diff options
Diffstat (limited to 'gcc/vr-values.c')
-rw-r--r-- | gcc/vr-values.c | 4183 |
1 files changed, 4183 insertions, 0 deletions
diff --git a/gcc/vr-values.c b/gcc/vr-values.c new file mode 100644 index 00000000000..d4434ded75d --- /dev/null +++ b/gcc/vr-values.c @@ -0,0 +1,4183 @@ +/* Support routines for Value Range Propagation (VRP). + Copyright (C) 2005-2017 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "insn-codes.h" +#include "tree.h" +#include "gimple.h" +#include "ssa.h" +#include "optabs-tree.h" +#include "gimple-pretty-print.h" +#include "diagnostic-core.h" +#include "flags.h" +#include "fold-const.h" +#include "calls.h" +#include "cfganal.h" +#include "gimple-fold.h" +#include "gimple-iterator.h" +#include "tree-cfg.h" +#include "tree-ssa-loop-niter.h" +#include "tree-ssa-loop.h" +#include "intl.h" +#include "cfgloop.h" +#include "tree-scalar-evolution.h" +#include "tree-ssa-propagate.h" +#include "tree-chrec.h" +#include "omp-general.h" +#include "case-cfn-macros.h" +#include "alloc-pool.h" +#include "attribs.h" +#include "vr-values.h" + +/* Set value range VR to a non-negative range of type TYPE. */ + +static inline void +set_value_range_to_nonnegative (value_range *vr, tree type) +{ + tree zero = build_int_cst (type, 0); + set_value_range (vr, VR_RANGE, zero, vrp_val_max (type), vr->equiv); +} + +/* Set value range VR to a range of a truthvalue of type TYPE. */ + +static inline void +set_value_range_to_truthvalue (value_range *vr, tree type) +{ + if (TYPE_PRECISION (type) == 1) + set_value_range_to_varying (vr); + else + set_value_range (vr, VR_RANGE, + build_int_cst (type, 0), build_int_cst (type, 1), + vr->equiv); +} + + +/* Return value range information for VAR. + + If we have no values ranges recorded (ie, VRP is not running), then + return NULL. Otherwise create an empty range if none existed for VAR. */ + +value_range * +vr_values::get_value_range (const_tree var) +{ + static const value_range vr_const_varying + = { VR_VARYING, NULL_TREE, NULL_TREE, NULL }; + value_range *vr; + tree sym; + unsigned ver = SSA_NAME_VERSION (var); + + /* If we have no recorded ranges, then return NULL. */ + if (! vr_value) + return NULL; + + /* If we query the range for a new SSA name return an unmodifiable VARYING. + We should get here at most from the substitute-and-fold stage which + will never try to change values. */ + if (ver >= num_vr_values) + return CONST_CAST (value_range *, &vr_const_varying); + + vr = vr_value[ver]; + if (vr) + return vr; + + /* After propagation finished do not allocate new value-ranges. */ + if (values_propagated) + return CONST_CAST (value_range *, &vr_const_varying); + + /* Create a default value range. */ + vr_value[ver] = vr = vrp_value_range_pool.allocate (); + memset (vr, 0, sizeof (*vr)); + + /* Defer allocating the equivalence set. */ + vr->equiv = NULL; + + /* If VAR is a default definition of a parameter, the variable can + take any value in VAR's type. */ + if (SSA_NAME_IS_DEFAULT_DEF (var)) + { + sym = SSA_NAME_VAR (var); + if (TREE_CODE (sym) == PARM_DECL) + { + /* Try to use the "nonnull" attribute to create ~[0, 0] + anti-ranges for pointers. Note that this is only valid with + default definitions of PARM_DECLs. */ + if (POINTER_TYPE_P (TREE_TYPE (sym)) + && (nonnull_arg_p (sym) + || get_ptr_nonnull (var))) + set_value_range_to_nonnull (vr, TREE_TYPE (sym)); + else if (INTEGRAL_TYPE_P (TREE_TYPE (sym))) + { + wide_int min, max; + value_range_type rtype = get_range_info (var, &min, &max); + if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE) + set_value_range (vr, rtype, + wide_int_to_tree (TREE_TYPE (var), min), + wide_int_to_tree (TREE_TYPE (var), max), + NULL); + else + set_value_range_to_varying (vr); + } + else + set_value_range_to_varying (vr); + } + else if (TREE_CODE (sym) == RESULT_DECL + && DECL_BY_REFERENCE (sym)) + set_value_range_to_nonnull (vr, TREE_TYPE (sym)); + } + + return vr; +} + +/* Set value-ranges of all SSA names defined by STMT to varying. */ + +void +vr_values::set_defs_to_varying (gimple *stmt) +{ + ssa_op_iter i; + tree def; + FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF) + { + value_range *vr = get_value_range (def); + /* Avoid writing to vr_const_varying get_value_range may return. */ + if (vr->type != VR_VARYING) + set_value_range_to_varying (vr); + } +} + +/* Update the value range and equivalence set for variable VAR to + NEW_VR. Return true if NEW_VR is different from VAR's previous + value. + + NOTE: This function assumes that NEW_VR is a temporary value range + object created for the sole purpose of updating VAR's range. The + storage used by the equivalence set from NEW_VR will be freed by + this function. Do not call update_value_range when NEW_VR + is the range object associated with another SSA name. */ + +bool +vr_values::update_value_range (const_tree var, value_range *new_vr) +{ + value_range *old_vr; + bool is_new; + + /* If there is a value-range on the SSA name from earlier analysis + factor that in. */ + if (INTEGRAL_TYPE_P (TREE_TYPE (var))) + { + wide_int min, max; + value_range_type rtype = get_range_info (var, &min, &max); + if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE) + { + tree nr_min, nr_max; + nr_min = wide_int_to_tree (TREE_TYPE (var), min); + nr_max = wide_int_to_tree (TREE_TYPE (var), max); + value_range nr = VR_INITIALIZER; + set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL); + vrp_intersect_ranges (new_vr, &nr); + } + } + + /* Update the value range, if necessary. */ + old_vr = get_value_range (var); + is_new = old_vr->type != new_vr->type + || !vrp_operand_equal_p (old_vr->min, new_vr->min) + || !vrp_operand_equal_p (old_vr->max, new_vr->max) + || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv); + + if (is_new) + { + /* Do not allow transitions up the lattice. The following + is slightly more awkward than just new_vr->type < old_vr->type + because VR_RANGE and VR_ANTI_RANGE need to be considered + the same. We may not have is_new when transitioning to + UNDEFINED. If old_vr->type is VARYING, we shouldn't be + called. */ + if (new_vr->type == VR_UNDEFINED) + { + BITMAP_FREE (new_vr->equiv); + set_value_range_to_varying (old_vr); + set_value_range_to_varying (new_vr); + return true; + } + else + set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max, + new_vr->equiv); + } + + BITMAP_FREE (new_vr->equiv); + + return is_new; +} + + +/* Add VAR and VAR's equivalence set to EQUIV. This is the central + point where equivalence processing can be turned on/off. */ + +void +vr_values::add_equivalence (bitmap *equiv, const_tree var) +{ + unsigned ver = SSA_NAME_VERSION (var); + value_range *vr = get_value_range (var); + + if (*equiv == NULL) + *equiv = BITMAP_ALLOC (&vrp_equiv_obstack); + bitmap_set_bit (*equiv, ver); + if (vr && vr->equiv) + bitmap_ior_into (*equiv, vr->equiv); +} + +/* Return true if value range VR involves exactly one symbol SYM. */ + +static bool +symbolic_range_based_on_p (value_range *vr, const_tree sym) +{ + bool neg, min_has_symbol, max_has_symbol; + tree inv; + + if (is_gimple_min_invariant (vr->min)) + min_has_symbol = false; + else if (get_single_symbol (vr->min, &neg, &inv) == sym) + min_has_symbol = true; + else + return false; + + if (is_gimple_min_invariant (vr->max)) + max_has_symbol = false; + else if (get_single_symbol (vr->max, &neg, &inv) == sym) + max_has_symbol = true; + else + return false; + + return (min_has_symbol || max_has_symbol); +} + +/* Return true if the result of assignment STMT is know to be non-zero. */ + +static bool +gimple_assign_nonzero_p (gimple *stmt) +{ + enum tree_code code = gimple_assign_rhs_code (stmt); + bool strict_overflow_p; + switch (get_gimple_rhs_class (code)) + { + case GIMPLE_UNARY_RHS: + return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt), + gimple_expr_type (stmt), + gimple_assign_rhs1 (stmt), + &strict_overflow_p); + case GIMPLE_BINARY_RHS: + return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt), + gimple_expr_type (stmt), + gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt), + &strict_overflow_p); + case GIMPLE_TERNARY_RHS: + return false; + case GIMPLE_SINGLE_RHS: + return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt), + &strict_overflow_p); + case GIMPLE_INVALID_RHS: + gcc_unreachable (); + default: + gcc_unreachable (); + } +} + +/* Return true if STMT is known to compute a non-zero value. */ + +static bool +gimple_stmt_nonzero_p (gimple *stmt) +{ + switch (gimple_code (stmt)) + { + case GIMPLE_ASSIGN: + return gimple_assign_nonzero_p (stmt); + case GIMPLE_CALL: + { + tree fndecl = gimple_call_fndecl (stmt); + if (!fndecl) return false; + if (flag_delete_null_pointer_checks && !flag_check_new + && DECL_IS_OPERATOR_NEW (fndecl) + && !TREE_NOTHROW (fndecl)) + return true; + /* References are always non-NULL. */ + if (flag_delete_null_pointer_checks + && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE) + return true; + if (flag_delete_null_pointer_checks && + lookup_attribute ("returns_nonnull", + TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))) + return true; + + gcall *call_stmt = as_a<gcall *> (stmt); + unsigned rf = gimple_call_return_flags (call_stmt); + if (rf & ERF_RETURNS_ARG) + { + unsigned argnum = rf & ERF_RETURN_ARG_MASK; + if (argnum < gimple_call_num_args (call_stmt)) + { + tree arg = gimple_call_arg (call_stmt, argnum); + if (SSA_VAR_P (arg) + && infer_nonnull_range_by_attribute (stmt, arg)) + return true; + } + } + return gimple_alloca_call_p (stmt); + } + default: + gcc_unreachable (); + } +} +/* Like tree_expr_nonzero_p, but this function uses value ranges + obtained so far. */ + +bool +vr_values::vrp_stmt_computes_nonzero (gimple *stmt) +{ + if (gimple_stmt_nonzero_p (stmt)) + return true; + + /* If we have an expression of the form &X->a, then the expression + is nonnull if X is nonnull. */ + if (is_gimple_assign (stmt) + && gimple_assign_rhs_code (stmt) == ADDR_EXPR) + { + tree expr = gimple_assign_rhs1 (stmt); + tree base = get_base_address (TREE_OPERAND (expr, 0)); + + if (base != NULL_TREE + && TREE_CODE (base) == MEM_REF + && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) + { + value_range *vr = get_value_range (TREE_OPERAND (base, 0)); + if (range_is_nonnull (vr)) + return true; + } + } + + return false; +} + +/* Returns true if EXPR is a valid value (as expected by compare_values) -- + a gimple invariant, or SSA_NAME +- CST. */ + +static bool +valid_value_p (tree expr) +{ + if (TREE_CODE (expr) == SSA_NAME) + return true; + + if (TREE_CODE (expr) == PLUS_EXPR + || TREE_CODE (expr) == MINUS_EXPR) + return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME + && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST); + + return is_gimple_min_invariant (expr); +} + +/* If OP has a value range with a single constant value return that, + otherwise return NULL_TREE. This returns OP itself if OP is a + constant. */ + +tree +vr_values::op_with_constant_singleton_value_range (tree op) +{ + if (is_gimple_min_invariant (op)) + return op; + + if (TREE_CODE (op) != SSA_NAME) + return NULL_TREE; + + return value_range_constant_singleton (get_value_range (op)); +} + +/* Return true if op is in a boolean [0, 1] value-range. */ + +bool +vr_values::op_with_boolean_value_range_p (tree op) +{ + value_range *vr; + + if (TYPE_PRECISION (TREE_TYPE (op)) == 1) + return true; + + if (integer_zerop (op) + || integer_onep (op)) + return true; + + if (TREE_CODE (op) != SSA_NAME) + return false; + + vr = get_value_range (op); + return (vr->type == VR_RANGE + && integer_zerop (vr->min) + && integer_onep (vr->max)); +} + +/* Extract value range information for VAR when (OP COND_CODE LIMIT) is + true and store it in *VR_P. */ + +void +vr_values::extract_range_for_var_from_comparison_expr (tree var, + enum tree_code cond_code, + tree op, tree limit, + value_range *vr_p) +{ + tree min, max, type; + value_range *limit_vr; + type = TREE_TYPE (var); + gcc_assert (limit != var); + + /* For pointer arithmetic, we only keep track of pointer equality + and inequality. */ + if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR) + { + set_value_range_to_varying (vr_p); + return; + } + + /* If LIMIT is another SSA name and LIMIT has a range of its own, + try to use LIMIT's range to avoid creating symbolic ranges + unnecessarily. */ + limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL; + + /* LIMIT's range is only interesting if it has any useful information. */ + if (! limit_vr + || limit_vr->type == VR_UNDEFINED + || limit_vr->type == VR_VARYING + || (symbolic_range_p (limit_vr) + && ! (limit_vr->type == VR_RANGE + && (limit_vr->min == limit_vr->max + || operand_equal_p (limit_vr->min, limit_vr->max, 0))))) + limit_vr = NULL; + + /* Initially, the new range has the same set of equivalences of + VAR's range. This will be revised before returning the final + value. Since assertions may be chained via mutually exclusive + predicates, we will need to trim the set of equivalences before + we are done. */ + gcc_assert (vr_p->equiv == NULL); + add_equivalence (&vr_p->equiv, var); + + /* Extract a new range based on the asserted comparison for VAR and + LIMIT's value range. Notice that if LIMIT has an anti-range, we + will only use it for equality comparisons (EQ_EXPR). For any + other kind of assertion, we cannot derive a range from LIMIT's + anti-range that can be used to describe the new range. For + instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10], + then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is + no single range for x_2 that could describe LE_EXPR, so we might + as well build the range [b_4, +INF] for it. + One special case we handle is extracting a range from a + range test encoded as (unsigned)var + CST <= limit. */ + if (TREE_CODE (op) == NOP_EXPR + || TREE_CODE (op) == PLUS_EXPR) + { + if (TREE_CODE (op) == PLUS_EXPR) + { + min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)), + TREE_OPERAND (op, 1)); + max = int_const_binop (PLUS_EXPR, limit, min); + op = TREE_OPERAND (op, 0); + } + else + { + min = build_int_cst (TREE_TYPE (var), 0); + max = limit; + } + + /* Make sure to not set TREE_OVERFLOW on the final type + conversion. We are willingly interpreting large positive + unsigned values as negative signed values here. */ + min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false); + max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false); + + /* We can transform a max, min range to an anti-range or + vice-versa. Use set_and_canonicalize_value_range which does + this for us. */ + if (cond_code == LE_EXPR) + set_and_canonicalize_value_range (vr_p, VR_RANGE, + min, max, vr_p->equiv); + else if (cond_code == GT_EXPR) + set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE, + min, max, vr_p->equiv); + else + gcc_unreachable (); + } + else if (cond_code == EQ_EXPR) + { + enum value_range_type range_type; + + if (limit_vr) + { + range_type = limit_vr->type; + min = limit_vr->min; + max = limit_vr->max; + } + else + { + range_type = VR_RANGE; + min = limit; + max = limit; + } + + set_value_range (vr_p, range_type, min, max, vr_p->equiv); + + /* When asserting the equality VAR == LIMIT and LIMIT is another + SSA name, the new range will also inherit the equivalence set + from LIMIT. */ + if (TREE_CODE (limit) == SSA_NAME) + add_equivalence (&vr_p->equiv, limit); + } + else if (cond_code == NE_EXPR) + { + /* As described above, when LIMIT's range is an anti-range and + this assertion is an inequality (NE_EXPR), then we cannot + derive anything from the anti-range. For instance, if + LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does + not imply that VAR's range is [0, 0]. So, in the case of + anti-ranges, we just assert the inequality using LIMIT and + not its anti-range. + + If LIMIT_VR is a range, we can only use it to build a new + anti-range if LIMIT_VR is a single-valued range. For + instance, if LIMIT_VR is [0, 1], the predicate + VAR != [0, 1] does not mean that VAR's range is ~[0, 1]. + Rather, it means that for value 0 VAR should be ~[0, 0] + and for value 1, VAR should be ~[1, 1]. We cannot + represent these ranges. + + The only situation in which we can build a valid + anti-range is when LIMIT_VR is a single-valued range + (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case, + build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */ + if (limit_vr + && limit_vr->type == VR_RANGE + && compare_values (limit_vr->min, limit_vr->max) == 0) + { + min = limit_vr->min; + max = limit_vr->max; + } + else + { + /* In any other case, we cannot use LIMIT's range to build a + valid anti-range. */ + min = max = limit; + } + + /* If MIN and MAX cover the whole range for their type, then + just use the original LIMIT. */ + if (INTEGRAL_TYPE_P (type) + && vrp_val_is_min (min) + && vrp_val_is_max (max)) + min = max = limit; + + set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE, + min, max, vr_p->equiv); + } + else if (cond_code == LE_EXPR || cond_code == LT_EXPR) + { + min = TYPE_MIN_VALUE (type); + + if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE) + max = limit; + else + { + /* If LIMIT_VR is of the form [N1, N2], we need to build the + range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for + LT_EXPR. */ + max = limit_vr->max; + } + + /* If the maximum value forces us to be out of bounds, simply punt. + It would be pointless to try and do anything more since this + all should be optimized away above us. */ + if (cond_code == LT_EXPR + && compare_values (max, min) == 0) + set_value_range_to_varying (vr_p); + else + { + /* For LT_EXPR, we create the range [MIN, MAX - 1]. */ + if (cond_code == LT_EXPR) + { + if (TYPE_PRECISION (TREE_TYPE (max)) == 1 + && !TYPE_UNSIGNED (TREE_TYPE (max))) + max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max, + build_int_cst (TREE_TYPE (max), -1)); + else + max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, + build_int_cst (TREE_TYPE (max), 1)); + /* Signal to compare_values_warnv this expr doesn't overflow. */ + if (EXPR_P (max)) + TREE_NO_WARNING (max) = 1; + } + + set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv); + } + } + else if (cond_code == GE_EXPR || cond_code == GT_EXPR) + { + max = TYPE_MAX_VALUE (type); + + if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE) + min = limit; + else + { + /* If LIMIT_VR is of the form [N1, N2], we need to build the + range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for + GT_EXPR. */ + min = limit_vr->min; + } + + /* If the minimum value forces us to be out of bounds, simply punt. + It would be pointless to try and do anything more since this + all should be optimized away above us. */ + if (cond_code == GT_EXPR + && compare_values (min, max) == 0) + set_value_range_to_varying (vr_p); + else + { + /* For GT_EXPR, we create the range [MIN + 1, MAX]. */ + if (cond_code == GT_EXPR) + { + if (TYPE_PRECISION (TREE_TYPE (min)) == 1 + && !TYPE_UNSIGNED (TREE_TYPE (min))) + min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min, + build_int_cst (TREE_TYPE (min), -1)); + else + min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min, + build_int_cst (TREE_TYPE (min), 1)); + /* Signal to compare_values_warnv this expr doesn't overflow. */ + if (EXPR_P (min)) + TREE_NO_WARNING (min) = 1; + } + + set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv); + } + } + else + gcc_unreachable (); + + /* Finally intersect the new range with what we already know about var. */ + vrp_intersect_ranges (vr_p, get_value_range (var)); +} + +/* Extract value range information from an ASSERT_EXPR EXPR and store + it in *VR_P. */ + +void +vr_values::extract_range_from_assert (value_range *vr_p, tree expr) +{ + tree var = ASSERT_EXPR_VAR (expr); + tree cond = ASSERT_EXPR_COND (expr); + tree limit, op; + enum tree_code cond_code; + gcc_assert (COMPARISON_CLASS_P (cond)); + + /* Find VAR in the ASSERT_EXPR conditional. */ + if (var == TREE_OPERAND (cond, 0) + || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR + || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR) + { + /* If the predicate is of the form VAR COMP LIMIT, then we just + take LIMIT from the RHS and use the same comparison code. */ + cond_code = TREE_CODE (cond); + limit = TREE_OPERAND (cond, 1); + op = TREE_OPERAND (cond, 0); + } + else + { + /* If the predicate is of the form LIMIT COMP VAR, then we need + to flip around the comparison code to create the proper range + for VAR. */ + cond_code = swap_tree_comparison (TREE_CODE (cond)); + limit = TREE_OPERAND (cond, 0); + op = TREE_OPERAND (cond, 1); + } + extract_range_for_var_from_comparison_expr (var, cond_code, op, + limit, vr_p); +} + +/* Extract range information from SSA name VAR and store it in VR. If + VAR has an interesting range, use it. Otherwise, create the + range [VAR, VAR] and return it. This is useful in situations where + we may have conditionals testing values of VARYING names. For + instance, + + x_3 = y_5; + if (x_3 > y_5) + ... + + Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is + always false. */ + +void +vr_values::extract_range_from_ssa_name (value_range *vr, tree var) +{ + value_range *var_vr = get_value_range (var); + + if (var_vr->type != VR_VARYING) + copy_value_range (vr, var_vr); + else + set_value_range (vr, VR_RANGE, var, var, NULL); + + add_equivalence (&vr->equiv, var); +} + +/* Extract range information from a binary expression OP0 CODE OP1 based on + the ranges of each of its operands with resulting type EXPR_TYPE. + The resulting range is stored in *VR. */ + +void +vr_values::extract_range_from_binary_expr (value_range *vr, + enum tree_code code, + tree expr_type, tree op0, tree op1) +{ + value_range vr0 = VR_INITIALIZER; + value_range vr1 = VR_INITIALIZER; + + /* Get value ranges for each operand. For constant operands, create + a new value range with the operand to simplify processing. */ + if (TREE_CODE (op0) == SSA_NAME) + vr0 = *(get_value_range (op0)); + else if (is_gimple_min_invariant (op0)) + set_value_range_to_value (&vr0, op0, NULL); + else + set_value_range_to_varying (&vr0); + + if (TREE_CODE (op1) == SSA_NAME) + vr1 = *(get_value_range (op1)); + else if (is_gimple_min_invariant (op1)) + set_value_range_to_value (&vr1, op1, NULL); + else + set_value_range_to_varying (&vr1); + + extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1); + + /* Try harder for PLUS and MINUS if the range of one operand is symbolic + and based on the other operand, for example if it was deduced from a + symbolic comparison. When a bound of the range of the first operand + is invariant, we set the corresponding bound of the new range to INF + in order to avoid recursing on the range of the second operand. */ + if (vr->type == VR_VARYING + && (code == PLUS_EXPR || code == MINUS_EXPR) + && TREE_CODE (op1) == SSA_NAME + && vr0.type == VR_RANGE + && symbolic_range_based_on_p (&vr0, op1)) + { + const bool minus_p = (code == MINUS_EXPR); + value_range n_vr1 = VR_INITIALIZER; + + /* Try with VR0 and [-INF, OP1]. */ + if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min)) + set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL); + + /* Try with VR0 and [OP1, +INF]. */ + else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max)) + set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL); + + /* Try with VR0 and [OP1, OP1]. */ + else + set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL); + + extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1); + } + + if (vr->type == VR_VARYING + && (code == PLUS_EXPR || code == MINUS_EXPR) + && TREE_CODE (op0) == SSA_NAME + && vr1.type == VR_RANGE + && symbolic_range_based_on_p (&vr1, op0)) + { + const bool minus_p = (code == MINUS_EXPR); + value_range n_vr0 = VR_INITIALIZER; + + /* Try with [-INF, OP0] and VR1. */ + if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min)) + set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL); + + /* Try with [OP0, +INF] and VR1. */ + else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max)) + set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL); + + /* Try with [OP0, OP0] and VR1. */ + else + set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL); + + extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1); + } + + /* If we didn't derive a range for MINUS_EXPR, and + op1's range is ~[op0,op0] or vice-versa, then we + can derive a non-null range. This happens often for + pointer subtraction. */ + if (vr->type == VR_VARYING + && code == MINUS_EXPR + && TREE_CODE (op0) == SSA_NAME + && ((vr0.type == VR_ANTI_RANGE + && vr0.min == op1 + && vr0.min == vr0.max) + || (vr1.type == VR_ANTI_RANGE + && vr1.min == op0 + && vr1.min == vr1.max))) + set_value_range_to_nonnull (vr, TREE_TYPE (op0)); +} + +/* Extract range information from a unary expression CODE OP0 based on + the range of its operand with resulting type TYPE. + The resulting range is stored in *VR. */ + +void +vr_values::extract_range_from_unary_expr (value_range *vr, enum tree_code code, + tree type, tree op0) +{ + value_range vr0 = VR_INITIALIZER; + + /* Get value ranges for the operand. For constant operands, create + a new value range with the operand to simplify processing. */ + if (TREE_CODE (op0) == SSA_NAME) + vr0 = *(get_value_range (op0)); + else if (is_gimple_min_invariant (op0)) + set_value_range_to_value (&vr0, op0, NULL); + else + set_value_range_to_varying (&vr0); + + ::extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0)); +} + + +/* Extract range information from a conditional expression STMT based on + the ranges of each of its operands and the expression code. */ + +void +vr_values::extract_range_from_cond_expr (value_range *vr, gassign *stmt) +{ + tree op0, op1; + value_range vr0 = VR_INITIALIZER; + value_range vr1 = VR_INITIALIZER; + + /* Get value ranges for each operand. For constant operands, create + a new value range with the operand to simplify processing. */ + op0 = gimple_assign_rhs2 (stmt); + if (TREE_CODE (op0) == SSA_NAME) + vr0 = *(get_value_range (op0)); + else if (is_gimple_min_invariant (op0)) + set_value_range_to_value (&vr0, op0, NULL); + else + set_value_range_to_varying (&vr0); + + op1 = gimple_assign_rhs3 (stmt); + if (TREE_CODE (op1) == SSA_NAME) + vr1 = *(get_value_range (op1)); + else if (is_gimple_min_invariant (op1)) + set_value_range_to_value (&vr1, op1, NULL); + else + set_value_range_to_varying (&vr1); + + /* The resulting value range is the union of the operand ranges */ + copy_value_range (vr, &vr0); + vrp_meet (vr, &vr1); +} + + +/* Extract range information from a comparison expression EXPR based + on the range of its operand and the expression code. */ + +void +vr_values::extract_range_from_comparison (value_range *vr, enum tree_code code, + tree type, tree op0, tree op1) +{ + bool sop; + tree val; + + val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop, + NULL); + if (val) + { + /* Since this expression was found on the RHS of an assignment, + its type may be different from _Bool. Convert VAL to EXPR's + type. */ + val = fold_convert (type, val); + if (is_gimple_min_invariant (val)) + set_value_range_to_value (vr, val, vr->equiv); + else + set_value_range (vr, VR_RANGE, val, val, vr->equiv); + } + else + /* The result of a comparison is always true or false. */ + set_value_range_to_truthvalue (vr, type); +} + +/* Helper function for simplify_internal_call_using_ranges and + extract_range_basic. Return true if OP0 SUBCODE OP1 for + SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or + always overflow. Set *OVF to true if it is known to always + overflow. */ + +bool +vr_values::check_for_binary_op_overflow (enum tree_code subcode, tree type, + tree op0, tree op1, bool *ovf) +{ + value_range vr0 = VR_INITIALIZER; + value_range vr1 = VR_INITIALIZER; + if (TREE_CODE (op0) == SSA_NAME) + vr0 = *get_value_range (op0); + else if (TREE_CODE (op0) == INTEGER_CST) + set_value_range_to_value (&vr0, op0, NULL); + else + set_value_range_to_varying (&vr0); + + if (TREE_CODE (op1) == SSA_NAME) + vr1 = *get_value_range (op1); + else if (TREE_CODE (op1) == INTEGER_CST) + set_value_range_to_value (&vr1, op1, NULL); + else + set_value_range_to_varying (&vr1); + + if (!range_int_cst_p (&vr0) + || TREE_OVERFLOW (vr0.min) + || TREE_OVERFLOW (vr0.max)) + { + vr0.min = vrp_val_min (TREE_TYPE (op0)); + vr0.max = vrp_val_max (TREE_TYPE (op0)); + } + if (!range_int_cst_p (&vr1) + || TREE_OVERFLOW (vr1.min) + || TREE_OVERFLOW (vr1.max)) + { + vr1.min = vrp_val_min (TREE_TYPE (op1)); + vr1.max = vrp_val_max (TREE_TYPE (op1)); + } + *ovf = arith_overflowed_p (subcode, type, vr0.min, + subcode == MINUS_EXPR ? vr1.max : vr1.min); + if (arith_overflowed_p (subcode, type, vr0.max, + subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf) + return false; + if (subcode == MULT_EXPR) + { + if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf + || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf) + return false; + } + if (*ovf) + { + /* So far we found that there is an overflow on the boundaries. + That doesn't prove that there is an overflow even for all values + in between the boundaries. For that compute widest_int range + of the result and see if it doesn't overlap the range of + type. */ + widest_int wmin, wmax; + widest_int w[4]; + int i; + w[0] = wi::to_widest (vr0.min); + w[1] = wi::to_widest (vr0.max); + w[2] = wi::to_widest (vr1.min); + w[3] = wi::to_widest (vr1.max); + for (i = 0; i < 4; i++) + { + widest_int wt; + switch (subcode) + { + case PLUS_EXPR: + wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]); + break; + case MINUS_EXPR: + wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]); + break; + case MULT_EXPR: + wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]); + break; + default: + gcc_unreachable (); + } + if (i == 0) + { + wmin = wt; + wmax = wt; + } + else + { + wmin = wi::smin (wmin, wt); + wmax = wi::smax (wmax, wt); + } + } + /* The result of op0 CODE op1 is known to be in range + [wmin, wmax]. */ + widest_int wtmin = wi::to_widest (vrp_val_min (type)); + widest_int wtmax = wi::to_widest (vrp_val_max (type)); + /* If all values in [wmin, wmax] are smaller than + [wtmin, wtmax] or all are larger than [wtmin, wtmax], + the arithmetic operation will always overflow. */ + if (wmax < wtmin || wmin > wtmax) + return true; + return false; + } + return true; +} + +/* Try to derive a nonnegative or nonzero range out of STMT relying + primarily on generic routines in fold in conjunction with range data. + Store the result in *VR */ + +void +vr_values::extract_range_basic (value_range *vr, gimple *stmt) +{ + bool sop; + tree type = gimple_expr_type (stmt); + + if (is_gimple_call (stmt)) + { + tree arg; + int mini, maxi, zerov = 0, prec; + enum tree_code subcode = ERROR_MARK; + combined_fn cfn = gimple_call_combined_fn (stmt); + scalar_int_mode mode; + + switch (cfn) + { + case CFN_BUILT_IN_CONSTANT_P: + /* If the call is __builtin_constant_p and the argument is a + function parameter resolve it to false. This avoids bogus + array bound warnings. + ??? We could do this as early as inlining is finished. */ + arg = gimple_call_arg (stmt, 0); + if (TREE_CODE (arg) == SSA_NAME + && SSA_NAME_IS_DEFAULT_DEF (arg) + && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL + && cfun->after_inlining) + { + set_value_range_to_null (vr, type); + return; + } + break; + /* Both __builtin_ffs* and __builtin_popcount return + [0, prec]. */ + CASE_CFN_FFS: + CASE_CFN_POPCOUNT: + arg = gimple_call_arg (stmt, 0); + prec = TYPE_PRECISION (TREE_TYPE (arg)); + mini = 0; + maxi = prec; + if (TREE_CODE (arg) == SSA_NAME) + { + value_range *vr0 = get_value_range (arg); + /* If arg is non-zero, then ffs or popcount + are non-zero. */ + if ((vr0->type == VR_RANGE + && range_includes_zero_p (vr0->min, vr0->max) == 0) + || (vr0->type == VR_ANTI_RANGE + && range_includes_zero_p (vr0->min, vr0->max) == 1)) + mini = 1; + /* If some high bits are known to be zero, + we can decrease the maximum. */ + if (vr0->type == VR_RANGE + && TREE_CODE (vr0->max) == INTEGER_CST + && !operand_less_p (vr0->min, + build_zero_cst (TREE_TYPE (vr0->min)))) + maxi = tree_floor_log2 (vr0->max) + 1; + } + goto bitop_builtin; + /* __builtin_parity* returns [0, 1]. */ + CASE_CFN_PARITY: + mini = 0; + maxi = 1; + goto bitop_builtin; + /* __builtin_c[lt]z* return [0, prec-1], except for + when the argument is 0, but that is undefined behavior. + On many targets where the CLZ RTL or optab value is defined + for 0 the value is prec, so include that in the range + by default. */ + CASE_CFN_CLZ: + arg = gimple_call_arg (stmt, 0); + prec = TYPE_PRECISION (TREE_TYPE (arg)); + mini = 0; + maxi = prec; + mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg)); + if (optab_handler (clz_optab, mode) != CODE_FOR_nothing + && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) + /* Handle only the single common value. */ + && zerov != prec) + /* Magic value to give up, unless vr0 proves + arg is non-zero. */ + mini = -2; + if (TREE_CODE (arg) == SSA_NAME) + { + value_range *vr0 = get_value_range (arg); + /* From clz of VR_RANGE minimum we can compute + result maximum. */ + if (vr0->type == VR_RANGE + && TREE_CODE (vr0->min) == INTEGER_CST) + { + maxi = prec - 1 - tree_floor_log2 (vr0->min); + if (maxi != prec) + mini = 0; + } + else if (vr0->type == VR_ANTI_RANGE + && integer_zerop (vr0->min)) + { + maxi = prec - 1; + mini = 0; + } + if (mini == -2) + break; + /* From clz of VR_RANGE maximum we can compute + result minimum. */ + if (vr0->type == VR_RANGE + && TREE_CODE (vr0->max) == INTEGER_CST) + { + mini = prec - 1 - tree_floor_log2 (vr0->max); + if (mini == prec) + break; + } + } + if (mini == -2) + break; + goto bitop_builtin; + /* __builtin_ctz* return [0, prec-1], except for + when the argument is 0, but that is undefined behavior. + If there is a ctz optab for this mode and + CTZ_DEFINED_VALUE_AT_ZERO, include that in the range, + otherwise just assume 0 won't be seen. */ + CASE_CFN_CTZ: + arg = gimple_call_arg (stmt, 0); + prec = TYPE_PRECISION (TREE_TYPE (arg)); + mini = 0; + maxi = prec - 1; + mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg)); + if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing + && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov)) + { + /* Handle only the two common values. */ + if (zerov == -1) + mini = -1; + else if (zerov == prec) + maxi = prec; + else + /* Magic value to give up, unless vr0 proves + arg is non-zero. */ + mini = -2; + } + if (TREE_CODE (arg) == SSA_NAME) + { + value_range *vr0 = get_value_range (arg); + /* If arg is non-zero, then use [0, prec - 1]. */ + if ((vr0->type == VR_RANGE + && integer_nonzerop (vr0->min)) + || (vr0->type == VR_ANTI_RANGE + && integer_zerop (vr0->min))) + { + mini = 0; + maxi = prec - 1; + } + /* If some high bits are known to be zero, + we can decrease the result maximum. */ + if (vr0->type == VR_RANGE + && TREE_CODE (vr0->max) == INTEGER_CST) + { + maxi = tree_floor_log2 (vr0->max); + /* For vr0 [0, 0] give up. */ + if (maxi == -1) + break; + } + } + if (mini == -2) + break; + goto bitop_builtin; + /* __builtin_clrsb* returns [0, prec-1]. */ + CASE_CFN_CLRSB: + arg = gimple_call_arg (stmt, 0); + prec = TYPE_PRECISION (TREE_TYPE (arg)); + mini = 0; + maxi = prec - 1; + goto bitop_builtin; + bitop_builtin: + set_value_range (vr, VR_RANGE, build_int_cst (type, mini), + build_int_cst (type, maxi), NULL); + return; + case CFN_UBSAN_CHECK_ADD: + subcode = PLUS_EXPR; + break; + case CFN_UBSAN_CHECK_SUB: + subcode = MINUS_EXPR; + break; + case CFN_UBSAN_CHECK_MUL: + subcode = MULT_EXPR; + break; + case CFN_GOACC_DIM_SIZE: + case CFN_GOACC_DIM_POS: + /* Optimizing these two internal functions helps the loop + optimizer eliminate outer comparisons. Size is [1,N] + and pos is [0,N-1]. */ + { + bool is_pos = cfn == CFN_GOACC_DIM_POS; + int axis = oacc_get_ifn_dim_arg (stmt); + int size = oacc_get_fn_dim_size (current_function_decl, axis); + + if (!size) + /* If it's dynamic, the backend might know a hardware + limitation. */ + size = targetm.goacc.dim_limit (axis); + + tree type = TREE_TYPE (gimple_call_lhs (stmt)); + set_value_range (vr, VR_RANGE, + build_int_cst (type, is_pos ? 0 : 1), + size ? build_int_cst (type, size - is_pos) + : vrp_val_max (type), NULL); + } + return; + case CFN_BUILT_IN_STRLEN: + if (tree lhs = gimple_call_lhs (stmt)) + if (ptrdiff_type_node + && (TYPE_PRECISION (ptrdiff_type_node) + == TYPE_PRECISION (TREE_TYPE (lhs)))) + { + tree type = TREE_TYPE (lhs); + tree max = vrp_val_max (ptrdiff_type_node); + wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max))); + tree range_min = build_zero_cst (type); + tree range_max = wide_int_to_tree (type, wmax - 1); + set_value_range (vr, VR_RANGE, range_min, range_max, NULL); + return; + } + break; + default: + break; + } + if (subcode != ERROR_MARK) + { + bool saved_flag_wrapv = flag_wrapv; + /* Pretend the arithmetics is wrapping. If there is + any overflow, we'll complain, but will actually do + wrapping operation. */ + flag_wrapv = 1; + extract_range_from_binary_expr (vr, subcode, type, + gimple_call_arg (stmt, 0), + gimple_call_arg (stmt, 1)); + flag_wrapv = saved_flag_wrapv; + + /* If for both arguments vrp_valueize returned non-NULL, + this should have been already folded and if not, it + wasn't folded because of overflow. Avoid removing the + UBSAN_CHECK_* calls in that case. */ + if (vr->type == VR_RANGE + && (vr->min == vr->max + || operand_equal_p (vr->min, vr->max, 0))) + set_value_range_to_varying (vr); + return; + } + } + /* Handle extraction of the two results (result of arithmetics and + a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW + internal function. Similarly from ATOMIC_COMPARE_EXCHANGE. */ + else if (is_gimple_assign (stmt) + && (gimple_assign_rhs_code (stmt) == REALPART_EXPR + || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) + && INTEGRAL_TYPE_P (type)) + { + enum tree_code code = gimple_assign_rhs_code (stmt); + tree op = gimple_assign_rhs1 (stmt); + if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME) + { + gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0)); + if (is_gimple_call (g) && gimple_call_internal_p (g)) + { + enum tree_code subcode = ERROR_MARK; + switch (gimple_call_internal_fn (g)) + { + case IFN_ADD_OVERFLOW: + subcode = PLUS_EXPR; + break; + case IFN_SUB_OVERFLOW: + subcode = MINUS_EXPR; + break; + case IFN_MUL_OVERFLOW: + subcode = MULT_EXPR; + break; + case IFN_ATOMIC_COMPARE_EXCHANGE: + if (code == IMAGPART_EXPR) + { + /* This is the boolean return value whether compare and + exchange changed anything or not. */ + set_value_range (vr, VR_RANGE, build_int_cst (type, 0), + build_int_cst (type, 1), NULL); + return; + } + break; + default: + break; + } + if (subcode != ERROR_MARK) + { + tree op0 = gimple_call_arg (g, 0); + tree op1 = gimple_call_arg (g, 1); + if (code == IMAGPART_EXPR) + { + bool ovf = false; + if (check_for_binary_op_overflow (subcode, type, + op0, op1, &ovf)) + set_value_range_to_value (vr, + build_int_cst (type, ovf), + NULL); + else if (TYPE_PRECISION (type) == 1 + && !TYPE_UNSIGNED (type)) + set_value_range_to_varying (vr); + else + set_value_range (vr, VR_RANGE, build_int_cst (type, 0), + build_int_cst (type, 1), NULL); + } + else if (types_compatible_p (type, TREE_TYPE (op0)) + && types_compatible_p (type, TREE_TYPE (op1))) + { + bool saved_flag_wrapv = flag_wrapv; + /* Pretend the arithmetics is wrapping. If there is + any overflow, IMAGPART_EXPR will be set. */ + flag_wrapv = 1; + extract_range_from_binary_expr (vr, subcode, type, + op0, op1); + flag_wrapv = saved_flag_wrapv; + } + else + { + value_range vr0 = VR_INITIALIZER; + value_range vr1 = VR_INITIALIZER; + bool saved_flag_wrapv = flag_wrapv; + /* Pretend the arithmetics is wrapping. If there is + any overflow, IMAGPART_EXPR will be set. */ + flag_wrapv = 1; + extract_range_from_unary_expr (&vr0, NOP_EXPR, + type, op0); + extract_range_from_unary_expr (&vr1, NOP_EXPR, + type, op1); + extract_range_from_binary_expr_1 (vr, subcode, type, + &vr0, &vr1); + flag_wrapv = saved_flag_wrapv; + } + return; + } + } + } + } + if (INTEGRAL_TYPE_P (type) + && gimple_stmt_nonnegative_warnv_p (stmt, &sop)) + set_value_range_to_nonnegative (vr, type); + else if (vrp_stmt_computes_nonzero (stmt)) + set_value_range_to_nonnull (vr, type); + else + set_value_range_to_varying (vr); +} + + +/* Try to compute a useful range out of assignment STMT and store it + in *VR. */ + +void +vr_values::extract_range_from_assignment (value_range *vr, gassign *stmt) +{ + enum tree_code code = gimple_assign_rhs_code (stmt); + + if (code == ASSERT_EXPR) + extract_range_from_assert (vr, gimple_assign_rhs1 (stmt)); + else if (code == SSA_NAME) + extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt)); + else if (TREE_CODE_CLASS (code) == tcc_binary) + extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt), + gimple_expr_type (stmt), + gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt)); + else if (TREE_CODE_CLASS (code) == tcc_unary) + extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt), + gimple_expr_type (stmt), + gimple_assign_rhs1 (stmt)); + else if (code == COND_EXPR) + extract_range_from_cond_expr (vr, stmt); + else if (TREE_CODE_CLASS (code) == tcc_comparison) + extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt), + gimple_expr_type (stmt), + gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt)); + else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS + && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))) + set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL); + else + set_value_range_to_varying (vr); + + if (vr->type == VR_VARYING) + extract_range_basic (vr, stmt); +} + +/* Given two numeric value ranges VR0, VR1 and a comparison code COMP: + + - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for + all the values in the ranges. + + - Return BOOLEAN_FALSE_NODE if the comparison always returns false. + + - Return NULL_TREE if it is not always possible to determine the + value of the comparison. + + Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation + assumed signed overflow is undefined. */ + + +static tree +compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1, + bool *strict_overflow_p) +{ + /* VARYING or UNDEFINED ranges cannot be compared. */ + if (vr0->type == VR_VARYING + || vr0->type == VR_UNDEFINED + || vr1->type == VR_VARYING + || vr1->type == VR_UNDEFINED) + return NULL_TREE; + + /* Anti-ranges need to be handled separately. */ + if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE) + { + /* If both are anti-ranges, then we cannot compute any + comparison. */ + if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE) + return NULL_TREE; + + /* These comparisons are never statically computable. */ + if (comp == GT_EXPR + || comp == GE_EXPR + || comp == LT_EXPR + || comp == LE_EXPR) + return NULL_TREE; + + /* Equality can be computed only between a range and an + anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */ + if (vr0->type == VR_RANGE) + { + /* To simplify processing, make VR0 the anti-range. */ + value_range *tmp = vr0; + vr0 = vr1; + vr1 = tmp; + } + + gcc_assert (comp == NE_EXPR || comp == EQ_EXPR); + + if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0 + && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0) + return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node; + + return NULL_TREE; + } + + /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the + operands around and change the comparison code. */ + if (comp == GT_EXPR || comp == GE_EXPR) + { + comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR; + std::swap (vr0, vr1); + } + + if (comp == EQ_EXPR) + { + /* Equality may only be computed if both ranges represent + exactly one value. */ + if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0 + && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0) + { + int cmp_min = compare_values_warnv (vr0->min, vr1->min, + strict_overflow_p); + int cmp_max = compare_values_warnv (vr0->max, vr1->max, + strict_overflow_p); + if (cmp_min == 0 && cmp_max == 0) + return boolean_true_node; + else if (cmp_min != -2 && cmp_max != -2) + return boolean_false_node; + } + /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */ + else if (compare_values_warnv (vr0->min, vr1->max, + strict_overflow_p) == 1 + || compare_values_warnv (vr1->min, vr0->max, + strict_overflow_p) == 1) + return boolean_false_node; + + return NULL_TREE; + } + else if (comp == NE_EXPR) + { + int cmp1, cmp2; + + /* If VR0 is completely to the left or completely to the right + of VR1, they are always different. Notice that we need to + make sure that both comparisons yield similar results to + avoid comparing values that cannot be compared at + compile-time. */ + cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p); + cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p); + if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1)) + return boolean_true_node; + + /* If VR0 and VR1 represent a single value and are identical, + return false. */ + else if (compare_values_warnv (vr0->min, vr0->max, + strict_overflow_p) == 0 + && compare_values_warnv (vr1->min, vr1->max, + strict_overflow_p) == 0 + && compare_values_warnv (vr0->min, vr1->min, + strict_overflow_p) == 0 + && compare_values_warnv (vr0->max, vr1->max, + strict_overflow_p) == 0) + return boolean_false_node; + + /* Otherwise, they may or may not be different. */ + else + return NULL_TREE; + } + else if (comp == LT_EXPR || comp == LE_EXPR) + { + int tst; + + /* If VR0 is to the left of VR1, return true. */ + tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p); + if ((comp == LT_EXPR && tst == -1) + || (comp == LE_EXPR && (tst == -1 || tst == 0))) + return boolean_true_node; + + /* If VR0 is to the right of VR1, return false. */ + tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p); + if ((comp == LT_EXPR && (tst == 0 || tst == 1)) + || (comp == LE_EXPR && tst == 1)) + return boolean_false_node; + + /* Otherwise, we don't know. */ + return NULL_TREE; + } + + gcc_unreachable (); +} + +/* Given a value range VR, a value VAL and a comparison code COMP, return + BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the + values in VR. Return BOOLEAN_FALSE_NODE if the comparison + always returns false. Return NULL_TREE if it is not always + possible to determine the value of the comparison. Also set + *STRICT_OVERFLOW_P to indicate whether comparision evaluation + assumed signed overflow is undefined. */ + +static tree +compare_range_with_value (enum tree_code comp, value_range *vr, tree val, + bool *strict_overflow_p) +{ + if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED) + return NULL_TREE; + + /* Anti-ranges need to be handled separately. */ + if (vr->type == VR_ANTI_RANGE) + { + /* For anti-ranges, the only predicates that we can compute at + compile time are equality and inequality. */ + if (comp == GT_EXPR + || comp == GE_EXPR + || comp == LT_EXPR + || comp == LE_EXPR) + return NULL_TREE; + + /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */ + if (value_inside_range (val, vr->min, vr->max) == 1) + return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node; + + return NULL_TREE; + } + + if (comp == EQ_EXPR) + { + /* EQ_EXPR may only be computed if VR represents exactly + one value. */ + if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0) + { + int cmp = compare_values_warnv (vr->min, val, strict_overflow_p); + if (cmp == 0) + return boolean_true_node; + else if (cmp == -1 || cmp == 1 || cmp == 2) + return boolean_false_node; + } + else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1 + || compare_values_warnv (vr->max, val, strict_overflow_p) == -1) + return boolean_false_node; + + return NULL_TREE; + } + else if (comp == NE_EXPR) + { + /* If VAL is not inside VR, then they are always different. */ + if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1 + || compare_values_warnv (vr->min, val, strict_overflow_p) == 1) + return boolean_true_node; + + /* If VR represents exactly one value equal to VAL, then return + false. */ + if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0 + && compare_values_warnv (vr->min, val, strict_overflow_p) == 0) + return boolean_false_node; + + /* Otherwise, they may or may not be different. */ + return NULL_TREE; + } + else if (comp == LT_EXPR || comp == LE_EXPR) + { + int tst; + + /* If VR is to the left of VAL, return true. */ + tst = compare_values_warnv (vr->max, val, strict_overflow_p); + if ((comp == LT_EXPR && tst == -1) + || (comp == LE_EXPR && (tst == -1 || tst == 0))) + return boolean_true_node; + + /* If VR is to the right of VAL, return false. */ + tst = compare_values_warnv (vr->min, val, strict_overflow_p); + if ((comp == LT_EXPR && (tst == 0 || tst == 1)) + || (comp == LE_EXPR && tst == 1)) + return boolean_false_node; + + /* Otherwise, we don't know. */ + return NULL_TREE; + } + else if (comp == GT_EXPR || comp == GE_EXPR) + { + int tst; + + /* If VR is to the right of VAL, return true. */ + tst = compare_values_warnv (vr->min, val, strict_overflow_p); + if ((comp == GT_EXPR && tst == 1) + || (comp == GE_EXPR && (tst == 0 || tst == 1))) + return boolean_true_node; + + /* If VR is to the left of VAL, return false. */ + tst = compare_values_warnv (vr->max, val, strict_overflow_p); + if ((comp == GT_EXPR && (tst == -1 || tst == 0)) + || (comp == GE_EXPR && tst == -1)) + return boolean_false_node; + + /* Otherwise, we don't know. */ + return NULL_TREE; + } + + gcc_unreachable (); +} +/* Given a range VR, a LOOP and a variable VAR, determine whether it + would be profitable to adjust VR using scalar evolution information + for VAR. If so, update VR with the new limits. */ + +void +vr_values::adjust_range_with_scev (value_range *vr, struct loop *loop, + gimple *stmt, tree var) +{ + tree init, step, chrec, tmin, tmax, min, max, type, tem; + enum ev_direction dir; + + /* TODO. Don't adjust anti-ranges. An anti-range may provide + better opportunities than a regular range, but I'm not sure. */ + if (vr->type == VR_ANTI_RANGE) + return; + + chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var)); + + /* Like in PR19590, scev can return a constant function. */ + if (is_gimple_min_invariant (chrec)) + { + set_value_range_to_value (vr, chrec, vr->equiv); + return; + } + + if (TREE_CODE (chrec) != POLYNOMIAL_CHREC) + return; + + init = initial_condition_in_loop_num (chrec, loop->num); + tem = op_with_constant_singleton_value_range (init); + if (tem) + init = tem; + step = evolution_part_in_loop_num (chrec, loop->num); + tem = op_with_constant_singleton_value_range (step); + if (tem) + step = tem; + + /* If STEP is symbolic, we can't know whether INIT will be the + minimum or maximum value in the range. Also, unless INIT is + a simple expression, compare_values and possibly other functions + in tree-vrp won't be able to handle it. */ + if (step == NULL_TREE + || !is_gimple_min_invariant (step) + || !valid_value_p (init)) + return; + + dir = scev_direction (chrec); + if (/* Do not adjust ranges if we do not know whether the iv increases + or decreases, ... */ + dir == EV_DIR_UNKNOWN + /* ... or if it may wrap. */ + || scev_probably_wraps_p (NULL_TREE, init, step, stmt, + get_chrec_loop (chrec), true)) + return; + + type = TREE_TYPE (var); + if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type)) + tmin = lower_bound_in_type (type, type); + else + tmin = TYPE_MIN_VALUE (type); + if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type)) + tmax = upper_bound_in_type (type, type); + else + tmax = TYPE_MAX_VALUE (type); + + /* Try to use estimated number of iterations for the loop to constrain the + final value in the evolution. */ + if (TREE_CODE (step) == INTEGER_CST + && is_gimple_val (init) + && (TREE_CODE (init) != SSA_NAME + || get_value_range (init)->type == VR_RANGE)) + { + widest_int nit; + + /* We are only entering here for loop header PHI nodes, so using + the number of latch executions is the correct thing to use. */ + if (max_loop_iterations (loop, &nit)) + { + value_range maxvr = VR_INITIALIZER; + signop sgn = TYPE_SIGN (TREE_TYPE (step)); + bool overflow; + + widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn, + &overflow); + /* If the multiplication overflowed we can't do a meaningful + adjustment. Likewise if the result doesn't fit in the type + of the induction variable. For a signed type we have to + check whether the result has the expected signedness which + is that of the step as number of iterations is unsigned. */ + if (!overflow + && wi::fits_to_tree_p (wtmp, TREE_TYPE (init)) + && (sgn == UNSIGNED + || wi::gts_p (wtmp, 0) == wi::gts_p (wi::to_wide (step), 0))) + { + tem = wide_int_to_tree (TREE_TYPE (init), wtmp); + extract_range_from_binary_expr (&maxvr, PLUS_EXPR, + TREE_TYPE (init), init, tem); + /* Likewise if the addition did. */ + if (maxvr.type == VR_RANGE) + { + value_range initvr = VR_INITIALIZER; + + if (TREE_CODE (init) == SSA_NAME) + initvr = *(get_value_range (init)); + else if (is_gimple_min_invariant (init)) + set_value_range_to_value (&initvr, init, NULL); + else + return; + + /* Check if init + nit * step overflows. Though we checked + scev {init, step}_loop doesn't wrap, it is not enough + because the loop may exit immediately. Overflow could + happen in the plus expression in this case. */ + if ((dir == EV_DIR_DECREASES + && compare_values (maxvr.min, initvr.min) != -1) + || (dir == EV_DIR_GROWS + && compare_values (maxvr.max, initvr.max) != 1)) + return; + + tmin = maxvr.min; + tmax = maxvr.max; + } + } + } + } + + if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED) + { + min = tmin; + max = tmax; + + /* For VARYING or UNDEFINED ranges, just about anything we get + from scalar evolutions should be better. */ + + if (dir == EV_DIR_DECREASES) + max = init; + else + min = init; + } + else if (vr->type == VR_RANGE) + { + min = vr->min; + max = vr->max; + + if (dir == EV_DIR_DECREASES) + { + /* INIT is the maximum value. If INIT is lower than VR->MAX + but no smaller than VR->MIN, set VR->MAX to INIT. */ + if (compare_values (init, max) == -1) + max = init; + + /* According to the loop information, the variable does not + overflow. */ + if (compare_values (min, tmin) == -1) + min = tmin; + + } + else + { + /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */ + if (compare_values (init, min) == 1) + min = init; + + if (compare_values (tmax, max) == -1) + max = tmax; + } + } + else + return; + + /* If we just created an invalid range with the minimum + greater than the maximum, we fail conservatively. + This should happen only in unreachable + parts of code, or for invalid programs. */ + if (compare_values (min, max) == 1) + return; + + /* Even for valid range info, sometimes overflow flag will leak in. + As GIMPLE IL should have no constants with TREE_OVERFLOW set, we + drop them. */ + if (TREE_OVERFLOW_P (min)) + min = drop_tree_overflow (min); + if (TREE_OVERFLOW_P (max)) + max = drop_tree_overflow (max); + + set_value_range (vr, VR_RANGE, min, max, vr->equiv); +} + +/* Dump value ranges of all SSA_NAMEs to FILE. */ + +void +vr_values::dump_all_value_ranges (FILE *file) +{ + size_t i; + + for (i = 0; i < num_vr_values; i++) + { + if (vr_value[i]) + { + print_generic_expr (file, ssa_name (i)); + fprintf (file, ": "); + dump_value_range (file, vr_value[i]); + fprintf (file, "\n"); + } + } + + fprintf (file, "\n"); +} + +/* Initialize VRP lattice. */ + +vr_values::vr_values () : vrp_value_range_pool ("Tree VRP value ranges") +{ + values_propagated = false; + num_vr_values = num_ssa_names; + vr_value = XCNEWVEC (value_range *, num_vr_values); + vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names); + bitmap_obstack_initialize (&vrp_equiv_obstack); +} + +/* Free VRP lattice. */ + +vr_values::~vr_values () +{ + /* Free allocated memory. */ + free (vr_value); + free (vr_phi_edge_counts); + bitmap_obstack_release (&vrp_equiv_obstack); + vrp_value_range_pool.release (); + + /* So that we can distinguish between VRP data being available + and not available. */ + vr_value = NULL; + vr_phi_edge_counts = NULL; +} + + +/* A hack. */ +static class vr_values *x_vr_values; + +/* Return the singleton value-range for NAME or NAME. */ + +static inline tree +vrp_valueize (tree name) +{ + if (TREE_CODE (name) == SSA_NAME) + { + value_range *vr = x_vr_values->get_value_range (name); + if (vr->type == VR_RANGE + && (TREE_CODE (vr->min) == SSA_NAME + || is_gimple_min_invariant (vr->min)) + && vrp_operand_equal_p (vr->min, vr->max)) + return vr->min; + } + return name; +} + +/* Return the singleton value-range for NAME if that is a constant + but signal to not follow SSA edges. */ + +static inline tree +vrp_valueize_1 (tree name) +{ + if (TREE_CODE (name) == SSA_NAME) + { + /* If the definition may be simulated again we cannot follow + this SSA edge as the SSA propagator does not necessarily + re-visit the use. */ + gimple *def_stmt = SSA_NAME_DEF_STMT (name); + if (!gimple_nop_p (def_stmt) + && prop_simulate_again_p (def_stmt)) + return NULL_TREE; + value_range *vr = x_vr_values->get_value_range (name); + if (range_int_cst_singleton_p (vr)) + return vr->min; + } + return name; +} +/* Visit assignment STMT. If it produces an interesting range, record + the range in VR and set LHS to OUTPUT_P. */ + +void +vr_values::vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, + value_range *vr) +{ + tree lhs; + enum gimple_code code = gimple_code (stmt); + lhs = gimple_get_lhs (stmt); + *output_p = NULL_TREE; + + /* We only keep track of ranges in integral and pointer types. */ + if (TREE_CODE (lhs) == SSA_NAME + && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs)) + /* It is valid to have NULL MIN/MAX values on a type. See + build_range_type. */ + && TYPE_MIN_VALUE (TREE_TYPE (lhs)) + && TYPE_MAX_VALUE (TREE_TYPE (lhs))) + || POINTER_TYPE_P (TREE_TYPE (lhs)))) + { + *output_p = lhs; + + /* Try folding the statement to a constant first. */ + x_vr_values = this; + tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize, + vrp_valueize_1); + x_vr_values = NULL; + if (tem) + { + if (TREE_CODE (tem) == SSA_NAME + && (SSA_NAME_IS_DEFAULT_DEF (tem) + || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem)))) + { + extract_range_from_ssa_name (vr, tem); + return; + } + else if (is_gimple_min_invariant (tem)) + { + set_value_range_to_value (vr, tem, NULL); + return; + } + } + /* Then dispatch to value-range extracting functions. */ + if (code == GIMPLE_CALL) + extract_range_basic (vr, stmt); + else + extract_range_from_assignment (vr, as_a <gassign *> (stmt)); + } +} + +/* Helper that gets the value range of the SSA_NAME with version I + or a symbolic range containing the SSA_NAME only if the value range + is varying or undefined. */ + +value_range +vr_values::get_vr_for_comparison (int i) +{ + value_range vr = *get_value_range (ssa_name (i)); + + /* If name N_i does not have a valid range, use N_i as its own + range. This allows us to compare against names that may + have N_i in their ranges. */ + if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED) + { + vr.type = VR_RANGE; + vr.min = ssa_name (i); + vr.max = ssa_name (i); + } + + return vr; +} + +/* Compare all the value ranges for names equivalent to VAR with VAL + using comparison code COMP. Return the same value returned by + compare_range_with_value, including the setting of + *STRICT_OVERFLOW_P. */ + +tree +vr_values::compare_name_with_value (enum tree_code comp, tree var, tree val, + bool *strict_overflow_p, bool use_equiv_p) +{ + bitmap_iterator bi; + unsigned i; + bitmap e; + tree retval, t; + int used_strict_overflow; + bool sop; + value_range equiv_vr; + + /* Get the set of equivalences for VAR. */ + e = get_value_range (var)->equiv; + + /* Start at -1. Set it to 0 if we do a comparison without relying + on overflow, or 1 if all comparisons rely on overflow. */ + used_strict_overflow = -1; + + /* Compare vars' value range with val. */ + equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var)); + sop = false; + retval = compare_range_with_value (comp, &equiv_vr, val, &sop); + if (retval) + used_strict_overflow = sop ? 1 : 0; + + /* If the equiv set is empty we have done all work we need to do. */ + if (e == NULL) + { + if (retval + && used_strict_overflow > 0) + *strict_overflow_p = true; + return retval; + } + + EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi) + { + tree name = ssa_name (i); + if (! name) + continue; + + if (! use_equiv_p + && ! SSA_NAME_IS_DEFAULT_DEF (name) + && prop_simulate_again_p (SSA_NAME_DEF_STMT (name))) + continue; + + equiv_vr = get_vr_for_comparison (i); + sop = false; + t = compare_range_with_value (comp, &equiv_vr, val, &sop); + if (t) + { + /* If we get different answers from different members + of the equivalence set this check must be in a dead + code region. Folding it to a trap representation + would be correct here. For now just return don't-know. */ + if (retval != NULL + && t != retval) + { + retval = NULL_TREE; + break; + } + retval = t; + + if (!sop) + used_strict_overflow = 0; + else if (used_strict_overflow < 0) + used_strict_overflow = 1; + } + } + + if (retval + && used_strict_overflow > 0) + *strict_overflow_p = true; + + return retval; +} + + +/* Given a comparison code COMP and names N1 and N2, compare all the + ranges equivalent to N1 against all the ranges equivalent to N2 + to determine the value of N1 COMP N2. Return the same value + returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate + whether we relied on undefined signed overflow in the comparison. */ + + +tree +vr_values::compare_names (enum tree_code comp, tree n1, tree n2, + bool *strict_overflow_p) +{ + tree t, retval; + bitmap e1, e2; + bitmap_iterator bi1, bi2; + unsigned i1, i2; + int used_strict_overflow; + static bitmap_obstack *s_obstack = NULL; + static bitmap s_e1 = NULL, s_e2 = NULL; + + /* Compare the ranges of every name equivalent to N1 against the + ranges of every name equivalent to N2. */ + e1 = get_value_range (n1)->equiv; + e2 = get_value_range (n2)->equiv; + + /* Use the fake bitmaps if e1 or e2 are not available. */ + if (s_obstack == NULL) + { + s_obstack = XNEW (bitmap_obstack); + bitmap_obstack_initialize (s_obstack); + s_e1 = BITMAP_ALLOC (s_obstack); + s_e2 = BITMAP_ALLOC (s_obstack); + } + if (e1 == NULL) + e1 = s_e1; + if (e2 == NULL) + e2 = s_e2; + + /* Add N1 and N2 to their own set of equivalences to avoid + duplicating the body of the loop just to check N1 and N2 + ranges. */ + bitmap_set_bit (e1, SSA_NAME_VERSION (n1)); + bitmap_set_bit (e2, SSA_NAME_VERSION (n2)); + + /* If the equivalence sets have a common intersection, then the two + names can be compared without checking their ranges. */ + if (bitmap_intersect_p (e1, e2)) + { + bitmap_clear_bit (e1, SSA_NAME_VERSION (n1)); + bitmap_clear_bit (e2, SSA_NAME_VERSION (n2)); + + return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR) + ? boolean_true_node + : boolean_false_node; + } + + /* Start at -1. Set it to 0 if we do a comparison without relying + on overflow, or 1 if all comparisons rely on overflow. */ + used_strict_overflow = -1; + + /* Otherwise, compare all the equivalent ranges. First, add N1 and + N2 to their own set of equivalences to avoid duplicating the body + of the loop just to check N1 and N2 ranges. */ + EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1) + { + if (! ssa_name (i1)) + continue; + + value_range vr1 = get_vr_for_comparison (i1); + + t = retval = NULL_TREE; + EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2) + { + if (! ssa_name (i2)) + continue; + + bool sop = false; + + value_range vr2 = get_vr_for_comparison (i2); + + t = compare_ranges (comp, &vr1, &vr2, &sop); + if (t) + { + /* If we get different answers from different members + of the equivalence set this check must be in a dead + code region. Folding it to a trap representation + would be correct here. For now just return don't-know. */ + if (retval != NULL + && t != retval) + { + bitmap_clear_bit (e1, SSA_NAME_VERSION (n1)); + bitmap_clear_bit (e2, SSA_NAME_VERSION (n2)); + return NULL_TREE; + } + retval = t; + + if (!sop) + used_strict_overflow = 0; + else if (used_strict_overflow < 0) + used_strict_overflow = 1; + } + } + + if (retval) + { + bitmap_clear_bit (e1, SSA_NAME_VERSION (n1)); + bitmap_clear_bit (e2, SSA_NAME_VERSION (n2)); + if (used_strict_overflow > 0) + *strict_overflow_p = true; + return retval; + } + } + + /* None of the equivalent ranges are useful in computing this + comparison. */ + bitmap_clear_bit (e1, SSA_NAME_VERSION (n1)); + bitmap_clear_bit (e2, SSA_NAME_VERSION (n2)); + return NULL_TREE; +} + +/* Helper function for vrp_evaluate_conditional_warnv & other + optimizers. */ + +tree +vr_values::vrp_evaluate_conditional_warnv_with_ops_using_ranges + (enum tree_code code, tree op0, tree op1, bool * strict_overflow_p) +{ + value_range *vr0, *vr1; + + vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL; + vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL; + + tree res = NULL_TREE; + if (vr0 && vr1) + res = compare_ranges (code, vr0, vr1, strict_overflow_p); + if (!res && vr0) + res = compare_range_with_value (code, vr0, op1, strict_overflow_p); + if (!res && vr1) + res = (compare_range_with_value + (swap_tree_comparison (code), vr1, op0, strict_overflow_p)); + return res; +} + +/* Helper function for vrp_evaluate_conditional_warnv. */ + +tree +vr_values::vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, + tree op0, tree op1, + bool use_equiv_p, + bool *strict_overflow_p, + bool *only_ranges) +{ + tree ret; + if (only_ranges) + *only_ranges = true; + + /* We only deal with integral and pointer types. */ + if (!INTEGRAL_TYPE_P (TREE_TYPE (op0)) + && !POINTER_TYPE_P (TREE_TYPE (op0))) + return NULL_TREE; + + /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed + as a simple equality test, then prefer that over its current form + for evaluation. + + An overflow test which collapses to an equality test can always be + expressed as a comparison of one argument against zero. Overflow + occurs when the chosen argument is zero and does not occur if the + chosen argument is not zero. */ + tree x; + if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x)) + { + wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED); + /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0) + B = A - 1; if (A > B) -> B = A - 1; if (A != 0) + B = A + 1; if (B < A) -> B = A + 1; if (B == 0) + B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */ + if (integer_zerop (x)) + { + op1 = x; + code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR; + } + /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0) + B = A + 1; if (A < B) -> B = A + 1; if (B != 0) + B = A - 1; if (B > A) -> B = A - 1; if (A == 0) + B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */ + else if (wi::to_wide (x) == max - 1) + { + op0 = op1; + op1 = wide_int_to_tree (TREE_TYPE (op0), 0); + code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR; + } + } + + if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges + (code, op0, op1, strict_overflow_p))) + return ret; + if (only_ranges) + *only_ranges = false; + /* Do not use compare_names during propagation, it's quadratic. */ + if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME + && use_equiv_p) + return compare_names (code, op0, op1, strict_overflow_p); + else if (TREE_CODE (op0) == SSA_NAME) + return compare_name_with_value (code, op0, op1, + strict_overflow_p, use_equiv_p); + else if (TREE_CODE (op1) == SSA_NAME) + return compare_name_with_value (swap_tree_comparison (code), op1, op0, + strict_overflow_p, use_equiv_p); + return NULL_TREE; +} + +/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range + information. Return NULL if the conditional can not be evaluated. + The ranges of all the names equivalent with the operands in COND + will be used when trying to compute the value. If the result is + based on undefined signed overflow, issue a warning if + appropriate. */ + +tree +vr_values::vrp_evaluate_conditional (tree_code code, tree op0, + tree op1, gimple *stmt) +{ + bool sop; + tree ret; + bool only_ranges; + + /* Some passes and foldings leak constants with overflow flag set + into the IL. Avoid doing wrong things with these and bail out. */ + if ((TREE_CODE (op0) == INTEGER_CST + && TREE_OVERFLOW (op0)) + || (TREE_CODE (op1) == INTEGER_CST + && TREE_OVERFLOW (op1))) + return NULL_TREE; + + sop = false; + ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop, + &only_ranges); + + if (ret && sop) + { + enum warn_strict_overflow_code wc; + const char* warnmsg; + + if (is_gimple_min_invariant (ret)) + { + wc = WARN_STRICT_OVERFLOW_CONDITIONAL; + warnmsg = G_("assuming signed overflow does not occur when " + "simplifying conditional to constant"); + } + else + { + wc = WARN_STRICT_OVERFLOW_COMPARISON; + warnmsg = G_("assuming signed overflow does not occur when " + "simplifying conditional"); + } + + if (issue_strict_overflow_warning (wc)) + { + location_t location; + + if (!gimple_has_location (stmt)) + location = input_location; + else + location = gimple_location (stmt); + warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg); + } + } + + if (warn_type_limits + && ret && only_ranges + && TREE_CODE_CLASS (code) == tcc_comparison + && TREE_CODE (op0) == SSA_NAME) + { + /* If the comparison is being folded and the operand on the LHS + is being compared against a constant value that is outside of + the natural range of OP0's type, then the predicate will + always fold regardless of the value of OP0. If -Wtype-limits + was specified, emit a warning. */ + tree type = TREE_TYPE (op0); + value_range *vr0 = get_value_range (op0); + + if (vr0->type == VR_RANGE + && INTEGRAL_TYPE_P (type) + && vrp_val_is_min (vr0->min) + && vrp_val_is_max (vr0->max) + && is_gimple_min_invariant (op1)) + { + location_t location; + + if (!gimple_has_location (stmt)) + location = input_location; + else + location = gimple_location (stmt); + + warning_at (location, OPT_Wtype_limits, + integer_zerop (ret) + ? G_("comparison always false " + "due to limited range of data type") + : G_("comparison always true " + "due to limited range of data type")); + } + } + + return ret; +} + + +/* Visit conditional statement STMT. If we can determine which edge + will be taken out of STMT's basic block, record it in + *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */ + +void +vr_values::vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p) +{ + tree val; + + *taken_edge_p = NULL; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + tree use; + ssa_op_iter i; + + fprintf (dump_file, "\nVisiting conditional with predicate: "); + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, "\nWith known ranges\n"); + + FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE) + { + fprintf (dump_file, "\t"); + print_generic_expr (dump_file, use); + fprintf (dump_file, ": "); + dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]); + } + + fprintf (dump_file, "\n"); + } + + /* Compute the value of the predicate COND by checking the known + ranges of each of its operands. + + Note that we cannot evaluate all the equivalent ranges here + because those ranges may not yet be final and with the current + propagation strategy, we cannot determine when the value ranges + of the names in the equivalence set have changed. + + For instance, given the following code fragment + + i_5 = PHI <8, i_13> + ... + i_14 = ASSERT_EXPR <i_5, i_5 != 0> + if (i_14 == 1) + ... + + Assume that on the first visit to i_14, i_5 has the temporary + range [8, 8] because the second argument to the PHI function is + not yet executable. We derive the range ~[0, 0] for i_14 and the + equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for + the first time, since i_14 is equivalent to the range [8, 8], we + determine that the predicate is always false. + + On the next round of propagation, i_13 is determined to be + VARYING, which causes i_5 to drop down to VARYING. So, another + visit to i_14 is scheduled. In this second visit, we compute the + exact same range and equivalence set for i_14, namely ~[0, 0] and + { i_5 }. But we did not have the previous range for i_5 + registered, so vrp_visit_assignment thinks that the range for + i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)' + is not visited again, which stops propagation from visiting + statements in the THEN clause of that if(). + + To properly fix this we would need to keep the previous range + value for the names in the equivalence set. This way we would've + discovered that from one visit to the other i_5 changed from + range [8, 8] to VR_VARYING. + + However, fixing this apparent limitation may not be worth the + additional checking. Testing on several code bases (GCC, DLV, + MICO, TRAMP3D and SPEC2000) showed that doing this results in + 4 more predicates folded in SPEC. */ + + bool sop; + val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt), + gimple_cond_lhs (stmt), + gimple_cond_rhs (stmt), + false, &sop, NULL); + if (val) + *taken_edge_p = find_taken_edge (gimple_bb (stmt), val); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nPredicate evaluates to: "); + if (val == NULL_TREE) + fprintf (dump_file, "DON'T KNOW\n"); + else + print_generic_stmt (dump_file, val); + } +} + +/* Searches the case label vector VEC for the ranges of CASE_LABELs that are + used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and + MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1. + Returns true if the default label is not needed. */ + +static bool +find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1, + size_t *max_idx1, size_t *min_idx2, + size_t *max_idx2) +{ + size_t i, j, k, l; + unsigned int n = gimple_switch_num_labels (stmt); + bool take_default; + tree case_low, case_high; + tree min = vr->min, max = vr->max; + + gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE); + + take_default = !find_case_label_range (stmt, min, max, &i, &j); + + /* Set second range to emtpy. */ + *min_idx2 = 1; + *max_idx2 = 0; + + if (vr->type == VR_RANGE) + { + *min_idx1 = i; + *max_idx1 = j; + return !take_default; + } + + /* Set first range to all case labels. */ + *min_idx1 = 1; + *max_idx1 = n - 1; + + if (i > j) + return false; + + /* Make sure all the values of case labels [i , j] are contained in + range [MIN, MAX]. */ + case_low = CASE_LOW (gimple_switch_label (stmt, i)); + case_high = CASE_HIGH (gimple_switch_label (stmt, j)); + if (tree_int_cst_compare (case_low, min) < 0) + i += 1; + if (case_high != NULL_TREE + && tree_int_cst_compare (max, case_high) < 0) + j -= 1; + + if (i > j) + return false; + + /* If the range spans case labels [i, j], the corresponding anti-range spans + the labels [1, i - 1] and [j + 1, n - 1]. */ + k = j + 1; + l = n - 1; + if (k > l) + { + k = 1; + l = 0; + } + + j = i - 1; + i = 1; + if (i > j) + { + i = k; + j = l; + k = 1; + l = 0; + } + + *min_idx1 = i; + *max_idx1 = j; + *min_idx2 = k; + *max_idx2 = l; + return false; +} + +/* Visit switch statement STMT. If we can determine which edge + will be taken out of STMT's basic block, record it in + *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */ + +void +vr_values::vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p) +{ + tree op, val; + value_range *vr; + size_t i = 0, j = 0, k, l; + bool take_default; + + *taken_edge_p = NULL; + op = gimple_switch_index (stmt); + if (TREE_CODE (op) != SSA_NAME) + return; + + vr = get_value_range (op); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nVisiting switch expression with operand "); + print_generic_expr (dump_file, op); + fprintf (dump_file, " with known range "); + dump_value_range (dump_file, vr); + fprintf (dump_file, "\n"); + } + + if ((vr->type != VR_RANGE + && vr->type != VR_ANTI_RANGE) + || symbolic_range_p (vr)) + return; + + /* Find the single edge that is taken from the switch expression. */ + take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l); + + /* Check if the range spans no CASE_LABEL. If so, we only reach the default + label */ + if (j < i) + { + gcc_assert (take_default); + val = gimple_switch_default_label (stmt); + } + else + { + /* Check if labels with index i to j and maybe the default label + are all reaching the same label. */ + + val = gimple_switch_label (stmt, i); + if (take_default + && CASE_LABEL (gimple_switch_default_label (stmt)) + != CASE_LABEL (val)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, " not a single destination for this " + "range\n"); + return; + } + for (++i; i <= j; ++i) + { + if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, " not a single destination for this " + "range\n"); + return; + } + } + for (; k <= l; ++k) + { + if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, " not a single destination for this " + "range\n"); + return; + } + } + } + + *taken_edge_p = find_edge (gimple_bb (stmt), + label_to_block (CASE_LABEL (val))); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, " will take edge to "); + print_generic_stmt (dump_file, CASE_LABEL (val)); + } +} + + +/* Evaluate statement STMT. If the statement produces a useful range, + set VR and corepsponding OUTPUT_P. + + If STMT is a conditional branch and we can determine its truth + value, the taken edge is recorded in *TAKEN_EDGE_P. */ + +void +vr_values::extract_range_from_stmt (gimple *stmt, edge *taken_edge_p, + tree *output_p, value_range *vr) +{ + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nVisiting statement:\n"); + print_gimple_stmt (dump_file, stmt, 0, dump_flags); + } + + if (!stmt_interesting_for_vrp (stmt)) + gcc_assert (stmt_ends_bb_p (stmt)); + else if (is_gimple_assign (stmt) || is_gimple_call (stmt)) + vrp_visit_assignment_or_call (stmt, output_p, vr); + else if (gimple_code (stmt) == GIMPLE_COND) + vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p); + else if (gimple_code (stmt) == GIMPLE_SWITCH) + vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p); +} + +/* Visit all arguments for PHI node PHI that flow through executable + edges. If a valid value range can be derived from all the incoming + value ranges, set a new range in VR_RESULT. */ + +void +vr_values::extract_range_from_phi_node (gphi *phi, value_range *vr_result) +{ + size_t i; + tree lhs = PHI_RESULT (phi); + value_range *lhs_vr = get_value_range (lhs); + bool first = true; + int edges, old_edges; + struct loop *l; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nVisiting PHI node: "); + print_gimple_stmt (dump_file, phi, 0, dump_flags); + } + + bool may_simulate_backedge_again = false; + edges = 0; + for (i = 0; i < gimple_phi_num_args (phi); i++) + { + edge e = gimple_phi_arg_edge (phi, i); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, + " Argument #%d (%d -> %d %sexecutable)\n", + (int) i, e->src->index, e->dest->index, + (e->flags & EDGE_EXECUTABLE) ? "" : "not "); + } + + if (e->flags & EDGE_EXECUTABLE) + { + tree arg = PHI_ARG_DEF (phi, i); + value_range vr_arg; + + ++edges; + + if (TREE_CODE (arg) == SSA_NAME) + { + /* See if we are eventually going to change one of the args. */ + gimple *def_stmt = SSA_NAME_DEF_STMT (arg); + if (! gimple_nop_p (def_stmt) + && prop_simulate_again_p (def_stmt) + && e->flags & EDGE_DFS_BACK) + may_simulate_backedge_again = true; + + vr_arg = *(get_value_range (arg)); + /* Do not allow equivalences or symbolic ranges to leak in from + backedges. That creates invalid equivalencies. + See PR53465 and PR54767. */ + if (e->flags & EDGE_DFS_BACK) + { + if (vr_arg.type == VR_RANGE + || vr_arg.type == VR_ANTI_RANGE) + { + vr_arg.equiv = NULL; + if (symbolic_range_p (&vr_arg)) + { + vr_arg.type = VR_VARYING; + vr_arg.min = NULL_TREE; + vr_arg.max = NULL_TREE; + } + } + } + else + { + /* If the non-backedge arguments range is VR_VARYING then + we can still try recording a simple equivalence. */ + if (vr_arg.type == VR_VARYING) + { + vr_arg.type = VR_RANGE; + vr_arg.min = arg; + vr_arg.max = arg; + vr_arg.equiv = NULL; + } + } + } + else + { + if (TREE_OVERFLOW_P (arg)) + arg = drop_tree_overflow (arg); + + vr_arg.type = VR_RANGE; + vr_arg.min = arg; + vr_arg.max = arg; + vr_arg.equiv = NULL; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\t"); + print_generic_expr (dump_file, arg, dump_flags); + fprintf (dump_file, ": "); + dump_value_range (dump_file, &vr_arg); + fprintf (dump_file, "\n"); + } + + if (first) + copy_value_range (vr_result, &vr_arg); + else + vrp_meet (vr_result, &vr_arg); + first = false; + + if (vr_result->type == VR_VARYING) + break; + } + } + + if (vr_result->type == VR_VARYING) + goto varying; + else if (vr_result->type == VR_UNDEFINED) + goto update_range; + + old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)]; + vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges; + + /* To prevent infinite iterations in the algorithm, derive ranges + when the new value is slightly bigger or smaller than the + previous one. We don't do this if we have seen a new executable + edge; this helps us avoid an infinity for conditionals + which are not in a loop. If the old value-range was VR_UNDEFINED + use the updated range and iterate one more time. If we will not + simulate this PHI again via the backedge allow us to iterate. */ + if (edges > 0 + && gimple_phi_num_args (phi) > 1 + && edges == old_edges + && lhs_vr->type != VR_UNDEFINED + && may_simulate_backedge_again) + { + /* Compare old and new ranges, fall back to varying if the + values are not comparable. */ + int cmp_min = compare_values (lhs_vr->min, vr_result->min); + if (cmp_min == -2) + goto varying; + int cmp_max = compare_values (lhs_vr->max, vr_result->max); + if (cmp_max == -2) + goto varying; + + /* For non VR_RANGE or for pointers fall back to varying if + the range changed. */ + if ((lhs_vr->type != VR_RANGE || vr_result->type != VR_RANGE + || POINTER_TYPE_P (TREE_TYPE (lhs))) + && (cmp_min != 0 || cmp_max != 0)) + goto varying; + + /* If the new minimum is larger than the previous one + retain the old value. If the new minimum value is smaller + than the previous one and not -INF go all the way to -INF + 1. + In the first case, to avoid infinite bouncing between different + minimums, and in the other case to avoid iterating millions of + times to reach -INF. Going to -INF + 1 also lets the following + iteration compute whether there will be any overflow, at the + expense of one additional iteration. */ + if (cmp_min < 0) + vr_result->min = lhs_vr->min; + else if (cmp_min > 0 + && !vrp_val_is_min (vr_result->min)) + vr_result->min + = int_const_binop (PLUS_EXPR, + vrp_val_min (TREE_TYPE (vr_result->min)), + build_int_cst (TREE_TYPE (vr_result->min), 1)); + + /* Similarly for the maximum value. */ + if (cmp_max > 0) + vr_result->max = lhs_vr->max; + else if (cmp_max < 0 + && !vrp_val_is_max (vr_result->max)) + vr_result->max + = int_const_binop (MINUS_EXPR, + vrp_val_max (TREE_TYPE (vr_result->min)), + build_int_cst (TREE_TYPE (vr_result->min), 1)); + + /* If we dropped either bound to +-INF then if this is a loop + PHI node SCEV may known more about its value-range. */ + if (cmp_min > 0 || cmp_min < 0 + || cmp_max < 0 || cmp_max > 0) + goto scev_check; + + goto infinite_check; + } + + goto update_range; + +varying: + set_value_range_to_varying (vr_result); + +scev_check: + /* If this is a loop PHI node SCEV may known more about its value-range. + scev_check can be reached from two paths, one is a fall through from above + "varying" label, the other is direct goto from code block which tries to + avoid infinite simulation. */ + if ((l = loop_containing_stmt (phi)) + && l->header == gimple_bb (phi)) + adjust_range_with_scev (vr_result, l, phi, lhs); + +infinite_check: + /* If we will end up with a (-INF, +INF) range, set it to + VARYING. Same if the previous max value was invalid for + the type and we end up with vr_result.min > vr_result.max. */ + if ((vr_result->type == VR_RANGE || vr_result->type == VR_ANTI_RANGE) + && !((vrp_val_is_max (vr_result->max) && vrp_val_is_min (vr_result->min)) + || compare_values (vr_result->min, vr_result->max) > 0)) + ; + else + set_value_range_to_varying (vr_result); + + /* If the new range is different than the previous value, keep + iterating. */ +update_range: + return; +} + +/* Simplify boolean operations if the source is known + to be already a boolean. */ +bool +vr_values::simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, + gimple *stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree lhs, op0, op1; + bool need_conversion; + + /* We handle only !=/== case here. */ + gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR); + + op0 = gimple_assign_rhs1 (stmt); + if (!op_with_boolean_value_range_p (op0)) + return false; + + op1 = gimple_assign_rhs2 (stmt); + if (!op_with_boolean_value_range_p (op1)) + return false; + + /* Reduce number of cases to handle to NE_EXPR. As there is no + BIT_XNOR_EXPR we cannot replace A == B with a single statement. */ + if (rhs_code == EQ_EXPR) + { + if (TREE_CODE (op1) == INTEGER_CST) + op1 = int_const_binop (BIT_XOR_EXPR, op1, + build_int_cst (TREE_TYPE (op1), 1)); + else + return false; + } + + lhs = gimple_assign_lhs (stmt); + need_conversion + = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0)); + + /* Make sure to not sign-extend a 1-bit 1 when converting the result. */ + if (need_conversion + && !TYPE_UNSIGNED (TREE_TYPE (op0)) + && TYPE_PRECISION (TREE_TYPE (op0)) == 1 + && TYPE_PRECISION (TREE_TYPE (lhs)) > 1) + return false; + + /* For A != 0 we can substitute A itself. */ + if (integer_zerop (op1)) + gimple_assign_set_rhs_with_ops (gsi, + need_conversion + ? NOP_EXPR : TREE_CODE (op0), op0); + /* For A != B we substitute A ^ B. Either with conversion. */ + else if (need_conversion) + { + tree tem = make_ssa_name (TREE_TYPE (op0)); + gassign *newop + = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1); + gsi_insert_before (gsi, newop, GSI_SAME_STMT); + if (INTEGRAL_TYPE_P (TREE_TYPE (tem)) + && TYPE_PRECISION (TREE_TYPE (tem)) > 1) + set_range_info (tem, VR_RANGE, + wi::zero (TYPE_PRECISION (TREE_TYPE (tem))), + wi::one (TYPE_PRECISION (TREE_TYPE (tem)))); + gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem); + } + /* Or without. */ + else + gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1); + update_stmt (gsi_stmt (*gsi)); + fold_stmt (gsi, follow_single_use_edges); + + return true; +} + +/* Simplify a division or modulo operator to a right shift or bitwise and + if the first operand is unsigned or is greater than zero and the second + operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with + constant op1 (op1min = op1) or with op1 in [op1min, op1max] range, + optimize it into just op0 if op0's range is known to be a subset of + [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned + modulo. */ + +bool +vr_values::simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, + gimple *stmt) +{ + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree val = NULL; + tree op0 = gimple_assign_rhs1 (stmt); + tree op1 = gimple_assign_rhs2 (stmt); + tree op0min = NULL_TREE, op0max = NULL_TREE; + tree op1min = op1; + value_range *vr = NULL; + + if (TREE_CODE (op0) == INTEGER_CST) + { + op0min = op0; + op0max = op0; + } + else + { + vr = get_value_range (op0); + if (range_int_cst_p (vr)) + { + op0min = vr->min; + op0max = vr->max; + } + } + + if (rhs_code == TRUNC_MOD_EXPR + && TREE_CODE (op1) == SSA_NAME) + { + value_range *vr1 = get_value_range (op1); + if (range_int_cst_p (vr1)) + op1min = vr1->min; + } + if (rhs_code == TRUNC_MOD_EXPR + && TREE_CODE (op1min) == INTEGER_CST + && tree_int_cst_sgn (op1min) == 1 + && op0max + && tree_int_cst_lt (op0max, op1min)) + { + if (TYPE_UNSIGNED (TREE_TYPE (op0)) + || tree_int_cst_sgn (op0min) >= 0 + || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min), + op0min)) + { + /* If op0 already has the range op0 % op1 has, + then TRUNC_MOD_EXPR won't change anything. */ + gimple_assign_set_rhs_from_tree (gsi, op0); + return true; + } + } + + if (TREE_CODE (op0) != SSA_NAME) + return false; + + if (!integer_pow2p (op1)) + { + /* X % -Y can be only optimized into X % Y either if + X is not INT_MIN, or Y is not -1. Fold it now, as after + remove_range_assertions the range info might be not available + anymore. */ + if (rhs_code == TRUNC_MOD_EXPR + && fold_stmt (gsi, follow_single_use_edges)) + return true; + return false; + } + + if (TYPE_UNSIGNED (TREE_TYPE (op0))) + val = integer_one_node; + else + { + bool sop = false; + + val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop); + + if (val + && sop + && integer_onep (val) + && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC)) + { + location_t location; + + if (!gimple_has_location (stmt)) + location = input_location; + else + location = gimple_location (stmt); + warning_at (location, OPT_Wstrict_overflow, + "assuming signed overflow does not occur when " + "simplifying %</%> or %<%%%> to %<>>%> or %<&%>"); + } + } + + if (val && integer_onep (val)) + { + tree t; + + if (rhs_code == TRUNC_DIV_EXPR) + { + t = build_int_cst (integer_type_node, tree_log2 (op1)); + gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR); + gimple_assign_set_rhs1 (stmt, op0); + gimple_assign_set_rhs2 (stmt, t); + } + else + { + t = build_int_cst (TREE_TYPE (op1), 1); + t = int_const_binop (MINUS_EXPR, op1, t); + t = fold_convert (TREE_TYPE (op0), t); + + gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR); + gimple_assign_set_rhs1 (stmt, op0); + gimple_assign_set_rhs2 (stmt, t); + } + + update_stmt (stmt); + fold_stmt (gsi, follow_single_use_edges); + return true; + } + + return false; +} + +/* Simplify a min or max if the ranges of the two operands are + disjoint. Return true if we do simplify. */ + +bool +vr_values::simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, + gimple *stmt) +{ + tree op0 = gimple_assign_rhs1 (stmt); + tree op1 = gimple_assign_rhs2 (stmt); + bool sop = false; + tree val; + + val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges + (LE_EXPR, op0, op1, &sop)); + if (!val) + { + sop = false; + val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges + (LT_EXPR, op0, op1, &sop)); + } + + if (val) + { + if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC)) + { + location_t location; + + if (!gimple_has_location (stmt)) + location = input_location; + else + location = gimple_location (stmt); + warning_at (location, OPT_Wstrict_overflow, + "assuming signed overflow does not occur when " + "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>"); + } + + /* VAL == TRUE -> OP0 < or <= op1 + VAL == FALSE -> OP0 > or >= op1. */ + tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR) + == integer_zerop (val)) ? op0 : op1; + gimple_assign_set_rhs_from_tree (gsi, res); + return true; + } + + return false; +} + +/* If the operand to an ABS_EXPR is >= 0, then eliminate the + ABS_EXPR. If the operand is <= 0, then simplify the + ABS_EXPR into a NEGATE_EXPR. */ + +bool +vr_values::simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) +{ + tree op = gimple_assign_rhs1 (stmt); + value_range *vr = get_value_range (op); + + if (vr) + { + tree val = NULL; + bool sop = false; + + val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop); + if (!val) + { + /* The range is neither <= 0 nor > 0. Now see if it is + either < 0 or >= 0. */ + sop = false; + val = compare_range_with_value (LT_EXPR, vr, integer_zero_node, + &sop); + } + + if (val) + { + if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC)) + { + location_t location; + + if (!gimple_has_location (stmt)) + location = input_location; + else + location = gimple_location (stmt); + warning_at (location, OPT_Wstrict_overflow, + "assuming signed overflow does not occur when " + "simplifying %<abs (X)%> to %<X%> or %<-X%>"); + } + + gimple_assign_set_rhs1 (stmt, op); + if (integer_zerop (val)) + gimple_assign_set_rhs_code (stmt, SSA_NAME); + else + gimple_assign_set_rhs_code (stmt, NEGATE_EXPR); + update_stmt (stmt); + fold_stmt (gsi, follow_single_use_edges); + return true; + } + } + + return false; +} + +/* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR. + If all the bits that are being cleared by & are already + known to be zero from VR, or all the bits that are being + set by | are already known to be one from VR, the bit + operation is redundant. */ + +bool +vr_values::simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, + gimple *stmt) +{ + tree op0 = gimple_assign_rhs1 (stmt); + tree op1 = gimple_assign_rhs2 (stmt); + tree op = NULL_TREE; + value_range vr0 = VR_INITIALIZER; + value_range vr1 = VR_INITIALIZER; + wide_int may_be_nonzero0, may_be_nonzero1; + wide_int must_be_nonzero0, must_be_nonzero1; + wide_int mask; + + if (TREE_CODE (op0) == SSA_NAME) + vr0 = *(get_value_range (op0)); + else if (is_gimple_min_invariant (op0)) + set_value_range_to_value (&vr0, op0, NULL); + else + return false; + + if (TREE_CODE (op1) == SSA_NAME) + vr1 = *(get_value_range (op1)); + else if (is_gimple_min_invariant (op1)) + set_value_range_to_value (&vr1, op1, NULL); + else + return false; + + if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0, + &must_be_nonzero0)) + return false; + if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1, + &must_be_nonzero1)) + return false; + + switch (gimple_assign_rhs_code (stmt)) + { + case BIT_AND_EXPR: + mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1); + if (mask == 0) + { + op = op0; + break; + } + mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0); + if (mask == 0) + { + op = op1; + break; + } + break; + case BIT_IOR_EXPR: + mask = wi::bit_and_not (may_be_nonzero0, must_be_nonzero1); + if (mask == 0) + { + op = op1; + break; + } + mask = wi::bit_and_not (may_be_nonzero1, must_be_nonzero0); + if (mask == 0) + { + op = op0; + break; + } + break; + default: + gcc_unreachable (); + } + + if (op == NULL_TREE) + return false; + + gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op); + update_stmt (gsi_stmt (*gsi)); + return true; +} + +/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has + a known value range VR. + + If there is one and only one value which will satisfy the + conditional, then return that value. Else return NULL. + + If signed overflow must be undefined for the value to satisfy + the conditional, then set *STRICT_OVERFLOW_P to true. */ + +static tree +test_for_singularity (enum tree_code cond_code, tree op0, + tree op1, value_range *vr) +{ + tree min = NULL; + tree max = NULL; + + /* Extract minimum/maximum values which satisfy the conditional as it was + written. */ + if (cond_code == LE_EXPR || cond_code == LT_EXPR) + { + min = TYPE_MIN_VALUE (TREE_TYPE (op0)); + + max = op1; + if (cond_code == LT_EXPR) + { + tree one = build_int_cst (TREE_TYPE (op0), 1); + max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one); + /* Signal to compare_values_warnv this expr doesn't overflow. */ + if (EXPR_P (max)) + TREE_NO_WARNING (max) = 1; + } + } + else if (cond_code == GE_EXPR || cond_code == GT_EXPR) + { + max = TYPE_MAX_VALUE (TREE_TYPE (op0)); + + min = op1; + if (cond_code == GT_EXPR) + { + tree one = build_int_cst (TREE_TYPE (op0), 1); + min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one); + /* Signal to compare_values_warnv this expr doesn't overflow. */ + if (EXPR_P (min)) + TREE_NO_WARNING (min) = 1; + } + } + + /* Now refine the minimum and maximum values using any + value range information we have for op0. */ + if (min && max) + { + if (compare_values (vr->min, min) == 1) + min = vr->min; + if (compare_values (vr->max, max) == -1) + max = vr->max; + + /* If the new min/max values have converged to a single value, + then there is only one value which can satisfy the condition, + return that value. */ + if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min)) + return min; + } + return NULL; +} + +/* Return whether the value range *VR fits in an integer type specified + by PRECISION and UNSIGNED_P. */ + +static bool +range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn) +{ + tree src_type; + unsigned src_precision; + widest_int tem; + signop src_sgn; + + /* We can only handle integral and pointer types. */ + src_type = TREE_TYPE (vr->min); + if (!INTEGRAL_TYPE_P (src_type) + && !POINTER_TYPE_P (src_type)) + return false; + + /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED, + and so is an identity transform. */ + src_precision = TYPE_PRECISION (TREE_TYPE (vr->min)); + src_sgn = TYPE_SIGN (src_type); + if ((src_precision < dest_precision + && !(dest_sgn == UNSIGNED && src_sgn == SIGNED)) + || (src_precision == dest_precision && src_sgn == dest_sgn)) + return true; + + /* Now we can only handle ranges with constant bounds. */ + if (vr->type != VR_RANGE + || TREE_CODE (vr->min) != INTEGER_CST + || TREE_CODE (vr->max) != INTEGER_CST) + return false; + + /* For sign changes, the MSB of the wide_int has to be clear. + An unsigned value with its MSB set cannot be represented by + a signed wide_int, while a negative value cannot be represented + by an unsigned wide_int. */ + if (src_sgn != dest_sgn + && (wi::lts_p (wi::to_wide (vr->min), 0) + || wi::lts_p (wi::to_wide (vr->max), 0))) + return false; + + /* Then we can perform the conversion on both ends and compare + the result for equality. */ + tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn); + if (tem != wi::to_widest (vr->min)) + return false; + tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn); + if (tem != wi::to_widest (vr->max)) + return false; + + return true; +} + +/* Simplify a conditional using a relational operator to an equality + test if the range information indicates only one value can satisfy + the original conditional. */ + +bool +vr_values::simplify_cond_using_ranges_1 (gcond *stmt) +{ + tree op0 = gimple_cond_lhs (stmt); + tree op1 = gimple_cond_rhs (stmt); + enum tree_code cond_code = gimple_cond_code (stmt); + + if (cond_code != NE_EXPR + && cond_code != EQ_EXPR + && TREE_CODE (op0) == SSA_NAME + && INTEGRAL_TYPE_P (TREE_TYPE (op0)) + && is_gimple_min_invariant (op1)) + { + value_range *vr = get_value_range (op0); + + /* If we have range information for OP0, then we might be + able to simplify this conditional. */ + if (vr->type == VR_RANGE) + { + tree new_tree = test_for_singularity (cond_code, op0, op1, vr); + if (new_tree) + { + if (dump_file) + { + fprintf (dump_file, "Simplified relational "); + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, " into "); + } + + gimple_cond_set_code (stmt, EQ_EXPR); + gimple_cond_set_lhs (stmt, op0); + gimple_cond_set_rhs (stmt, new_tree); + + update_stmt (stmt); + + if (dump_file) + { + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, "\n"); + } + + return true; + } + + /* Try again after inverting the condition. We only deal + with integral types here, so no need to worry about + issues with inverting FP comparisons. */ + new_tree = test_for_singularity + (invert_tree_comparison (cond_code, false), + op0, op1, vr); + if (new_tree) + { + if (dump_file) + { + fprintf (dump_file, "Simplified relational "); + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, " into "); + } + + gimple_cond_set_code (stmt, NE_EXPR); + gimple_cond_set_lhs (stmt, op0); + gimple_cond_set_rhs (stmt, new_tree); + + update_stmt (stmt); + + if (dump_file) + { + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, "\n"); + } + + return true; + } + } + } + return false; +} + +/* STMT is a conditional at the end of a basic block. + + If the conditional is of the form SSA_NAME op constant and the SSA_NAME + was set via a type conversion, try to replace the SSA_NAME with the RHS + of the type conversion. Doing so makes the conversion dead which helps + subsequent passes. */ + +void +vr_values::simplify_cond_using_ranges_2 (gcond *stmt) +{ + tree op0 = gimple_cond_lhs (stmt); + tree op1 = gimple_cond_rhs (stmt); + + /* If we have a comparison of an SSA_NAME (OP0) against a constant, + see if OP0 was set by a type conversion where the source of + the conversion is another SSA_NAME with a range that fits + into the range of OP0's type. + + If so, the conversion is redundant as the earlier SSA_NAME can be + used for the comparison directly if we just massage the constant in the + comparison. */ + if (TREE_CODE (op0) == SSA_NAME + && TREE_CODE (op1) == INTEGER_CST) + { + gimple *def_stmt = SSA_NAME_DEF_STMT (op0); + tree innerop; + + if (!is_gimple_assign (def_stmt) + || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))) + return; + + innerop = gimple_assign_rhs1 (def_stmt); + + if (TREE_CODE (innerop) == SSA_NAME + && !POINTER_TYPE_P (TREE_TYPE (innerop)) + && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop) + && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0))) + { + value_range *vr = get_value_range (innerop); + + if (range_int_cst_p (vr) + && range_fits_type_p (vr, + TYPE_PRECISION (TREE_TYPE (op0)), + TYPE_SIGN (TREE_TYPE (op0))) + && int_fits_type_p (op1, TREE_TYPE (innerop))) + { + tree newconst = fold_convert (TREE_TYPE (innerop), op1); + gimple_cond_set_lhs (stmt, innerop); + gimple_cond_set_rhs (stmt, newconst); + update_stmt (stmt); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Folded into: "); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + fprintf (dump_file, "\n"); + } + } + } + } +} + +/* Simplify a switch statement using the value range of the switch + argument. */ + +bool +vr_values::simplify_switch_using_ranges (gswitch *stmt) +{ + tree op = gimple_switch_index (stmt); + value_range *vr = NULL; + bool take_default; + edge e; + edge_iterator ei; + size_t i = 0, j = 0, n, n2; + tree vec2; + switch_update su; + size_t k = 1, l = 0; + + if (TREE_CODE (op) == SSA_NAME) + { + vr = get_value_range (op); + + /* We can only handle integer ranges. */ + if ((vr->type != VR_RANGE + && vr->type != VR_ANTI_RANGE) + || symbolic_range_p (vr)) + return false; + + /* Find case label for min/max of the value range. */ + take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l); + } + else if (TREE_CODE (op) == INTEGER_CST) + { + take_default = !find_case_label_index (stmt, 1, op, &i); + if (take_default) + { + i = 1; + j = 0; + } + else + { + j = i; + } + } + else + return false; + + n = gimple_switch_num_labels (stmt); + + /* We can truncate the case label ranges that partially overlap with OP's + value range. */ + size_t min_idx = 1, max_idx = 0; + if (vr != NULL) + find_case_label_range (stmt, vr->min, vr->max, &min_idx, &max_idx); + if (min_idx <= max_idx) + { + tree min_label = gimple_switch_label (stmt, min_idx); + tree max_label = gimple_switch_label (stmt, max_idx); + + /* Avoid changing the type of the case labels when truncating. */ + tree case_label_type = TREE_TYPE (CASE_LOW (min_label)); + tree vr_min = fold_convert (case_label_type, vr->min); + tree vr_max = fold_convert (case_label_type, vr->max); + + if (vr->type == VR_RANGE) + { + /* If OP's value range is [2,8] and the low label range is + 0 ... 3, truncate the label's range to 2 .. 3. */ + if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 + && CASE_HIGH (min_label) != NULL_TREE + && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0) + CASE_LOW (min_label) = vr_min; + + /* If OP's value range is [2,8] and the high label range is + 7 ... 10, truncate the label's range to 7 .. 8. */ + if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0 + && CASE_HIGH (max_label) != NULL_TREE + && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0) + CASE_HIGH (max_label) = vr_max; + } + else if (vr->type == VR_ANTI_RANGE) + { + tree one_cst = build_one_cst (case_label_type); + + if (min_label == max_label) + { + /* If OP's value range is ~[7,8] and the label's range is + 7 ... 10, truncate the label's range to 9 ... 10. */ + if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0 + && CASE_HIGH (min_label) != NULL_TREE + && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0) + CASE_LOW (min_label) + = int_const_binop (PLUS_EXPR, vr_max, one_cst); + + /* If OP's value range is ~[7,8] and the label's range is + 5 ... 8, truncate the label's range to 5 ... 6. */ + if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 + && CASE_HIGH (min_label) != NULL_TREE + && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0) + CASE_HIGH (min_label) + = int_const_binop (MINUS_EXPR, vr_min, one_cst); + } + else + { + /* If OP's value range is ~[2,8] and the low label range is + 0 ... 3, truncate the label's range to 0 ... 1. */ + if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0 + && CASE_HIGH (min_label) != NULL_TREE + && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0) + CASE_HIGH (min_label) + = int_const_binop (MINUS_EXPR, vr_min, one_cst); + + /* If OP's value range is ~[2,8] and the high label range is + 7 ... 10, truncate the label's range to 9 ... 10. */ + if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0 + && CASE_HIGH (max_label) != NULL_TREE + && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0) + CASE_LOW (max_label) + = int_const_binop (PLUS_EXPR, vr_max, one_cst); + } + } + + /* Canonicalize singleton case ranges. */ + if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label))) + CASE_HIGH (min_label) = NULL_TREE; + if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label))) + CASE_HIGH (max_label) = NULL_TREE; + } + + /* We can also eliminate case labels that lie completely outside OP's value + range. */ + + /* Bail out if this is just all edges taken. */ + if (i == 1 + && j == n - 1 + && take_default) + return false; + + /* Build a new vector of taken case labels. */ + vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default); + n2 = 0; + + /* Add the default edge, if necessary. */ + if (take_default) + TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt); + + for (; i <= j; ++i, ++n2) + TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i); + + for (; k <= l; ++k, ++n2) + TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k); + + /* Mark needed edges. */ + for (i = 0; i < n2; ++i) + { + e = find_edge (gimple_bb (stmt), + label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i)))); + e->aux = (void *)-1; + } + + /* Queue not needed edges for later removal. */ + FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) + { + if (e->aux == (void *)-1) + { + e->aux = NULL; + continue; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "removing unreachable case label\n"); + } + to_remove_edges.safe_push (e); + e->flags &= ~EDGE_EXECUTABLE; + } + + /* And queue an update for the stmt. */ + su.stmt = stmt; + su.vec = vec2; + to_update_switch_stmts.safe_push (su); + return false; +} + +/* Simplify an integral conversion from an SSA name in STMT. */ + +static bool +simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt) +{ + tree innerop, middleop, finaltype; + gimple *def_stmt; + signop inner_sgn, middle_sgn, final_sgn; + unsigned inner_prec, middle_prec, final_prec; + widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax; + + finaltype = TREE_TYPE (gimple_assign_lhs (stmt)); + if (!INTEGRAL_TYPE_P (finaltype)) + return false; + middleop = gimple_assign_rhs1 (stmt); + def_stmt = SSA_NAME_DEF_STMT (middleop); + if (!is_gimple_assign (def_stmt) + || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))) + return false; + innerop = gimple_assign_rhs1 (def_stmt); + if (TREE_CODE (innerop) != SSA_NAME + || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)) + return false; + + /* Get the value-range of the inner operand. Use get_range_info in + case innerop was created during substitute-and-fold. */ + wide_int imin, imax; + if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop)) + || get_range_info (innerop, &imin, &imax) != VR_RANGE) + return false; + innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop))); + innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop))); + + /* Simulate the conversion chain to check if the result is equal if + the middle conversion is removed. */ + inner_prec = TYPE_PRECISION (TREE_TYPE (innerop)); + middle_prec = TYPE_PRECISION (TREE_TYPE (middleop)); + final_prec = TYPE_PRECISION (finaltype); + + /* If the first conversion is not injective, the second must not + be widening. */ + if (wi::gtu_p (innermax - innermin, + wi::mask <widest_int> (middle_prec, false)) + && middle_prec < final_prec) + return false; + /* We also want a medium value so that we can track the effect that + narrowing conversions with sign change have. */ + inner_sgn = TYPE_SIGN (TREE_TYPE (innerop)); + if (inner_sgn == UNSIGNED) + innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false); + else + innermed = 0; + if (wi::cmp (innermin, innermed, inner_sgn) >= 0 + || wi::cmp (innermed, innermax, inner_sgn) >= 0) + innermed = innermin; + + middle_sgn = TYPE_SIGN (TREE_TYPE (middleop)); + middlemin = wi::ext (innermin, middle_prec, middle_sgn); + middlemed = wi::ext (innermed, middle_prec, middle_sgn); + middlemax = wi::ext (innermax, middle_prec, middle_sgn); + + /* Require that the final conversion applied to both the original + and the intermediate range produces the same result. */ + final_sgn = TYPE_SIGN (finaltype); + if (wi::ext (middlemin, final_prec, final_sgn) + != wi::ext (innermin, final_prec, final_sgn) + || wi::ext (middlemed, final_prec, final_sgn) + != wi::ext (innermed, final_prec, final_sgn) + || wi::ext (middlemax, final_prec, final_sgn) + != wi::ext (innermax, final_prec, final_sgn)) + return false; + + gimple_assign_set_rhs1 (stmt, innerop); + fold_stmt (gsi, follow_single_use_edges); + return true; +} + +/* Simplify a conversion from integral SSA name to float in STMT. */ + +bool +vr_values::simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, + gimple *stmt) +{ + tree rhs1 = gimple_assign_rhs1 (stmt); + value_range *vr = get_value_range (rhs1); + scalar_float_mode fltmode + = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))); + scalar_int_mode mode; + tree tem; + gassign *conv; + + /* We can only handle constant ranges. */ + if (vr->type != VR_RANGE + || TREE_CODE (vr->min) != INTEGER_CST + || TREE_CODE (vr->max) != INTEGER_CST) + return false; + + /* First check if we can use a signed type in place of an unsigned. */ + scalar_int_mode rhs_mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs1)); + if (TYPE_UNSIGNED (TREE_TYPE (rhs1)) + && can_float_p (fltmode, rhs_mode, 0) != CODE_FOR_nothing + && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED)) + mode = rhs_mode; + /* If we can do the conversion in the current input mode do nothing. */ + else if (can_float_p (fltmode, rhs_mode, + TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing) + return false; + /* Otherwise search for a mode we can use, starting from the narrowest + integer mode available. */ + else + { + mode = NARROWEST_INT_MODE; + for (;;) + { + /* If we cannot do a signed conversion to float from mode + or if the value-range does not fit in the signed type + try with a wider mode. */ + if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing + && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED)) + break; + + /* But do not widen the input. Instead leave that to the + optabs expansion code. */ + if (!GET_MODE_WIDER_MODE (mode).exists (&mode) + || GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1))) + return false; + } + } + + /* It works, insert a truncation or sign-change before the + float conversion. */ + tem = make_ssa_name (build_nonstandard_integer_type + (GET_MODE_PRECISION (mode), 0)); + conv = gimple_build_assign (tem, NOP_EXPR, rhs1); + gsi_insert_before (gsi, conv, GSI_SAME_STMT); + gimple_assign_set_rhs1 (stmt, tem); + fold_stmt (gsi, follow_single_use_edges); + + return true; +} + +/* Simplify an internal fn call using ranges if possible. */ + +bool +vr_values::simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, + gimple *stmt) +{ + enum tree_code subcode; + bool is_ubsan = false; + bool ovf = false; + switch (gimple_call_internal_fn (stmt)) + { + case IFN_UBSAN_CHECK_ADD: + subcode = PLUS_EXPR; + is_ubsan = true; + break; + case IFN_UBSAN_CHECK_SUB: + subcode = MINUS_EXPR; + is_ubsan = true; + break; + case IFN_UBSAN_CHECK_MUL: + subcode = MULT_EXPR; + is_ubsan = true; + break; + case IFN_ADD_OVERFLOW: + subcode = PLUS_EXPR; + break; + case IFN_SUB_OVERFLOW: + subcode = MINUS_EXPR; + break; + case IFN_MUL_OVERFLOW: + subcode = MULT_EXPR; + break; + default: + return false; + } + + tree op0 = gimple_call_arg (stmt, 0); + tree op1 = gimple_call_arg (stmt, 1); + tree type; + if (is_ubsan) + { + type = TREE_TYPE (op0); + if (VECTOR_TYPE_P (type)) + return false; + } + else if (gimple_call_lhs (stmt) == NULL_TREE) + return false; + else + type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt))); + if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf) + || (is_ubsan && ovf)) + return false; + + gimple *g; + location_t loc = gimple_location (stmt); + if (is_ubsan) + g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1); + else + { + int prec = TYPE_PRECISION (type); + tree utype = type; + if (ovf + || !useless_type_conversion_p (type, TREE_TYPE (op0)) + || !useless_type_conversion_p (type, TREE_TYPE (op1))) + utype = build_nonstandard_integer_type (prec, 1); + if (TREE_CODE (op0) == INTEGER_CST) + op0 = fold_convert (utype, op0); + else if (!useless_type_conversion_p (utype, TREE_TYPE (op0))) + { + g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0); + gimple_set_location (g, loc); + gsi_insert_before (gsi, g, GSI_SAME_STMT); + op0 = gimple_assign_lhs (g); + } + if (TREE_CODE (op1) == INTEGER_CST) + op1 = fold_convert (utype, op1); + else if (!useless_type_conversion_p (utype, TREE_TYPE (op1))) + { + g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1); + gimple_set_location (g, loc); + gsi_insert_before (gsi, g, GSI_SAME_STMT); + op1 = gimple_assign_lhs (g); + } + g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1); + gimple_set_location (g, loc); + gsi_insert_before (gsi, g, GSI_SAME_STMT); + if (utype != type) + { + g = gimple_build_assign (make_ssa_name (type), NOP_EXPR, + gimple_assign_lhs (g)); + gimple_set_location (g, loc); + gsi_insert_before (gsi, g, GSI_SAME_STMT); + } + g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR, + gimple_assign_lhs (g), + build_int_cst (type, ovf)); + } + gimple_set_location (g, loc); + gsi_replace (gsi, g, false); + return true; +} + +/* Return true if VAR is a two-valued variable. Set a and b with the + two-values when it is true. Return false otherwise. */ + +bool +vr_values::two_valued_val_range_p (tree var, tree *a, tree *b) +{ + value_range *vr = get_value_range (var); + if ((vr->type != VR_RANGE + && vr->type != VR_ANTI_RANGE) + || TREE_CODE (vr->min) != INTEGER_CST + || TREE_CODE (vr->max) != INTEGER_CST) + return false; + + if (vr->type == VR_RANGE + && wi::to_wide (vr->max) - wi::to_wide (vr->min) == 1) + { + *a = vr->min; + *b = vr->max; + return true; + } + + /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */ + if (vr->type == VR_ANTI_RANGE + && (wi::to_wide (vr->min) + - wi::to_wide (vrp_val_min (TREE_TYPE (var)))) == 1 + && (wi::to_wide (vrp_val_max (TREE_TYPE (var))) + - wi::to_wide (vr->max)) == 1) + { + *a = vrp_val_min (TREE_TYPE (var)); + *b = vrp_val_max (TREE_TYPE (var)); + return true; + } + + return false; +} + +/* Simplify STMT using ranges if possible. */ + +bool +vr_values::simplify_stmt_using_ranges (gimple_stmt_iterator *gsi) +{ + gimple *stmt = gsi_stmt (*gsi); + if (is_gimple_assign (stmt)) + { + enum tree_code rhs_code = gimple_assign_rhs_code (stmt); + tree rhs1 = gimple_assign_rhs1 (stmt); + tree rhs2 = gimple_assign_rhs2 (stmt); + tree lhs = gimple_assign_lhs (stmt); + tree val1 = NULL_TREE, val2 = NULL_TREE; + use_operand_p use_p; + gimple *use_stmt; + + /* Convert: + LHS = CST BINOP VAR + Where VAR is two-valued and LHS is used in GIMPLE_COND only + To: + LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2) + + Also handles: + LHS = VAR BINOP CST + Where VAR is two-valued and LHS is used in GIMPLE_COND only + To: + LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */ + + if (TREE_CODE_CLASS (rhs_code) == tcc_binary + && INTEGRAL_TYPE_P (TREE_TYPE (lhs)) + && ((TREE_CODE (rhs1) == INTEGER_CST + && TREE_CODE (rhs2) == SSA_NAME) + || (TREE_CODE (rhs2) == INTEGER_CST + && TREE_CODE (rhs1) == SSA_NAME)) + && single_imm_use (lhs, &use_p, &use_stmt) + && gimple_code (use_stmt) == GIMPLE_COND) + + { + tree new_rhs1 = NULL_TREE; + tree new_rhs2 = NULL_TREE; + tree cmp_var = NULL_TREE; + + if (TREE_CODE (rhs2) == SSA_NAME + && two_valued_val_range_p (rhs2, &val1, &val2)) + { + /* Optimize RHS1 OP [VAL1, VAL2]. */ + new_rhs1 = int_const_binop (rhs_code, rhs1, val1); + new_rhs2 = int_const_binop (rhs_code, rhs1, val2); + cmp_var = rhs2; + } + else if (TREE_CODE (rhs1) == SSA_NAME + && two_valued_val_range_p (rhs1, &val1, &val2)) + { + /* Optimize [VAL1, VAL2] OP RHS2. */ + new_rhs1 = int_const_binop (rhs_code, val1, rhs2); + new_rhs2 = int_const_binop (rhs_code, val2, rhs2); + cmp_var = rhs1; + } + + /* If we could not find two-vals or the optimzation is invalid as + in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */ + if (new_rhs1 && new_rhs2) + { + tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1); + gimple_assign_set_rhs_with_ops (gsi, + COND_EXPR, cond, + new_rhs1, + new_rhs2); + update_stmt (gsi_stmt (*gsi)); + fold_stmt (gsi, follow_single_use_edges); + return true; + } + } + + switch (rhs_code) + { + case EQ_EXPR: + case NE_EXPR: + /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity + if the RHS is zero or one, and the LHS are known to be boolean + values. */ + if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) + return simplify_truth_ops_using_ranges (gsi, stmt); + break; + + /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR + and BIT_AND_EXPR respectively if the first operand is greater + than zero and the second operand is an exact power of two. + Also optimize TRUNC_MOD_EXPR away if the second operand is + constant and the first operand already has the right value + range. */ + case TRUNC_DIV_EXPR: + case TRUNC_MOD_EXPR: + if ((TREE_CODE (rhs1) == SSA_NAME + || TREE_CODE (rhs1) == INTEGER_CST) + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) + return simplify_div_or_mod_using_ranges (gsi, stmt); + break; + + /* Transform ABS (X) into X or -X as appropriate. */ + case ABS_EXPR: + if (TREE_CODE (rhs1) == SSA_NAME + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) + return simplify_abs_using_ranges (gsi, stmt); + break; + + case BIT_AND_EXPR: + case BIT_IOR_EXPR: + /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR + if all the bits being cleared are already cleared or + all the bits being set are already set. */ + if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) + return simplify_bit_ops_using_ranges (gsi, stmt); + break; + + CASE_CONVERT: + if (TREE_CODE (rhs1) == SSA_NAME + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) + return simplify_conversion_using_ranges (gsi, stmt); + break; + + case FLOAT_EXPR: + if (TREE_CODE (rhs1) == SSA_NAME + && INTEGRAL_TYPE_P (TREE_TYPE (rhs1))) + return simplify_float_conversion_using_ranges (gsi, stmt); + break; + + case MIN_EXPR: + case MAX_EXPR: + return simplify_min_or_max_using_ranges (gsi, stmt); + + default: + break; + } + } + else if (gimple_code (stmt) == GIMPLE_COND) + return simplify_cond_using_ranges_1 (as_a <gcond *> (stmt)); + else if (gimple_code (stmt) == GIMPLE_SWITCH) + return simplify_switch_using_ranges (as_a <gswitch *> (stmt)); + else if (is_gimple_call (stmt) + && gimple_call_internal_p (stmt)) + return simplify_internal_call_using_ranges (gsi, stmt); + + return false; +} + +void +vr_values::set_vr_value (tree var, value_range *vr) +{ + if (SSA_NAME_VERSION (var) >= num_vr_values) + return; + vr_value[SSA_NAME_VERSION (var)] = vr; +} + |