summaryrefslogtreecommitdiff
path: root/gcc/cp/vtable-class-hierarchy.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/cp/vtable-class-hierarchy.c')
-rw-r--r--gcc/cp/vtable-class-hierarchy.c1353
1 files changed, 1353 insertions, 0 deletions
diff --git a/gcc/cp/vtable-class-hierarchy.c b/gcc/cp/vtable-class-hierarchy.c
new file mode 100644
index 00000000000..479447aa7d0
--- /dev/null
+++ b/gcc/cp/vtable-class-hierarchy.c
@@ -0,0 +1,1353 @@
+/* Copyright (C) 2012-2013 Free Software Foundation, Inc.
+
+ This file is part of GCC.
+
+ GCC is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3, or (at your option)
+ any later version.
+
+ GCC is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* Virtual Table Pointer Security Pass - Detect corruption of vtable pointers
+ before using them for virtual method dispatches. */
+
+/* This file is part of the vtable security feature implementation.
+ The vtable security feature is designed to detect when a virtual
+ call is about to be made through an invalid vtable pointer
+ (possibly due to data corruption or malicious attacks). The
+ compiler finds every virtual call, and inserts a verification call
+ before the virtual call. The verification call takes the actual
+ vtable pointer value in the object through which the virtual call
+ is being made, and compares the vtable pointer against a set of all
+ valid vtable pointers that the object could contain (this set is
+ based on the declared type of the object). If the pointer is in
+ the valid set, execution is allowed to continue; otherwise the
+ program is halted.
+
+ There are several pieces needed in order to make this work: 1. For
+ every virtual class in the program (i.e. a class that contains
+ virtual methods), we need to build the set of all possible valid
+ vtables that an object of that class could point to. This includes
+ vtables for any class(es) that inherit from the class under
+ consideration. 2. For every such data set we build up, we need a
+ way to find and reference the data set. This is complicated by the
+ fact that the real vtable addresses are not known until runtime,
+ when the program is loaded into memory, but we need to reference the
+ sets at compile time when we are inserting verification calls into
+ the program. 3. We need to find every virtual call in the program,
+ and insert the verification call (with the appropriate arguments)
+ before the virtual call. 4. We need some runtime library pieces:
+ the code to build up the data sets at runtime; the code to actually
+ perform the verification using the data sets; and some code to set
+ protections on the data sets, so they themselves do not become
+ hacker targets.
+
+ To find and reference the set of valid vtable pointers for any given
+ virtual class, we create a special global varible for each virtual
+ class. We refer to this as the "vtable map variable" for that
+ class. The vtable map variable has the type "void *", and is
+ initialized by the compiler to NULL. At runtime when the set of
+ valid vtable pointers for a virtual class, e.g. class Foo, is built,
+ the vtable map variable for class Foo is made to point to the set.
+ During compile time, when the compiler is inserting verification
+ calls into the program, it passes the vtable map variable for the
+ appropriate class to the verification call, so that at runtime the
+ verification call can find the appropriate data set.
+
+ The actual set of valid vtable pointers for a virtual class,
+ e.g. class Foo, cannot be built until runtime, when the vtables get
+ loaded into memory and their addresses are known. But the knowledge
+ about which vtables belong in which class' hierarchy is only known
+ at compile time. Therefore at compile time we collect class
+ hierarchy and vtable information about every virtual class, and we
+ generate calls to build up the data sets at runtime. To build the
+ data sets, we call one of the functions we add to the runtime
+ library, __VLTRegisterPair. __VLTRegisterPair takes two arguments,
+ a vtable map variable and the address of a vtable. If the vtable
+ map variable is currently NULL, it creates a new data set (hash
+ table), makes the vtable map variable point to the new data set, and
+ inserts the vtable address into the data set. If the vtable map
+ variable is not NULL, it just inserts the vtable address into the
+ data set. In order to make sure that our data sets are built before
+ any verification calls happen, we create a special constructor
+ initialization function for each compilation unit, give it a very
+ high initialization priority, and insert all of our calls to
+ __VLTRegisterPair into our special constructor initialization
+ function.
+
+ The vtable verification feature is controlled by the flag
+ '-fvtable-verify='. There are three flavors of this:
+ '-fvtable-verify=std', '-fvtable-verify=preinit', and
+ '-fvtable-verify=none'. If the option '-fvtable-verfy=preinit' is
+ used, then our constructor initialization function gets put into the
+ preinit array. This is necessary if there are data sets that need
+ to be built very early in execution. If the constructor
+ initialization function gets put into the preinit array, the we also
+ add calls to __VLTChangePermission at the beginning and end of the
+ function. The call at the beginning sets the permissions on the
+ data sets and vtable map variables to read/write, and the one at the
+ end makes them read-only. If the '-fvtable-verify=std' option is
+ used, the constructor initialization functions are executed at their
+ normal time, and the __VLTChangePermission calls are handled
+ differently (see the comments in libstdc++-v3/libsupc++/vtv_rts.cc).
+ The option '-fvtable-verify=none' turns off vtable verification.
+
+ This file contains code to find and record the class hierarchies for
+ the virtual classes in a program, and all the vtables associated
+ with each such class; to generate the vtable map variables; and to
+ generate the constructor initialization function (with the calls to
+ __VLTRegisterPair, and __VLTChangePermission). The main data
+ structures used for collecting the class hierarchy data and
+ building/maintaining the vtable map variable data are defined in
+ gcc/vtable-verify.h, because they are used both here and in
+ gcc/vtable-verify.c. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "timevar.h"
+#include "cpplib.h"
+#include "tree.h"
+#include "cp-tree.h"
+#include "intl.h"
+#include "c-family/c-pragma.h"
+#include "decl.h"
+#include "flags.h"
+#include "diagnostic-core.h"
+#include "output.h"
+#include "target.h"
+#include "cgraph.h"
+#include "c-family/c-common.h"
+#include "c-family/c-objc.h"
+#include "plugin.h"
+#include "tree-iterator.h"
+#include "vtable-verify.h"
+#include "gimple.h"
+#include "bitmap.h"
+#include "libiberty.h"
+
+#define MAX_SET_SIZE 5000
+
+static int num_calls_to_regset = 0;
+static int num_calls_to_regpair = 0;
+static int current_set_size;
+
+/* Mark these specially since they need to be stored in precompiled
+ header IR. */
+static GTY (()) vec<tree, va_gc> *vlt_saved_class_info;
+static GTY (()) tree vlt_register_pairs_fndecl = NULL_TREE;
+static GTY (()) tree vlt_register_set_fndecl = NULL_TREE;
+
+struct work_node {
+ struct vtv_graph_node *node;
+ struct work_node *next;
+};
+
+struct vtbl_map_node *vtable_find_or_create_map_decl (tree);
+
+/* As part of vtable verification the compiler generates and inserts
+ calls to __VLTVerifyVtablePointer, which is in libstdc++. This
+ function builds and initializes the function decl that is used
+ in generating those function calls.
+
+ In addition to __VLTVerifyVtablePointer there is also
+ __VLTVerifyVtablePointerDebug which can be used in place of
+ __VLTVerifyVtablePointer, and which takes extra parameters and
+ outputs extra information, to help debug problems. The debug
+ version of this function is generated and used if flag_vtv_debug is
+ true.
+
+ The signatures for these functions are:
+
+ void * __VLTVerifyVtablePointer (void **, void*);
+ void * __VLTVerifyVtablePointerDebug (void**, void *, char *, char *);
+*/
+
+void
+vtv_build_vtable_verify_fndecl (void)
+{
+ tree func_type = NULL_TREE;
+
+ if (verify_vtbl_ptr_fndecl != NULL_TREE
+ && TREE_CODE (verify_vtbl_ptr_fndecl) != ERROR_MARK)
+ return;
+
+ if (flag_vtv_debug)
+ {
+ func_type = build_function_type_list (const_ptr_type_node,
+ build_pointer_type (ptr_type_node),
+ const_ptr_type_node,
+ const_string_type_node,
+ const_string_type_node,
+ NULL_TREE);
+ verify_vtbl_ptr_fndecl =
+ build_lang_decl (FUNCTION_DECL,
+ get_identifier ("__VLTVerifyVtablePointerDebug"),
+ func_type);
+ }
+ else
+ {
+ func_type = build_function_type_list (const_ptr_type_node,
+ build_pointer_type (ptr_type_node),
+ const_ptr_type_node,
+ NULL_TREE);
+ verify_vtbl_ptr_fndecl =
+ build_lang_decl (FUNCTION_DECL,
+ get_identifier ("__VLTVerifyVtablePointer"),
+ func_type);
+ }
+
+ TREE_NOTHROW (verify_vtbl_ptr_fndecl) = 1;
+ DECL_ATTRIBUTES (verify_vtbl_ptr_fndecl)
+ = tree_cons (get_identifier ("leaf"), NULL,
+ DECL_ATTRIBUTES (verify_vtbl_ptr_fndecl));
+ DECL_PURE_P (verify_vtbl_ptr_fndecl) = 1;
+ TREE_PUBLIC (verify_vtbl_ptr_fndecl) = 1;
+ DECL_PRESERVE_P (verify_vtbl_ptr_fndecl) = 1;
+}
+
+/* As part of vtable verification the compiler generates and inserts
+ calls to __VLTRegisterSet and __VLTRegisterPair, which are in
+ libsupc++. This function builds and initializes the function decls
+ that are used in generating those function calls.
+
+ The signatures for these functions are:
+
+ void __VLTRegisterSetDebug (void **, const void *, std::size_t,
+ size_t, void **);
+
+ void __VLTRegisterSet (void **, const void *, std::size_t,
+ size_t, void **);
+
+ void __VLTRegisterPairDebug (void **, const void *, size_t,
+ const void *, const char *, const char *);
+
+ void __VLTRegisterPair (void **, const void *, size_t, const void *);
+*/
+
+static void
+init_functions (void)
+{
+ tree register_set_type;
+ tree register_pairs_type;
+
+ if (vlt_register_set_fndecl != NULL_TREE)
+ return;
+
+ gcc_assert (vlt_register_pairs_fndecl == NULL_TREE);
+ gcc_assert (vlt_register_set_fndecl == NULL_TREE);
+
+ /* Build function decl for __VLTRegisterSet*. */
+
+ register_set_type = build_function_type_list
+ (void_type_node,
+ build_pointer_type (ptr_type_node),
+ const_ptr_type_node,
+ size_type_node,
+ size_type_node,
+ build_pointer_type (ptr_type_node),
+ NULL_TREE);
+
+ if (flag_vtv_debug)
+ vlt_register_set_fndecl = build_lang_decl
+ (FUNCTION_DECL,
+ get_identifier ("__VLTRegisterSetDebug"),
+ register_set_type);
+ else
+ vlt_register_set_fndecl = build_lang_decl
+ (FUNCTION_DECL,
+ get_identifier ("__VLTRegisterSet"),
+ register_set_type);
+
+
+ TREE_NOTHROW (vlt_register_set_fndecl) = 1;
+ DECL_ATTRIBUTES (vlt_register_set_fndecl) =
+ tree_cons (get_identifier ("leaf"), NULL,
+ DECL_ATTRIBUTES (vlt_register_set_fndecl));
+ TREE_PUBLIC (vlt_register_set_fndecl) = 1;
+ DECL_PRESERVE_P (vlt_register_set_fndecl) = 1;
+ SET_DECL_LANGUAGE (vlt_register_set_fndecl, lang_cplusplus);
+
+ /* Build function decl for __VLTRegisterPair*. */
+
+ if (flag_vtv_debug)
+ {
+ register_pairs_type = build_function_type_list (void_type_node,
+ build_pointer_type
+ (ptr_type_node),
+ const_ptr_type_node,
+ size_type_node,
+ const_ptr_type_node,
+ const_string_type_node,
+ const_string_type_node,
+ NULL_TREE);
+
+ vlt_register_pairs_fndecl = build_lang_decl
+ (FUNCTION_DECL,
+ get_identifier ("__VLTRegisterPairDebug"),
+ register_pairs_type);
+ }
+ else
+ {
+ register_pairs_type = build_function_type_list (void_type_node,
+ build_pointer_type
+ (ptr_type_node),
+ const_ptr_type_node,
+ size_type_node,
+ const_ptr_type_node,
+ NULL_TREE);
+
+ vlt_register_pairs_fndecl = build_lang_decl
+ (FUNCTION_DECL,
+ get_identifier ("__VLTRegisterPair"),
+ register_pairs_type);
+ }
+
+ TREE_NOTHROW (vlt_register_pairs_fndecl) = 1;
+ DECL_ATTRIBUTES (vlt_register_pairs_fndecl) =
+ tree_cons (get_identifier ("leaf"), NULL,
+ DECL_ATTRIBUTES (vlt_register_pairs_fndecl));
+ TREE_PUBLIC (vlt_register_pairs_fndecl) = 1;
+ DECL_PRESERVE_P (vlt_register_pairs_fndecl) = 1;
+ SET_DECL_LANGUAGE (vlt_register_pairs_fndecl, lang_cplusplus);
+
+}
+
+/* This is a helper function for
+ vtv_compute_class_hierarchy_transitive_closure. It adds a
+ vtv_graph_node to the WORKLIST, which is a linked list of
+ seen-but-not-yet-processed nodes. INSERTED is a bitmap, one bit
+ per node, to help make sure that we don't insert a node into the
+ worklist more than once. Each node represents a class somewhere in
+ our class hierarchy information. Every node in the graph gets added
+ to the worklist exactly once and removed from the worklist exactly
+ once (when all of its children have been processed). */
+
+static void
+add_to_worklist (struct work_node **worklist, struct vtv_graph_node *node,
+ sbitmap inserted)
+{
+ struct work_node *new_work_node;
+
+ if (bitmap_bit_p (inserted, node->class_uid))
+ return;
+
+ new_work_node = XNEW (struct work_node);
+ new_work_node->next = *worklist;
+ new_work_node->node = node;
+ *worklist = new_work_node;
+
+ bitmap_set_bit (inserted, node->class_uid);
+}
+
+/* This is a helper function for
+ vtv_compute_class_hierarchy_transitive_closure. It goes through
+ the WORKLIST of class hierarchy nodes looking for a "leaf" node,
+ i.e. a node whose children in the hierarchy have all been
+ processed. When it finds the next leaf node, it removes it from
+ the linked list (WORKLIST) and returns the node. */
+
+static struct vtv_graph_node *
+find_and_remove_next_leaf_node (struct work_node **worklist)
+{
+ struct work_node *prev, *cur;
+ struct vtv_graph_node *ret_val = NULL;
+
+ for (prev = NULL, cur = *worklist; cur; prev = cur, cur = cur->next)
+ {
+ if ((cur->node->children).length() == cur->node->num_processed_children)
+ {
+ if (prev == NULL)
+ (*worklist) = cur->next;
+ else
+ prev->next = cur->next;
+
+ cur->next = NULL;
+ ret_val = cur->node;
+ free (cur);
+ return ret_val;
+ }
+ }
+
+ return NULL;
+}
+
+/* In our class hierarchy graph, each class node contains a bitmap,
+ with one bit for each class in the hierarchy. The bits are set for
+ classes that are descendants in the graph of the current node.
+ Initially the descendants bitmap is only set for immediate
+ descendants. This function traverses the class hierarchy graph,
+ bottom up, filling in the transitive closures for the descendants
+ as we rise up the graph. */
+
+void
+vtv_compute_class_hierarchy_transitive_closure (void)
+{
+ struct work_node *worklist = NULL;
+ sbitmap inserted = sbitmap_alloc (num_vtable_map_nodes);
+ unsigned i;
+ unsigned j;
+
+ /* Note: Every node in the graph gets added to the worklist exactly
+ once and removed from the worklist exactly once (when all of its
+ children have been processed). Each node's children edges are
+ followed exactly once, and each node's parent edges are followed
+ exactly once. So this algorithm is roughly O(V + 2E), i.e.
+ O(E + V). */
+
+ /* Set-up: */
+ /* Find all the "leaf" nodes in the graph, and add them to the worklist. */
+ bitmap_clear (inserted);
+ for (j = 0; j < num_vtable_map_nodes; ++j)
+ {
+ struct vtbl_map_node *cur = vtbl_map_nodes_vec[j];
+ if (cur->class_info
+ && ((cur->class_info->children).length() == 0)
+ && ! (bitmap_bit_p (inserted, cur->class_info->class_uid)))
+ add_to_worklist (&worklist, cur->class_info, inserted);
+ }
+
+ /* Main work: pull next leaf node off work list, process it, add its
+ parents to the worklist, where a 'leaf' node is one that has no
+ children, or all of its children have been processed. */
+ while (worklist)
+ {
+ struct vtv_graph_node *temp_node =
+ find_and_remove_next_leaf_node (&worklist);
+
+ gcc_assert (temp_node != NULL);
+ temp_node->descendants = sbitmap_alloc (num_vtable_map_nodes);
+ bitmap_clear (temp_node->descendants);
+ bitmap_set_bit (temp_node->descendants, temp_node->class_uid);
+ for (i = 0; i < (temp_node->children).length(); ++i)
+ bitmap_ior (temp_node->descendants, temp_node->descendants,
+ temp_node->children[i]->descendants);
+ for (i = 0; i < (temp_node->parents).length(); ++i)
+ {
+ temp_node->parents[i]->num_processed_children =
+ temp_node->parents[i]->num_processed_children + 1;
+ if (!bitmap_bit_p (inserted, temp_node->parents[i]->class_uid))
+ add_to_worklist (&worklist, temp_node->parents[i], inserted);
+ }
+ }
+}
+
+/* Keep track of which pairs we have already created __VLTRegisterPair
+ calls for, to prevent creating duplicate calls within the same
+ compilation unit. VTABLE_DECL is the var decl for the vtable of
+ the (descendant) class that we are adding to our class hierarchy
+ data. VPTR_ADDRESS is an expression for calculating the correct
+ offset into the vtable (VTABLE_DECL). It is the actual vtable
+ pointer address that will be stored in our list of valid vtable
+ pointers for BASE_CLASS. BASE_CLASS is the record_type node for
+ the base class to whose hiearchy we want to add
+ VPTR_ADDRESS. (VTABLE_DECL should be the vtable for BASE_CLASS or
+ one of BASE_CLASS' descendents. */
+
+static bool
+check_and_record_registered_pairs (tree vtable_decl, tree vptr_address,
+ tree base_class)
+{
+ unsigned offset;
+ struct vtbl_map_node *base_vtable_map_node;
+ bool inserted_something = false;
+
+
+ if (TREE_CODE (vptr_address) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (vptr_address, 0)) == MEM_REF)
+ vptr_address = TREE_OPERAND (vptr_address, 0);
+
+ if (TREE_OPERAND_LENGTH (vptr_address) > 1)
+ offset = TREE_INT_CST_LOW (TREE_OPERAND (vptr_address, 1));
+ else
+ offset = 0;
+
+ base_vtable_map_node = vtbl_map_get_node (TYPE_MAIN_VARIANT (base_class));
+
+ inserted_something = vtbl_map_node_registration_insert
+ (base_vtable_map_node,
+ vtable_decl,
+ offset);
+ return !inserted_something;
+}
+
+/* Given an IDENTIFIER_NODE, build and return a string literal based on it. */
+
+static tree
+build_string_from_id (tree identifier)
+{
+ int len;
+
+ gcc_assert (TREE_CODE (identifier) == IDENTIFIER_NODE);
+
+ len = IDENTIFIER_LENGTH (identifier);
+ return build_string_literal (len + 1, IDENTIFIER_POINTER (identifier));
+}
+
+/* A class may contain secondary vtables in it, for various reasons.
+ This function goes through the decl chain of a class record looking
+ for any fields that point to secondary vtables, and adding calls to
+ __VLTRegisterPair for the secondary vtable pointers.
+
+ BASE_CLASS_DECL_ARG is an expression for the address of the vtable
+ map variable for the BASE_CLASS (whose hierarchy we are currently
+ updating). BASE_CLASS is the record_type node for the base class.
+ RECORD_TYPE is the record_type node for the descendant class that
+ we are possibly adding to BASE_CLASS's hierarchy. BODY is the
+ function body for the constructor init function to which we are
+ adding our calls to __VLTRegisterPair. */
+
+static void
+register_construction_vtables (tree base_class, tree record_type,
+ tree *vtable_ptr_array, int *num_args)
+{
+ tree vtbl_var_decl;
+
+ if (TREE_CODE (record_type) != RECORD_TYPE)
+ return;
+
+ vtbl_var_decl = CLASSTYPE_VTABLES (record_type);
+
+ if (CLASSTYPE_VBASECLASSES (record_type))
+ {
+ tree vtt_decl;
+ bool already_registered = false;
+ tree val_vtbl_decl = NULL_TREE;
+
+ vtt_decl = DECL_CHAIN (vtbl_var_decl);
+
+ /* Check to see if we have found a VTT. Add its data if appropriate. */
+ if (vtt_decl)
+ {
+ tree values = DECL_INITIAL (vtt_decl);
+ if (TREE_ASM_WRITTEN (vtt_decl)
+ && values != NULL_TREE
+ && TREE_CODE (values) == CONSTRUCTOR
+ && TREE_CODE (TREE_TYPE (values)) == ARRAY_TYPE)
+ {
+ unsigned HOST_WIDE_INT cnt;
+ constructor_elt *ce;
+
+ /* Loop through the initialization values for this
+ vtable to get all the correct vtable pointer
+ addresses that we need to add to our set of valid
+ vtable pointers for the current base class. This may
+ result in adding more than just the element assigned
+ to the primary vptr of the class, so we may end up
+ with more vtable pointers than are strictly
+ necessary. */
+
+ for (cnt = 0;
+ vec_safe_iterate (CONSTRUCTOR_ELTS (values),
+ cnt, &ce);
+ cnt++)
+ {
+ tree value = ce->value;
+
+ /* Search for the ADDR_EXPR operand within the value. */
+
+ while (value
+ && TREE_OPERAND (value, 0)
+ && TREE_CODE (TREE_OPERAND (value, 0)) == ADDR_EXPR)
+ value = TREE_OPERAND (value, 0);
+
+ /* The VAR_DECL for the vtable should be the first
+ argument of the ADDR_EXPR, which is the first
+ argument of value.*/
+
+ if (TREE_OPERAND (value, 0))
+ val_vtbl_decl = TREE_OPERAND (value, 0);
+
+ while (TREE_CODE (val_vtbl_decl) != VAR_DECL
+ && TREE_OPERAND (val_vtbl_decl, 0))
+ val_vtbl_decl = TREE_OPERAND (val_vtbl_decl, 0);
+
+ gcc_assert (TREE_CODE (val_vtbl_decl) == VAR_DECL);
+
+ /* Check to see if we already have this vtable pointer in
+ our valid set for this base class. */
+
+ already_registered = check_and_record_registered_pairs
+ (val_vtbl_decl,
+ value,
+ base_class);
+
+ if (already_registered)
+ continue;
+
+ /* Add this vtable pointer to our set of valid
+ pointers for the base class. */
+
+ gcc_assert (*num_args < (MAX_SET_SIZE - 1));
+
+ vtable_ptr_array[*num_args] = value;
+ *num_args = *num_args + 1;
+ current_set_size++;
+ }
+ }
+ }
+ }
+}
+
+/* This function iterates through all the vtables it can find from the
+ BINFO of a class, to make sure we have found ALL of the vtables
+ that an object of that class could point to. Generate calls to
+ __VLTRegisterPair for those vtable pointers that we find.
+
+ BINFO is the tree_binfo node for the BASE_CLASS. BODY is the
+ function body for the constructor init function to which we are
+ adding calls to __VLTRegisterPair. ARG1 is an expression for the
+ address of the vtable map variable (for the BASE_CLASS), that will
+ point to the updated data set. BASE_CLASS is the record_type node
+ for the base class whose set of valid vtable pointers we are
+ updating. STR1 and STR2 are all debugging information, to be passed
+ as parameters to __VLTRegisterPairDebug. STR1 represents the name
+ of the vtable map variable to be updated by the call. Similarly,
+ STR2 represents the name of the class whose vtable pointer is being
+ added to the hierarchy. */
+
+static void
+register_other_binfo_vtables (tree binfo, tree base_class,
+ tree *vtable_ptr_array, int *num_args)
+{
+ unsigned ix;
+ tree base_binfo;
+ tree vtable_decl;
+ bool already_registered;
+
+ if (binfo == NULL_TREE)
+ return;
+
+ for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
+ {
+ if ((!BINFO_PRIMARY_P (base_binfo)
+ || BINFO_VIRTUAL_P (base_binfo))
+ && (vtable_decl = get_vtbl_decl_for_binfo (base_binfo)))
+ {
+ tree vtable_address = build_vtbl_address (base_binfo);
+
+ already_registered = check_and_record_registered_pairs
+ (vtable_decl,
+ vtable_address,
+ base_class);
+ if (!already_registered)
+ {
+ gcc_assert (*num_args < (MAX_SET_SIZE - 1));
+
+ vtable_ptr_array[*num_args] = vtable_address;
+ *num_args = *num_args + 1;
+ current_set_size++;
+ }
+ }
+
+ register_other_binfo_vtables (base_binfo, base_class, vtable_ptr_array,
+ num_args);
+ }
+}
+
+/* The set of valid vtable pointers for any given class are stored in
+ a hash table. For reasons of efficiency, that hash table size is
+ always a power of two. In order to try to prevent re-sizing the
+ hash tables very often, we pass __VLTRegisterPair an initial guess
+ as to the number of entries the hashtable will eventually need
+ (rounded up to the nearest power of two). This function takes the
+ class information we have collected for a particular class,
+ CLASS_NODE, and calculates the hash table size guess. */
+
+static int
+guess_num_vtable_pointers (struct vtv_graph_node *class_node)
+{
+ tree vtbl;
+ int total_num_vtbls = 0;
+ int num_vtbls_power_of_two = 1;
+ unsigned i;
+
+ for (i = 0; i < num_vtable_map_nodes; ++i)
+ if (bitmap_bit_p (class_node->descendants, i))
+ {
+ tree class_type = vtbl_map_nodes_vec[i]->class_info->class_type;
+ for (vtbl = CLASSTYPE_VTABLES (class_type); vtbl;
+ vtbl = DECL_CHAIN (vtbl))
+ {
+ total_num_vtbls++;
+ if (total_num_vtbls > num_vtbls_power_of_two)
+ num_vtbls_power_of_two <<= 1;
+ }
+ }
+ return num_vtbls_power_of_two;
+}
+
+/* A simple hash function on strings */
+/* Be careful about changing this routine. The values generated will
+ be stored in the calls to InitSet. So, changing this routine may
+ cause a binary incompatibility. */
+
+static uint32_t
+vtv_string_hash (const char *in)
+{
+ const char *s = in;
+ uint32_t h = 0;
+
+ gcc_assert (in != NULL);
+ for ( ; *s; ++s)
+ h = 5 * h + *s;
+ return h;
+}
+
+static char *
+get_log_file_name (const char *fname)
+{
+ const char *tmp_dir = concat (dump_dir_name, NULL);
+ char *full_name;
+ int dir_len;
+ int fname_len;
+
+ dir_len = strlen (tmp_dir);
+ fname_len = strlen (fname);
+
+ full_name = XNEWVEC (char, dir_len + fname_len + 1);
+ strcpy (full_name, tmp_dir);
+ strcpy (full_name + dir_len, fname);
+
+ return full_name;
+}
+
+static void
+write_out_current_set_data (tree base_class, int set_size)
+{
+ static int class_data_log_fd = -1;
+ char buffer[1024];
+ int bytes_written __attribute__ ((unused));
+ char *file_name = get_log_file_name ("vtv_class_set_sizes.log");
+
+ if (class_data_log_fd == -1)
+ class_data_log_fd = open (file_name,
+ O_WRONLY | O_APPEND | O_CREAT, S_IRWXU);
+
+ if (class_data_log_fd == -1)
+ {
+ warning (0, "Unable to open log file 'vtv_class_set_sizes.log'");
+ return;
+ }
+
+ snprintf (buffer, sizeof (buffer), "%s %d\n",
+ IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (TYPE_NAME (base_class))),
+ set_size);
+ bytes_written = write (class_data_log_fd, buffer, strlen (buffer));
+}
+
+static tree
+build_key_buffer_arg (tree base_ptr_var_decl)
+{
+ const int key_type_fixed_size = 8;
+ uint32_t len1 = IDENTIFIER_LENGTH (DECL_NAME (base_ptr_var_decl));
+ uint32_t hash_value = vtv_string_hash (IDENTIFIER_POINTER
+ (DECL_NAME (base_ptr_var_decl)));
+ void *key_buffer = xmalloc (len1 + key_type_fixed_size);
+ uint32_t *value_ptr = (uint32_t *) key_buffer;
+ tree ret_value;
+
+ /* Set the len and hash for the string. */
+ *value_ptr = len1;
+ value_ptr++;
+ *value_ptr = hash_value;
+
+ /* Now copy the string representation of the vtbl map name... */
+ memcpy ((char *) key_buffer + key_type_fixed_size,
+ IDENTIFIER_POINTER (DECL_NAME (base_ptr_var_decl)),
+ len1);
+
+ /* ... and build a string literal from it. This will make a copy
+ so the key_bufffer is not needed anymore after this. */
+ ret_value = build_string_literal (len1 + key_type_fixed_size,
+ (char *) key_buffer);
+ free (key_buffer);
+ return ret_value;
+}
+
+static void
+insert_call_to_register_set (tree class_name, int num_args,
+ tree *vtbl_ptr_array, tree body, tree arg1,
+ tree arg2, tree size_hint_arg)
+{
+ tree call_expr;
+ char *array_arg_name = ACONCAT (("__vptr_array_",
+ IDENTIFIER_POINTER (class_name), NULL));
+ tree array_arg_type = build_array_type_nelts (build_pointer_type
+ (build_pointer_type
+ (void_type_node)),
+ num_args);
+ tree array_arg = build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier (array_arg_name),
+ array_arg_type);
+ int k;
+
+ vec<constructor_elt, va_gc> *array_elements;
+ vec_alloc (array_elements, num_args);
+
+ tree initial = NULL_TREE;
+ tree arg3 = NULL_TREE;
+
+ TREE_PUBLIC (array_arg) = 0;
+ DECL_EXTERNAL (array_arg) = 0;
+ TREE_STATIC (array_arg) = 1;
+ DECL_ARTIFICIAL (array_arg) = 0;
+ TREE_READONLY (array_arg) = 1;
+ DECL_IGNORED_P (array_arg) = 0;
+ DECL_PRESERVE_P (array_arg) = 0;
+ DECL_VISIBILITY (array_arg) = VISIBILITY_HIDDEN;
+
+ for (k = 0; k < num_args; ++k)
+ {
+ CONSTRUCTOR_APPEND_ELT (array_elements, NULL_TREE, vtbl_ptr_array[k]);
+ }
+
+ initial = build_constructor (TREE_TYPE (array_arg), array_elements);
+
+ TREE_CONSTANT (initial) = 1;
+ TREE_STATIC (initial) = 1;
+ DECL_INITIAL (array_arg) = initial;
+ relayout_decl (array_arg);
+ varpool_finalize_decl (array_arg);
+
+ arg3 = build1 (ADDR_EXPR, TYPE_POINTER_TO (TREE_TYPE (array_arg)), array_arg);
+
+ TREE_TYPE (arg3) = build_pointer_type (TREE_TYPE (array_arg));
+
+ call_expr = build_call_expr (vlt_register_set_fndecl, 5, arg1,
+ arg2, /* set_symbol_key */
+ size_hint_arg, build_int_cst (size_type_node,
+ num_args),
+ arg3);
+ append_to_statement_list (call_expr, &body);
+ num_calls_to_regset++;
+}
+
+static void
+insert_call_to_register_pair (tree vtable_address, int num_args, tree arg1,
+ tree arg2, tree size_hint_arg, tree str1,
+ tree str2, tree body)
+{
+ tree call_expr;
+
+ if (num_args == 0)
+ vtable_address = build_int_cst (build_pointer_type (void_type_node), 0);
+
+ if (flag_vtv_debug)
+ call_expr = build_call_expr (vlt_register_pairs_fndecl, 6, arg1, arg2,
+ size_hint_arg, vtable_address, str1, str2);
+ else
+ call_expr = build_call_expr (vlt_register_pairs_fndecl, 4, arg1, arg2,
+ size_hint_arg, vtable_address);
+
+ append_to_statement_list (call_expr, &body);
+ num_calls_to_regpair++;
+}
+
+static void
+output_set_info (tree record_type, tree *vtbl_ptr_array, int array_size)
+{
+ static int vtv_debug_log_fd = -1;
+ char buffer[1024];
+ int bytes_written __attribute__ ((unused));
+ const char *class_name =
+ IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (TYPE_NAME (record_type)));
+ char *file_name = get_log_file_name ("vtv_set_ptr_data.log");
+
+ if (vtv_debug_log_fd == -1)
+ vtv_debug_log_fd = open (file_name,
+ O_WRONLY | O_APPEND | O_CREAT, S_IRWXU);
+ if (vtv_debug_log_fd == -1)
+ {
+ warning (0, "Unable to open log file 'vtv_set_ptr_data.log'");
+ return;
+ }
+
+ for (int i = 0; i < array_size; ++i)
+ {
+ const char *vptr_name = "unknown";
+ int vptr_offset = 0;
+
+ if (TREE_CODE (vtbl_ptr_array[i]) == POINTER_PLUS_EXPR)
+ {
+ tree arg0 = TREE_OPERAND (vtbl_ptr_array[i], 0);
+ tree arg1 = TREE_OPERAND (vtbl_ptr_array[i], 1);
+
+ if (TREE_CODE (arg0) == ADDR_EXPR)
+ arg0 = TREE_OPERAND (arg0, 0);
+
+ if (TREE_CODE (arg0) == VAR_DECL)
+ vptr_name = IDENTIFIER_POINTER (DECL_NAME (arg0));
+
+ if (TREE_CODE (arg1) == INTEGER_CST)
+ vptr_offset = TREE_INT_CST_LOW (arg1);
+ }
+
+ snprintf (buffer, sizeof (buffer), "%s %s %s + %d\n",
+ main_input_filename, class_name, vptr_name, vptr_offset);
+ bytes_written = write (vtv_debug_log_fd, buffer, strlen(buffer));
+ }
+
+}
+
+/* This function goes through our internal class hierarchy & vtable
+ pointer data structure and outputs calls to __VLTRegisterPair for
+ every class-vptr pair (for those classes whose vtable would be
+ output in the current compilation unit). These calls get put into
+ our constructor initialization function. BODY is the function
+ body, so far, of our constructor initialization function, to which we
+ add the calls. */
+
+static bool
+register_all_pairs (tree body)
+{
+ bool registered_at_least_one = false;
+ tree vtbl_ptr_array[MAX_SET_SIZE];
+ int num_vtable_args = 0;
+ unsigned j;
+
+ for (j = 0; j < num_vtable_map_nodes; ++j)
+ {
+ struct vtbl_map_node *current = vtbl_map_nodes_vec[j];
+ unsigned i = 0;
+ tree base_class = current->class_info->class_type;
+ tree base_ptr_var_decl = current->vtbl_map_decl;
+ tree arg1;
+ tree arg2;
+ tree new_type;
+ tree str1 = NULL_TREE;
+ tree str2 = NULL_TREE;
+ size_t size_hint;
+ tree size_hint_arg;
+
+ gcc_assert (current->class_info != NULL);
+
+
+ if (flag_vtv_debug)
+ str1 = build_string_from_id (DECL_NAME (base_ptr_var_decl));
+
+ new_type = build_pointer_type (TREE_TYPE (base_ptr_var_decl));
+ arg1 = build1 (ADDR_EXPR, new_type, base_ptr_var_decl);
+
+ num_vtable_args = 0;
+
+ for (i = 0; i < num_vtable_map_nodes; ++i)
+ if (bitmap_bit_p (current->class_info->descendants, i))
+ {
+ struct vtbl_map_node *vtbl_class_node = vtbl_map_nodes_vec[i];
+ tree class_type = vtbl_class_node->class_info->class_type;
+
+ if (class_type
+ && (TREE_CODE (class_type) == RECORD_TYPE))
+ {
+ bool already_registered;
+
+ tree binfo = TYPE_BINFO (class_type);
+ tree vtable_decl;
+ bool vtable_should_be_output = false;
+
+ vtable_decl = CLASSTYPE_VTABLES (class_type);
+
+ /* Handle main vtable for this class. */
+
+ if (vtable_decl)
+ {
+ vtable_should_be_output = TREE_ASM_WRITTEN (vtable_decl);
+ str2 = build_string_from_id (DECL_NAME (vtable_decl));
+ }
+
+ if (vtable_decl && vtable_should_be_output)
+ {
+ tree vtable_address = build_vtbl_address (binfo);
+
+ already_registered = check_and_record_registered_pairs
+ (vtable_decl,
+ vtable_address,
+ base_class);
+
+
+ if (!already_registered)
+ {
+
+ vtbl_ptr_array[num_vtable_args++] = vtable_address;
+
+ /* Find and handle any 'extra' vtables associated
+ with this class, via virtual inheritance. */
+ register_construction_vtables (base_class, class_type,
+ vtbl_ptr_array,
+ &num_vtable_args);
+
+ /* Find and handle any 'extra' vtables associated
+ with this class, via multiple inheritance. */
+ register_other_binfo_vtables (binfo, base_class,
+ vtbl_ptr_array,
+ &num_vtable_args);
+ }
+ }
+ }
+ }
+ current_set_size = num_vtable_args;
+
+ /* Sometimes we need to initialize the set symbol even if we are
+ not adding any vtable pointers to the set in the current
+ compilation unit. In that case, we need to initialize the
+ set to our best guess as to what the eventual size of the set
+ hash table will be (to prevent having to re-size the hash
+ table later). */
+
+ size_hint = guess_num_vtable_pointers (current->class_info);
+
+ /* If we have added vtable pointers to the set in this
+ compilation unit, adjust the size hint for the set's hash
+ table appropriately. */
+ if (num_vtable_args > 0)
+ while ((size_t) num_vtable_args > size_hint)
+ size_hint <<= 1;
+ size_hint_arg = build_int_cst (size_type_node, size_hint);
+
+ /* Get the key-buffer argument. */
+ arg2 = build_key_buffer_arg (base_ptr_var_decl);
+
+ if (str2 == NULL_TREE)
+ str2 = build_string_literal (strlen ("unknown") + 1,
+ "unknown");
+
+ if (flag_vtv_debug)
+ output_set_info (current->class_info->class_type,
+ vtbl_ptr_array, num_vtable_args);
+
+ if (num_vtable_args > 1)
+ {
+ insert_call_to_register_set (current->class_name, num_vtable_args,
+ vtbl_ptr_array, body, arg1, arg2,
+ size_hint_arg);
+ registered_at_least_one = true;
+ }
+ else if (num_vtable_args >= 0)
+ {
+
+ if (num_vtable_args > 0
+ || (current->is_used
+ || (current->registered.size() > 0)))
+ {
+ insert_call_to_register_pair (vtbl_ptr_array[0], num_vtable_args,
+ arg1, arg2, size_hint_arg, str1,
+ str2, body);
+ registered_at_least_one = true;
+ }
+ }
+
+ if (flag_vtv_counts && current_set_size > 0)
+ write_out_current_set_data (base_class, current_set_size);
+
+ }
+
+ return registered_at_least_one;
+}
+
+/* Given a tree containing a class type (CLASS_TYPE), this function
+ finds and returns the class hierarchy node for that class in our
+ data structure. */
+
+static struct vtv_graph_node *
+find_graph_node (tree class_type)
+{
+ struct vtbl_map_node *vtbl_node;
+
+ vtbl_node = vtbl_map_get_node (TYPE_MAIN_VARIANT (class_type));
+ if (vtbl_node)
+ return vtbl_node->class_info;
+
+ return NULL;
+}
+
+/* Add base class/derived class pair to our internal class hierarchy
+ data structure. BASE_NODE is our vtv_graph_node that corresponds
+ to a base class. DERIVED_NODE is our vtv_graph_node that
+ corresponds to a class that is a descendant of the base class
+ (possibly the base class itself). */
+
+static void
+add_hierarchy_pair (struct vtv_graph_node *base_node,
+ struct vtv_graph_node *derived_node)
+{
+ (base_node->children).safe_push (derived_node);
+ (derived_node->parents).safe_push (base_node);
+}
+
+/* This functions adds a new base class/derived class relationship to
+ our class hierarchy data structure. Both parameters are trees
+ representing the class types, i.e. RECORD_TYPE trees.
+ DERIVED_CLASS can be the same as BASE_CLASS. */
+
+static void
+update_class_hierarchy_information (tree base_class,
+ tree derived_class)
+{
+ struct vtv_graph_node *base_node = find_graph_node (base_class);
+ struct vtv_graph_node *derived_node = find_graph_node (derived_class);
+
+ add_hierarchy_pair (base_node, derived_node);
+}
+
+
+static void
+write_out_vtv_count_data (void)
+{
+ static int vtv_count_log_fd = -1;
+ char buffer[1024];
+ int unused_vtbl_map_vars = 0;
+ int bytes_written __attribute__ ((unused));
+ char *file_name = get_log_file_name ("vtv_count_data.log");
+
+ if (vtv_count_log_fd == -1)
+ vtv_count_log_fd = open (file_name,
+ O_WRONLY | O_APPEND | O_CREAT, S_IRWXU);
+ if (vtv_count_log_fd == -1)
+ {
+ warning (0, "Unable to open log file 'vtv_count_data.log'");
+ return;
+ }
+
+ for (unsigned i = 0; i < num_vtable_map_nodes; ++i)
+ {
+ struct vtbl_map_node *current = vtbl_map_nodes_vec[i];
+ if (!current->is_used
+ && current->registered.size() == 0)
+ unused_vtbl_map_vars++;
+ }
+
+ snprintf (buffer, sizeof (buffer), "%s %d %d %d %d %d\n",
+ main_input_filename, total_num_virtual_calls,
+ total_num_verified_vcalls, num_calls_to_regset,
+ num_calls_to_regpair, unused_vtbl_map_vars);
+
+ bytes_written = write (vtv_count_log_fd, buffer, strlen (buffer));
+}
+
+/* This function calls register_all_pairs, which actually generates
+ all the calls to __VLTRegisterPair (in the verification constructor
+ init function). It also generates the calls to
+ __VLTChangePermission, if the verification constructor init
+ function is going into the preinit array. INIT_ROUTINE_BODY is
+ the body of our constructior initialization function, to which we
+ add our function calls.*/
+
+bool
+vtv_register_class_hierarchy_information (tree init_routine_body)
+{
+ bool registered_something = false;
+
+ init_functions ();
+
+ if (num_vtable_map_nodes == 0)
+ return false;
+
+ /* Add class hierarchy pairs to the vtable map data structure. */
+ registered_something = register_all_pairs (init_routine_body);
+
+ if (flag_vtv_counts)
+ write_out_vtv_count_data ();
+
+ return registered_something;
+}
+
+
+/* Generate the special constructor function that calls
+ __VLTChangePermission and __VLTRegisterPairs, and give it a very
+ high initialization priority. */
+
+void
+vtv_generate_init_routine (void)
+{
+ tree init_routine_body;
+ bool vtable_classes_found = false;
+
+ push_lang_context (lang_name_c);
+
+ /* The priority for this init function (constructor) is carefully
+ chosen so that it will happen after the calls to unprotect the
+ memory used for vtable verification and before the memory is
+ protected again. */
+ init_routine_body = vtv_start_verification_constructor_init_function ();
+
+ vtable_classes_found =
+ vtv_register_class_hierarchy_information (init_routine_body);
+
+ if (vtable_classes_found)
+ {
+ tree vtv_fndecl =
+ vtv_finish_verification_constructor_init_function (init_routine_body);
+ TREE_STATIC (vtv_fndecl) = 1;
+ TREE_USED (vtv_fndecl) = 1;
+ DECL_PRESERVE_P (vtv_fndecl) = 1;
+ if (flag_vtable_verify == VTV_PREINIT_PRIORITY)
+ {
+ DECL_STATIC_CONSTRUCTOR (vtv_fndecl) = 0;
+ assemble_vtv_preinit_initializer (vtv_fndecl);
+ }
+
+ gimplify_function_tree (vtv_fndecl);
+ cgraph_add_new_function (vtv_fndecl, false);
+
+ cgraph_process_new_functions ();
+ }
+ pop_lang_context ();
+}
+
+/* This funtion takes a tree containing a class type (BASE_TYPE), and
+ it either finds the existing vtbl_map_node for that class in our
+ data structure, or it creates a new node and adds it to the data
+ structure if there is not one for the class already. As part of
+ this process it also creates the global vtable map variable for the
+ class. */
+
+struct vtbl_map_node *
+vtable_find_or_create_map_decl (tree base_type)
+{
+ char *var_name = NULL;
+ struct vtbl_map_node *vtable_map_node = NULL;
+
+ /* Verify the type has an associated vtable. */
+ if (!TYPE_BINFO (base_type) || !BINFO_VTABLE (TYPE_BINFO (base_type)))
+ return NULL;
+
+ /* Create map lookup symbol for base class */
+ var_name = get_mangled_vtable_map_var_name (base_type);
+
+ /* We've already created the variable; just look it. */
+ vtable_map_node = vtbl_map_get_node (TYPE_MAIN_VARIANT (base_type));
+
+ if (!vtable_map_node || (vtable_map_node->vtbl_map_decl == NULL_TREE))
+ {
+ /* If we haven't already created the *__vtable_map global
+ variable for this class, do so now, and add it to the
+ varpool, to make sure it gets saved and written out. */
+
+ tree var_decl = NULL;
+ tree var_type = build_pointer_type (void_type_node);
+ tree initial_value = integer_zero_node;
+
+ var_decl = build_decl (UNKNOWN_LOCATION, VAR_DECL,
+ get_identifier (var_name), var_type);
+
+ DECL_EXTERNAL (var_decl) = 0;
+ TREE_STATIC (var_decl) = 1;
+ DECL_VISIBILITY (var_decl) = VISIBILITY_HIDDEN;
+ SET_DECL_ASSEMBLER_NAME (var_decl, get_identifier (var_name));
+ DECL_ARTIFICIAL (var_decl) = 1;
+ /* We cannot mark this variable as read-only because we want to be
+ able to write to it at runtime. */
+ TREE_READONLY (var_decl) = 0;
+ DECL_IGNORED_P (var_decl) = 1;
+ DECL_PRESERVE_P (var_decl) = 1;
+
+ /* Put these mmap variables in thr .vtable_map_vars section, so
+ we can find and protect them. */
+
+ DECL_SECTION_NAME (var_decl) = build_string (strlen (".vtable_map_vars"),
+ ".vtable_map_vars");
+ DECL_HAS_IMPLICIT_SECTION_NAME_P (var_decl) = true;
+ DECL_INITIAL (var_decl) = initial_value;
+
+ comdat_linkage (var_decl);
+
+ varpool_finalize_decl (var_decl);
+ if (!vtable_map_node)
+ vtable_map_node =
+ find_or_create_vtbl_map_node (TYPE_MAIN_VARIANT (base_type));
+ if (vtable_map_node->vtbl_map_decl == NULL_TREE)
+ vtable_map_node->vtbl_map_decl = var_decl;
+ }
+
+ gcc_assert (vtable_map_node);
+ return vtable_map_node;
+}
+
+/* This function is used to build up our class hierarchy data for a
+ particular class. TYPE is the record_type tree node for the
+ class. */
+
+static void
+vtv_insert_single_class_info (tree type)
+{
+ if (flag_vtable_verify)
+ {
+ tree binfo = TYPE_BINFO (type);
+ tree base_binfo;
+ struct vtbl_map_node *own_map;
+ int i;
+
+ /* First make sure to create the map for this record type. */
+ own_map = vtable_find_or_create_map_decl (type);
+ if (own_map == NULL)
+ return;
+
+ /* Go through the list of all base classes for the current
+ (derived) type, make sure the *__vtable_map global variable
+ for the base class exists, and add the base class/derived
+ class pair to the class hierarchy information we are
+ accumulating (for vtable pointer verification). */
+ for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ {
+ tree tree_val = BINFO_TYPE (base_binfo);
+ struct vtbl_map_node *vtable_map_node = NULL;
+
+ vtable_map_node = vtable_find_or_create_map_decl (tree_val);
+
+ if (vtable_map_node != NULL)
+ update_class_hierarchy_information (tree_val, type);
+ }
+ }
+}
+
+/* This function adds classes we are interested in to a list of
+ classes. RECORD is the record_type node for the class we are
+ adding to the list. */
+
+void
+vtv_save_class_info (tree record)
+{
+ if (!flag_vtable_verify || TREE_CODE (record) == UNION_TYPE)
+ return;
+
+ if (!vlt_saved_class_info)
+ vec_alloc (vlt_saved_class_info, 10);
+
+ gcc_assert (TREE_CODE (record) == RECORD_TYPE);
+
+ vec_safe_push (vlt_saved_class_info, record);
+}
+
+
+/* This function goes through the list of classes we saved and calls
+ vtv_insert_single_class_info on each one, to build up our class
+ hierarchy data structure. */
+
+void
+vtv_recover_class_info (void)
+{
+ tree current_class;
+ unsigned i;
+
+ if (vlt_saved_class_info)
+ {
+ for (i = 0; i < vlt_saved_class_info->length(); ++i)
+ {
+ current_class = (*vlt_saved_class_info)[i];
+ gcc_assert (TREE_CODE (current_class) == RECORD_TYPE);
+ vtv_insert_single_class_info (current_class);
+ }
+ }
+}
+
+#include "gt-cp-vtable-class-hierarchy.h"