diff options
Diffstat (limited to 'gcc/ada/s-strxdr.adb')
-rw-r--r-- | gcc/ada/s-strxdr.adb | 1811 |
1 files changed, 1811 insertions, 0 deletions
diff --git a/gcc/ada/s-strxdr.adb b/gcc/ada/s-strxdr.adb new file mode 100644 index 00000000000..0a13cf38850 --- /dev/null +++ b/gcc/ada/s-strxdr.adb @@ -0,0 +1,1811 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT RUNTIME COMPONENTS -- +-- -- +-- S Y S T E M . S T R E A M _ A T T R I B U T E S -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 1996-2003 Free Software Foundation, Inc. -- +-- -- +-- GARLIC is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 2, or (at your option) any later ver- -- +-- sion. GARLIC is distributed in the hope that it will be useful, but -- +-- WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABI- -- +-- LITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -- +-- License for more details. You should have received a copy of the GNU -- +-- General Public License distributed with GARLIC; see file COPYING. If -- +-- not, write to the Free Software Foundation, 59 Temple Place - Suite 330, -- +-- Boston, MA 02111-1307, USA. -- +-- -- +-- As a special exception, if other files instantiate generics from this -- +-- unit, or you link this unit with other files to produce an executable, -- +-- this unit does not by itself cause the resulting executable to be -- +-- covered by the GNU General Public License. This exception does not -- +-- however invalidate any other reasons why the executable file might be -- +-- covered by the GNU Public License. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- Extensive contributions were provided by Ada Core Technologies Inc. -- +-- -- +------------------------------------------------------------------------------ + +-- This file is an alternate version of s-stratt.adb based on the XDR +-- standard. It is especially useful for exchanging streams between two +-- different systems with different basic type representations and endianess. + +with Ada.Streams; use Ada.Streams; +with Ada.Unchecked_Conversion; + +package body System.Stream_Attributes is + + pragma Suppress (Range_Check); + pragma Suppress (Overflow_Check); + + use UST; + + Data_Error : exception; + -- Exception raised if insufficient data read. + + SU : constant := System.Storage_Unit; + -- XXXXX pragma Assert (SU = 8); + + BB : constant := 2 ** SU; -- Byte base + BL : constant := 2 ** SU - 1; -- Byte last + BS : constant := 2 ** (SU - 1); -- Byte sign + + US : constant := Unsigned'Size; -- Unsigned size + UB : constant := (US - 1) / SU + 1; -- Unsigned byte + UL : constant := 2 ** US - 1; -- Unsigned last + + subtype SE is Ada.Streams.Stream_Element; + subtype SEA is Ada.Streams.Stream_Element_Array; + subtype SEO is Ada.Streams.Stream_Element_Offset; + + generic function UC renames Ada.Unchecked_Conversion; + + type Field_Type is + record + E_Size : Integer; -- Exponent bit size + E_Bias : Integer; -- Exponent bias + F_Size : Integer; -- Fraction bit size + E_Last : Integer; -- Max exponent value + F_Mask : SE; -- Mask to apply on first fraction byte + E_Bytes : SEO; -- N. of exponent bytes completly used + F_Bytes : SEO; -- N. of fraction bytes completly used + F_Bits : Integer; -- N. of bits used on first fraction word + end record; + + type Precision is (Single, Double, Quadruple); + + Fields : constant array (Precision) of Field_Type := ( + + -- Single precision + + (E_Size => 8, + E_Bias => 127, + F_Size => 23, + E_Last => 2 ** 8 - 1, + F_Mask => 16#7F#, -- 2 ** 7 - 1, + E_Bytes => 2, + F_Bytes => 3, + F_Bits => 23 mod US), + + -- Double precision + + (E_Size => 11, + E_Bias => 1023, + F_Size => 52, + E_Last => 2 ** 11 - 1, + F_Mask => 16#0F#, -- 2 ** 4 - 1, + E_Bytes => 2, + F_Bytes => 7, + F_Bits => 52 mod US), + + -- Quadruple precision + + (E_Size => 15, + E_Bias => 16383, + F_Size => 112, + E_Last => 2 ** 8 - 1, + F_Mask => 16#FF#, -- 2 ** 8 - 1, + E_Bytes => 2, + F_Bytes => 14, + F_Bits => 112 mod US)); + + -- The representation of all items requires a multiple of four bytes + -- (or 32 bits) of data. The bytes are numbered 0 through n-1. The bytes + -- are read or written to some byte stream such that byte m always + -- precedes byte m+1. If the n bytes needed to contain the data are not + -- a multiple of four, then the n bytes are followed by enough (0 to 3) + -- residual zero bytes, r, to make the total byte count a multiple of 4. + + -- An XDR signed integer is a 32-bit datum that encodes an integer + -- in the range [-2147483648,2147483647]. The integer is represented + -- in two's complement notation. The most and least significant bytes + -- are 0 and 3, respectively. Integers are declared as follows: + -- + -- (MSB) (LSB) + -- +-------+-------+-------+-------+ + -- |byte 0 |byte 1 |byte 2 |byte 3 | + -- +-------+-------+-------+-------+ + -- <------------32 bits------------> + + SSI_L : constant := 1; + SI_L : constant := 2; + I_L : constant := 4; + LI_L : constant := 8; + LLI_L : constant := 8; + + subtype XDR_S_SSI is SEA (1 .. SSI_L); + subtype XDR_S_SI is SEA (1 .. SI_L); + subtype XDR_S_I is SEA (1 .. I_L); + subtype XDR_S_LI is SEA (1 .. LI_L); + subtype XDR_S_LLI is SEA (1 .. LLI_L); + + function Short_Short_Integer_To_XDR_S_SSI is + new Ada.Unchecked_Conversion (Short_Short_Integer, XDR_S_SSI); + function XDR_S_SSI_To_Short_Short_Integer is + new Ada.Unchecked_Conversion (XDR_S_SSI, Short_Short_Integer); + + function Short_Integer_To_XDR_S_SI is + new Ada.Unchecked_Conversion (Short_Integer, XDR_S_SI); + function XDR_S_SI_To_Short_Integer is + new Ada.Unchecked_Conversion (XDR_S_SI, Short_Integer); + + function Integer_To_XDR_S_I is + new Ada.Unchecked_Conversion (Integer, XDR_S_I); + function XDR_S_I_To_Integer is + new Ada.Unchecked_Conversion (XDR_S_I, Integer); + + function Long_Long_Integer_To_XDR_S_LI is + new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LI); + function XDR_S_LI_To_Long_Long_Integer is + new Ada.Unchecked_Conversion (XDR_S_LI, Long_Long_Integer); + + function Long_Long_Integer_To_XDR_S_LLI is + new Ada.Unchecked_Conversion (Long_Long_Integer, XDR_S_LLI); + function XDR_S_LLI_To_Long_Long_Integer is + new Ada.Unchecked_Conversion (XDR_S_LLI, Long_Long_Integer); + + -- An XDR unsigned integer is a 32-bit datum that encodes a nonnegative + -- integer in the range [0,4294967295]. It is represented by an unsigned + -- binary number whose most and least significant bytes are 0 and 3, + -- respectively. An unsigned integer is declared as follows: + -- + -- (MSB) (LSB) + -- +-------+-------+-------+-------+ + -- |byte 0 |byte 1 |byte 2 |byte 3 | + -- +-------+-------+-------+-------+ + -- <------------32 bits------------> + + SSU_L : constant := 1; + SU_L : constant := 2; + U_L : constant := 4; + LU_L : constant := 8; + LLU_L : constant := 8; + + subtype XDR_S_SSU is SEA (1 .. SSU_L); + subtype XDR_S_SU is SEA (1 .. SU_L); + subtype XDR_S_U is SEA (1 .. U_L); + subtype XDR_S_LU is SEA (1 .. LU_L); + subtype XDR_S_LLU is SEA (1 .. LLU_L); + + type XDR_SSU is mod BB ** SSU_L; + type XDR_SU is mod BB ** SU_L; + type XDR_U is mod BB ** U_L; + + function Short_Unsigned_To_XDR_S_SU is + new Ada.Unchecked_Conversion (Short_Unsigned, XDR_S_SU); + function XDR_S_SU_To_Short_Unsigned is + new Ada.Unchecked_Conversion (XDR_S_SU, Short_Unsigned); + + function Unsigned_To_XDR_S_U is + new Ada.Unchecked_Conversion (Unsigned, XDR_S_U); + function XDR_S_U_To_Unsigned is + new Ada.Unchecked_Conversion (XDR_S_U, Unsigned); + + function Long_Long_Unsigned_To_XDR_S_LU is + new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LU); + function XDR_S_LU_To_Long_Long_Unsigned is + new Ada.Unchecked_Conversion (XDR_S_LU, Long_Long_Unsigned); + + function Long_Long_Unsigned_To_XDR_S_LLU is + new Ada.Unchecked_Conversion (Long_Long_Unsigned, XDR_S_LLU); + function XDR_S_LLU_To_Long_Long_Unsigned is + new Ada.Unchecked_Conversion (XDR_S_LLU, Long_Long_Unsigned); + + -- The standard defines the floating-point data type "float" (32 bits + -- or 4 bytes). The encoding used is the IEEE standard for normalized + -- single-precision floating-point numbers. + + -- The standard defines the encoding for the double-precision + -- floating-point data type "double" (64 bits or 8 bytes). The + -- encoding used is the IEEE standard for normalized double-precision + -- floating-point numbers. + + SF_L : constant := 4; -- Single precision + F_L : constant := 4; -- Single precision + LF_L : constant := 8; -- Double precision + LLF_L : constant := 16; -- Quadruple precision + + TM_L : constant := 8; + subtype XDR_S_TM is SEA (1 .. TM_L); + type XDR_TM is mod BB ** TM_L; + + type XDR_SA is mod 2 ** Standard'Address_Size; + function To_XDR_SA is new UC (System.Address, XDR_SA); + function To_XDR_SA is new UC (XDR_SA, System.Address); + + -- Enumerations have the same representation as signed integers. + -- Enumerations are handy for describing subsets of the integers. + + -- Booleans are important enough and occur frequently enough to warrant + -- their own explicit type in the standard. Booleans are declared as + -- an enumeration, with FALSE = 0 and TRUE = 1. + + -- The standard defines a string of n (numbered 0 through n-1) ASCII + -- bytes to be the number n encoded as an unsigned integer (as described + -- above), and followed by the n bytes of the string. Byte m of the string + -- always precedes byte m+1 of the string, and byte 0 of the string always + -- follows the string's length. If n is not a multiple of four, then the + -- n bytes are followed by enough (0 to 3) residual zero bytes, r, to make + -- the total byte count a multiple of four. + + -- To fit with XDR string, do not consider character as an enumeration + -- type. + + C_L : constant := 1; + subtype XDR_S_C is SEA (1 .. C_L); + + -- Consider Wide_Character as an enumeration type + + WC_L : constant := 4; + subtype XDR_S_WC is SEA (1 .. WC_L); + type XDR_WC is mod BB ** WC_L; + + -- Optimization: if we already have the correct Bit_Order, then some + -- computations can be avoided since the source and the target will be + -- identical anyway. They will be replaced by direct unchecked + -- conversions. + + Optimize_Integers : constant Boolean := + Default_Bit_Order = High_Order_First; + + ---------- + -- I_AD -- + ---------- + + function I_AD (Stream : access RST) return Fat_Pointer is + FP : Fat_Pointer; + + begin + FP.P1 := I_AS (Stream).P1; + FP.P2 := I_AS (Stream).P1; + + return FP; + end I_AD; + + ---------- + -- I_AS -- + ---------- + + function I_AS (Stream : access RST) return Thin_Pointer is + S : XDR_S_TM; + L : SEO; + U : XDR_TM := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + else + for N in S'Range loop + U := U * BB + XDR_TM (S (N)); + end loop; + + return (P1 => To_XDR_SA (XDR_SA (U))); + end if; + end I_AS; + + --------- + -- I_B -- + --------- + + function I_B (Stream : access RST) return Boolean is + begin + case I_SSU (Stream) is + when 0 => return False; + when 1 => return True; + when others => raise Data_Error; + end case; + end I_B; + + --------- + -- I_C -- + --------- + + function I_C (Stream : access RST) return Character is + S : XDR_S_C; + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + else + + -- Use Ada requirements on Character representation clause + + return Character'Val (S (1)); + end if; + end I_C; + + --------- + -- I_F -- + --------- + + function I_F (Stream : access RST) return Float is + I : constant Precision := Single; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Last : Integer renames Fields (I).E_Last; + F_Mask : SE renames Fields (I).F_Mask; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + Positive : Boolean; + Exponent : Long_Unsigned; + Fraction : Long_Unsigned; + Result : Float; + S : SEA (1 .. F_L); + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + end if; + + -- Extract Fraction, Sign and Exponent + + Fraction := Long_Unsigned (S (F_L + 1 - F_Bytes) and F_Mask); + for N in F_L + 2 - F_Bytes .. F_L loop + Fraction := Fraction * BB + Long_Unsigned (S (N)); + end loop; + Result := Float'Scaling (Float (Fraction), -F_Size); + + if BS <= S (1) then + Positive := False; + Exponent := Long_Unsigned (S (1) - BS); + else + Positive := True; + Exponent := Long_Unsigned (S (1)); + end if; + + for N in 2 .. E_Bytes loop + Exponent := Exponent * BB + Long_Unsigned (S (N)); + end loop; + Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + + -- NaN or Infinities + + if Integer (Exponent) = E_Last then + raise Constraint_Error; + + elsif Exponent = 0 then + + -- Signed zeros + + if Fraction = 0 then + null; + + -- Denormalized float + + else + Result := Float'Scaling (Result, 1 - E_Bias); + end if; + + -- Normalized float + + else + Result := Float'Scaling + (1.0 + Result, Integer (Exponent) - E_Bias); + end if; + + if not Positive then + Result := -Result; + end if; + + return Result; + end I_F; + + --------- + -- I_I -- + --------- + + function I_I (Stream : access RST) return Integer is + S : XDR_S_I; + L : SEO; + U : XDR_U := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + + elsif Optimize_Integers then + return XDR_S_I_To_Integer (S); + + else + for N in S'Range loop + U := U * BB + XDR_U (S (N)); + end loop; + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Integer (U); + + else + return Integer (-((XDR_U'Last xor U) + 1)); + end if; + end if; + end I_I; + + ---------- + -- I_LF -- + ---------- + + function I_LF (Stream : access RST) return Long_Float is + I : constant Precision := Double; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Last : Integer renames Fields (I).E_Last; + F_Mask : SE renames Fields (I).F_Mask; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + Positive : Boolean; + Exponent : Long_Unsigned; + Fraction : Long_Long_Unsigned; + Result : Long_Float; + S : SEA (1 .. LF_L); + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + end if; + + -- Extract Fraction, Sign and Exponent + + Fraction := Long_Long_Unsigned (S (LF_L + 1 - F_Bytes) and F_Mask); + for N in LF_L + 2 - F_Bytes .. LF_L loop + Fraction := Fraction * BB + Long_Long_Unsigned (S (N)); + end loop; + + Result := Long_Float'Scaling (Long_Float (Fraction), -F_Size); + + if BS <= S (1) then + Positive := False; + Exponent := Long_Unsigned (S (1) - BS); + else + Positive := True; + Exponent := Long_Unsigned (S (1)); + end if; + + for N in 2 .. E_Bytes loop + Exponent := Exponent * BB + Long_Unsigned (S (N)); + end loop; + + Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + + -- NaN or Infinities + + if Integer (Exponent) = E_Last then + raise Constraint_Error; + + elsif Exponent = 0 then + + -- Signed zeros + + if Fraction = 0 then + null; + + -- Denormalized float + + else + Result := Long_Float'Scaling (Result, 1 - E_Bias); + end if; + + -- Normalized float + + else + Result := Long_Float'Scaling + (1.0 + Result, Integer (Exponent) - E_Bias); + end if; + + if not Positive then + Result := -Result; + end if; + + return Result; + end I_LF; + + ---------- + -- I_LI -- + ---------- + + function I_LI (Stream : access RST) return Long_Integer is + S : XDR_S_LI; + L : SEO; + U : Unsigned := 0; + X : Long_Unsigned := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + + elsif Optimize_Integers then + return Long_Integer (XDR_S_LI_To_Long_Long_Integer (S)); + + else + + -- Compute using machine unsigned + -- rather than long_long_unsigned + + for N in S'Range loop + U := U * BB + Unsigned (S (N)); + + -- We have filled an unsigned + + if N mod UB = 0 then + X := Shift_Left (X, US) + Long_Unsigned (U); + U := 0; + end if; + end loop; + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Long_Integer (X); + else + return Long_Integer (-((Long_Unsigned'Last xor X) + 1)); + end if; + + end if; + end I_LI; + + ----------- + -- I_LLF -- + ----------- + + function I_LLF (Stream : access RST) return Long_Long_Float is + I : constant Precision := Quadruple; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Last : Integer renames Fields (I).E_Last; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + Positive : Boolean; + Exponent : Long_Unsigned; + Fraction_1 : Long_Long_Unsigned := 0; + Fraction_2 : Long_Long_Unsigned := 0; + Result : Long_Long_Float; + HF : constant Natural := F_Size / 2; + S : SEA (1 .. LLF_L); + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + end if; + + -- Extract Fraction, Sign and Exponent + + for I in LLF_L - F_Bytes + 1 .. LLF_L - 7 loop + Fraction_1 := Fraction_1 * BB + Long_Long_Unsigned (S (I)); + end loop; + + for I in SEO (LLF_L - 6) .. SEO (LLF_L) loop + Fraction_2 := Fraction_2 * BB + Long_Long_Unsigned (S (I)); + end loop; + + Result := Long_Long_Float'Scaling (Long_Long_Float (Fraction_2), -HF); + Result := Long_Long_Float (Fraction_1) + Result; + Result := Long_Long_Float'Scaling (Result, HF - F_Size); + + if BS <= S (1) then + Positive := False; + Exponent := Long_Unsigned (S (1) - BS); + else + Positive := True; + Exponent := Long_Unsigned (S (1)); + end if; + + for N in 2 .. E_Bytes loop + Exponent := Exponent * BB + Long_Unsigned (S (N)); + end loop; + + Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + + -- NaN or Infinities + + if Integer (Exponent) = E_Last then + raise Constraint_Error; + + elsif Exponent = 0 then + + -- Signed zeros + + if Fraction_1 = 0 and then Fraction_2 = 0 then + null; + + -- Denormalized float + + else + Result := Long_Long_Float'Scaling (Result, 1 - E_Bias); + end if; + + -- Normalized float + + else + Result := Long_Long_Float'Scaling + (1.0 + Result, Integer (Exponent) - E_Bias); + end if; + + if not Positive then + Result := -Result; + end if; + + return Result; + end I_LLF; + + ----------- + -- I_LLI -- + ----------- + + function I_LLI (Stream : access RST) return Long_Long_Integer is + S : XDR_S_LLI; + L : SEO; + U : Unsigned := 0; + X : Long_Long_Unsigned := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return XDR_S_LLI_To_Long_Long_Integer (S); + else + + -- Compute using machine unsigned for computing + -- rather than long_long_unsigned. + + for N in S'Range loop + U := U * BB + Unsigned (S (N)); + + -- We have filled an unsigned + + if N mod UB = 0 then + X := Shift_Left (X, US) + Long_Long_Unsigned (U); + U := 0; + end if; + end loop; + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Long_Long_Integer (X); + else + return Long_Long_Integer (-((Long_Long_Unsigned'Last xor X) + 1)); + end if; + end if; + end I_LLI; + + ----------- + -- I_LLU -- + ----------- + + function I_LLU (Stream : access RST) return Long_Long_Unsigned is + S : XDR_S_LLU; + L : SEO; + U : Unsigned := 0; + X : Long_Long_Unsigned := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return XDR_S_LLU_To_Long_Long_Unsigned (S); + else + + -- Compute using machine unsigned + -- rather than long_long_unsigned. + + for N in S'Range loop + U := U * BB + Unsigned (S (N)); + + -- We have filled an unsigned + + if N mod UB = 0 then + X := Shift_Left (X, US) + Long_Long_Unsigned (U); + U := 0; + end if; + end loop; + + return X; + end if; + end I_LLU; + + ---------- + -- I_LU -- + ---------- + + function I_LU (Stream : access RST) return Long_Unsigned is + S : XDR_S_LU; + L : SEO; + U : Unsigned := 0; + X : Long_Unsigned := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return Long_Unsigned (XDR_S_LU_To_Long_Long_Unsigned (S)); + else + + -- Compute using machine unsigned + -- rather than long_unsigned. + + for N in S'Range loop + U := U * BB + Unsigned (S (N)); + + -- We have filled an unsigned + + if N mod UB = 0 then + X := Shift_Left (X, US) + Long_Unsigned (U); + U := 0; + end if; + end loop; + + return X; + end if; + end I_LU; + + ---------- + -- I_SF -- + ---------- + + function I_SF (Stream : access RST) return Short_Float is + I : constant Precision := Single; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Last : Integer renames Fields (I).E_Last; + F_Mask : SE renames Fields (I).F_Mask; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + Exponent : Long_Unsigned; + Fraction : Long_Unsigned; + Positive : Boolean; + Result : Short_Float; + S : SEA (1 .. SF_L); + L : SEO; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + end if; + + -- Extract Fraction, Sign and Exponent + + Fraction := Long_Unsigned (S (SF_L + 1 - F_Bytes) and F_Mask); + for N in SF_L + 2 - F_Bytes .. SF_L loop + Fraction := Fraction * BB + Long_Unsigned (S (N)); + end loop; + Result := Short_Float'Scaling (Short_Float (Fraction), -F_Size); + + if BS <= S (1) then + Positive := False; + Exponent := Long_Unsigned (S (1) - BS); + else + Positive := True; + Exponent := Long_Unsigned (S (1)); + end if; + + for N in 2 .. E_Bytes loop + Exponent := Exponent * BB + Long_Unsigned (S (N)); + end loop; + Exponent := Shift_Right (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + + -- NaN or Infinities + + if Integer (Exponent) = E_Last then + raise Constraint_Error; + + elsif Exponent = 0 then + + -- Signed zeros + + if Fraction = 0 then + null; + + -- Denormalized float + + else + Result := Short_Float'Scaling (Result, 1 - E_Bias); + end if; + + -- Normalized float + + else + Result := Short_Float'Scaling + (1.0 + Result, Integer (Exponent) - E_Bias); + end if; + + if not Positive then + Result := -Result; + end if; + + return Result; + end I_SF; + + ---------- + -- I_SI -- + ---------- + + function I_SI (Stream : access RST) return Short_Integer is + S : XDR_S_SI; + L : SEO; + U : XDR_SU := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + + elsif Optimize_Integers then + return XDR_S_SI_To_Short_Integer (S); + + else + for N in S'Range loop + U := U * BB + XDR_SU (S (N)); + end loop; + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Short_Integer (U); + else + return Short_Integer (-((XDR_SU'Last xor U) + 1)); + end if; + end if; + end I_SI; + + ----------- + -- I_SSI -- + ----------- + + function I_SSI (Stream : access RST) return Short_Short_Integer is + S : XDR_S_SSI; + L : SEO; + U : XDR_SSU; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return XDR_S_SSI_To_Short_Short_Integer (S); + else + U := XDR_SSU (S (1)); + + -- Test sign and apply two complement notation + + if S (1) < BL then + return Short_Short_Integer (U); + else + return Short_Short_Integer (-((XDR_SSU'Last xor U) + 1)); + end if; + end if; + end I_SSI; + + ----------- + -- I_SSU -- + ----------- + + function I_SSU (Stream : access RST) return Short_Short_Unsigned is + S : XDR_S_SSU; + L : SEO; + U : XDR_SSU := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + else + U := XDR_SSU (S (1)); + + return Short_Short_Unsigned (U); + end if; + end I_SSU; + + ---------- + -- I_SU -- + ---------- + + function I_SU (Stream : access RST) return Short_Unsigned is + S : XDR_S_SU; + L : SEO; + U : XDR_SU := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + elsif Optimize_Integers then + return XDR_S_SU_To_Short_Unsigned (S); + else + for N in S'Range loop + U := U * BB + XDR_SU (S (N)); + end loop; + + return Short_Unsigned (U); + end if; + end I_SU; + + --------- + -- I_U -- + --------- + + function I_U (Stream : access RST) return Unsigned is + S : XDR_S_U; + L : SEO; + U : XDR_U := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + + elsif Optimize_Integers then + return XDR_S_U_To_Unsigned (S); + + else + for N in S'Range loop + U := U * BB + XDR_U (S (N)); + end loop; + + return Unsigned (U); + end if; + end I_U; + + ---------- + -- I_WC -- + ---------- + + function I_WC (Stream : access RST) return Wide_Character is + S : XDR_S_WC; + L : SEO; + U : XDR_WC := 0; + + begin + Ada.Streams.Read (Stream.all, S, L); + + if L /= S'Last then + raise Data_Error; + else + for N in S'Range loop + U := U * BB + XDR_WC (S (N)); + end loop; + + -- Use Ada requirements on Wide_Character representation clause + + return Wide_Character'Val (U); + end if; + end I_WC; + + ---------- + -- W_AD -- + ---------- + + procedure W_AD (Stream : access RST; Item : in Fat_Pointer) is + S : XDR_S_TM; + U : XDR_TM; + + begin + U := XDR_TM (To_XDR_SA (Item.P1)); + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + Ada.Streams.Write (Stream.all, S); + + U := XDR_TM (To_XDR_SA (Item.P2)); + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + Ada.Streams.Write (Stream.all, S); + + if U /= 0 then + raise Data_Error; + end if; + end W_AD; + + ---------- + -- W_AS -- + ---------- + + procedure W_AS (Stream : access RST; Item : in Thin_Pointer) is + S : XDR_S_TM; + U : XDR_TM := XDR_TM (To_XDR_SA (Item.P1)); + + begin + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + Ada.Streams.Write (Stream.all, S); + + if U /= 0 then + raise Data_Error; + end if; + end W_AS; + + --------- + -- W_B -- + --------- + + procedure W_B (Stream : access RST; Item : in Boolean) is + begin + if Item then + W_SSU (Stream, 1); + else + W_SSU (Stream, 0); + end if; + end W_B; + + --------- + -- W_C -- + --------- + + procedure W_C (Stream : access RST; Item : in Character) is + S : XDR_S_C; + + pragma Assert (C_L = 1); + + begin + + -- Use Ada requirements on Character representation clause + + S (1) := SE (Character'Pos (Item)); + + Ada.Streams.Write (Stream.all, S); + end W_C; + + --------- + -- W_F -- + --------- + + procedure W_F (Stream : access RST; Item : in Float) is + I : constant Precision := Single; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + F_Mask : SE renames Fields (I).F_Mask; + + Exponent : Long_Unsigned; + Fraction : Long_Unsigned; + Positive : Boolean; + E : Integer; + F : Float; + S : SEA (1 .. F_L) := (others => 0); + + begin + if not Item'Valid then + raise Constraint_Error; + end if; + + -- Compute Sign + + Positive := (0.0 <= Item); + F := abs (Item); + + -- Signed zero + + if F = 0.0 then + Exponent := 0; + Fraction := 0; + + else + E := Float'Exponent (F) - 1; + + -- Denormalized float + + if E <= -E_Bias then + F := Float'Scaling (F, F_Size + E_Bias - 1); + E := -E_Bias; + else + F := Float'Scaling (Float'Fraction (F), F_Size + 1); + end if; + + -- Compute Exponent and Fraction + + Exponent := Long_Unsigned (E + E_Bias); + Fraction := Long_Unsigned (F * 2.0) / 2; + end if; + + -- Store Fraction + + for I in reverse F_L - F_Bytes + 1 .. F_L loop + S (I) := SE (Fraction mod BB); + Fraction := Fraction / BB; + end loop; + + -- Remove implicit bit + + S (F_L - F_Bytes + 1) := S (F_L - F_Bytes + 1) and F_Mask; + + -- Store Exponent (not always at the beginning of a byte) + + Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + for N in reverse 1 .. E_Bytes loop + S (N) := SE (Exponent mod BB) + S (N); + Exponent := Exponent / BB; + end loop; + + -- Store Sign + + if not Positive then + S (1) := S (1) + BS; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_F; + + --------- + -- W_I -- + --------- + + procedure W_I (Stream : access RST; Item : in Integer) is + S : XDR_S_I; + U : XDR_U; + + begin + if Optimize_Integers then + S := Integer_To_XDR_S_I (Item); + else + + -- Test sign and apply two complement notation + + if Item < 0 then + U := XDR_U'Last xor XDR_U (-(Item + 1)); + else + U := XDR_U (Item); + end if; + + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_I; + + ---------- + -- W_LF -- + ---------- + + procedure W_LF (Stream : access RST; Item : in Long_Float) is + I : constant Precision := Double; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + F_Mask : SE renames Fields (I).F_Mask; + + Exponent : Long_Unsigned; + Fraction : Long_Long_Unsigned; + Positive : Boolean; + E : Integer; + F : Long_Float; + S : SEA (1 .. LF_L) := (others => 0); + + begin + if not Item'Valid then + raise Constraint_Error; + end if; + + -- Compute Sign + + Positive := (0.0 <= Item); + F := abs (Item); + + -- Signed zero + + if F = 0.0 then + Exponent := 0; + Fraction := 0; + + else + E := Long_Float'Exponent (F) - 1; + + -- Denormalized float + + if E <= -E_Bias then + E := -E_Bias; + F := Long_Float'Scaling (F, F_Size + E_Bias - 1); + else + F := Long_Float'Scaling (F, F_Size - E); + end if; + + -- Compute Exponent and Fraction + + Exponent := Long_Unsigned (E + E_Bias); + Fraction := Long_Long_Unsigned (F * 2.0) / 2; + end if; + + -- Store Fraction + + for I in reverse LF_L - F_Bytes + 1 .. LF_L loop + S (I) := SE (Fraction mod BB); + Fraction := Fraction / BB; + end loop; + + -- Remove implicit bit + + S (LF_L - F_Bytes + 1) := S (LF_L - F_Bytes + 1) and F_Mask; + + -- Store Exponent (not always at the beginning of a byte) + + Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + for N in reverse 1 .. E_Bytes loop + S (N) := SE (Exponent mod BB) + S (N); + Exponent := Exponent / BB; + end loop; + + -- Store Sign + + if not Positive then + S (1) := S (1) + BS; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LF; + + ---------- + -- W_LI -- + ---------- + + procedure W_LI (Stream : access RST; Item : in Long_Integer) is + S : XDR_S_LI; + U : Unsigned; + X : Long_Unsigned; + + begin + if Optimize_Integers then + S := Long_Long_Integer_To_XDR_S_LI (Long_Long_Integer (Item)); + else + + -- Test sign and apply two complement notation + + if Item < 0 then + X := Long_Unsigned'Last xor Long_Unsigned (-(Item + 1)); + else + X := Long_Unsigned (Item); + end if; + + -- Compute using machine unsigned + -- rather than long_unsigned. + + for N in reverse S'Range loop + + -- We have filled an unsigned + + if (LU_L - N) mod UB = 0 then + U := Unsigned (X and UL); + X := Shift_Right (X, US); + end if; + + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LI; + + ----------- + -- W_LLF -- + ----------- + + procedure W_LLF (Stream : access RST; Item : in Long_Long_Float) is + I : constant Precision := Quadruple; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + + HFS : constant Integer := F_Size / 2; + + Exponent : Long_Unsigned; + Fraction_1 : Long_Long_Unsigned; + Fraction_2 : Long_Long_Unsigned; + Positive : Boolean; + E : Integer; + F : Long_Long_Float := Item; + S : SEA (1 .. LLF_L) := (others => 0); + + begin + if not Item'Valid then + raise Constraint_Error; + end if; + + -- Compute Sign + + Positive := (0.0 <= Item); + if F < 0.0 then + F := -Item; + end if; + + -- Signed zero + + if F = 0.0 then + Exponent := 0; + Fraction_1 := 0; + Fraction_2 := 0; + + else + E := Long_Long_Float'Exponent (F) - 1; + + -- Denormalized float + + if E <= -E_Bias then + F := Long_Long_Float'Scaling (F, E_Bias - 1); + E := -E_Bias; + else + F := Long_Long_Float'Scaling + (Long_Long_Float'Fraction (F), 1); + end if; + + -- Compute Exponent and Fraction + + Exponent := Long_Unsigned (E + E_Bias); + F := Long_Long_Float'Scaling (F, F_Size - HFS); + Fraction_1 := Long_Long_Unsigned (Long_Long_Float'Floor (F)); + F := Long_Long_Float (F - Long_Long_Float (Fraction_1)); + F := Long_Long_Float'Scaling (F, HFS); + Fraction_2 := Long_Long_Unsigned (Long_Long_Float'Floor (F)); + end if; + + -- Store Fraction_1 + + for I in reverse LLF_L - F_Bytes + 1 .. LLF_L - 7 loop + S (I) := SE (Fraction_1 mod BB); + Fraction_1 := Fraction_1 / BB; + end loop; + + -- Store Fraction_2 + + for I in reverse LLF_L - 6 .. LLF_L loop + S (SEO (I)) := SE (Fraction_2 mod BB); + Fraction_2 := Fraction_2 / BB; + end loop; + + -- Store Exponent (not always at the beginning of a byte) + + Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + for N in reverse 1 .. E_Bytes loop + S (N) := SE (Exponent mod BB) + S (N); + Exponent := Exponent / BB; + end loop; + + -- Store Sign + + if not Positive then + S (1) := S (1) + BS; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LLF; + + ----------- + -- W_LLI -- + ----------- + + procedure W_LLI (Stream : access RST; Item : in Long_Long_Integer) is + S : XDR_S_LLI; + U : Unsigned; + X : Long_Long_Unsigned; + + begin + if Optimize_Integers then + S := Long_Long_Integer_To_XDR_S_LLI (Item); + else + + -- Test sign and apply two complement notation + + if Item < 0 then + X := Long_Long_Unsigned'Last xor Long_Long_Unsigned (-(Item + 1)); + else + X := Long_Long_Unsigned (Item); + end if; + + -- Compute using machine unsigned + -- rather than long_long_unsigned. + + for N in reverse S'Range loop + + -- We have filled an unsigned + + if (LLU_L - N) mod UB = 0 then + U := Unsigned (X and UL); + X := Shift_Right (X, US); + end if; + + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LLI; + + ----------- + -- W_LLU -- + ----------- + + procedure W_LLU (Stream : access RST; Item : in Long_Long_Unsigned) is + S : XDR_S_LLU; + U : Unsigned; + X : Long_Long_Unsigned := Item; + + begin + if Optimize_Integers then + S := Long_Long_Unsigned_To_XDR_S_LLU (Item); + else + -- Compute using machine unsigned + -- rather than long_long_unsigned. + + for N in reverse S'Range loop + + -- We have filled an unsigned + + if (LLU_L - N) mod UB = 0 then + U := Unsigned (X and UL); + X := Shift_Right (X, US); + end if; + + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LLU; + + ---------- + -- W_LU -- + ---------- + + procedure W_LU (Stream : access RST; Item : in Long_Unsigned) is + S : XDR_S_LU; + U : Unsigned; + X : Long_Unsigned := Item; + + begin + if Optimize_Integers then + S := Long_Long_Unsigned_To_XDR_S_LU (Long_Long_Unsigned (Item)); + else + -- Compute using machine unsigned + -- rather than long_unsigned. + + for N in reverse S'Range loop + + -- We have filled an unsigned + + if (LU_L - N) mod UB = 0 then + U := Unsigned (X and UL); + X := Shift_Right (X, US); + end if; + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_LU; + + ---------- + -- W_SF -- + ---------- + + procedure W_SF (Stream : access RST; Item : in Short_Float) is + I : constant Precision := Single; + E_Size : Integer renames Fields (I).E_Size; + E_Bias : Integer renames Fields (I).E_Bias; + E_Bytes : SEO renames Fields (I).E_Bytes; + F_Bytes : SEO renames Fields (I).F_Bytes; + F_Size : Integer renames Fields (I).F_Size; + F_Mask : SE renames Fields (I).F_Mask; + + Exponent : Long_Unsigned; + Fraction : Long_Unsigned; + Positive : Boolean; + E : Integer; + F : Short_Float; + S : SEA (1 .. SF_L) := (others => 0); + + begin + if not Item'Valid then + raise Constraint_Error; + end if; + + -- Compute Sign + + Positive := (0.0 <= Item); + F := abs (Item); + + -- Signed zero + + if F = 0.0 then + Exponent := 0; + Fraction := 0; + + else + E := Short_Float'Exponent (F) - 1; + + -- Denormalized float + + if E <= -E_Bias then + E := -E_Bias; + F := Short_Float'Scaling (F, F_Size + E_Bias - 1); + else + F := Short_Float'Scaling (F, F_Size - E); + end if; + + -- Compute Exponent and Fraction + + Exponent := Long_Unsigned (E + E_Bias); + Fraction := Long_Unsigned (F * 2.0) / 2; + end if; + + -- Store Fraction + + for I in reverse SF_L - F_Bytes + 1 .. SF_L loop + S (I) := SE (Fraction mod BB); + Fraction := Fraction / BB; + end loop; + + -- Remove implicit bit + + S (SF_L - F_Bytes + 1) := S (SF_L - F_Bytes + 1) and F_Mask; + + -- Store Exponent (not always at the beginning of a byte) + + Exponent := Shift_Left (Exponent, Integer (E_Bytes) * SU - E_Size - 1); + for N in reverse 1 .. E_Bytes loop + S (N) := SE (Exponent mod BB) + S (N); + Exponent := Exponent / BB; + end loop; + + -- Store Sign + + if not Positive then + S (1) := S (1) + BS; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_SF; + + ---------- + -- W_SI -- + ---------- + + procedure W_SI (Stream : access RST; Item : in Short_Integer) is + S : XDR_S_SI; + U : XDR_SU; + + begin + if Optimize_Integers then + S := Short_Integer_To_XDR_S_SI (Item); + else + + -- Test sign and apply two complement's notation + + if Item < 0 then + U := XDR_SU'Last xor XDR_SU (-(Item + 1)); + else + U := XDR_SU (Item); + end if; + + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_SI; + + ----------- + -- W_SSI -- + ----------- + + procedure W_SSI (Stream : access RST; Item : in Short_Short_Integer) is + S : XDR_S_SSI; + U : XDR_SSU; + + begin + if Optimize_Integers then + S := Short_Short_Integer_To_XDR_S_SSI (Item); + else + + -- Test sign and apply two complement's notation + + if Item < 0 then + U := XDR_SSU'Last xor XDR_SSU (-(Item + 1)); + else + U := XDR_SSU (Item); + end if; + + S (1) := SE (U); + end if; + + Ada.Streams.Write (Stream.all, S); + end W_SSI; + + ----------- + -- W_SSU -- + ----------- + + procedure W_SSU (Stream : access RST; Item : in Short_Short_Unsigned) is + S : XDR_S_SSU; + U : XDR_SSU := XDR_SSU (Item); + + begin + S (1) := SE (U); + + Ada.Streams.Write (Stream.all, S); + end W_SSU; + + ---------- + -- W_SU -- + ---------- + + procedure W_SU (Stream : access RST; Item : in Short_Unsigned) is + S : XDR_S_SU; + U : XDR_SU := XDR_SU (Item); + + begin + if Optimize_Integers then + S := Short_Unsigned_To_XDR_S_SU (Item); + else + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_SU; + + --------- + -- W_U -- + --------- + + procedure W_U (Stream : access RST; Item : in Unsigned) is + S : XDR_S_U; + U : XDR_U := XDR_U (Item); + + begin + if Optimize_Integers then + S := Unsigned_To_XDR_S_U (Item); + else + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + if U /= 0 then + raise Data_Error; + end if; + end if; + + Ada.Streams.Write (Stream.all, S); + end W_U; + + ---------- + -- W_WC -- + ---------- + + procedure W_WC (Stream : access RST; Item : in Wide_Character) is + S : XDR_S_WC; + U : XDR_WC; + + begin + + -- Use Ada requirements on Wide_Character representation clause + + U := XDR_WC (Wide_Character'Pos (Item)); + + for N in reverse S'Range loop + S (N) := SE (U mod BB); + U := U / BB; + end loop; + + Ada.Streams.Write (Stream.all, S); + + if U /= 0 then + raise Data_Error; + end if; + end W_WC; + +end System.Stream_Attributes; |