* is, of the opposite sign to dn. In this case the */
+/* coefficient must be non-0. */
+/* status is the status accumulator, as usual */
+/* */
+/* This routine applies rounding while keeping the length of the */
+/* coefficient constant. The exponent and status are unchanged */
+/* except if: */
+/* */
+/* -- the coefficient was increased and is all nines (in which */
+/* case Overflow could occur, and is handled directly here so */
+/* the caller does not need to re-test for overflow) */
+/* */
+/* -- the coefficient was decreased and becomes all nines (in which */
+/* case Underflow could occur, and is also handled directly). */
+/* */
+/* All fields in dn are updated as required. */
+/* */
+/* ------------------------------------------------------------------ */
+static void
+decApplyRound (decNumber * dn, decContext * set, Int residue, uInt * status)
+{
+ Int bump; /* 1 if coefficient needs to be incremented */
+ /* -1 if coefficient needs to be decremented */
+
+ if (residue == 0)
+ return; /* nothing to apply */
+
+ bump = 0; /* assume a smooth ride */
+
+ /* now decide whether, and how, to round, depending on mode */
+ switch (set->round)
+ {
+ case DEC_ROUND_DOWN:
+ {
+ /* no change, except if negative residue */
+ if (residue < 0)
+ bump = -1;
+ break;
+ } /* r-d */
+
+ case DEC_ROUND_HALF_DOWN:
+ {
+ if (residue > 5)
+ bump = 1;
+ break;
+ } /* r-h-d */
+
+ case DEC_ROUND_HALF_EVEN:
+ {
+ if (residue > 5)
+ bump = 1; /* >0.5 goes up */
+ else if (residue == 5)
+ { /* exactly 0.5000... */
+ /* 0.5 goes up iff [new] lsd is odd */
+ if (*dn->lsu & 0x01)
+ bump = 1;
+ }
+ break;
+ } /* r-h-e */
+
+ case DEC_ROUND_HALF_UP:
+ {
+ if (residue >= 5)
+ bump = 1;
+ break;
+ } /* r-h-u */
+
+ case DEC_ROUND_UP:
+ {
+ if (residue > 0)
+ bump = 1;
+ break;
+ } /* r-u */
+
+ case DEC_ROUND_CEILING:
+ {
+ /* same as _UP for positive numbers, and as _DOWN for negatives */
+ /* [negative residue cannot occur on 0] */
+ if (decNumberIsNegative (dn))
+ {
+ if (residue < 0)
+ bump = -1;
+ }
+ else
+ {
+ if (residue > 0)
+ bump = 1;
+ }
+ break;
+ } /* r-c */
+
+ case DEC_ROUND_FLOOR:
+ {
+ /* same as _UP for negative numbers, and as _DOWN for positive */
+ /* [negative residue cannot occur on 0] */
+ if (!decNumberIsNegative (dn))
+ {
+ if (residue < 0)
+ bump = -1;
+ }
+ else
+ {
+ if (residue > 0)
+ bump = 1;
+ }
+ break;
+ } /* r-f */
+
+ default:
+ { /* e.g., DEC_ROUND_MAX */
+ *status |= DEC_Invalid_context;
+#if DECTRACE
+ printf ("Unknown rounding mode: %d\n", set->round);
+#endif
+ break;
+ }
+ } /* switch */
+
+ /* now bump the number, up or down, if need be */
+ if (bump == 0)
+ return; /* no action required */
+
+ /* Simply use decUnitAddSub unless we are bumping up and the number */
+ /* is all nines. In this special case we set to 1000... and adjust */
+ /* the exponent by one (as otherwise we could overflow the array) */
+ /* Similarly handle all-nines result if bumping down. */
+ if (bump > 0)
+ {
+ Unit *up; /* work */
+ uInt count = dn->digits; /* digits to be checked */
+ for (up = dn->lsu;; up++)
+ {
+ if (count <= DECDPUN)
+ {
+ /* this is the last Unit (the msu) */
+ if (*up != powers[count] - 1)
+ break; /* not still 9s */
+ /* here if it, too, is all nines */
+ *up = (Unit) powers[count - 1]; /* here 999 -> 100 etc. */
+ for (up = up - 1; up >= dn->lsu; up--)
+ *up = 0; /* others all to 0 */
+ dn->exponent++; /* and bump exponent */
+ /* [which, very rarely, could cause Overflow...] */
+ if ((dn->exponent + dn->digits) > set->emax + 1)
+ {
+ decSetOverflow (dn, set, status);
+ }
+ return; /* done */
+ }
+ /* a full unit to check, with more to come */
+ if (*up != DECDPUNMAX)
+ break; /* not still 9s */
+ count -= DECDPUN;
+ } /* up */
+ } /* bump>0 */
+ else
+ { /* -1 */
+ /* here we are lookng for a pre-bump of 1000... (leading 1, */
+ /* all other digits zero) */
+ Unit *up, *sup; /* work */
+ uInt count = dn->digits; /* digits to be checked */
+ for (up = dn->lsu;; up++)
+ {
+ if (count <= DECDPUN)
+ {
+ /* this is the last Unit (the msu) */
+ if (*up != powers[count - 1])
+ break; /* not 100.. */
+ /* here if we have the 1000... case */
+ sup = up; /* save msu pointer */
+ *up = (Unit) powers[count] - 1; /* here 100 in msu -> 999 */
+ /* others all to all-nines, too */
+ for (up = up - 1; up >= dn->lsu; up--)
+ *up = (Unit) powers[DECDPUN] - 1;
+ dn->exponent--; /* and bump exponent */
+
+ /* iff the number was at the subnormal boundary (exponent=etiny) */
+ /* then the exponent is now out of range, so it will in fact get */
+ /* clamped to etiny and the final 9 dropped. */
+ /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
+ /* dn->exponent, set->digits); */
+ if (dn->exponent + 1 == set->emin - set->digits + 1)
+ {
+ if (count == 1 && dn->digits == 1)
+ *sup = 0; /* here 9 -> 0[.9] */
+ else
+ {
+ *sup = (Unit) powers[count - 1] - 1; /* here 999.. in msu -> 99.. */
+ dn->digits--;
+ }
+ dn->exponent++;
+ *status |=
+ DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
+ }
+ return; /* done */
+ }
+
+ /* a full unit to check, with more to come */
+ if (*up != 0)
+ break; /* not still 0s */
+ count -= DECDPUN;
+ } /* up */
+
+ } /* bump<0 */
+
+ /* Actual bump needed. Do it. */
+ decUnitAddSub (dn->lsu, D2U (dn->digits), one, 1, 0, dn->lsu, bump);
+}
+
+#if DECSUBSET
+/* ------------------------------------------------------------------ */
+/* decFinish -- finish processing a number */
+/* */
+/* dn is the number */
+/* set is the context */
+/* residue is the rounding accumulator (as in decApplyRound) */
+/* status is the accumulator */
+/* */
+/* This finishes off the current number by: */
+/* 1. If not extended: */
+/* a. Converting a zero result to clean '0' */
+/* b. Reducing positive exponents to 0, if would fit in digits */
+/* 2. Checking for overflow and subnormals (always) */
+/* Note this is just Finalize when no subset arithmetic. */
+/* All fields are updated as required. */
+/* ------------------------------------------------------------------ */
+static void
+decFinish (decNumber * dn, decContext * set, Int * residue, uInt * status)
+{
+ if (!set->extended)
+ {
+ if ISZERO
+ (dn)
+ { /* value is zero */
+ dn->exponent = 0; /* clean exponent .. */
+ dn->bits = 0; /* .. and sign */
+ return; /* no error possible */
+ }
+ if (dn->exponent >= 0)
+ { /* non-negative exponent */
+ /* >0; reduce to integer if possible */
+ if (set->digits >= (dn->exponent + dn->digits))
+ {
+ dn->digits = decShiftToMost (dn->lsu, dn->digits, dn->exponent);
+ dn->exponent = 0;
+ }
+ }
+ } /* !extended */
+
+ decFinalize (dn, set, residue, status);
+}
+#endif
+
+/* ------------------------------------------------------------------ */
+/* decFinalize -- final check, clamp, and round of a number */
+/* */
+/* dn is the number */
+/* set is the context */
+/* residue is the rounding accumulator (as in decApplyRound) */
+/* status is the status accumulator */
+/* */
+/* This finishes off the current number by checking for subnormal */
+/* results, applying any pending rounding, checking for overflow, */
+/* and applying any clamping. */
+/* Underflow and overflow conditions are raised as appropriate. */
+/* All fields are updated as required. */
+/* ------------------------------------------------------------------ */
+static void
+decFinalize (decNumber * dn, decContext * set, Int * residue, uInt * status)
+{
+ Int shift; /* shift needed if clamping */
+
+ /* We have to be careful when checking the exponent as the adjusted */
+ /* exponent could overflow 31 bits [because it may already be up */
+ /* to twice the expected]. */
+
+ /* First test for subnormal. This must be done before any final */
+ /* round as the result could be rounded to Nmin or 0. */
+ if (dn->exponent < 0 /* negative exponent */
+ && (dn->exponent < set->emin - dn->digits + 1))
+ {
+ /* Go handle subnormals; this will apply round if needed. */
+ decSetSubnormal (dn, set, residue, status);
+ return;
+ }
+
+ /* now apply any pending round (this could raise overflow). */
+ if (*residue != 0)
+ decApplyRound (dn, set, *residue, status);
+
+ /* Check for overflow [redundant in the 'rare' case] or clamp */
+ if (dn->exponent <= set->emax - set->digits + 1)
+ return; /* neither needed */
+
+ /* here when we might have an overflow or clamp to do */
+ if (dn->exponent > set->emax - dn->digits + 1)
+ { /* too big */
+ decSetOverflow (dn, set, status);
+ return;
+ }
+ /* here when the result is normal but in clamp range */
+ if (!set->clamp)
+ return;
+
+ /* here when we need to apply the IEEE exponent clamp (fold-down) */
+ shift = dn->exponent - (set->emax - set->digits + 1);
+
+ /* shift coefficient (if non-zero) */
+ if (!ISZERO (dn))
+ {
+ dn->digits = decShiftToMost (dn->lsu, dn->digits, shift);
+ }
+ dn->exponent -= shift; /* adjust the exponent to match */
+ *status |= DEC_Clamped; /* and record the dirty deed */
+ return;
+}
+
+/* ------------------------------------------------------------------ */
+/* decSetOverflow -- set number to proper overflow value */
+/* */
+/* dn is the number (used for sign [only] and result) */
+/* set is the context [used for the rounding mode] */
+/* status contains the current status to be updated */
+/* */
+/* This sets the sign of a number and sets its value to either */
+/* Infinity or the maximum finite value, depending on the sign of */
+/* dn and therounding mode, following IEEE 854 rules. */
+/* ------------------------------------------------------------------ */
+static void
+decSetOverflow (decNumber * dn, decContext * set, uInt * status)
+{
+ Flag needmax = 0; /* result is maximum finite value */
+ uByte sign = dn->bits & DECNEG; /* clean and save sign bit */
+
+ if (ISZERO (dn))
+ { /* zero does not overflow magnitude */
+ Int emax = set->emax; /* limit value */
+ if (set->clamp)
+ emax -= set->digits - 1; /* lower if clamping */
+ if (dn->exponent > emax)
+ { /* clamp required */
+ dn->exponent = emax;
+ *status |= DEC_Clamped;
+ }
+ return;
+ }
+
+ decNumberZero (dn);
+ switch (set->round)
+ {
+ case DEC_ROUND_DOWN:
+ {
+ needmax = 1; /* never Infinity */
+ break;
+ } /* r-d */
+ case DEC_ROUND_CEILING:
+ {
+ if (sign)
+ needmax = 1; /* Infinity if non-negative */
+ break;
+ } /* r-c */
+ case DEC_ROUND_FLOOR:
+ {
+ if (!sign)
+ needmax = 1; /* Infinity if negative */
+ break;
+ } /* r-f */
+ default:
+ break; /* Infinity in all other cases */
+ }
+ if (needmax)
+ {
+ Unit *up; /* work */
+ Int count = set->digits; /* nines to add */
+ dn->digits = count;
+ /* fill in all nines to set maximum value */
+ for (up = dn->lsu;; up++)
+ {
+ if (count > DECDPUN)
+ *up = DECDPUNMAX; /* unit full o'nines */
+ else
+ { /* this is the msu */
+ *up = (Unit) (powers[count] - 1);
+ break;
+ }
+ count -= DECDPUN; /* we filled those digits */
+ } /* up */
+ dn->bits = sign; /* sign */
+ dn->exponent = set->emax - set->digits + 1;
+ }
+ else
+ dn->bits = sign | DECINF; /* Value is +/-Infinity */
+ *status |= DEC_Overflow | DEC_Inexact | DEC_Rounded;
+}
+
+/* ------------------------------------------------------------------ */
+/* decSetSubnormal -- process value whose exponent is <Emin */
+/* */
+/* dn is the number (used as input as well as output; it may have */
+/* an allowed subnormal value, which may need to be rounded) */
+/* set is the context [used for the rounding mode] */
+/* residue is any pending residue */
+/* status contains the current status to be updated */
+/* */
+/* If subset mode, set result to zero and set Underflow flags. */
+/* */
+/* Value may be zero with a low exponent; this does not set Subnormal */
+/* but the exponent will be clamped to Etiny. */
+/* */
+/* Otherwise ensure exponent is not out of range, and round as */
+/* necessary. Underflow is set if the result is Inexact. */
+/* ------------------------------------------------------------------ */
+static void
+decSetSubnormal (decNumber * dn, decContext * set, Int * residue,
+ uInt * status)
+{
+ decContext workset; /* work */
+ Int etiny, adjust; /* .. */
+
+#if DECSUBSET
+ /* simple set to zero and 'hard underflow' for subset */
+ if (!set->extended)
+ {
+ decNumberZero (dn);
+ /* always full overflow */
+ *status |= DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
+ return;
+ }
+#endif
+
+ /* Full arithmetic -- allow subnormals, rounded to minimum exponent */
+ /* (Etiny) if needed */
+ etiny = set->emin - (set->digits - 1); /* smallest allowed exponent */
+
+ if ISZERO
+ (dn)
+ { /* value is zero */
+ /* residue can never be non-zero here */
+#if DECCHECK
+ if (*residue != 0)
+ {
+ printf ("++ Subnormal 0 residue %d\n", *residue);
+ *status |= DEC_Invalid_operation;
+ }
+#endif
+ if (dn->exponent < etiny)
+ { /* clamp required */
+ dn->exponent = etiny;
+ *status |= DEC_Clamped;
+ }
+ return;
+ }
+
+ *status |= DEC_Subnormal; /* we have a non-zero subnormal */
+
+ adjust = etiny - dn->exponent; /* calculate digits to remove */
+ if (adjust <= 0)
+ { /* not out of range; unrounded */
+ /* residue can never be non-zero here, so fast-path out */
+#if DECCHECK
+ if (*residue != 0)
+ {
+ printf ("++ Subnormal no-adjust residue %d\n", *residue);
+ *status |= DEC_Invalid_operation;
+ }
+#endif
+ /* it may already be inexact (from setting the coefficient) */
+ if (*status & DEC_Inexact)
+ *status |= DEC_Underflow;
+ return;
+ }
+
+ /* adjust>0. we need to rescale the result so exponent becomes Etiny */
+ /* [this code is similar to that in rescale] */
+ workset = *set; /* clone rounding, etc. */
+ workset.digits = dn->digits - adjust; /* set requested length */
+ workset.emin -= adjust; /* and adjust emin to match */
+ /* [note that the latter can be <1, here, similar to Rescale case] */
+ decSetCoeff (dn, &workset, dn->lsu, dn->digits, residue, status);
+ decApplyRound (dn, &workset, *residue, status);
+
+ /* Use 754R/854 default rule: Underflow is set iff Inexact */
+ /* [independent of whether trapped] */
+ if (*status & DEC_Inexact)
+ *status |= DEC_Underflow;
+
+ /* if we rounded up a 999s case, exponent will be off by one; adjust */
+ /* back if so [it will fit, because we shortened] */
+ if (dn->exponent > etiny)
+ {
+ dn->digits = decShiftToMost (dn->lsu, dn->digits, 1);
+ dn->exponent--; /* (re)adjust the exponent. */
+ }
+}
+
+/* ------------------------------------------------------------------ */
+/* decGetInt -- get integer from a number */
+/* */
+/* dn is the number [which will not be altered] */
+/* set is the context [requested digits], subset only */
+/* returns the converted integer, or BADINT if error */
+/* */
+/* This checks and gets a whole number from the input decNumber. */
+/* The magnitude of the integer must be <2^31. */
+/* Any discarded fractional part must be 0. */
+/* If subset it must also fit in set->digits */
+/* ------------------------------------------------------------------ */
+#if DECSUBSET
+static Int
+decGetInt (decNumber * dn, decContext * set)
+{
+#else
+static Int
+decGetInt (decNumber * dn)
+{
+#endif
+ Int theInt; /* result accumulator */
+ Unit *up; /* work */
+ Int got; /* digits (real or not) processed */
+ Int ilength = dn->digits + dn->exponent; /* integral length */
+
+ /* The number must be an integer that fits in 10 digits */
+ /* Assert, here, that 10 is enough for any rescale Etiny */
+#if DEC_MAX_EMAX > 999999999
+#error GetInt may need updating [for Emax]
+#endif
+#if DEC_MIN_EMIN < -999999999
+#error GetInt may need updating [for Emin]
+#endif
+ if (ISZERO (dn))
+ return 0; /* zeros are OK, with any exponent */
+ if (ilength > 10)
+ return BADINT; /* always too big */
+#if DECSUBSET
+ if (!set->extended && ilength > set->digits)
+ return BADINT;
+#endif
+
+ up = dn->lsu; /* ready for lsu */
+ theInt = 0; /* ready to accumulate */
+ if (dn->exponent >= 0)
+ { /* relatively easy */
+ /* no fractional part [usual]; allow for positive exponent */
+ got = dn->exponent;
+ }
+ else
+ { /* -ve exponent; some fractional part to check and discard */
+ Int count = -dn->exponent; /* digits to discard */
+ /* spin up whole units until we get to the Unit with the unit digit */
+ for (; count >= DECDPUN; up++)
+ {
+ if (*up != 0)
+ return BADINT; /* non-zero Unit to discard */
+ count -= DECDPUN;
+ }
+ if (count == 0)
+ got = 0; /* [a multiple of DECDPUN] */
+ else
+ { /* [not multiple of DECDPUN] */
+ Int rem; /* work */
+ /* slice off fraction digits and check for non-zero */
+#if DECDPUN<=4
+ theInt = QUOT10 (*up, count);
+ rem = *up - theInt * powers[count];
+#else
+ rem = *up % powers[count]; /* slice off discards */
+ theInt = *up / powers[count];
+#endif
+ if (rem != 0)
+ return BADINT; /* non-zero fraction */
+ /* OK, we're good */
+ got = DECDPUN - count; /* number of digits so far */
+ up++; /* ready for next */
+ }
+ }
+ /* collect the rest */
+ for (; got < ilength; up++)
+ {
+ theInt += *up * powers[got];
+ got += DECDPUN;
+ }
+ if ((ilength == 10) /* check no wrap */
+ && (theInt / (Int) powers[got - DECDPUN] != *(up - 1)))
+ return BADINT;
+ /* [that test also disallows the BADINT result case] */
+
+ /* apply any sign and return */
+ if (decNumberIsNegative (dn))
+ theInt = -theInt;
+ return theInt;
+}
+
+/* ------------------------------------------------------------------ */
+/* decStrEq -- caseless comparison of strings */
+/* */
+/* str1 is one of the strings to compare */
+/* str2 is the other */
+/* */
+/* returns 1 if strings caseless-compare equal, 0 otherwise */
+/* */
+/* Note that the strings must be the same length if they are to */
+/* compare equal; there is no padding. */
+/* ------------------------------------------------------------------ */
+/* [strcmpi is not in ANSI C] */
+static Flag
+decStrEq (const char *str1, const char *str2)
+{
+ for (;; str1++, str2++)
+ {
+ if (*str1 == *str2)
+ {
+ if (*str1 == '\0')
+ break;
+ }
+ else
+ {
+ if (tolower (*str1) != tolower (*str2))
+ return 0;
+ }
+ } /* stepping */
+ return 1;
+}
+
+/* ------------------------------------------------------------------ */
+/* decNaNs -- handle NaN operand or operands */
+/* */
+/* res is the result number */
+/* lhs is the first operand */
+/* rhs is the second operand, or NULL if none */
+/* status contains the current status */
+/* returns res in case convenient */
+/* */
+/* Called when one or both operands is a NaN, and propagates the */
+/* appropriate result to res. When an sNaN is found, it is changed */
+/* to a qNaN and Invalid operation is set. */
+/* ------------------------------------------------------------------ */
+static decNumber *
+decNaNs (decNumber * res, decNumber * lhs, decNumber * rhs, uInt * status)
+{
+ /* This decision tree ends up with LHS being the source pointer, */
+ /* and status updated if need be */
+ if (lhs->bits & DECSNAN)
+ *status |= DEC_Invalid_operation | DEC_sNaN;
+ else if (rhs == NULL);
+ else if (rhs->bits & DECSNAN)
+ {
+ lhs = rhs;
+ *status |= DEC_Invalid_operation | DEC_sNaN;
+ }
+ else if (lhs->bits & DECNAN);
+ else
+ lhs = rhs;
+
+ decNumberCopy (res, lhs);
+ res->bits &= ~DECSNAN; /* convert any sNaN to NaN, while */
+ res->bits |= DECNAN; /* .. preserving sign */
+ res->exponent = 0; /* clean exponent */
+ /* [coefficient was copied] */
+ return res;
+}
+
+/* ------------------------------------------------------------------ */
+/* decStatus -- apply non-zero status */
+/* */
+/* dn is the number to set if error */
+/* status contains the current status (not yet in context) */
+/* set is the context */
+/* */
+/* If the status is an error status, the number is set to a NaN, */
+/* unless the error was an overflow, divide-by-zero, or underflow, */
+/* in which case the number will have already been set. */
+/* */
+/* The context status is then updated with the new status. Note that */
+/* this may raise a signal, so control may never return from this */
+/* routine (hence resources must be recovered before it is called). */
+/* ------------------------------------------------------------------ */
+static void
+decStatus (decNumber * dn, uInt status, decContext * set)
+{
+ if (status & DEC_NaNs)
+ { /* error status -> NaN */
+ /* if cause was an sNaN, clear and propagate [NaN is already set up] */
+ if (status & DEC_sNaN)
+ status &= ~DEC_sNaN;
+ else
+ {
+ decNumberZero (dn); /* other error: clean throughout */
+ dn->bits = DECNAN; /* and make a quiet NaN */
+ }
+ }
+ decContextSetStatus (set, status);
+ return;
+}
+
+/* ------------------------------------------------------------------ */
+/* decGetDigits -- count digits in a Units array */
+/* */
+/* uar is the Unit array holding the number [this is often an */
+/* accumulator of some sort] */
+/* len is the length of the array in units */
+/* */
+/* returns the number of (significant) digits in the array */
+/* */
+/* All leading zeros are excluded, except the last if the array has */
+/* only zero Units. */
+/* ------------------------------------------------------------------ */
+/* This may be called twice during some operations. */
+static Int
+decGetDigits (Unit * uar, Int len)
+{
+ Unit *up = uar + len - 1; /* -> msu */
+ Int digits = len * DECDPUN; /* maximum possible digits */
+ uInt const *pow; /* work */
+
+ for (; up >= uar; up--)
+ {
+ digits -= DECDPUN;
+ if (*up == 0)
+ { /* unit is 0 */
+ if (digits != 0)
+ continue; /* more to check */
+ /* all units were 0 */
+ digits++; /* .. so bump digits to 1 */
+ break;
+ }
+ /* found the first non-zero Unit */
+ digits++;
+ if (*up < 10)
+ break; /* fastpath 1-9 */
+ digits++;
+ for (pow = &powers[2]; *up >= *pow; pow++)
+ digits++;
+ break;
+ } /* up */
+
+ return digits;
+}
+
+
+#if DECTRACE | DECCHECK
+/* ------------------------------------------------------------------ */
+/* decNumberShow -- display a number [debug aid] */
+/* dn is the number to show */
+/* */
+/* Shows: sign, exponent, coefficient (msu first), digits */
+/* or: sign, special-value */
+/* ------------------------------------------------------------------ */
+/* this is public so other modules can use it */
+void
+decNumberShow (decNumber * dn)
+{
+ Unit *up; /* work */
+ uInt u, d; /* .. */
+ Int cut; /* .. */
+ char isign = '+'; /* main sign */
+ if (dn == NULL)
+ {
+ printf ("NULL\n");
+ return;
+ }
+ if (decNumberIsNegative (dn))
+ isign = '-';
+ printf (" >> %c ", isign);
+ if (dn->bits & DECSPECIAL)
+ { /* Is a special value */
+ if (decNumberIsInfinite (dn))
+ printf ("Infinity");
+ else
+ { /* a NaN */
+ if (dn->bits & DECSNAN)
+ printf ("sNaN"); /* signalling NaN */
+ else
+ printf ("NaN");
+ }
+ /* if coefficient and exponent are 0, we're done */
+ if (dn->exponent == 0 && dn->digits == 1 && *dn->lsu == 0)
+ {
+ printf ("\n");
+ return;
+ }
+ /* drop through to report other information */
+ printf (" ");
+ }
+
+ /* now carefully display the coefficient */
+ up = dn->lsu + D2U (dn->digits) - 1; /* msu */
+ printf ("%d", *up);
+ for (up = up - 1; up >= dn->lsu; up--)
+ {
+ u = *up;
+ printf (":");
+ for (cut = DECDPUN - 1; cut >= 0; cut--)
+ {
+ d = u / powers[cut];
+ u -= d * powers[cut];
+ printf ("%d", d);
+ } /* cut */
+ } /* up */
+ if (dn->exponent != 0)
+ {
+ char esign = '+';
+ if (dn->exponent < 0)
+ esign = '-';
+ printf (" E%c%d", esign, abs (dn->exponent));
+ }
+ printf (" [%d]\n", dn->digits);
+}
+#endif
+
+#if DECTRACE || DECCHECK
+/* ------------------------------------------------------------------ */
+/* decDumpAr -- display a unit array [debug aid] */
+/* name is a single-character tag name */
+/* ar is the array to display */
+/* len is the length of the array in Units */
+/* ------------------------------------------------------------------ */
+static void
+decDumpAr (char name, Unit * ar, Int len)
+{
+ Int i;
+#if DECDPUN==4
+ char *spec = "%04d ";
+#else
+ char *spec = "%d ";
+#endif
+ printf (" :%c: ", name);
+ for (i = len - 1; i >= 0; i--)
+ {
+ if (i == len - 1)
+ printf ("%d ", ar[i]);
+ else
+ printf (spec, ar[i]);
+ }
+ printf ("\n");
+ return;
+}
+#endif
+
+#if DECCHECK
+/* ------------------------------------------------------------------ */
+/* decCheckOperands -- check operand(s) to a routine */
+/* res is the result structure (not checked; it will be set to */
+/* quiet NaN if error found (and it is not NULL)) */
+/* lhs is the first operand (may be DECUNUSED) */
+/* rhs is the second (may be DECUNUSED) */
+/* set is the context (may be DECUNUSED) */
+/* returns 0 if both operands, and the context are clean, or 1 */
+/* otherwise (in which case the context will show an error, */
+/* unless NULL). Note that res is not cleaned; caller should */
+/* handle this so res=NULL case is safe. */
+/* The caller is expected to abandon immediately if 1 is returned. */
+/* ------------------------------------------------------------------ */
+static Flag
+decCheckOperands (decNumber * res, decNumber * lhs,
+ decNumber * rhs, decContext * set)
+{
+ Flag bad = 0;
+ if (set == NULL)
+ { /* oops; hopeless */
+#if DECTRACE
+ printf ("Context is NULL.\n");
+#endif
+ bad = 1;
+ return 1;
+ }
+ else if (set != DECUNUSED
+ && (set->digits < 1 || set->round < 0
+ || set->round >= DEC_ROUND_MAX))
+ {
+ bad = 1;
+#if DECTRACE
+ printf ("Bad context [digits=%d round=%d].\n", set->digits, set->round);
+#endif
+ }
+ else
+ {
+ if (res == NULL)
+ {
+ bad = 1;
+#if DECTRACE
+ printf ("Bad result [is NULL].\n");
+#endif
+ }
+ if (!bad && lhs != DECUNUSED)
+ bad = (decCheckNumber (lhs, set));
+ if (!bad && rhs != DECUNUSED)
+ bad = (decCheckNumber (rhs, set));
+ }
+ if (bad)
+ {
+ if (set != DECUNUSED)
+ decContextSetStatus (set, DEC_Invalid_operation);
+ if (res != DECUNUSED && res != NULL)
+ {
+ decNumberZero (res);
+ res->bits = DECNAN; /* qNaN */
+ }
+ }
+ return bad;
+}
+
+/* ------------------------------------------------------------------ */
+/* decCheckNumber -- check a number */
+/* dn is the number to check */
+/* set is the context (may be DECUNUSED) */
+/* returns 0 if the number is clean, or 1 otherwise */
+/* */
+/* The number is considered valid if it could be a result from some */
+/* operation in some valid context (not necessarily the current one). */
+/* ------------------------------------------------------------------ */
+Flag
+decCheckNumber (decNumber * dn, decContext * set)
+{
+ Unit *up; /* work */
+ uInt maxuint; /* .. */
+ Int ae, d, digits; /* .. */
+ Int emin, emax; /* .. */
+
+ if (dn == NULL)
+ { /* hopeless */
+#if DECTRACE
+ printf ("Reference to decNumber is NULL.\n");
+#endif
+ return 1;
+ }
+
+ /* check special values */
+ if (dn->bits & DECSPECIAL)
+ {
+ if (dn->exponent != 0)
+ {
+#if DECTRACE
+ printf ("Exponent %d (not 0) for a special value.\n", dn->exponent);
+#endif
+ return 1;
+ }
+
+ /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
+ if (decNumberIsInfinite (dn))
+ {
+ if (dn->digits != 1)
+ {
+#if DECTRACE
+ printf ("Digits %d (not 1) for an infinity.\n", dn->digits);
+#endif
+ return 1;
+ }
+ if (*dn->lsu != 0)
+ {
+#if DECTRACE
+ printf ("LSU %d (not 0) for an infinity.\n", *dn->lsu);
+#endif
+ return 1;
+ }
+ } /* Inf */
+ /* 2002.12.26: negative NaNs can now appear through proposed IEEE */
+ /* concrete formats (decimal64, etc.), though they are */
+ /* never visible in strings. */
+ return 0;
+
+ /* if ((dn->bits & DECINF) || (dn->bits & DECNEG)==0) return 0; */
+ /* #if DECTRACE */
+ /* printf("Negative NaN in number.\n"); */
+ /* #endif */
+ /* return 1; */
+ }
+
+ /* check the coefficient */
+ if (dn->digits < 1 || dn->digits > DECNUMMAXP)
+ {
+#if DECTRACE
+ printf ("Digits %d in number.\n", dn->digits);
+#endif
+ return 1;
+ }
+
+ d = dn->digits;
+
+ for (up = dn->lsu; d > 0; up++)
+ {
+ if (d > DECDPUN)
+ maxuint = DECDPUNMAX;
+ else
+ { /* we are at the msu */
+ maxuint = powers[d] - 1;
+ if (dn->digits > 1 && *up < powers[d - 1])
+ {
+#if DECTRACE
+ printf ("Leading 0 in number.\n");
+ decNumberShow (dn);
+#endif
+ return 1;
+ }
+ }
+ if (*up > maxuint)
+ {
+#if DECTRACE
+ printf ("Bad Unit [%08x] in number at offset %d [maxuint %d].\n",
+ *up, up - dn->lsu, maxuint);
+#endif
+ return 1;
+ }
+ d -= DECDPUN;
+ }
+
+ /* check the exponent. Note that input operands can have exponents */
+ /* which are out of the set->emin/set->emax and set->digits range */
+ /* (just as they can have more digits than set->digits). */
+ ae = dn->exponent + dn->digits - 1; /* adjusted exponent */
+ emax = DECNUMMAXE;
+ emin = DECNUMMINE;
+ digits = DECNUMMAXP;
+ if (ae < emin - (digits - 1))
+ {
+#if DECTRACE
+ printf ("Adjusted exponent underflow [%d].\n", ae);
+ decNumberShow (dn);
+#endif
+ return 1;
+ }
+ if (ae > +emax)
+ {
+#if DECTRACE
+ printf ("Adjusted exponent overflow [%d].\n", ae);
+ decNumberShow (dn);
+#endif
+ return 1;
+ }
+
+ return 0; /* it's OK */
+}
+#endif
+
+#if DECALLOC
+#undef malloc
+#undef free
+/* ------------------------------------------------------------------ */
+/* decMalloc -- accountable allocation routine */
+/* n is the number of bytes to allocate */
+/* */
+/* Semantics is the same as the stdlib malloc routine, but bytes */
+/* allocated are accounted for globally, and corruption fences are */
+/* added before and after the 'actual' storage. */
+/* ------------------------------------------------------------------ */
+/* This routine allocates storage with an extra twelve bytes; 8 are */
+/* at the start and hold: */
+/* 0-3 the original length requested */
+/* 4-7 buffer corruption detection fence (DECFENCE, x4) */
+/* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
+/* ------------------------------------------------------------------ */
+static void *
+decMalloc (uInt n)
+{
+ uInt size = n + 12; /* true size */
+ void *alloc; /* -> allocated storage */
+ uInt *j; /* work */
+ uByte *b, *b0; /* .. */
+
+ alloc = malloc (size); /* -> allocated storage */
+ if (alloc == NULL)
+ return NULL; /* out of strorage */
+ b0 = (uByte *) alloc; /* as bytes */
+ decAllocBytes += n; /* account for storage */
+ j = (uInt *) alloc; /* -> first four bytes */
+ *j = n; /* save n */
+ /* printf("++ alloc(%d)\n", n); */
+ for (b = b0 + 4; b < b0 + 8; b++)
+ *b = DECFENCE;
+ for (b = b0 + n + 8; b < b0 + n + 12; b++)
+ *b = DECFENCE;
+ return b0 + 8; /* -> play area */
+}
+
+/* ------------------------------------------------------------------ */
+/* decFree -- accountable free routine */
+/* alloc is the storage to free */
+/* */
+/* Semantics is the same as the stdlib malloc routine, except that */
+/* the global storage accounting is updated and the fences are */
+/* checked to ensure that no routine has written 'out of bounds'. */
+/* ------------------------------------------------------------------ */
+/* This routine first checks that the fences have not been corrupted. */
+/* It then frees the storage using the 'truw' storage address (that */
+/* is, offset by 8). */
+/* ------------------------------------------------------------------ */
+static void
+decFree (void *alloc)
+{
+ uInt *j, n; /* pointer, original length */
+ uByte *b, *b0; /* work */
+
+ if (alloc == NULL)
+ return; /* allowed; it's a nop */
+ b0 = (uByte *) alloc; /* as bytes */
+ b0 -= 8; /* -> true start of storage */
+ j = (uInt *) b0; /* -> first four bytes */
+ n = *j; /* lift */
+ for (b = b0 + 4; b < b0 + 8; b++)
+ if (*b != DECFENCE)
+ printf ("=== Corrupt byte [%02x] at offset %d from %d ===\n", *b,
+ b - b0 - 8, (Int) b0);
+ for (b = b0 + n + 8; b < b0 + n + 12; b++)
+ if (*b != DECFENCE)
+ printf ("=== Corrupt byte [%02x] at offset +%d from %d, n=%d ===\n", *b,
+ b - b0 - 8, (Int) b0, n);
+ free (b0); /* drop the storage */
+ decAllocBytes -= n; /* account for storage */
+}
+#endif