diff options
Diffstat (limited to 'gcc/fortran/arith.c')
-rw-r--r-- | gcc/fortran/arith.c | 2763 |
1 files changed, 2763 insertions, 0 deletions
diff --git a/gcc/fortran/arith.c b/gcc/fortran/arith.c new file mode 100644 index 00000000000..bd03fba4046 --- /dev/null +++ b/gcc/fortran/arith.c @@ -0,0 +1,2763 @@ +/* Compiler arithmetic + Copyright (C) 2000, 2001. 2002, 2003 Free Software Foundation, Inc. + Contributed by Andy Vaught + +This file is part of GNU G95. + +GNU G95 is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU G95 is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU G95; see the file COPYING. If not, write to +the Free Software Foundation, 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* Since target arithmetic must be done on the host, there has to + be some way of evaluating arithmetic expressions as the host + would evaluate them. We use the GNU MP library to do arithmetic, + and this file provides the interface. */ + +#include "config.h" + +#include <string.h> + +#include "gfortran.h" +#include "arith.h" + +mpf_t pi, half_pi, two_pi, e; + +/* The gfc_(integer|real)_kinds[] structures have everything the front + end needs to know about integers and real numbers on the target. + Other entries of the structure are calculated from these values. + The first entry is the default kind, the second entry of the real + structure is the default double kind. */ + +#define MPZ_NULL {{0,0,0}} +#define MPF_NULL {{0,0,0,0}} + +#define DEF_GFC_INTEGER_KIND(KIND,RADIX,DIGITS,BIT_SIZE) \ + {KIND, RADIX, DIGITS, BIT_SIZE, 0, MPZ_NULL, MPZ_NULL, MPZ_NULL} + +#define DEF_GFC_LOGICAL_KIND(KIND,BIT_SIZE) \ + {KIND, BIT_SIZE} + +#define DEF_GFC_REAL_KIND(KIND,RADIX,DIGITS,MIN_EXP, MAX_EXP) \ + {KIND, RADIX, DIGITS, MIN_EXP, MAX_EXP, \ + 0, 0, MPF_NULL, MPF_NULL, MPF_NULL} + +gfc_integer_info gfc_integer_kinds[] = { + DEF_GFC_INTEGER_KIND (4, 2, 31, 32), + DEF_GFC_INTEGER_KIND (8, 2, 63, 64), + DEF_GFC_INTEGER_KIND (2, 2, 15, 16), + DEF_GFC_INTEGER_KIND (1, 2, 7, 8), + DEF_GFC_INTEGER_KIND (0, 0, 0, 0) +}; + +gfc_logical_info gfc_logical_kinds[] = { + DEF_GFC_LOGICAL_KIND (4, 32), + DEF_GFC_LOGICAL_KIND (8, 64), + DEF_GFC_LOGICAL_KIND (2, 16), + DEF_GFC_LOGICAL_KIND (1, 8), + DEF_GFC_LOGICAL_KIND (0, 0) +}; + +gfc_real_info gfc_real_kinds[] = { + DEF_GFC_REAL_KIND (4, 2, 24, -125, 128), + DEF_GFC_REAL_KIND (8, 2, 53, -1021, 1024), + DEF_GFC_REAL_KIND (0, 0, 0, 0, 0) +}; + + +/* The integer kind to use for array indices. This will be set to the + proper value based on target information from the backend. */ + +int gfc_index_integer_kind; + + +/* Compute the natural log of arg. + + We first get the argument into the range 0.5 to 1.5 by successive + multiplications or divisions by e. Then we use the series: + + ln(x) = (x-1) - (x-1)^/2 + (x-1)^3/3 - (x-1)^4/4 + ... + + Because we are expanding in powers of (x-1), and 0.5 < x < 1.5, we + have -0.5 < (x-1) < 0.5. Ignoring the harmonic term, this means + that each term is at most 1/(2^i), meaning one bit is gained per + iteration. + + Not very efficient, but it doesn't have to be. */ + +void +natural_logarithm (mpf_t * arg, mpf_t * result) +{ + mpf_t x, xp, t, log; + int i, p; + + mpf_init_set (x, *arg); + mpf_init (t); + + p = 0; + + mpf_set_str (t, "0.5", 10); + while (mpf_cmp (x, t) < 0) + { + mpf_mul (x, x, e); + p--; + } + + mpf_set_str (t, "1.5", 10); + while (mpf_cmp (x, t) > 0) + { + mpf_div (x, x, e); + p++; + } + + mpf_sub_ui (x, x, 1); + mpf_init_set_ui (log, 0); + mpf_init_set_ui (xp, 1); + + for (i = 1; i < GFC_REAL_BITS; i++) + { + mpf_mul (xp, xp, x); + mpf_div_ui (t, xp, i); + + if (i % 2 == 0) + mpf_sub (log, log, t); + else + mpf_add (log, log, t); + } + + /* Add in the log (e^p) = p */ + + if (p < 0) + mpf_sub_ui (log, log, -p); + else + mpf_add_ui (log, log, p); + + mpf_clear (x); + mpf_clear (xp); + mpf_clear (t); + + mpf_set (*result, log); + mpf_clear (log); +} + + +/* Calculate the common logarithm of arg. We use the natural + logaritm of arg and of 10: + + log10(arg) = log(arg)/log(10) */ + +void +common_logarithm (mpf_t * arg, mpf_t * result) +{ + mpf_t i10, log10; + + natural_logarithm (arg, result); + + mpf_init_set_ui (i10, 10); + mpf_init (log10); + natural_logarithm (&i10, &log10); + + mpf_div (*result, *result, log10); + mpf_clear (i10); + mpf_clear (log10); +} + +/* Calculate exp(arg). + + We use a reduction of the form + + x = Nln2 + r + + Then we obtain exp(r) from the McLaurin series. + exp(x) is then recovered from the identity + + exp(x) = 2^N*exp(r). */ + +void +exponential (mpf_t * arg, mpf_t * result) +{ + mpf_t two, ln2, power, q, r, num, denom, term, x, xp; + int i; + long n; + unsigned long p, mp; + + + mpf_init_set (x, *arg); + + if (mpf_cmp_ui (x, 0) == 0) + { + mpf_set_ui (*result, 1); + } + else if (mpf_cmp_ui (x, 1) == 0) + { + mpf_set (*result, e); + } + else + { + mpf_init_set_ui (two, 2); + mpf_init (ln2); + mpf_init (q); + mpf_init (r); + mpf_init (power); + mpf_init (term); + + natural_logarithm (&two, &ln2); + + mpf_div (q, x, ln2); + mpf_floor (power, q); + mpf_mul (q, power, ln2); + mpf_sub (r, x, q); + + mpf_init_set_ui (xp, 1); + mpf_init_set_ui (num, 1); + mpf_init_set_ui (denom, 1); + + for (i = 1; i <= GFC_REAL_BITS + 10; i++) + { + mpf_mul (num, num, r); + mpf_mul_ui (denom, denom, i); + mpf_div (term, num, denom); + mpf_add (xp, xp, term); + } + + /* Reconstruction step */ + n = (long) mpf_get_d (power); + + if (n > 0) + { + p = (unsigned int) n; + mpf_mul_2exp (*result, xp, p); + } + else + { + mp = (unsigned int) (-n); + mpf_div_2exp (*result, xp, mp); + } + + mpf_clear (two); + mpf_clear (ln2); + mpf_clear (q); + mpf_clear (r); + mpf_clear (power); + mpf_clear (num); + mpf_clear (denom); + mpf_clear (term); + mpf_clear (xp); + } + + mpf_clear (x); +} + + +/* Calculate sin(arg). + + We use a reduction of the form + + x= N*2pi + r + + Then we obtain sin(r) from the McLaurin series. */ + +void +sine (mpf_t * arg, mpf_t * result) +{ + mpf_t factor, q, r, num, denom, term, x, xp; + int i, sign; + + mpf_init_set (x, *arg); + + /* Special case (we do not treat multiples of pi due to roundoff issues) */ + if (mpf_cmp_ui (x, 0) == 0) + { + mpf_set_ui (*result, 0); + } + else + { + mpf_init (q); + mpf_init (r); + mpf_init (factor); + mpf_init (term); + + mpf_div (q, x, two_pi); + mpf_floor (factor, q); + mpf_mul (q, factor, two_pi); + mpf_sub (r, x, q); + + mpf_init_set_ui (xp, 0); + mpf_init_set_ui (num, 1); + mpf_init_set_ui (denom, 1); + + sign = -1; + for (i = 1; i < GFC_REAL_BITS + 10; i++) + { + mpf_mul (num, num, r); + mpf_mul_ui (denom, denom, i); + if (i % 2 == 0) + continue; + + sign = -sign; + mpf_div (term, num, denom); + if (sign > 0) + mpf_add (xp, xp, term); + else + mpf_sub (xp, xp, term); + } + + mpf_set (*result, xp); + + mpf_clear (q); + mpf_clear (r); + mpf_clear (factor); + mpf_clear (num); + mpf_clear (denom); + mpf_clear (term); + mpf_clear (xp); + } + + mpf_clear (x); +} + + +/* Calculate cos(arg). + + Similar to sine. */ + +void +cosine (mpf_t * arg, mpf_t * result) +{ + mpf_t factor, q, r, num, denom, term, x, xp; + int i, sign; + + mpf_init_set (x, *arg); + + /* Special case (we do not treat multiples of pi due to roundoff issues) */ + if (mpf_cmp_ui (x, 0) == 0) + { + mpf_set_ui (*result, 1); + } + else + { + mpf_init (q); + mpf_init (r); + mpf_init (factor); + mpf_init (term); + + mpf_div (q, x, two_pi); + mpf_floor (factor, q); + mpf_mul (q, factor, two_pi); + mpf_sub (r, x, q); + + mpf_init_set_ui (xp, 1); + mpf_init_set_ui (num, 1); + mpf_init_set_ui (denom, 1); + + sign = 1; + for (i = 1; i < GFC_REAL_BITS + 10; i++) + { + mpf_mul (num, num, r); + mpf_mul_ui (denom, denom, i); + if (i % 2 != 0) + continue; + + sign = -sign; + mpf_div (term, num, denom); + if (sign > 0) + mpf_add (xp, xp, term); + else + mpf_sub (xp, xp, term); + } + mpf_set (*result, xp); + + mpf_clear (q); + mpf_clear (r); + mpf_clear (factor); + mpf_clear (num); + mpf_clear (denom); + mpf_clear (term); + mpf_clear (xp); + } + + mpf_clear (x); +} + + +/* Calculate atan(arg). + + Similar to sine but requires special handling for x near 1. */ + +void +arctangent (mpf_t * arg, mpf_t * result) +{ + mpf_t absval, convgu, convgl, num, term, x, xp; + int i, sign; + + mpf_init_set (x, *arg); + + /* Special cases */ + if (mpf_cmp_ui (x, 0) == 0) + { + mpf_set_ui (*result, 0); + } + else if (mpf_cmp_ui (x, 1) == 0) + { + mpf_init (num); + mpf_div_ui (num, half_pi, 2); + mpf_set (*result, num); + mpf_clear (num); + } + else if (mpf_cmp_si (x, -1) == 0) + { + mpf_init (num); + mpf_div_ui (num, half_pi, 2); + mpf_neg (*result, num); + mpf_clear (num); + } + else + { /* General cases */ + + mpf_init (absval); + mpf_abs (absval, x); + + mpf_init_set_d (convgu, 1.5); + mpf_init_set_d (convgl, 0.5); + mpf_init_set_ui (num, 1); + mpf_init (term); + + if (mpf_cmp (absval, convgl) < 0) + { + mpf_init_set_ui (xp, 0); + sign = -1; + for (i = 1; i < GFC_REAL_BITS + 10; i++) + { + mpf_mul (num, num, absval); + if (i % 2 == 0) + continue; + + sign = -sign; + mpf_div_ui (term, num, i); + if (sign > 0) + mpf_add (xp, xp, term); + else + mpf_sub (xp, xp, term); + } + } + else if (mpf_cmp (absval, convgu) >= 0) + { + mpf_init_set (xp, half_pi); + sign = 1; + for (i = 1; i < GFC_REAL_BITS + 10; i++) + { + mpf_div (num, num, absval); + if (i % 2 == 0) + continue; + + sign = -sign; + mpf_div_ui (term, num, i); + if (sign > 0) + mpf_add (xp, xp, term); + else + mpf_sub (xp, xp, term); + } + } + else + { + mpf_init_set_ui (xp, 0); + + mpf_sub_ui (num, absval, 1); + mpf_add_ui (term, absval, 1); + mpf_div (absval, num, term); + + mpf_set_ui (num, 1); + + sign = -1; + for (i = 1; i < GFC_REAL_BITS + 10; i++) + { + mpf_mul (num, num, absval); + if (i % 2 == 0) + continue; + sign = -sign; + mpf_div_ui (term, num, i); + if (sign > 0) + mpf_add (xp, xp, term); + else + mpf_sub (xp, xp, term); + } + + mpf_div_ui (term, half_pi, 2); + mpf_add (xp, term, xp); + } + + /* This makes sure to preserve the identity arctan(-x) = -arctan(x) + and improves accuracy to boot. */ + + if (mpf_cmp_ui (x, 0) > 0) + mpf_set (*result, xp); + else + mpf_neg (*result, xp); + + mpf_clear (absval); + mpf_clear (convgl); + mpf_clear (convgu); + mpf_clear (num); + mpf_clear (term); + mpf_clear (xp); + } + mpf_clear (x); +} + + +/* Calculate atan2 (y, x) + +atan2(y, x) = atan(y/x) if x > 0, + sign(y)*(pi - atan(|y/x|)) if x < 0, + 0 if x = 0 && y == 0, + sign(y)*pi/2 if x = 0 && y != 0. +*/ + +void +arctangent2 (mpf_t * y, mpf_t * x, mpf_t * result) +{ + mpf_t t; + + mpf_init (t); + + switch (mpf_sgn (*x)) + { + case 1: + mpf_div (t, *y, *x); + arctangent (&t, result); + break; + case -1: + mpf_div (t, *y, *x); + mpf_abs (t, t); + arctangent (&t, &t); + mpf_sub (*result, pi, t); + if (mpf_sgn (*y) == -1) + mpf_neg (*result, *result); + break; + case 0: + if (mpf_sgn (*y) == 0) + mpf_set_ui (*result, 0); + else + { + mpf_set (*result, half_pi); + if (mpf_sgn (*y) == -1) + mpf_neg (*result, *result); + } + break; + } + mpf_clear (t); +} + +/* Calculate cosh(arg). */ + +void +hypercos (mpf_t * arg, mpf_t * result) +{ + mpf_t neg, term1, term2, x, xp; + + mpf_init_set (x, *arg); + + mpf_init (neg); + mpf_init (term1); + mpf_init (term2); + mpf_init (xp); + + mpf_neg (neg, x); + + exponential (&x, &term1); + exponential (&neg, &term2); + + mpf_add (xp, term1, term2); + mpf_div_ui (*result, xp, 2); + + mpf_clear (neg); + mpf_clear (term1); + mpf_clear (term2); + mpf_clear (x); + mpf_clear (xp); +} + + +/* Calculate sinh(arg). */ + +void +hypersine (mpf_t * arg, mpf_t * result) +{ + mpf_t neg, term1, term2, x, xp; + + mpf_init_set (x, *arg); + + mpf_init (neg); + mpf_init (term1); + mpf_init (term2); + mpf_init (xp); + + mpf_neg (neg, x); + + exponential (&x, &term1); + exponential (&neg, &term2); + + mpf_sub (xp, term1, term2); + mpf_div_ui (*result, xp, 2); + + mpf_clear (neg); + mpf_clear (term1); + mpf_clear (term2); + mpf_clear (x); + mpf_clear (xp); +} + + +/* Given an arithmetic error code, return a pointer to a string that + explains the error. */ + +static const char * +gfc_arith_error (arith code) +{ + const char *p; + + switch (code) + { + case ARITH_OK: + p = "Arithmetic OK"; + break; + case ARITH_OVERFLOW: + p = "Arithmetic overflow"; + break; + case ARITH_UNDERFLOW: + p = "Arithmetic underflow"; + break; + case ARITH_DIV0: + p = "Division by zero"; + break; + case ARITH_0TO0: + p = "Indeterminate form 0 ** 0"; + break; + case ARITH_INCOMMENSURATE: + p = "Array operands are incommensurate"; + break; + default: + gfc_internal_error ("gfc_arith_error(): Bad error code"); + } + + return p; +} + + +/* Get things ready to do math. */ + +void +gfc_arith_init_1 (void) +{ + gfc_integer_info *int_info; + gfc_real_info *real_info; + mpf_t a, b; + mpz_t r; + int i, n, limit; + + /* Set the default precision for GMP computations. */ + mpf_set_default_prec (GFC_REAL_BITS + 30); + + /* Calculate e, needed by the natural_logarithm() subroutine. */ + mpf_init (b); + mpf_init_set_ui (e, 0); + mpf_init_set_ui (a, 1); + + for (i = 1; i < 100; i++) + { + mpf_add (e, e, a); + mpf_div_ui (a, a, i); /* 1/(i!) */ + } + + /* Calculate pi, 2pi, pi/2, and -pi/2, needed for trigonometric + functions. + + We use the Bailey, Borwein and Plouffe formula: + + pi = \sum{n=0}^\infty (1/16)^n [4/(8n+1) - 2/(8n+4) - 1/(8n+5) - 1/(8n+6)] + + which gives about four bits per iteration. */ + + mpf_init_set_ui (pi, 0); + + mpf_init (two_pi); + mpf_init (half_pi); + + limit = (GFC_REAL_BITS / 4) + 10; /* (1/16)^n gives 4 bits per iteration */ + + for (n = 0; n < limit; n++) + { + mpf_set_ui (b, 4); + mpf_div_ui (b, b, 8 * n + 1); /* 4/(8n+1) */ + + mpf_set_ui (a, 2); + mpf_div_ui (a, a, 8 * n + 4); /* 2/(8n+4) */ + mpf_sub (b, b, a); + + mpf_set_ui (a, 1); + mpf_div_ui (a, a, 8 * n + 5); /* 1/(8n+5) */ + mpf_sub (b, b, a); + + mpf_set_ui (a, 1); + mpf_div_ui (a, a, 8 * n + 6); /* 1/(8n+6) */ + mpf_sub (b, b, a); + + mpf_set_ui (a, 16); + mpf_pow_ui (a, a, n); /* 16^n */ + + mpf_div (b, b, a); + + mpf_add (pi, pi, b); + } + + mpf_mul_ui (two_pi, pi, 2); + mpf_div_ui (half_pi, pi, 2); + + /* Convert the minimum/maximum values for each kind into their + GNU MP representation. */ + mpz_init (r); + + for (int_info = gfc_integer_kinds; int_info->kind != 0; int_info++) + { + /* Huge */ + mpz_set_ui (r, int_info->radix); + mpz_pow_ui (r, r, int_info->digits); + + mpz_init (int_info->huge); + mpz_sub_ui (int_info->huge, r, 1); + + /* These are the numbers that are actually representable by the + target. For bases other than two, this needs to be changed. */ + if (int_info->radix != 2) + gfc_internal_error ("Fix min_int, max_int calculation"); + + mpz_init (int_info->min_int); + mpz_neg (int_info->min_int, int_info->huge); + /* No -1 here, because the representation is symmetric. */ + + mpz_init (int_info->max_int); + mpz_add (int_info->max_int, int_info->huge, int_info->huge); + mpz_add_ui (int_info->max_int, int_info->max_int, 1); + + /* Range */ + mpf_set_z (a, int_info->huge); + common_logarithm (&a, &a); + mpf_trunc (a, a); + mpz_set_f (r, a); + int_info->range = mpz_get_si (r); + } + + /* mpf_set_default_prec(GFC_REAL_BITS); */ + for (real_info = gfc_real_kinds; real_info->kind != 0; real_info++) + { + /* Huge */ + mpf_set_ui (a, real_info->radix); + mpf_set_ui (b, real_info->radix); + + mpf_pow_ui (a, a, real_info->max_exponent); + mpf_pow_ui (b, b, real_info->max_exponent - real_info->digits); + + mpf_init (real_info->huge); + mpf_sub (real_info->huge, a, b); + + /* Tiny */ + mpf_set_ui (b, real_info->radix); + mpf_pow_ui (b, b, 1 - real_info->min_exponent); + + mpf_init (real_info->tiny); + mpf_ui_div (real_info->tiny, 1, b); + + /* Epsilon */ + mpf_set_ui (b, real_info->radix); + mpf_pow_ui (b, b, real_info->digits - 1); + + mpf_init (real_info->epsilon); + mpf_ui_div (real_info->epsilon, 1, b); + + /* Range */ + common_logarithm (&real_info->huge, &a); + common_logarithm (&real_info->tiny, &b); + mpf_neg (b, b); + + if (mpf_cmp (a, b) > 0) + mpf_set (a, b); /* a = min(a, b) */ + + mpf_trunc (a, a); + mpz_set_f (r, a); + real_info->range = mpz_get_si (r); + + /* Precision */ + mpf_set_ui (a, real_info->radix); + common_logarithm (&a, &a); + + mpf_mul_ui (a, a, real_info->digits - 1); + mpf_trunc (a, a); + mpz_set_f (r, a); + real_info->precision = mpz_get_si (r); + + /* If the radix is an integral power of 10, add one to the + precision. */ + for (i = 10; i <= real_info->radix; i *= 10) + if (i == real_info->radix) + real_info->precision++; + } + + mpz_clear (r); + mpf_clear (a); + mpf_clear (b); +} + + +/* Clean up, get rid of numeric constants. */ + +void +gfc_arith_done_1 (void) +{ + gfc_integer_info *ip; + gfc_real_info *rp; + + mpf_clear (e); + + mpf_clear (pi); + mpf_clear (half_pi); + mpf_clear (two_pi); + + for (ip = gfc_integer_kinds; ip->kind; ip++) + { + mpz_clear (ip->min_int); + mpz_clear (ip->max_int); + mpz_clear (ip->huge); + } + + for (rp = gfc_real_kinds; rp->kind; rp++) + { + mpf_clear (rp->epsilon); + mpf_clear (rp->huge); + mpf_clear (rp->tiny); + } +} + + +/* Return default kinds. */ + +int +gfc_default_integer_kind (void) +{ + return gfc_integer_kinds[gfc_option.i8 ? 1 : 0].kind; +} + +int +gfc_default_real_kind (void) +{ + return gfc_real_kinds[gfc_option.r8 ? 1 : 0].kind; +} + +int +gfc_default_double_kind (void) +{ + return gfc_real_kinds[1].kind; +} + +int +gfc_default_character_kind (void) +{ + return 1; +} + +int +gfc_default_logical_kind (void) +{ + return gfc_logical_kinds[gfc_option.i8 ? 1 : 0].kind; +} + +int +gfc_default_complex_kind (void) +{ + return gfc_default_real_kind (); +} + + +/* Make sure that a valid kind is present. Returns an index into the + gfc_integer_kinds array, -1 if the kind is not present. */ + +static int +validate_integer (int kind) +{ + int i; + + for (i = 0;; i++) + { + if (gfc_integer_kinds[i].kind == 0) + { + i = -1; + break; + } + if (gfc_integer_kinds[i].kind == kind) + break; + } + + return i; +} + + +static int +validate_real (int kind) +{ + int i; + + for (i = 0;; i++) + { + if (gfc_real_kinds[i].kind == 0) + { + i = -1; + break; + } + if (gfc_real_kinds[i].kind == kind) + break; + } + + return i; +} + + +static int +validate_logical (int kind) +{ + int i; + + for (i = 0;; i++) + { + if (gfc_logical_kinds[i].kind == 0) + { + i = -1; + break; + } + if (gfc_logical_kinds[i].kind == kind) + break; + } + + return i; +} + + +static int +validate_character (int kind) +{ + + if (kind == gfc_default_character_kind ()) + return 0; + return -1; +} + + +/* Validate a kind given a basic type. The return value is the same + for the child functions, with -1 indicating nonexistence of the + type. */ + +int +gfc_validate_kind (bt type, int kind) +{ + int rc; + + switch (type) + { + case BT_REAL: /* Fall through */ + case BT_COMPLEX: + rc = validate_real (kind); + break; + case BT_INTEGER: + rc = validate_integer (kind); + break; + case BT_LOGICAL: + rc = validate_logical (kind); + break; + case BT_CHARACTER: + rc = validate_character (kind); + break; + + default: + gfc_internal_error ("gfc_validate_kind(): Got bad type"); + } + + return rc; +} + + +/* Given an integer and a kind, make sure that the integer lies within + the range of the kind. Returns ARITH_OK or ARITH_OVERFLOW. */ + +static arith +gfc_check_integer_range (mpz_t p, int kind) +{ + arith result; + int i; + + i = validate_integer (kind); + if (i == -1) + gfc_internal_error ("gfc_check_integer_range(): Bad kind"); + + result = ARITH_OK; + + if (mpz_cmp (p, gfc_integer_kinds[i].min_int) < 0 + || mpz_cmp (p, gfc_integer_kinds[i].max_int) > 0) + result = ARITH_OVERFLOW; + + return result; +} + + +/* Given a real and a kind, make sure that the real lies within the + range of the kind. Returns ARITH_OK, ARITH_OVERFLOW or + ARITH_UNDERFLOW. */ + +static arith +gfc_check_real_range (mpf_t p, int kind) +{ + arith retval; + mpf_t q; + int i; + + mpf_init (q); + mpf_abs (q, p); + + i = validate_real (kind); + if (i == -1) + gfc_internal_error ("gfc_check_real_range(): Bad kind"); + + retval = ARITH_OK; + if (mpf_sgn (q) == 0) + goto done; + + if (mpf_cmp (q, gfc_real_kinds[i].huge) == 1) + { + retval = ARITH_OVERFLOW; + goto done; + } + + if (mpf_cmp (q, gfc_real_kinds[i].tiny) == -1) + retval = ARITH_UNDERFLOW; + +done: + mpf_clear (q); + + return retval; +} + + +/* Function to return a constant expression node of a given type and + kind. */ + +gfc_expr * +gfc_constant_result (bt type, int kind, locus * where) +{ + gfc_expr *result; + + if (!where) + gfc_internal_error + ("gfc_constant_result(): locus 'where' cannot be NULL"); + + result = gfc_get_expr (); + + result->expr_type = EXPR_CONSTANT; + result->ts.type = type; + result->ts.kind = kind; + result->where = *where; + + switch (type) + { + case BT_INTEGER: + mpz_init (result->value.integer); + break; + + case BT_REAL: + mpf_init (result->value.real); + break; + + case BT_COMPLEX: + mpf_init (result->value.complex.r); + mpf_init (result->value.complex.i); + break; + + default: + break; + } + + return result; +} + + +/* Low-level arithmetic functions. All of these subroutines assume + that all operands are of the same type and return an operand of the + same type. The other thing about these subroutines is that they + can fail in various ways -- overflow, underflow, division by zero, + zero raised to the zero, etc. */ + +static arith +gfc_arith_not (gfc_expr * op1, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, op1->ts.kind, &op1->where); + result->value.logical = !op1->value.logical; + *resultp = result; + + return ARITH_OK; +} + + +static arith +gfc_arith_and (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2), + &op1->where); + result->value.logical = op1->value.logical && op2->value.logical; + *resultp = result; + + return ARITH_OK; +} + + +static arith +gfc_arith_or (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2), + &op1->where); + result->value.logical = op1->value.logical || op2->value.logical; + *resultp = result; + + return ARITH_OK; +} + + +static arith +gfc_arith_eqv (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2), + &op1->where); + result->value.logical = op1->value.logical == op2->value.logical; + *resultp = result; + + return ARITH_OK; +} + + +static arith +gfc_arith_neqv (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_kind_max (op1, op2), + &op1->where); + result->value.logical = op1->value.logical != op2->value.logical; + *resultp = result; + + return ARITH_OK; +} + + +/* Make sure a constant numeric expression is within the range for + it's type and kind. Note that there's also a gfc_check_range(), + but that one deals with the intrinsic RANGE function. */ + +arith +gfc_range_check (gfc_expr * e) +{ + arith rc; + + switch (e->ts.type) + { + case BT_INTEGER: + rc = gfc_check_integer_range (e->value.integer, e->ts.kind); + break; + + case BT_REAL: + rc = gfc_check_real_range (e->value.real, e->ts.kind); + break; + + case BT_COMPLEX: + rc = gfc_check_real_range (e->value.complex.r, e->ts.kind); + if (rc != ARITH_OK) + rc = gfc_check_real_range (e->value.complex.i, e->ts.kind); + + break; + + default: + gfc_internal_error ("gfc_range_check(): Bad type"); + } + + return rc; +} + + +/* It may seem silly to have a subroutine that actually computes the + unary plus of a constant, but it prevents us from making exceptions + in the code elsewhere. */ + +static arith +gfc_arith_uplus (gfc_expr * op1, gfc_expr ** resultp) +{ + + *resultp = gfc_copy_expr (op1); + return ARITH_OK; +} + + +static arith +gfc_arith_uminus (gfc_expr * op1, gfc_expr ** resultp) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where); + + switch (op1->ts.type) + { + case BT_INTEGER: + mpz_neg (result->value.integer, op1->value.integer); + break; + + case BT_REAL: + mpf_neg (result->value.real, op1->value.real); + break; + + case BT_COMPLEX: + mpf_neg (result->value.complex.r, op1->value.complex.r); + mpf_neg (result->value.complex.i, op1->value.complex.i); + break; + + default: + gfc_internal_error ("gfc_arith_uminus(): Bad basic type"); + } + + rc = gfc_range_check (result); + + if (rc != ARITH_OK) + gfc_free_expr (result); + else + *resultp = result; + + return rc; +} + + +static arith +gfc_arith_plus (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where); + + switch (op1->ts.type) + { + case BT_INTEGER: + mpz_add (result->value.integer, op1->value.integer, op2->value.integer); + break; + + case BT_REAL: + mpf_add (result->value.real, op1->value.real, op2->value.real); + break; + + case BT_COMPLEX: + mpf_add (result->value.complex.r, op1->value.complex.r, + op2->value.complex.r); + + mpf_add (result->value.complex.i, op1->value.complex.i, + op2->value.complex.i); + break; + + default: + gfc_internal_error ("gfc_arith_plus(): Bad basic type"); + } + + rc = gfc_range_check (result); + + if (rc != ARITH_OK) + gfc_free_expr (result); + else + *resultp = result; + + return rc; +} + + +static arith +gfc_arith_minus (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where); + + switch (op1->ts.type) + { + case BT_INTEGER: + mpz_sub (result->value.integer, op1->value.integer, op2->value.integer); + break; + + case BT_REAL: + mpf_sub (result->value.real, op1->value.real, op2->value.real); + break; + + case BT_COMPLEX: + mpf_sub (result->value.complex.r, op1->value.complex.r, + op2->value.complex.r); + + mpf_sub (result->value.complex.i, op1->value.complex.i, + op2->value.complex.i); + + break; + + default: + gfc_internal_error ("gfc_arith_minus(): Bad basic type"); + } + + rc = gfc_range_check (result); + + if (rc != ARITH_OK) + gfc_free_expr (result); + else + *resultp = result; + + return rc; +} + + +static arith +gfc_arith_times (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + mpf_t x, y; + arith rc; + + result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where); + + switch (op1->ts.type) + { + case BT_INTEGER: + mpz_mul (result->value.integer, op1->value.integer, op2->value.integer); + break; + + case BT_REAL: + mpf_mul (result->value.real, op1->value.real, op2->value.real); + break; + + case BT_COMPLEX: + mpf_init (x); + mpf_init (y); + + mpf_mul (x, op1->value.complex.r, op2->value.complex.r); + mpf_mul (y, op1->value.complex.i, op2->value.complex.i); + mpf_sub (result->value.complex.r, x, y); + + mpf_mul (x, op1->value.complex.r, op2->value.complex.i); + mpf_mul (y, op1->value.complex.i, op2->value.complex.r); + mpf_add (result->value.complex.i, x, y); + + mpf_clear (x); + mpf_clear (y); + + break; + + default: + gfc_internal_error ("gfc_arith_times(): Bad basic type"); + } + + rc = gfc_range_check (result); + + if (rc != ARITH_OK) + gfc_free_expr (result); + else + *resultp = result; + + return rc; +} + + +static arith +gfc_arith_divide (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + mpf_t x, y, div; + arith rc; + + rc = ARITH_OK; + + result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where); + + switch (op1->ts.type) + { + case BT_INTEGER: + if (mpz_sgn (op2->value.integer) == 0) + { + rc = ARITH_DIV0; + break; + } + + mpz_tdiv_q (result->value.integer, op1->value.integer, + op2->value.integer); + break; + + case BT_REAL: + if (mpf_sgn (op2->value.real) == 0) + { + rc = ARITH_DIV0; + break; + } + + mpf_div (result->value.real, op1->value.real, op2->value.real); + break; + + case BT_COMPLEX: + if (mpf_sgn (op2->value.complex.r) == 0 + && mpf_sgn (op2->value.complex.i) == 0) + { + rc = ARITH_DIV0; + break; + } + + mpf_init (x); + mpf_init (y); + mpf_init (div); + + mpf_mul (x, op2->value.complex.r, op2->value.complex.r); + mpf_mul (y, op2->value.complex.i, op2->value.complex.i); + mpf_add (div, x, y); + + mpf_mul (x, op1->value.complex.r, op2->value.complex.r); + mpf_mul (y, op1->value.complex.i, op2->value.complex.i); + mpf_add (result->value.complex.r, x, y); + mpf_div (result->value.complex.r, result->value.complex.r, div); + + mpf_mul (x, op1->value.complex.i, op2->value.complex.r); + mpf_mul (y, op1->value.complex.r, op2->value.complex.i); + mpf_sub (result->value.complex.i, x, y); + mpf_div (result->value.complex.i, result->value.complex.i, div); + + mpf_clear (x); + mpf_clear (y); + mpf_clear (div); + + break; + + default: + gfc_internal_error ("gfc_arith_divide(): Bad basic type"); + } + + if (rc == ARITH_OK) + rc = gfc_range_check (result); + + if (rc != ARITH_OK) + gfc_free_expr (result); + else + *resultp = result; + + return rc; +} + + +/* Compute the reciprocal of a complex number (guaranteed nonzero). */ + +static void +complex_reciprocal (gfc_expr * op) +{ + mpf_t mod, a, result_r, result_i; + + mpf_init (mod); + mpf_init (a); + + mpf_mul (mod, op->value.complex.r, op->value.complex.r); + mpf_mul (a, op->value.complex.i, op->value.complex.i); + mpf_add (mod, mod, a); + + mpf_init (result_r); + mpf_div (result_r, op->value.complex.r, mod); + + mpf_init (result_i); + mpf_neg (result_i, op->value.complex.i); + mpf_div (result_i, result_i, mod); + + mpf_set (op->value.complex.r, result_r); + mpf_set (op->value.complex.i, result_i); + + mpf_clear (result_r); + mpf_clear (result_i); + + mpf_clear (mod); + mpf_clear (a); +} + + +/* Raise a complex number to positive power. */ + +static void +complex_pow_ui (gfc_expr * base, int power, gfc_expr * result) +{ + mpf_t temp_r, temp_i, a; + + mpf_set_ui (result->value.complex.r, 1); + mpf_set_ui (result->value.complex.i, 0); + + mpf_init (temp_r); + mpf_init (temp_i); + mpf_init (a); + + for (; power > 0; power--) + { + mpf_mul (temp_r, base->value.complex.r, result->value.complex.r); + mpf_mul (a, base->value.complex.i, result->value.complex.i); + mpf_sub (temp_r, temp_r, a); + + mpf_mul (temp_i, base->value.complex.r, result->value.complex.i); + mpf_mul (a, base->value.complex.i, result->value.complex.r); + mpf_add (temp_i, temp_i, a); + + mpf_set (result->value.complex.r, temp_r); + mpf_set (result->value.complex.i, temp_i); + } + + mpf_clear (temp_r); + mpf_clear (temp_i); + mpf_clear (a); +} + + +/* Raise a number to an integer power. */ + +static arith +gfc_arith_power (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + int power, apower; + gfc_expr *result; + mpz_t unity_z; + mpf_t unity_f; + arith rc; + + rc = ARITH_OK; + + if (gfc_extract_int (op2, &power) != NULL) + gfc_internal_error ("gfc_arith_power(): Bad exponent"); + + result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where); + + if (power == 0) + { /* Handle something to the zeroth power */ + switch (op1->ts.type) + { + case BT_INTEGER: + if (mpz_sgn (op1->value.integer) == 0) + rc = ARITH_0TO0; + else + mpz_set_ui (result->value.integer, 1); + + break; + + case BT_REAL: + if (mpf_sgn (op1->value.real) == 0) + rc = ARITH_0TO0; + else + mpf_set_ui (result->value.real, 1); + + break; + + case BT_COMPLEX: + if (mpf_sgn (op1->value.complex.r) == 0 + && mpf_sgn (op1->value.complex.i) == 0) + rc = ARITH_0TO0; + else + { + mpf_set_ui (result->value.complex.r, 1); + mpf_set_ui (result->value.complex.r, 0); + } + + break; + + default: + gfc_internal_error ("gfc_arith_power(): Bad base"); + } + } + + if (power != 0) + { + apower = power; + if (power < 0) + apower = -power; + + switch (op1->ts.type) + { + case BT_INTEGER: + mpz_pow_ui (result->value.integer, op1->value.integer, apower); + + if (power < 0) + { + mpz_init_set_ui (unity_z, 1); + mpz_tdiv_q (result->value.integer, unity_z, + result->value.integer); + mpz_clear (unity_z); + } + + break; + + case BT_REAL: + mpf_pow_ui (result->value.real, op1->value.real, apower); + + if (power < 0) + { + mpf_init_set_ui (unity_f, 1); + mpf_div (result->value.real, unity_f, result->value.real); + mpf_clear (unity_f); + } + + break; + + case BT_COMPLEX: + complex_pow_ui (op1, apower, result); + if (power < 0) + complex_reciprocal (result); + + break; + + default: + break; + } + } + + if (rc == ARITH_OK) + rc = gfc_range_check (result); + + if (rc != ARITH_OK) + gfc_free_expr (result); + else + *resultp = result; + + return rc; +} + + +/* Concatenate two string constants. */ + +static arith +gfc_arith_concat (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + int len; + + result = gfc_constant_result (BT_CHARACTER, gfc_default_character_kind (), + &op1->where); + + len = op1->value.character.length + op2->value.character.length; + + result->value.character.string = gfc_getmem (len + 1); + result->value.character.length = len; + + memcpy (result->value.character.string, op1->value.character.string, + op1->value.character.length); + + memcpy (result->value.character.string + op1->value.character.length, + op2->value.character.string, op2->value.character.length); + + result->value.character.string[len] = '\0'; + + *resultp = result; + + return ARITH_OK; +} + + +/* Comparison operators. Assumes that the two expression nodes + contain two constants of the same type. */ + +int +gfc_compare_expr (gfc_expr * op1, gfc_expr * op2) +{ + int rc; + + switch (op1->ts.type) + { + case BT_INTEGER: + rc = mpz_cmp (op1->value.integer, op2->value.integer); + break; + + case BT_REAL: + rc = mpf_cmp (op1->value.real, op2->value.real); + break; + + case BT_CHARACTER: + rc = gfc_compare_string (op1, op2, NULL); + break; + + case BT_LOGICAL: + rc = ((!op1->value.logical && op2->value.logical) + || (op1->value.logical && !op2->value.logical)); + break; + + default: + gfc_internal_error ("gfc_compare_expr(): Bad basic type"); + } + + return rc; +} + + +/* Compare a pair of complex numbers. Naturally, this is only for + equality/nonequality. */ + +static int +compare_complex (gfc_expr * op1, gfc_expr * op2) +{ + + return (mpf_cmp (op1->value.complex.r, op2->value.complex.r) == 0 + && mpf_cmp (op1->value.complex.i, op2->value.complex.i) == 0); +} + + +/* Given two constant strings and the inverse collating sequence, + compare the strings. We return -1 for a<b, 0 for a==b and 1 for + a>b. If the xcoll_table is NULL, we use the processor's default + collating sequence. */ + +int +gfc_compare_string (gfc_expr * a, gfc_expr * b, const int *xcoll_table) +{ + int len, alen, blen, i, ac, bc; + + alen = a->value.character.length; + blen = b->value.character.length; + + len = (alen > blen) ? alen : blen; + + for (i = 0; i < len; i++) + { + ac = (i < alen) ? a->value.character.string[i] : ' '; + bc = (i < blen) ? b->value.character.string[i] : ' '; + + if (xcoll_table != NULL) + { + ac = xcoll_table[ac]; + bc = xcoll_table[bc]; + } + + if (ac < bc) + return -1; + if (ac > bc) + return 1; + } + + /* Strings are equal */ + + return 0; +} + + +/* Specific comparison subroutines. */ + +static arith +gfc_arith_eq (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind (), + &op1->where); + result->value.logical = (op1->ts.type == BT_COMPLEX) ? + compare_complex (op1, op2) : (gfc_compare_expr (op1, op2) == 0); + + *resultp = result; + return ARITH_OK; +} + + +static arith +gfc_arith_ne (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind (), + &op1->where); + result->value.logical = (op1->ts.type == BT_COMPLEX) ? + !compare_complex (op1, op2) : (gfc_compare_expr (op1, op2) != 0); + + *resultp = result; + return ARITH_OK; +} + + +static arith +gfc_arith_gt (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind (), + &op1->where); + result->value.logical = (gfc_compare_expr (op1, op2) > 0); + *resultp = result; + + return ARITH_OK; +} + + +static arith +gfc_arith_ge (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind (), + &op1->where); + result->value.logical = (gfc_compare_expr (op1, op2) >= 0); + *resultp = result; + + return ARITH_OK; +} + + +static arith +gfc_arith_lt (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind (), + &op1->where); + result->value.logical = (gfc_compare_expr (op1, op2) < 0); + *resultp = result; + + return ARITH_OK; +} + + +static arith +gfc_arith_le (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, gfc_default_logical_kind (), + &op1->where); + result->value.logical = (gfc_compare_expr (op1, op2) <= 0); + *resultp = result; + + return ARITH_OK; +} + + +static arith +reduce_unary (arith (*eval) (gfc_expr *, gfc_expr **), gfc_expr * op, + gfc_expr ** result) +{ + gfc_constructor *c, *head; + gfc_expr *r; + arith rc; + + if (op->expr_type == EXPR_CONSTANT) + return eval (op, result); + + rc = ARITH_OK; + head = gfc_copy_constructor (op->value.constructor); + + for (c = head; c; c = c->next) + { + rc = eval (c->expr, &r); + if (rc != ARITH_OK) + break; + + gfc_replace_expr (c->expr, r); + } + + if (rc != ARITH_OK) + gfc_free_constructor (head); + else + { + r = gfc_get_expr (); + r->expr_type = EXPR_ARRAY; + r->value.constructor = head; + r->shape = gfc_copy_shape (op->shape, op->rank); + + r->ts = head->expr->ts; + r->where = op->where; + r->rank = op->rank; + + *result = r; + } + + return rc; +} + + +static arith +reduce_binary_ac (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), + gfc_expr * op1, gfc_expr * op2, + gfc_expr ** result) +{ + gfc_constructor *c, *head; + gfc_expr *r; + arith rc; + + head = gfc_copy_constructor (op1->value.constructor); + rc = ARITH_OK; + + for (c = head; c; c = c->next) + { + rc = eval (c->expr, op2, &r); + if (rc != ARITH_OK) + break; + + gfc_replace_expr (c->expr, r); + } + + if (rc != ARITH_OK) + gfc_free_constructor (head); + else + { + r = gfc_get_expr (); + r->expr_type = EXPR_ARRAY; + r->value.constructor = head; + r->shape = gfc_copy_shape (op1->shape, op1->rank); + + r->ts = head->expr->ts; + r->where = op1->where; + r->rank = op1->rank; + + *result = r; + } + + return rc; +} + + +static arith +reduce_binary_ca (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), + gfc_expr * op1, gfc_expr * op2, + gfc_expr ** result) +{ + gfc_constructor *c, *head; + gfc_expr *r; + arith rc; + + head = gfc_copy_constructor (op2->value.constructor); + rc = ARITH_OK; + + for (c = head; c; c = c->next) + { + rc = eval (op1, c->expr, &r); + if (rc != ARITH_OK) + break; + + gfc_replace_expr (c->expr, r); + } + + if (rc != ARITH_OK) + gfc_free_constructor (head); + else + { + r = gfc_get_expr (); + r->expr_type = EXPR_ARRAY; + r->value.constructor = head; + r->shape = gfc_copy_shape (op2->shape, op2->rank); + + r->ts = head->expr->ts; + r->where = op2->where; + r->rank = op2->rank; + + *result = r; + } + + return rc; +} + + +static arith +reduce_binary_aa (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), + gfc_expr * op1, gfc_expr * op2, + gfc_expr ** result) +{ + gfc_constructor *c, *d, *head; + gfc_expr *r; + arith rc; + + head = gfc_copy_constructor (op1->value.constructor); + + rc = ARITH_OK; + d = op2->value.constructor; + + if (gfc_check_conformance ("Elemental binary operation", op1, op2) + != SUCCESS) + rc = ARITH_INCOMMENSURATE; + else + { + + for (c = head; c; c = c->next, d = d->next) + { + if (d == NULL) + { + rc = ARITH_INCOMMENSURATE; + break; + } + + rc = eval (c->expr, d->expr, &r); + if (rc != ARITH_OK) + break; + + gfc_replace_expr (c->expr, r); + } + + if (d != NULL) + rc = ARITH_INCOMMENSURATE; + } + + if (rc != ARITH_OK) + gfc_free_constructor (head); + else + { + r = gfc_get_expr (); + r->expr_type = EXPR_ARRAY; + r->value.constructor = head; + r->shape = gfc_copy_shape (op1->shape, op1->rank); + + r->ts = head->expr->ts; + r->where = op1->where; + r->rank = op1->rank; + + *result = r; + } + + return rc; +} + + +static arith +reduce_binary (arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), + gfc_expr * op1, gfc_expr * op2, + gfc_expr ** result) +{ + + if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_CONSTANT) + return eval (op1, op2, result); + + if (op1->expr_type == EXPR_CONSTANT && op2->expr_type == EXPR_ARRAY) + return reduce_binary_ca (eval, op1, op2, result); + + if (op1->expr_type == EXPR_ARRAY && op2->expr_type == EXPR_CONSTANT) + return reduce_binary_ac (eval, op1, op2, result); + + return reduce_binary_aa (eval, op1, op2, result); +} + + +typedef union +{ + arith (*f2)(gfc_expr *, gfc_expr **); + arith (*f3)(gfc_expr *, gfc_expr *, gfc_expr **); +} +eval_f; + +/* High level arithmetic subroutines. These subroutines go into + eval_intrinsic(), which can do one of several things to its + operands. If the operands are incompatible with the intrinsic + operation, we return a node pointing to the operands and hope that + an operator interface is found during resolution. + + If the operands are compatible and are constants, then we try doing + the arithmetic. We also handle the cases where either or both + operands are array constructors. */ + +static gfc_expr * +eval_intrinsic (gfc_intrinsic_op operator, + eval_f eval, gfc_expr * op1, gfc_expr * op2) +{ + gfc_expr temp, *result; + int unary; + arith rc; + + gfc_clear_ts (&temp.ts); + + switch (operator) + { + case INTRINSIC_NOT: /* Logical unary */ + if (op1->ts.type != BT_LOGICAL) + goto runtime; + + temp.ts.type = BT_LOGICAL; + temp.ts.kind = gfc_default_logical_kind (); + + unary = 1; + break; + + /* Logical binary operators */ + case INTRINSIC_OR: + case INTRINSIC_AND: + case INTRINSIC_NEQV: + case INTRINSIC_EQV: + if (op1->ts.type != BT_LOGICAL || op2->ts.type != BT_LOGICAL) + goto runtime; + + temp.ts.type = BT_LOGICAL; + temp.ts.kind = gfc_default_logical_kind (); + + unary = 0; + break; + + case INTRINSIC_UPLUS: + case INTRINSIC_UMINUS: /* Numeric unary */ + if (!gfc_numeric_ts (&op1->ts)) + goto runtime; + + temp.ts = op1->ts; + + unary = 1; + break; + + case INTRINSIC_GE: + case INTRINSIC_LT: /* Additional restrictions */ + case INTRINSIC_LE: /* for ordering relations. */ + case INTRINSIC_GT: + if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX) + { + temp.ts.type = BT_LOGICAL; + temp.ts.kind = gfc_default_logical_kind(); + goto runtime; + } + + /* else fall through */ + + case INTRINSIC_EQ: + case INTRINSIC_NE: + if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER) + { + unary = 0; + temp.ts.type = BT_LOGICAL; + temp.ts.kind = gfc_default_logical_kind(); + break; + } + + /* else fall through */ + + case INTRINSIC_PLUS: + case INTRINSIC_MINUS: + case INTRINSIC_TIMES: + case INTRINSIC_DIVIDE: + case INTRINSIC_POWER: /* Numeric binary */ + if (!gfc_numeric_ts (&op1->ts) || !gfc_numeric_ts (&op2->ts)) + goto runtime; + + /* Insert any necessary type conversions to make the operands compatible. */ + + temp.expr_type = EXPR_OP; + gfc_clear_ts (&temp.ts); + temp.operator = operator; + + temp.op1 = op1; + temp.op2 = op2; + + gfc_type_convert_binary (&temp); + + if (operator == INTRINSIC_EQ || operator == INTRINSIC_NE + || operator == INTRINSIC_GE || operator == INTRINSIC_GT + || operator == INTRINSIC_LE || operator == INTRINSIC_LT) + { + temp.ts.type = BT_LOGICAL; + temp.ts.kind = gfc_default_logical_kind (); + } + + unary = 0; + break; + + case INTRINSIC_CONCAT: /* Character binary */ + if (op1->ts.type != BT_CHARACTER || op2->ts.type != BT_CHARACTER) + goto runtime; + + temp.ts.type = BT_CHARACTER; + temp.ts.kind = gfc_default_character_kind (); + + unary = 0; + break; + + case INTRINSIC_USER: + goto runtime; + + default: + gfc_internal_error ("eval_intrinsic(): Bad operator"); + } + + /* Try to combine the operators. */ + if (operator == INTRINSIC_POWER && op2->ts.type != BT_INTEGER) + goto runtime; + + if (op1->expr_type != EXPR_CONSTANT + && (op1->expr_type != EXPR_ARRAY + || !gfc_is_constant_expr (op1) + || !gfc_expanded_ac (op1))) + goto runtime; + + if (op2 != NULL + && op2->expr_type != EXPR_CONSTANT + && (op2->expr_type != EXPR_ARRAY + || !gfc_is_constant_expr (op2) + || !gfc_expanded_ac (op2))) + goto runtime; + + if (unary) + rc = reduce_unary (eval.f2, op1, &result); + else + rc = reduce_binary (eval.f3, op1, op2, &result); + + if (rc != ARITH_OK) + { /* Something went wrong */ + gfc_error ("%s at %L", gfc_arith_error (rc), &op1->where); + return NULL; + } + + gfc_free_expr (op1); + gfc_free_expr (op2); + return result; + +runtime: + /* Create a run-time expression */ + result = gfc_get_expr (); + result->ts = temp.ts; + + result->expr_type = EXPR_OP; + result->operator = operator; + + result->op1 = op1; + result->op2 = op2; + + result->where = op1->where; + + return result; +} + + +/* Modify type of expression for zero size array. */ +static gfc_expr * +eval_type_intrinsic0 (gfc_intrinsic_op operator, gfc_expr *op) +{ + if (op == NULL) + gfc_internal_error("eval_type_intrinsic0(): op NULL"); + + switch(operator) + { + case INTRINSIC_GE: + case INTRINSIC_LT: + case INTRINSIC_LE: + case INTRINSIC_GT: + case INTRINSIC_EQ: + case INTRINSIC_NE: + op->ts.type = BT_LOGICAL; + op->ts.kind = gfc_default_logical_kind(); + break; + + default: + break; + } + + return op; +} + + +/* Return nonzero if the expression is a zero size array. */ + +static int +gfc_zero_size_array (gfc_expr * e) +{ + + if (e->expr_type != EXPR_ARRAY) + return 0; + + return e->value.constructor == NULL; +} + + +/* Reduce a binary expression where at least one of the operands + involves a zero-length array. Returns NULL if neither of the + operands is a zero-length array. */ + +static gfc_expr * +reduce_binary0 (gfc_expr * op1, gfc_expr * op2) +{ + + if (gfc_zero_size_array (op1)) + { + gfc_free_expr (op2); + return op1; + } + + if (gfc_zero_size_array (op2)) + { + gfc_free_expr (op1); + return op2; + } + + return NULL; +} + + +static gfc_expr * +eval_intrinsic_f2 (gfc_intrinsic_op operator, + arith (*eval) (gfc_expr *, gfc_expr **), + gfc_expr * op1, gfc_expr * op2) +{ + gfc_expr *result; + eval_f f; + + if (op2 == NULL) + { + if (gfc_zero_size_array (op1)) + return eval_type_intrinsic0(operator, op1); + } + else + { + result = reduce_binary0 (op1, op2); + if (result != NULL) + return eval_type_intrinsic0(operator, result); + } + + f.f2 = eval; + return eval_intrinsic (operator, f, op1, op2); +} + + +static gfc_expr * +eval_intrinsic_f3 (gfc_intrinsic_op operator, + arith (*eval) (gfc_expr *, gfc_expr *, gfc_expr **), + gfc_expr * op1, gfc_expr * op2) +{ + gfc_expr *result; + eval_f f; + + result = reduce_binary0 (op1, op2); + if (result != NULL) + return eval_type_intrinsic0(operator, result); + + f.f3 = eval; + return eval_intrinsic (operator, f, op1, op2); +} + + + +gfc_expr * +gfc_uplus (gfc_expr * op) +{ + return eval_intrinsic_f2 (INTRINSIC_UPLUS, gfc_arith_uplus, op, NULL); +} + +gfc_expr * +gfc_uminus (gfc_expr * op) +{ + return eval_intrinsic_f2 (INTRINSIC_UMINUS, gfc_arith_uminus, op, NULL); +} + +gfc_expr * +gfc_add (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_PLUS, gfc_arith_plus, op1, op2); +} + +gfc_expr * +gfc_subtract (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_MINUS, gfc_arith_minus, op1, op2); +} + +gfc_expr * +gfc_multiply (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_TIMES, gfc_arith_times, op1, op2); +} + +gfc_expr * +gfc_divide (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_DIVIDE, gfc_arith_divide, op1, op2); +} + +gfc_expr * +gfc_power (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_POWER, gfc_arith_power, op1, op2); +} + +gfc_expr * +gfc_concat (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_CONCAT, gfc_arith_concat, op1, op2); +} + +gfc_expr * +gfc_and (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_AND, gfc_arith_and, op1, op2); +} + +gfc_expr * +gfc_or (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_OR, gfc_arith_or, op1, op2); +} + +gfc_expr * +gfc_not (gfc_expr * op1) +{ + return eval_intrinsic_f2 (INTRINSIC_NOT, gfc_arith_not, op1, NULL); +} + +gfc_expr * +gfc_eqv (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_EQV, gfc_arith_eqv, op1, op2); +} + +gfc_expr * +gfc_neqv (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_NEQV, gfc_arith_neqv, op1, op2); +} + +gfc_expr * +gfc_eq (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_EQ, gfc_arith_eq, op1, op2); +} + +gfc_expr * +gfc_ne (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_NE, gfc_arith_ne, op1, op2); +} + +gfc_expr * +gfc_gt (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_GT, gfc_arith_gt, op1, op2); +} + +gfc_expr * +gfc_ge (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_GE, gfc_arith_ge, op1, op2); +} + +gfc_expr * +gfc_lt (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_LT, gfc_arith_lt, op1, op2); +} + +gfc_expr * +gfc_le (gfc_expr * op1, gfc_expr * op2) +{ + return eval_intrinsic_f3 (INTRINSIC_LE, gfc_arith_le, op1, op2); +} + + +/* Convert an integer string to an expression node. */ + +gfc_expr * +gfc_convert_integer (const char *buffer, int kind, int radix, locus * where) +{ + gfc_expr *e; + const char *t; + + e = gfc_constant_result (BT_INTEGER, kind, where); + /* a leading plus is allowed, but not by mpz_set_str */ + if (buffer[0] == '+') + t = buffer + 1; + else + t = buffer; + mpz_set_str (e->value.integer, t, radix); + + return e; +} + + +/* Convert a real string to an expression node. */ + +gfc_expr * +gfc_convert_real (const char *buffer, int kind, locus * where) +{ + gfc_expr *e; + const char *t; + + e = gfc_constant_result (BT_REAL, kind, where); + /* a leading plus is allowed, but not by mpf_set_str */ + if (buffer[0] == '+') + t = buffer + 1; + else + t = buffer; + mpf_set_str (e->value.real, t, 10); + + return e; +} + + +/* Convert a pair of real, constant expression nodes to a single + complex expression node. */ + +gfc_expr * +gfc_convert_complex (gfc_expr * real, gfc_expr * imag, int kind) +{ + gfc_expr *e; + + e = gfc_constant_result (BT_COMPLEX, kind, &real->where); + mpf_set (e->value.complex.r, real->value.real); + mpf_set (e->value.complex.i, imag->value.real); + + return e; +} + + +/******* Simplification of intrinsic functions with constant arguments *****/ + + +/* Deal with an arithmetic error. */ + +static void +arith_error (arith rc, gfc_typespec * from, gfc_typespec * to, locus * where) +{ + + gfc_error ("%s converting %s to %s at %L", gfc_arith_error (rc), + gfc_typename (from), gfc_typename (to), where); + + /* TODO: Do something about the error, ie underflow rounds to 0, + throw exception, return NaN, etc. */ +} + +/* Convert integers to integers. */ + +gfc_expr * +gfc_int2int (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_INTEGER, kind, &src->where); + + mpz_set (result->value.integer, src->value.integer); + + if ((rc = gfc_check_integer_range (result->value.integer, kind)) + != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Convert integers to reals. */ + +gfc_expr * +gfc_int2real (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_REAL, kind, &src->where); + + mpf_set_z (result->value.real, src->value.integer); + + if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Convert default integer to default complex. */ + +gfc_expr * +gfc_int2complex (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_COMPLEX, kind, &src->where); + + mpf_set_z (result->value.complex.r, src->value.integer); + mpf_set_ui (result->value.complex.i, 0); + + if ((rc = gfc_check_real_range (result->value.complex.i, kind)) != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Convert default real to default integer. */ + +gfc_expr * +gfc_real2int (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_INTEGER, kind, &src->where); + + mpz_set_f (result->value.integer, src->value.real); + + if ((rc = gfc_check_integer_range (result->value.integer, kind)) + != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Convert real to real. */ + +gfc_expr * +gfc_real2real (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_REAL, kind, &src->where); + + mpf_set (result->value.real, src->value.real); + + if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Convert real to complex. */ + +gfc_expr * +gfc_real2complex (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_COMPLEX, kind, &src->where); + + mpf_set (result->value.complex.r, src->value.real); + mpf_set_ui (result->value.complex.i, 0); + + if ((rc = gfc_check_real_range (result->value.complex.i, kind)) != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Convert complex to integer. */ + +gfc_expr * +gfc_complex2int (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_INTEGER, kind, &src->where); + + mpz_set_f (result->value.integer, src->value.complex.r); + + if ((rc = gfc_check_integer_range (result->value.integer, kind)) + != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Convert complex to real. */ + +gfc_expr * +gfc_complex2real (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_REAL, kind, &src->where); + + mpf_set (result->value.real, src->value.complex.r); + + if ((rc = gfc_check_real_range (result->value.real, kind)) != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Convert complex to complex. */ + +gfc_expr * +gfc_complex2complex (gfc_expr * src, int kind) +{ + gfc_expr *result; + arith rc; + + result = gfc_constant_result (BT_COMPLEX, kind, &src->where); + + mpf_set (result->value.complex.r, src->value.complex.r); + mpf_set (result->value.complex.i, src->value.complex.i); + + if ((rc = gfc_check_real_range (result->value.complex.r, kind)) != ARITH_OK + || (rc = + gfc_check_real_range (result->value.complex.i, kind)) != ARITH_OK) + { + arith_error (rc, &src->ts, &result->ts, &src->where); + gfc_free_expr (result); + return NULL; + } + + return result; +} + + +/* Logical kind conversion. */ + +gfc_expr * +gfc_log2log (gfc_expr * src, int kind) +{ + gfc_expr *result; + + result = gfc_constant_result (BT_LOGICAL, kind, &src->where); + result->value.logical = src->value.logical; + + return result; +} |