summaryrefslogtreecommitdiff
path: root/gcc/ada/freeze.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/ada/freeze.adb')
-rw-r--r--gcc/ada/freeze.adb3903
1 files changed, 3903 insertions, 0 deletions
diff --git a/gcc/ada/freeze.adb b/gcc/ada/freeze.adb
new file mode 100644
index 00000000000..6f4c4c7c7c1
--- /dev/null
+++ b/gcc/ada/freeze.adb
@@ -0,0 +1,3903 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- F R E E Z E --
+-- --
+-- B o d y --
+-- --
+-- $Revision: 1.281 $
+-- --
+-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
+-- MA 02111-1307, USA. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Debug; use Debug;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Errout; use Errout;
+with Exp_Ch7; use Exp_Ch7;
+with Exp_Ch11; use Exp_Ch11;
+with Exp_Pakd; use Exp_Pakd;
+with Exp_Util; use Exp_Util;
+with Layout; use Layout;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Sem; use Sem;
+with Sem_Cat; use Sem_Cat;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch7; use Sem_Ch7;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Ch13; use Sem_Ch13;
+with Sem_Eval; use Sem_Eval;
+with Sem_Mech; use Sem_Mech;
+with Sem_Prag; use Sem_Prag;
+with Sem_Res; use Sem_Res;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+with Urealp; use Urealp;
+
+package body Freeze is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
+ -- Typ is a type that is being frozen. If no size clause is given,
+ -- but a default Esize has been computed, then this default Esize is
+ -- adjusted up if necessary to be consistent with a given alignment,
+ -- but never to a value greater than Long_Long_Integer'Size. This
+ -- is used for all discrete types and for fixed-point types.
+
+ procedure Build_And_Analyze_Renamed_Body
+ (Decl : Node_Id;
+ New_S : Entity_Id;
+ After : in out Node_Id);
+ -- Build body for a renaming declaration, insert in tree and analyze.
+
+ procedure Check_Strict_Alignment (E : Entity_Id);
+ -- E is a base type. If E is tagged or has a component that is aliased
+ -- or tagged or contains something this is aliased or tagged, set
+ -- Strict_Alignment.
+
+ procedure Check_Unsigned_Type (E : Entity_Id);
+ pragma Inline (Check_Unsigned_Type);
+ -- If E is a fixed-point or discrete type, then all the necessary work
+ -- to freeze it is completed except for possible setting of the flag
+ -- Is_Unsigned_Type, which is done by this procedure. The call has no
+ -- effect if the entity E is not a discrete or fixed-point type.
+
+ procedure Freeze_And_Append
+ (Ent : Entity_Id;
+ Loc : Source_Ptr;
+ Result : in out List_Id);
+ -- Freezes Ent using Freeze_Entity, and appends the resulting list of
+ -- nodes to Result, modifying Result from No_List if necessary.
+
+ procedure Freeze_Enumeration_Type (Typ : Entity_Id);
+ -- Freeze enumeration type. The Esize field is set as processing
+ -- proceeds (i.e. set by default when the type is declared and then
+ -- adjusted by rep clauses. What this procedure does is to make sure
+ -- that if a foreign convention is specified, and no specific size
+ -- is given, then the size must be at least Integer'Size.
+
+ procedure Freeze_Fixed_Point_Type (Typ : Entity_Id);
+ -- Freeze fixed point type. For fixed-point types, we have to defer
+ -- setting the size and bounds till the freeze point, since they are
+ -- potentially affected by the presence of size and small clauses.
+
+ procedure Freeze_Static_Object (E : Entity_Id);
+ -- If an object is frozen which has Is_Statically_Allocated set, then
+ -- all referenced types must also be marked with this flag. This routine
+ -- is in charge of meeting this requirement for the object entity E.
+
+ procedure Freeze_Subprogram (E : Entity_Id);
+ -- Perform freezing actions for a subprogram (create extra formals,
+ -- and set proper default mechanism values). Note that this routine
+ -- is not called for internal subprograms, for which neither of these
+ -- actions is needed (or desirable, we do not want for example to have
+ -- these extra formals present in initialization procedures, where they
+ -- would serve no purpose). In this call E is either a subprogram or
+ -- a subprogram type (i.e. an access to a subprogram).
+
+ function Is_Fully_Defined (T : Entity_Id) return Boolean;
+ -- true if T is not private, or has a full view.
+
+ procedure Process_Default_Expressions
+ (E : Entity_Id;
+ After : in out Node_Id);
+ -- This procedure is called for each subprogram to complete processing
+ -- of default expressions at the point where all types are known to be
+ -- frozen. The expressions must be analyzed in full, to make sure that
+ -- all error processing is done (they have only been pre-analyzed). If
+ -- the expression is not an entity or literal, its analysis may generate
+ -- code which must not be executed. In that case we build a function
+ -- body to hold that code. This wrapper function serves no other purpose
+ -- (it used to be called to evaluate the default, but now the default is
+ -- inlined at each point of call).
+
+ procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
+ -- Typ is a record or array type that is being frozen. This routine
+ -- sets the default component alignment from the scope stack values
+ -- if the alignment is otherwise not specified.
+
+ procedure Check_Debug_Info_Needed (T : Entity_Id);
+ -- As each entity is frozen, this routine is called to deal with the
+ -- setting of Debug_Info_Needed for the entity. This flag is set if
+ -- the entity comes from source, or if we are in Debug_Generated_Code
+ -- mode or if the -gnatdV debug flag is set. However, it never sets
+ -- the flag if Debug_Info_Off is set.
+
+ procedure Set_Debug_Info_Needed (T : Entity_Id);
+ -- Sets the Debug_Info_Needed flag on entity T if not already set, and
+ -- also on any entities that are needed by T (for an object, the type
+ -- of the object is needed, and for a type, the subsidiary types are
+ -- needed -- see body for details). Never has any effect on T if the
+ -- Debug_Info_Off flag is set.
+
+ -------------------------------
+ -- Adjust_Esize_For_Alignment --
+ -------------------------------
+
+ procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
+ Align : Uint;
+
+ begin
+ if Known_Esize (Typ) and then Known_Alignment (Typ) then
+ Align := Alignment_In_Bits (Typ);
+
+ if Align > Esize (Typ)
+ and then Align <= Standard_Long_Long_Integer_Size
+ then
+ Set_Esize (Typ, Align);
+ end if;
+ end if;
+ end Adjust_Esize_For_Alignment;
+
+ ------------------------------------
+ -- Build_And_Analyze_Renamed_Body --
+ ------------------------------------
+
+ procedure Build_And_Analyze_Renamed_Body
+ (Decl : Node_Id;
+ New_S : Entity_Id;
+ After : in out Node_Id)
+ is
+ Body_Node : constant Node_Id := Build_Renamed_Body (Decl, New_S);
+
+ begin
+ Insert_After (After, Body_Node);
+ Mark_Rewrite_Insertion (Body_Node);
+ Analyze (Body_Node);
+ After := Body_Node;
+ end Build_And_Analyze_Renamed_Body;
+
+ ------------------------
+ -- Build_Renamed_Body --
+ ------------------------
+
+ function Build_Renamed_Body
+ (Decl : Node_Id;
+ New_S : Entity_Id)
+ return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (New_S);
+ -- We use for the source location of the renamed body, the location
+ -- of the spec entity. It might seem more natural to use the location
+ -- of the renaming declaration itself, but that would be wrong, since
+ -- then the body we create would look as though it was created far
+ -- too late, and this could cause problems with elaboration order
+ -- analysis, particularly in connection with instantiations.
+
+ N : constant Node_Id := Unit_Declaration_Node (New_S);
+ Nam : constant Node_Id := Name (N);
+ Old_S : Entity_Id;
+ Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
+ Actuals : List_Id := No_List;
+ Call_Node : Node_Id;
+ Call_Name : Node_Id;
+ Body_Node : Node_Id;
+ Formal : Entity_Id;
+ O_Formal : Entity_Id;
+ Param_Spec : Node_Id;
+
+ begin
+ -- Determine the entity being renamed, which is the target of the
+ -- call statement. If the name is an explicit dereference, this is
+ -- a renaming of a subprogram type rather than a subprogram. The
+ -- name itself is fully analyzed.
+
+ if Nkind (Nam) = N_Selected_Component then
+ Old_S := Entity (Selector_Name (Nam));
+
+ elsif Nkind (Nam) = N_Explicit_Dereference then
+ Old_S := Etype (Nam);
+
+ elsif Nkind (Nam) = N_Indexed_Component then
+
+ if Is_Entity_Name (Prefix (Nam)) then
+ Old_S := Entity (Prefix (Nam));
+ else
+ Old_S := Entity (Selector_Name (Prefix (Nam)));
+ end if;
+
+ elsif Nkind (Nam) = N_Character_Literal then
+ Old_S := Etype (New_S);
+
+ else
+ Old_S := Entity (Nam);
+ end if;
+
+ if Is_Entity_Name (Nam) then
+ Call_Name := New_Reference_To (Old_S, Loc);
+ else
+ Call_Name := New_Copy (Name (N));
+
+ -- The original name may have been overloaded, but
+ -- is fully resolved now.
+
+ Set_Is_Overloaded (Call_Name, False);
+ end if;
+
+ -- For simple renamings, subsequent calls can be expanded directly
+ -- as called to the renamed entity. The body must be generated in
+ -- any case for calls they may appear elsewhere.
+
+ if (Ekind (Old_S) = E_Function
+ or else Ekind (Old_S) = E_Procedure)
+ and then Nkind (Decl) = N_Subprogram_Declaration
+ then
+ Set_Body_To_Inline (Decl, Old_S);
+ end if;
+
+ -- The body generated for this renaming is an internal artifact, and
+ -- does not constitute a freeze point for the called entity.
+
+ Set_Must_Not_Freeze (Call_Name);
+
+ Formal := First_Formal (Defining_Entity (Decl));
+
+ if Present (Formal) then
+ Actuals := New_List;
+
+ while Present (Formal) loop
+ Append (New_Reference_To (Formal, Loc), Actuals);
+ Next_Formal (Formal);
+ end loop;
+ end if;
+
+ -- If the renamed entity is an entry, inherit its profile. For
+ -- other renamings as bodies, both profiles must be subtype
+ -- conformant, so it is not necessary to replace the profile given
+ -- in the declaration. However, default values that are aggregates
+ -- are rewritten when partially analyzed, so we recover the original
+ -- aggregate to insure that subsequent conformity checking works.
+
+ Formal := First_Formal (Defining_Entity (Decl));
+
+ if Present (Formal) then
+ O_Formal := First_Formal (Old_S);
+ Param_Spec := First (Parameter_Specifications (Spec));
+
+ while Present (Formal) loop
+ if Is_Entry (Old_S) then
+
+ if Nkind (Parameter_Type (Param_Spec)) /=
+ N_Access_Definition
+ then
+ Set_Etype (Formal, Etype (O_Formal));
+ Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
+ end if;
+
+ elsif Nkind (Default_Value (O_Formal)) = N_Aggregate then
+ Set_Expression (Param_Spec,
+ New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
+ end if;
+
+ Next_Formal (Formal);
+ Next_Formal (O_Formal);
+ Next (Param_Spec);
+ end loop;
+ end if;
+
+ -- If the renamed entity is a function, the generated body contains a
+ -- return statement. Otherwise, build a procedure call. If the entity is
+ -- an entry, subsequent analysis of the call will transform it into the
+ -- proper entry or protected operation call. If the renamed entity is
+ -- a character literal, return it directly.
+
+ if Ekind (Old_S) = E_Function
+ or else Ekind (Old_S) = E_Operator
+ or else (Ekind (Old_S) = E_Subprogram_Type
+ and then Etype (Old_S) /= Standard_Void_Type)
+ then
+ Call_Node :=
+ Make_Return_Statement (Loc,
+ Expression =>
+ Make_Function_Call (Loc,
+ Name => Call_Name,
+ Parameter_Associations => Actuals));
+
+ elsif Ekind (Old_S) = E_Enumeration_Literal then
+ Call_Node :=
+ Make_Return_Statement (Loc,
+ Expression => New_Occurrence_Of (Old_S, Loc));
+
+ elsif Nkind (Nam) = N_Character_Literal then
+ Call_Node :=
+ Make_Return_Statement (Loc,
+ Expression => Call_Name);
+
+ else
+ Call_Node :=
+ Make_Procedure_Call_Statement (Loc,
+ Name => Call_Name,
+ Parameter_Associations => Actuals);
+ end if;
+
+ -- Create entities for subprogram body and formals.
+
+ Set_Defining_Unit_Name (Spec,
+ Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
+
+ Param_Spec := First (Parameter_Specifications (Spec));
+
+ while Present (Param_Spec) loop
+ Set_Defining_Identifier (Param_Spec,
+ Make_Defining_Identifier (Loc,
+ Chars => Chars (Defining_Identifier (Param_Spec))));
+ Next (Param_Spec);
+ end loop;
+
+ Body_Node :=
+ Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Call_Node)));
+
+ if Nkind (Decl) /= N_Subprogram_Declaration then
+ Rewrite (N,
+ Make_Subprogram_Declaration (Loc,
+ Specification => Specification (N)));
+ end if;
+
+ -- Link the body to the entity whose declaration it completes. If
+ -- the body is analyzed when the renamed entity is frozen, it may be
+ -- necessary to restore the proper scope (see package Exp_Ch13).
+
+ if Nkind (N) = N_Subprogram_Renaming_Declaration
+ and then Present (Corresponding_Spec (N))
+ then
+ Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
+ else
+ Set_Corresponding_Spec (Body_Node, New_S);
+ end if;
+
+ return Body_Node;
+ end Build_Renamed_Body;
+
+ -----------------------------
+ -- Check_Compile_Time_Size --
+ -----------------------------
+
+ procedure Check_Compile_Time_Size (T : Entity_Id) is
+
+ procedure Set_Small_Size (S : Uint);
+ -- Sets the compile time known size (32 bits or less) in the Esize
+ -- field, checking for a size clause that was given which attempts
+ -- to give a smaller size.
+
+ function Size_Known (T : Entity_Id) return Boolean;
+ -- Recursive function that does all the work.
+ -- Is this right??? isn't recursive case already handled???
+ -- certainly yes for normal call, but what about bogus sem_res call???
+
+ function Static_Discriminated_Components (T : Entity_Id) return Boolean;
+ -- If T is a constrained subtype, its size is not known if any of its
+ -- discriminant constraints is not static and it is not a null record.
+ -- The test is conservative and doesn't check that the components are
+ -- in fact constrained by non-static discriminant values. Could be made
+ -- more precise ???
+
+ --------------------
+ -- Set_Small_Size --
+ --------------------
+
+ procedure Set_Small_Size (S : Uint) is
+ begin
+ if S > 32 then
+ return;
+
+ elsif Has_Size_Clause (T) then
+ if RM_Size (T) < S then
+ Error_Msg_Uint_1 := S;
+ Error_Msg_NE
+ ("size for & is too small, minimum is ^",
+ Size_Clause (T), T);
+
+ elsif Unknown_Esize (T) then
+ Set_Esize (T, S);
+ end if;
+
+ -- Set sizes if not set already
+
+ else
+ if Unknown_Esize (T) then
+ Set_Esize (T, S);
+ end if;
+
+ if Unknown_RM_Size (T) then
+ Set_RM_Size (T, S);
+ end if;
+ end if;
+ end Set_Small_Size;
+
+ ----------------
+ -- Size_Known --
+ ----------------
+
+ function Size_Known (T : Entity_Id) return Boolean is
+ Index : Entity_Id;
+ Comp : Entity_Id;
+ Ctyp : Entity_Id;
+ Low : Node_Id;
+ High : Node_Id;
+
+ begin
+ if Size_Known_At_Compile_Time (T) then
+ return True;
+
+ elsif Error_Posted (T) then
+ return False;
+
+ elsif Is_Scalar_Type (T)
+ or else Is_Task_Type (T)
+ then
+ return not Is_Generic_Type (T);
+
+ elsif Is_Array_Type (T) then
+
+ if Ekind (T) = E_String_Literal_Subtype then
+ Set_Small_Size (Component_Size (T) * String_Literal_Length (T));
+ return True;
+
+ elsif not Is_Constrained (T) then
+ return False;
+
+ elsif not Size_Known (Component_Type (T)) then
+ return False;
+ end if;
+
+ -- Check for all indexes static, and also compute possible
+ -- size (in case it is less than 32 and may be packable).
+
+ declare
+ Esiz : Uint := Component_Size (T);
+ Dim : Uint;
+
+ begin
+ Index := First_Index (T);
+
+ while Present (Index) loop
+ if Nkind (Index) = N_Range then
+ Get_Index_Bounds (Index, Low, High);
+
+ elsif Error_Posted (Scalar_Range (Etype (Index))) then
+ return False;
+
+ else
+ Low := Type_Low_Bound (Etype (Index));
+ High := Type_High_Bound (Etype (Index));
+ end if;
+
+ if not Compile_Time_Known_Value (Low)
+ or else not Compile_Time_Known_Value (High)
+ or else Etype (Index) = Any_Type
+ then
+ return False;
+
+ else
+ Dim := Expr_Value (High) - Expr_Value (Low) + 1;
+
+ if Dim >= 0 then
+ Esiz := Esiz * Dim;
+ else
+ Esiz := Uint_0;
+ end if;
+ end if;
+
+ Next_Index (Index);
+ end loop;
+
+ Set_Small_Size (Esiz);
+ return True;
+ end;
+
+ elsif Is_Access_Type (T) then
+ return True;
+
+ elsif Is_Private_Type (T)
+ and then not Is_Generic_Type (T)
+ and then Present (Underlying_Type (T))
+ then
+ return Size_Known (Underlying_Type (T));
+
+ elsif Is_Record_Type (T) then
+ if Is_Class_Wide_Type (T) then
+ return False;
+
+ elsif T /= Base_Type (T) then
+ return Size_Known_At_Compile_Time (Base_Type (T))
+ and then Static_Discriminated_Components (T);
+
+ else
+ declare
+ Packed_Size_Known : Boolean := Is_Packed (T);
+ Packed_Size : Uint := Uint_0;
+
+ begin
+ -- Test for variant part present
+
+ if Has_Discriminants (T)
+ and then Present (Parent (T))
+ and then Nkind (Parent (T)) = N_Full_Type_Declaration
+ and then Nkind (Type_Definition (Parent (T))) =
+ N_Record_Definition
+ and then not Null_Present (Type_Definition (Parent (T)))
+ and then Present (Variant_Part
+ (Component_List (Type_Definition (Parent (T)))))
+ then
+ -- If variant part is present, and type is unconstrained,
+ -- then we must have defaulted discriminants, or a size
+ -- clause must be present for the type, or else the size
+ -- is definitely not known at compile time.
+
+ if not Is_Constrained (T)
+ and then
+ No (Discriminant_Default_Value
+ (First_Discriminant (T)))
+ and then Unknown_Esize (T)
+ then
+ return False;
+ else
+ -- We do not know the packed size, it is too much
+ -- trouble to figure it out.
+
+ Packed_Size_Known := False;
+ end if;
+ end if;
+
+ Comp := First_Entity (T);
+
+ while Present (Comp) loop
+ if Ekind (Comp) = E_Component
+ or else
+ Ekind (Comp) = E_Discriminant
+ then
+ Ctyp := Etype (Comp);
+
+ if Present (Component_Clause (Comp)) then
+ Packed_Size_Known := False;
+ end if;
+
+ if not Size_Known (Ctyp) then
+ return False;
+
+ elsif Packed_Size_Known then
+
+ -- If RM_Size is known and static, then we can
+ -- keep accumulating the packed size.
+
+ if Known_Static_RM_Size (Ctyp) then
+
+ -- A little glitch, to be removed sometime ???
+ -- gigi does not understand zero sizes yet.
+
+ if RM_Size (Ctyp) = Uint_0 then
+ Packed_Size_Known := False;
+ end if;
+
+ Packed_Size :=
+ Packed_Size + RM_Size (Ctyp);
+
+ -- If we have a field whose RM_Size is not known
+ -- then we can't figure out the packed size here.
+
+ else
+ Packed_Size_Known := False;
+ end if;
+ end if;
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ if Packed_Size_Known then
+ Set_Small_Size (Packed_Size);
+ end if;
+
+ return True;
+ end;
+ end if;
+
+ else
+ return False;
+ end if;
+ end Size_Known;
+
+ -------------------------------------
+ -- Static_Discriminated_Components --
+ -------------------------------------
+
+ function Static_Discriminated_Components
+ (T : Entity_Id)
+ return Boolean
+ is
+ Constraint : Elmt_Id;
+
+ begin
+ if Has_Discriminants (T)
+ and then Present (Discriminant_Constraint (T))
+ and then Present (First_Component (T))
+ then
+ Constraint := First_Elmt (Discriminant_Constraint (T));
+
+ while Present (Constraint) loop
+ if not Compile_Time_Known_Value (Node (Constraint)) then
+ return False;
+ end if;
+
+ Next_Elmt (Constraint);
+ end loop;
+ end if;
+
+ return True;
+ end Static_Discriminated_Components;
+
+ -- Start of processing for Check_Compile_Time_Size
+
+ begin
+ Set_Size_Known_At_Compile_Time (T, Size_Known (T));
+ end Check_Compile_Time_Size;
+
+ -----------------------------
+ -- Check_Debug_Info_Needed --
+ -----------------------------
+
+ procedure Check_Debug_Info_Needed (T : Entity_Id) is
+ begin
+ if Needs_Debug_Info (T) or else Debug_Info_Off (T) then
+ return;
+
+ elsif Comes_From_Source (T)
+ or else Debug_Generated_Code
+ or else Debug_Flag_VV
+ then
+ Set_Debug_Info_Needed (T);
+ end if;
+ end Check_Debug_Info_Needed;
+
+ ----------------------------
+ -- Check_Strict_Alignment --
+ ----------------------------
+
+ procedure Check_Strict_Alignment (E : Entity_Id) is
+ Comp : Entity_Id;
+
+ begin
+ if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
+ Set_Strict_Alignment (E);
+
+ elsif Is_Array_Type (E) then
+ Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
+
+ elsif Is_Record_Type (E) then
+ if Is_Limited_Record (E) then
+ Set_Strict_Alignment (E);
+ return;
+ end if;
+
+ Comp := First_Component (E);
+
+ while Present (Comp) loop
+ if not Is_Type (Comp)
+ and then (Strict_Alignment (Etype (Comp))
+ or else Is_Aliased (Comp))
+ then
+ Set_Strict_Alignment (E);
+ return;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ end if;
+ end Check_Strict_Alignment;
+
+ -------------------------
+ -- Check_Unsigned_Type --
+ -------------------------
+
+ procedure Check_Unsigned_Type (E : Entity_Id) is
+ Ancestor : Entity_Id;
+ Lo_Bound : Node_Id;
+ Btyp : Entity_Id;
+
+ begin
+ if not Is_Discrete_Or_Fixed_Point_Type (E) then
+ return;
+ end if;
+
+ -- Do not attempt to analyze case where range was in error
+
+ if Error_Posted (Scalar_Range (E)) then
+ return;
+ end if;
+
+ -- The situation that is non trivial is something like
+
+ -- subtype x1 is integer range -10 .. +10;
+ -- subtype x2 is x1 range 0 .. V1;
+ -- subtype x3 is x2 range V2 .. V3;
+ -- subtype x4 is x3 range V4 .. V5;
+
+ -- where Vn are variables. Here the base type is signed, but we still
+ -- know that x4 is unsigned because of the lower bound of x2.
+
+ -- The only way to deal with this is to look up the ancestor chain
+
+ Ancestor := E;
+ loop
+ if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
+ return;
+ end if;
+
+ Lo_Bound := Type_Low_Bound (Ancestor);
+
+ if Compile_Time_Known_Value (Lo_Bound) then
+
+ if Expr_Rep_Value (Lo_Bound) >= 0 then
+ Set_Is_Unsigned_Type (E, True);
+ end if;
+
+ return;
+
+ else
+ Ancestor := Ancestor_Subtype (Ancestor);
+
+ -- If no ancestor had a static lower bound, go to base type
+
+ if No (Ancestor) then
+
+ -- Note: the reason we still check for a compile time known
+ -- value for the base type is that at least in the case of
+ -- generic formals, we can have bounds that fail this test,
+ -- and there may be other cases in error situations.
+
+ Btyp := Base_Type (E);
+
+ if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
+ return;
+ end if;
+
+ Lo_Bound := Type_Low_Bound (Base_Type (E));
+
+ if Compile_Time_Known_Value (Lo_Bound)
+ and then Expr_Rep_Value (Lo_Bound) >= 0
+ then
+ Set_Is_Unsigned_Type (E, True);
+ end if;
+
+ return;
+
+ end if;
+ end if;
+ end loop;
+ end Check_Unsigned_Type;
+
+ ----------------
+ -- Freeze_All --
+ ----------------
+
+ -- Note: the easy coding for this procedure would be to just build a
+ -- single list of freeze nodes and then insert them and analyze them
+ -- all at once. This won't work, because the analysis of earlier freeze
+ -- nodes may recursively freeze types which would otherwise appear later
+ -- on in the freeze list. So we must analyze and expand the freeze nodes
+ -- as they are generated.
+
+ procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
+ Loc : constant Source_Ptr := Sloc (After);
+ E : Entity_Id;
+ Decl : Node_Id;
+
+ procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
+ -- This is the internal recursive routine that does freezing of
+ -- entities (but NOT the analysis of default expressions, which
+ -- should not be recursive, we don't want to analyze those till
+ -- we are sure that ALL the types are frozen).
+
+ procedure Freeze_All_Ent
+ (From : Entity_Id;
+ After : in out Node_Id)
+ is
+ E : Entity_Id;
+ Flist : List_Id;
+ Lastn : Node_Id;
+
+ procedure Process_Flist;
+ -- If freeze nodes are present, insert and analyze, and reset
+ -- cursor for next insertion.
+
+ procedure Process_Flist is
+ begin
+ if Is_Non_Empty_List (Flist) then
+ Lastn := Next (After);
+ Insert_List_After_And_Analyze (After, Flist);
+
+ if Present (Lastn) then
+ After := Prev (Lastn);
+ else
+ After := Last (List_Containing (After));
+ end if;
+ end if;
+ end Process_Flist;
+
+ begin
+ E := From;
+ while Present (E) loop
+
+ -- If the entity is an inner package which is not a package
+ -- renaming, then its entities must be frozen at this point.
+ -- Note that such entities do NOT get frozen at the end of
+ -- the nested package itself (only library packages freeze).
+
+ -- Same is true for task declarations, where anonymous records
+ -- created for entry parameters must be frozen.
+
+ if Ekind (E) = E_Package
+ and then No (Renamed_Object (E))
+ and then not Is_Child_Unit (E)
+ and then not Is_Frozen (E)
+ then
+ New_Scope (E);
+ Install_Visible_Declarations (E);
+ Install_Private_Declarations (E);
+
+ Freeze_All (First_Entity (E), After);
+
+ End_Package_Scope (E);
+
+ elsif Ekind (E) in Task_Kind
+ and then
+ (Nkind (Parent (E)) = N_Task_Type_Declaration
+ or else
+ Nkind (Parent (E)) = N_Single_Task_Declaration)
+ then
+ New_Scope (E);
+ Freeze_All (First_Entity (E), After);
+ End_Scope;
+
+ -- For a derived tagged type, we must ensure that all the
+ -- primitive operations of the parent have been frozen, so
+ -- that their addresses will be in the parent's dispatch table
+ -- at the point it is inherited.
+
+ elsif Ekind (E) = E_Record_Type
+ and then Is_Tagged_Type (E)
+ and then Is_Tagged_Type (Etype (E))
+ and then Is_Derived_Type (E)
+ then
+ declare
+ Prim_List : constant Elist_Id :=
+ Primitive_Operations (Etype (E));
+ Prim : Elmt_Id;
+ Subp : Entity_Id;
+
+ begin
+ Prim := First_Elmt (Prim_List);
+
+ while Present (Prim) loop
+ Subp := Node (Prim);
+
+ if Comes_From_Source (Subp)
+ and then not Is_Frozen (Subp)
+ then
+ Flist := Freeze_Entity (Subp, Loc);
+ Process_Flist;
+ end if;
+
+ Next_Elmt (Prim);
+ end loop;
+ end;
+ end if;
+
+ if not Is_Frozen (E) then
+ Flist := Freeze_Entity (E, Loc);
+ Process_Flist;
+ end if;
+
+ Next_Entity (E);
+ end loop;
+ end Freeze_All_Ent;
+
+ -- Start of processing for Freeze_All
+
+ begin
+ Freeze_All_Ent (From, After);
+
+ -- Now that all types are frozen, we can deal with default expressions
+ -- that require us to build a default expression functions. This is the
+ -- point at which such functions are constructed (after all types that
+ -- might be used in such expressions have been frozen).
+ -- We also add finalization chains to access types whose designated
+ -- types are controlled. This is normally done when freezing the type,
+ -- but this misses recursive type definitions where the later members
+ -- of the recursion introduce controlled components (e.g. 5624-001).
+
+ -- Loop through entities
+
+ E := From;
+ while Present (E) loop
+
+ if Is_Subprogram (E) then
+
+ if not Default_Expressions_Processed (E) then
+ Process_Default_Expressions (E, After);
+ end if;
+
+ if not Has_Completion (E) then
+ Decl := Unit_Declaration_Node (E);
+
+ if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
+ Build_And_Analyze_Renamed_Body (Decl, E, After);
+
+ elsif Nkind (Decl) = N_Subprogram_Declaration
+ and then Present (Corresponding_Body (Decl))
+ and then
+ Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
+ = N_Subprogram_Renaming_Declaration
+ then
+ Build_And_Analyze_Renamed_Body
+ (Decl, Corresponding_Body (Decl), After);
+ end if;
+ end if;
+
+ elsif Ekind (E) in Task_Kind
+ and then
+ (Nkind (Parent (E)) = N_Task_Type_Declaration
+ or else
+ Nkind (Parent (E)) = N_Single_Task_Declaration)
+ then
+ declare
+ Ent : Entity_Id;
+
+ begin
+ Ent := First_Entity (E);
+
+ while Present (Ent) loop
+
+ if Is_Entry (Ent)
+ and then not Default_Expressions_Processed (Ent)
+ then
+ Process_Default_Expressions (Ent, After);
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+ end;
+
+ elsif Is_Access_Type (E)
+ and then Comes_From_Source (E)
+ and then Ekind (Directly_Designated_Type (E)) = E_Incomplete_Type
+ and then Controlled_Type (Designated_Type (E))
+ and then No (Associated_Final_Chain (E))
+ then
+ Build_Final_List (Parent (E), E);
+ end if;
+
+ Next_Entity (E);
+ end loop;
+
+ end Freeze_All;
+
+ -----------------------
+ -- Freeze_And_Append --
+ -----------------------
+
+ procedure Freeze_And_Append
+ (Ent : Entity_Id;
+ Loc : Source_Ptr;
+ Result : in out List_Id)
+ is
+ L : constant List_Id := Freeze_Entity (Ent, Loc);
+
+ begin
+ if Is_Non_Empty_List (L) then
+ if Result = No_List then
+ Result := L;
+ else
+ Append_List (L, Result);
+ end if;
+ end if;
+ end Freeze_And_Append;
+
+ -------------------
+ -- Freeze_Before --
+ -------------------
+
+ procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
+ Freeze_Nodes : constant List_Id := Freeze_Entity (T, Sloc (N));
+ F : Node_Id;
+
+ begin
+ if Is_Non_Empty_List (Freeze_Nodes) then
+ F := First (Freeze_Nodes);
+
+ if Present (F) then
+ Insert_Actions (N, Freeze_Nodes);
+ end if;
+ end if;
+ end Freeze_Before;
+
+ -------------------
+ -- Freeze_Entity --
+ -------------------
+
+ function Freeze_Entity (E : Entity_Id; Loc : Source_Ptr) return List_Id is
+ Comp : Entity_Id;
+ F_Node : Node_Id;
+ Result : List_Id;
+ Indx : Node_Id;
+ Formal : Entity_Id;
+ Atype : Entity_Id;
+
+ procedure Check_Current_Instance (Comp_Decl : Node_Id);
+ -- Check that an Access or Unchecked_Access attribute with
+ -- a prefix which is the current instance type can only be
+ -- applied when the type is limited.
+
+ function After_Last_Declaration return Boolean;
+ -- If Loc is a freeze_entity that appears after the last declaration
+ -- in the scope, inhibit error messages on late completion.
+
+ procedure Freeze_Record_Type (Rec : Entity_Id);
+ -- Freeze each component, handle some representation clauses, and
+ -- freeze primitive operations if this is a tagged type.
+
+ ----------------------------
+ -- After_Last_Declaration --
+ ----------------------------
+
+ function After_Last_Declaration return Boolean is
+ Spec : Node_Id := Parent (Current_Scope);
+
+ begin
+ if Nkind (Spec) = N_Package_Specification then
+ if Present (Private_Declarations (Spec)) then
+ return Loc >= Sloc (Last (Private_Declarations (Spec)));
+
+ elsif Present (Visible_Declarations (Spec)) then
+ return Loc >= Sloc (Last (Visible_Declarations (Spec)));
+ else
+ return False;
+ end if;
+
+ else
+ return False;
+ end if;
+ end After_Last_Declaration;
+
+ ----------------------------
+ -- Check_Current_Instance --
+ ----------------------------
+
+ procedure Check_Current_Instance (Comp_Decl : Node_Id) is
+
+ function Process (N : Node_Id) return Traverse_Result;
+ -- Process routine to apply check to given node.
+
+ function Process (N : Node_Id) return Traverse_Result is
+ begin
+ case Nkind (N) is
+ when N_Attribute_Reference =>
+ if (Attribute_Name (N) = Name_Access
+ or else
+ Attribute_Name (N) = Name_Unchecked_Access)
+ and then Is_Entity_Name (Prefix (N))
+ and then Is_Type (Entity (Prefix (N)))
+ and then Entity (Prefix (N)) = E
+ then
+ Error_Msg_N
+ ("current instance must be a limited type", Prefix (N));
+ return Abandon;
+ else
+ return OK;
+ end if;
+
+ when others => return OK;
+ end case;
+ end Process;
+
+ procedure Traverse is new Traverse_Proc (Process);
+
+ -- Start of processing for Check_Current_Instance
+
+ begin
+ Traverse (Comp_Decl);
+ end Check_Current_Instance;
+
+ ------------------------
+ -- Freeze_Record_Type --
+ ------------------------
+
+ procedure Freeze_Record_Type (Rec : Entity_Id) is
+ Comp : Entity_Id;
+ Junk : Boolean;
+ ADC : Node_Id;
+
+ Unplaced_Component : Boolean := False;
+ -- Set True if we find at least one component with no component
+ -- clause (used to warn about useless Pack pragmas).
+
+ Placed_Component : Boolean := False;
+ -- Set True if we find at least one component with a component
+ -- clause (used to warn about useless Bit_Order pragmas).
+
+ begin
+ -- Freeze components and embedded subtypes
+
+ Comp := First_Entity (Rec);
+
+ while Present (Comp) loop
+
+ if not Is_Type (Comp) then
+ Freeze_And_Append (Etype (Comp), Loc, Result);
+ end if;
+
+ -- If the component is an access type with an allocator
+ -- as default value, the designated type will be frozen
+ -- by the corresponding expression in init_proc. In order
+ -- to place the freeze node for the designated type before
+ -- that for the current record type, freeze it now.
+
+ -- Same process if the component is an array of access types,
+ -- initialized with an aggregate. If the designated type is
+ -- private, it cannot contain allocators, and it is premature
+ -- to freeze the type, so we check for this as well.
+
+ if Is_Access_Type (Etype (Comp))
+ and then Present (Parent (Comp))
+ and then Present (Expression (Parent (Comp)))
+ and then Nkind (Expression (Parent (Comp))) = N_Allocator
+ then
+ declare
+ Alloc : constant Node_Id := Expression (Parent (Comp));
+
+ begin
+ -- If component is pointer to a classwide type, freeze
+ -- the specific type in the expression being allocated.
+ -- The expression may be a subtype indication, in which
+ -- case freeze the subtype mark.
+
+ if Is_Class_Wide_Type (Designated_Type (Etype (Comp))) then
+
+ if Is_Entity_Name (Expression (Alloc)) then
+ Freeze_And_Append
+ (Entity (Expression (Alloc)), Loc, Result);
+ elsif
+ Nkind (Expression (Alloc)) = N_Subtype_Indication
+ then
+ Freeze_And_Append
+ (Entity (Subtype_Mark (Expression (Alloc))),
+ Loc, Result);
+ end if;
+ else
+ Freeze_And_Append
+ (Designated_Type (Etype (Comp)), Loc, Result);
+ end if;
+ end;
+
+ elsif Is_Array_Type (Etype (Comp))
+ and then Is_Access_Type (Component_Type (Etype (Comp)))
+ and then Present (Parent (Comp))
+ and then Nkind (Parent (Comp)) = N_Component_Declaration
+ and then Present (Expression (Parent (Comp)))
+ and then Nkind (Expression (Parent (Comp))) = N_Aggregate
+ and then Is_Fully_Defined
+ (Designated_Type (Component_Type (Etype (Comp))))
+ then
+ Freeze_And_Append
+ (Designated_Type
+ (Component_Type (Etype (Comp))), Loc, Result);
+ end if;
+
+ -- Processing for real components (exclude anonymous subtypes)
+
+ if Ekind (Comp) = E_Component
+ or else Ekind (Comp) = E_Discriminant
+ then
+ -- Check for error of component clause given for variable
+ -- sized type. We have to delay this test till this point,
+ -- since the component type has to be frozen for us to know
+ -- if it is variable length. We omit this test in a generic
+ -- context, it will be applied at instantiation time.
+
+ declare
+ CC : constant Node_Id := Component_Clause (Comp);
+
+ begin
+ if Present (CC) then
+ Placed_Component := True;
+
+ if not Size_Known_At_Compile_Time
+ (Underlying_Type (Etype (Comp)))
+ and then not Inside_A_Generic
+ then
+ Error_Msg_N
+ ("component clause not allowed for variable " &
+ "length component", CC);
+ end if;
+
+ else
+ Unplaced_Component := True;
+ end if;
+ end;
+
+ -- If component clause is present, then deal with the
+ -- non-default bit order case. We cannot do this before
+ -- the freeze point, because there is no required order
+ -- for the component clause and the bit_order clause.
+
+ -- We only do this processing for the base type, and in
+ -- fact that's important, since otherwise if there are
+ -- record subtypes, we could reverse the bits once for
+ -- each subtype, which would be incorrect.
+
+ if Present (Component_Clause (Comp))
+ and then Reverse_Bit_Order (Rec)
+ and then Ekind (E) = E_Record_Type
+ then
+ declare
+ CFB : constant Uint := Component_Bit_Offset (Comp);
+ CSZ : constant Uint := Esize (Comp);
+ CLC : constant Node_Id := Component_Clause (Comp);
+ Pos : constant Node_Id := Position (CLC);
+ FB : constant Node_Id := First_Bit (CLC);
+
+ Storage_Unit_Offset : constant Uint :=
+ CFB / System_Storage_Unit;
+
+ Start_Bit : constant Uint :=
+ CFB mod System_Storage_Unit;
+
+ begin
+ -- Cases where field goes over storage unit boundary
+
+ if Start_Bit + CSZ > System_Storage_Unit then
+
+ -- Allow multi-byte field but generate warning
+
+ if Start_Bit mod System_Storage_Unit = 0
+ and then CSZ mod System_Storage_Unit = 0
+ then
+ Error_Msg_N
+ ("multi-byte field specified with non-standard"
+ & " Bit_Order?", CLC);
+
+ if Bytes_Big_Endian then
+ Error_Msg_N
+ ("bytes are not reversed "
+ & "(component is big-endian)?", CLC);
+ else
+ Error_Msg_N
+ ("bytes are not reversed "
+ & "(component is little-endian)?", CLC);
+ end if;
+
+ -- Do not allow non-contiguous field
+
+ else
+ Error_Msg_N
+ ("attempt to specify non-contiguous field"
+ & " not permitted", CLC);
+ Error_Msg_N
+ ("\(caused by non-standard Bit_Order "
+ & "specified)", CLC);
+ end if;
+
+ -- Case where field fits in one storage unit
+
+ else
+ -- Give warning if suspicious component clause
+
+ if Intval (FB) >= System_Storage_Unit then
+ Error_Msg_N
+ ("?Bit_Order clause does not affect " &
+ "byte ordering", Pos);
+ Error_Msg_Uint_1 :=
+ Intval (Pos) + Intval (FB) / System_Storage_Unit;
+ Error_Msg_N
+ ("?position normalized to ^ before bit " &
+ "order interpreted", Pos);
+ end if;
+
+ -- Here is where we fix up the Component_Bit_Offset
+ -- value to account for the reverse bit order.
+ -- Some examples of what needs to be done are:
+
+ -- First_Bit .. Last_Bit Component_Bit_Offset
+ -- old new old new
+
+ -- 0 .. 0 7 .. 7 0 7
+ -- 0 .. 1 6 .. 7 0 6
+ -- 0 .. 2 5 .. 7 0 5
+ -- 0 .. 7 0 .. 7 0 4
+
+ -- 1 .. 1 6 .. 6 1 6
+ -- 1 .. 4 3 .. 6 1 3
+ -- 4 .. 7 0 .. 3 4 0
+
+ -- The general rule is that the first bit is
+ -- is obtained by subtracting the old ending bit
+ -- from storage_unit - 1.
+
+ Set_Component_Bit_Offset (Comp,
+ (Storage_Unit_Offset * System_Storage_Unit)
+ + (System_Storage_Unit - 1)
+ - (Start_Bit + CSZ - 1));
+
+ Set_Normalized_First_Bit (Comp,
+ Component_Bit_Offset (Comp) mod System_Storage_Unit);
+ end if;
+ end;
+ end if;
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ -- Check for useless pragma Bit_Order
+
+ if not Placed_Component and then Reverse_Bit_Order (Rec) then
+ ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
+ Error_Msg_N ("?Bit_Order specification has no effect", ADC);
+ Error_Msg_N ("\?since no component clauses were specified", ADC);
+ end if;
+
+ -- Check for useless pragma Pack when all components placed
+
+ if Is_Packed (Rec)
+ and then not Unplaced_Component
+ and then Warn_On_Redundant_Constructs
+ then
+ Error_Msg_N
+ ("?pragma Pack has no effect, no unplaced components",
+ Get_Rep_Pragma (Rec, Name_Pack));
+ Set_Is_Packed (Rec, False);
+ end if;
+
+ -- If this is the record corresponding to a remote type,
+ -- freeze the remote type here since that is what we are
+ -- semantically freeing. This prevents having the freeze node
+ -- for that type in an inner scope.
+
+ -- Also, Check for controlled components and unchecked unions.
+ -- Finally, enforce the restriction that access attributes with
+ -- a current instance prefix can only apply to limited types.
+
+ if Ekind (Rec) = E_Record_Type then
+
+ if Present (Corresponding_Remote_Type (Rec)) then
+ Freeze_And_Append
+ (Corresponding_Remote_Type (Rec), Loc, Result);
+ end if;
+
+ Comp := First_Component (Rec);
+
+ while Present (Comp) loop
+ if Has_Controlled_Component (Etype (Comp))
+ or else (Chars (Comp) /= Name_uParent
+ and then Is_Controlled (Etype (Comp)))
+ or else (Is_Protected_Type (Etype (Comp))
+ and then Present
+ (Corresponding_Record_Type (Etype (Comp)))
+ and then Has_Controlled_Component
+ (Corresponding_Record_Type (Etype (Comp))))
+ then
+ Set_Has_Controlled_Component (Rec);
+ exit;
+ end if;
+
+ if Has_Unchecked_Union (Etype (Comp)) then
+ Set_Has_Unchecked_Union (Rec);
+ end if;
+
+ if Has_Per_Object_Constraint (Comp)
+ and then not Is_Limited_Type (Rec)
+ then
+ -- Scan component declaration for likely misuses of
+ -- current instance, either in a constraint or in a
+ -- default expression.
+
+ Check_Current_Instance (Parent (Comp));
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ end if;
+
+ Set_Component_Alignment_If_Not_Set (Rec);
+
+ -- For first subtypes, check if there are any fixed-point
+ -- fields with component clauses, where we must check the size.
+ -- This is not done till the freeze point, since for fixed-point
+ -- types, we do not know the size until the type is frozen.
+
+ if Is_First_Subtype (Rec) then
+ Comp := First_Component (Rec);
+
+ while Present (Comp) loop
+ if Present (Component_Clause (Comp))
+ and then Is_Fixed_Point_Type (Etype (Comp))
+ then
+ Check_Size
+ (Component_Clause (Comp),
+ Etype (Comp),
+ Esize (Comp),
+ Junk);
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+ end if;
+ end Freeze_Record_Type;
+
+ -- Start of processing for Freeze_Entity
+
+ begin
+ -- Do not freeze if already frozen since we only need one freeze node.
+
+ if Is_Frozen (E) then
+ return No_List;
+
+ -- It is improper to freeze an external entity within a generic
+ -- because its freeze node will appear in a non-valid context.
+ -- ??? We should probably freeze the entity at that point and insert
+ -- the freeze node in a proper place but this proper place is not
+ -- easy to find, and the proper scope is not easy to restore. For
+ -- now, just wait to get out of the generic to freeze ???
+
+ elsif Inside_A_Generic and then External_Ref_In_Generic (E) then
+ return No_List;
+
+ -- Do not freeze a global entity within an inner scope created during
+ -- expansion. A call to subprogram E within some internal procedure
+ -- (a stream attribute for example) might require freezing E, but the
+ -- freeze node must appear in the same declarative part as E itself.
+ -- The two-pass elaboration mechanism in gigi guarantees that E will
+ -- be frozen before the inner call is elaborated. We exclude constants
+ -- from this test, because deferred constants may be frozen early, and
+ -- must be diagnosed (see e.g. 1522-005). If the enclosing subprogram
+ -- comes from source, or is a generic instance, then the freeze point
+ -- is the one mandated by the language. and we freze the entity.
+
+ elsif In_Open_Scopes (Scope (E))
+ and then Scope (E) /= Current_Scope
+ and then Ekind (E) /= E_Constant
+ then
+ declare
+ S : Entity_Id := Current_Scope;
+
+ begin
+ while Present (S) loop
+ if Is_Overloadable (S) then
+ if Comes_From_Source (S)
+ or else Is_Generic_Instance (S)
+ then
+ exit;
+ else
+ return No_List;
+ end if;
+ end if;
+
+ S := Scope (S);
+ end loop;
+ end;
+ end if;
+
+ -- Here to freeze the entity
+
+ Result := No_List;
+ Set_Is_Frozen (E);
+
+ -- Case of entity being frozen is other than a type
+
+ if not Is_Type (E) then
+
+ -- If entity is exported or imported and does not have an external
+ -- name, now is the time to provide the appropriate default name.
+ -- Skip this if the entity is stubbed, since we don't need a name
+ -- for any stubbed routine.
+
+ if (Is_Imported (E) or else Is_Exported (E))
+ and then No (Interface_Name (E))
+ and then Convention (E) /= Convention_Stubbed
+ then
+ Set_Encoded_Interface_Name
+ (E, Get_Default_External_Name (E));
+ end if;
+
+ -- For a subprogram, freeze all parameter types and also the return
+ -- type (RM 13.14(13)). However skip this for internal subprograms.
+ -- This is also the point where any extra formal parameters are
+ -- created since we now know whether the subprogram will use
+ -- a foreign convention.
+
+ if Is_Subprogram (E) then
+
+ if not Is_Internal (E) then
+
+ declare
+ F_Type : Entity_Id;
+
+ function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean;
+ -- Determines if given type entity is a fat pointer type
+ -- used as an argument type or return type to a subprogram
+ -- with C or C++ convention set.
+
+ --------------------------
+ -- Is_Fat_C_Access_Type --
+ --------------------------
+
+ function Is_Fat_C_Ptr_Type (T : Entity_Id) return Boolean is
+ begin
+ return (Convention (E) = Convention_C
+ or else
+ Convention (E) = Convention_CPP)
+ and then Is_Access_Type (T)
+ and then Esize (T) > Ttypes.System_Address_Size;
+ end Is_Fat_C_Ptr_Type;
+
+ begin
+ -- Loop through formals
+
+ Formal := First_Formal (E);
+
+ while Present (Formal) loop
+
+ F_Type := Etype (Formal);
+ Freeze_And_Append (F_Type, Loc, Result);
+
+ if Is_Private_Type (F_Type)
+ and then Is_Private_Type (Base_Type (F_Type))
+ and then No (Full_View (Base_Type (F_Type)))
+ and then not Is_Generic_Type (F_Type)
+ and then not Is_Derived_Type (F_Type)
+ then
+ -- If the type of a formal is incomplete, subprogram
+ -- is being frozen prematurely. Within an instance
+ -- (but not within a wrapper package) this is an
+ -- an artifact of our need to regard the end of an
+ -- instantiation as a freeze point. Otherwise it is
+ -- a definite error.
+ -- and then not Is_Wrapper_Package (Current_Scope) ???
+
+ if In_Instance then
+ Set_Is_Frozen (E, False);
+ return No_List;
+
+ elsif not After_Last_Declaration then
+ Error_Msg_Node_1 := F_Type;
+ Error_Msg
+ ("type& must be fully defined before this point",
+ Loc);
+ end if;
+ end if;
+
+ -- Check bad use of fat C pointer
+
+ if Is_Fat_C_Ptr_Type (F_Type) then
+ Error_Msg_Qual_Level := 1;
+ Error_Msg_N
+ ("?type of & does not correspond to C pointer",
+ Formal);
+ Error_Msg_Qual_Level := 0;
+ end if;
+
+ -- Check for unconstrained array in exported foreign
+ -- convention case.
+
+ if Convention (E) in Foreign_Convention
+ and then not Is_Imported (E)
+ and then Is_Array_Type (F_Type)
+ and then not Is_Constrained (F_Type)
+ then
+ Error_Msg_Qual_Level := 1;
+ Error_Msg_N
+ ("?type of argument& is unconstrained array",
+ Formal);
+ Error_Msg_N
+ ("?foreign caller must pass bounds explicitly",
+ Formal);
+ Error_Msg_Qual_Level := 0;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ -- Check return type
+
+ if Ekind (E) = E_Function then
+ Freeze_And_Append (Etype (E), Loc, Result);
+
+ if Is_Fat_C_Ptr_Type (Etype (E)) then
+ Error_Msg_N
+ ("?return type of& does not correspond to C pointer",
+ E);
+
+ elsif Is_Array_Type (Etype (E))
+ and then not Is_Constrained (Etype (E))
+ and then not Is_Imported (E)
+ and then Convention (E) in Foreign_Convention
+ then
+ Error_Msg_N
+ ("foreign convention function may not " &
+ "return unconstrained array", E);
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Must freeze its parent first if it is a derived subprogram
+
+ if Present (Alias (E)) then
+ Freeze_And_Append (Alias (E), Loc, Result);
+ end if;
+
+ -- If the return type requires a transient scope, and we are on
+ -- a target allowing functions to return with a depressed stack
+ -- pointer, then we mark the function as requiring this treatment.
+
+ if Ekind (E) = E_Function
+ and then Functions_Return_By_DSP_On_Target
+ and then Requires_Transient_Scope (Etype (E))
+ then
+ Set_Function_Returns_With_DSP (E);
+ end if;
+
+ if not Is_Internal (E) then
+ Freeze_Subprogram (E);
+ end if;
+
+ -- Here for other than a subprogram or type
+
+ else
+ -- If entity has a type, and it is not a generic unit, then
+ -- freeze it first (RM 13.14(10))
+
+ if Present (Etype (E))
+ and then Ekind (E) /= E_Generic_Function
+ then
+ Freeze_And_Append (Etype (E), Loc, Result);
+ end if;
+
+ -- For object created by object declaration, perform required
+ -- categorization (preelaborate and pure) checks. Defer these
+ -- checks to freeze time since pragma Import inhibits default
+ -- initialization and thus pragma Import affects these checks.
+
+ if Nkind (Declaration_Node (E)) = N_Object_Declaration then
+ Validate_Object_Declaration (Declaration_Node (E));
+ end if;
+
+ -- Check that a constant which has a pragma Volatile[_Components]
+ -- or Atomic[_Components] also has a pragma Import (RM C.6(13))
+
+ -- Note: Atomic[_Components] also sets Volatile[_Components]
+
+ if Ekind (E) = E_Constant
+ and then (Has_Volatile_Components (E) or else Is_Volatile (E))
+ and then not Is_Imported (E)
+ then
+ -- Make sure we actually have a pragma, and have not merely
+ -- inherited the indication from elsewhere (e.g. an address
+ -- clause, which is not good enough in RM terms!)
+
+ if Present (Get_Rep_Pragma (E, Name_Atomic)) or else
+ Present (Get_Rep_Pragma (E, Name_Atomic_Components)) or else
+ Present (Get_Rep_Pragma (E, Name_Volatile)) or else
+ Present (Get_Rep_Pragma (E, Name_Volatile_Components))
+ then
+ Error_Msg_N
+ ("stand alone atomic/volatile constant must be imported",
+ E);
+ end if;
+ end if;
+
+ -- Static objects require special handling
+
+ if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
+ and then Is_Statically_Allocated (E)
+ then
+ Freeze_Static_Object (E);
+ end if;
+
+ -- Remaining step is to layout objects
+
+ if Ekind (E) = E_Variable
+ or else
+ Ekind (E) = E_Constant
+ or else
+ Ekind (E) = E_Loop_Parameter
+ or else
+ Is_Formal (E)
+ then
+ Layout_Object (E);
+ end if;
+ end if;
+
+ -- Case of a type or subtype being frozen
+
+ else
+ -- The type may be defined in a generic unit. This can occur when
+ -- freezing a generic function that returns the type (which is
+ -- defined in a parent unit). It is clearly meaningless to freeze
+ -- this type. However, if it is a subtype, its size may be determi-
+ -- nable and used in subsequent checks, so might as well try to
+ -- compute it.
+
+ if Present (Scope (E))
+ and then Is_Generic_Unit (Scope (E))
+ then
+ Check_Compile_Time_Size (E);
+ return No_List;
+ end if;
+
+ -- Deal with special cases of freezing for subtype
+
+ if E /= Base_Type (E) then
+
+ -- If ancestor subtype present, freeze that first.
+ -- Note that this will also get the base type frozen.
+
+ Atype := Ancestor_Subtype (E);
+
+ if Present (Atype) then
+ Freeze_And_Append (Atype, Loc, Result);
+
+ -- Otherwise freeze the base type of the entity before
+ -- freezing the entity itself, (RM 13.14(14)).
+
+ elsif E /= Base_Type (E) then
+ Freeze_And_Append (Base_Type (E), Loc, Result);
+ end if;
+
+ -- For a derived type, freeze its parent type first (RM 13.14(14))
+
+ elsif Is_Derived_Type (E) then
+ Freeze_And_Append (Etype (E), Loc, Result);
+ Freeze_And_Append (First_Subtype (Etype (E)), Loc, Result);
+ end if;
+
+ -- For array type, freeze index types and component type first
+ -- before freezing the array (RM 13.14(14)).
+
+ if Is_Array_Type (E) then
+ declare
+ Ctyp : constant Entity_Id := Component_Type (E);
+
+ Non_Standard_Enum : Boolean := False;
+ -- Set true if any of the index types is an enumeration
+ -- type with a non-standard representation.
+
+ begin
+ Freeze_And_Append (Ctyp, Loc, Result);
+
+ Indx := First_Index (E);
+ while Present (Indx) loop
+ Freeze_And_Append (Etype (Indx), Loc, Result);
+
+ if Is_Enumeration_Type (Etype (Indx))
+ and then Has_Non_Standard_Rep (Etype (Indx))
+ then
+ Non_Standard_Enum := True;
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+
+ -- For base type, propagate flags for component type
+
+ if Ekind (E) = E_Array_Type then
+ if Is_Controlled (Component_Type (E))
+ or else Has_Controlled_Component (Ctyp)
+ then
+ Set_Has_Controlled_Component (E);
+ end if;
+
+ if Has_Unchecked_Union (Component_Type (E)) then
+ Set_Has_Unchecked_Union (E);
+ end if;
+ end if;
+
+ -- If packing was requested or if the component size was set
+ -- explicitly, then see if bit packing is required. This
+ -- processing is only done for base types, since all the
+ -- representation aspects involved are type-related. This
+ -- is not just an optimization, if we start processing the
+ -- subtypes, they intefere with the settings on the base
+ -- type (this is because Is_Packed has a slightly different
+ -- meaning before and after freezing).
+
+ if E = Base_Type (E) then
+ declare
+ Csiz : Uint;
+ Esiz : Uint;
+
+ begin
+ if (Is_Packed (E) or else Has_Pragma_Pack (E))
+ and then not Has_Atomic_Components (E)
+ and then Known_Static_RM_Size (Ctyp)
+ then
+ Csiz := UI_Max (RM_Size (Ctyp), 1);
+
+ elsif Known_Component_Size (E) then
+ Csiz := Component_Size (E);
+
+ elsif not Known_Static_Esize (Ctyp) then
+ Csiz := Uint_0;
+
+ else
+ Esiz := Esize (Ctyp);
+
+ -- We can set the component size if it is less than
+ -- 16, rounding it up to the next storage unit size.
+
+ if Esiz <= 8 then
+ Csiz := Uint_8;
+ elsif Esiz <= 16 then
+ Csiz := Uint_16;
+ else
+ Csiz := Uint_0;
+ end if;
+
+ -- Set component size up to match alignment if
+ -- it would otherwise be less than the alignment.
+ -- This deals with cases of types whose alignment
+ -- exceeds their sizes (padded types).
+
+ if Csiz /= 0 then
+ declare
+ A : constant Uint := Alignment_In_Bits (Ctyp);
+
+ begin
+ if Csiz < A then
+ Csiz := A;
+ end if;
+ end;
+ end if;
+
+ end if;
+
+ if 1 <= Csiz and then Csiz <= 64 then
+
+ -- We set the component size for all cases 1-64
+
+ Set_Component_Size (Base_Type (E), Csiz);
+
+ -- Actual packing is not needed for 8,16,32,64
+ -- Also not needed for 24 if alignment is 1
+
+ if Csiz = 8
+ or else Csiz = 16
+ or else Csiz = 32
+ or else Csiz = 64
+ or else (Csiz = 24 and then Alignment (Ctyp) = 1)
+ then
+ -- Here the array was requested to be packed, but
+ -- the packing request had no effect, so Is_Packed
+ -- is reset.
+
+ -- Note: semantically this means that we lose
+ -- track of the fact that a derived type inherited
+ -- a pack pragma that was non-effective, but that
+ -- seems fine.
+
+ -- We regard a Pack pragma as a request to set a
+ -- representation characteristic, and this request
+ -- may be ignored.
+
+ Set_Is_Packed (Base_Type (E), False);
+
+ -- In all other cases, packing is indeed needed
+
+ else
+ Set_Has_Non_Standard_Rep (Base_Type (E));
+ Set_Is_Bit_Packed_Array (Base_Type (E));
+ Set_Is_Packed (Base_Type (E));
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- If any of the index types was an enumeration type with
+ -- a non-standard rep clause, then we indicate that the
+ -- array type is always packed (even if it is not bit packed).
+
+ if Non_Standard_Enum then
+ Set_Has_Non_Standard_Rep (Base_Type (E));
+ Set_Is_Packed (Base_Type (E));
+ end if;
+ end;
+
+ Set_Component_Alignment_If_Not_Set (E);
+
+ -- If the array is packed, we must create the packed array
+ -- type to be used to actually implement the type. This is
+ -- only needed for real array types (not for string literal
+ -- types, since they are present only for the front end).
+
+ if Is_Packed (E)
+ and then Ekind (E) /= E_String_Literal_Subtype
+ then
+ Create_Packed_Array_Type (E);
+ Freeze_And_Append (Packed_Array_Type (E), Loc, Result);
+
+ -- Size information of packed array type is copied to the
+ -- array type, since this is really the representation.
+
+ Set_Size_Info (E, Packed_Array_Type (E));
+ Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
+ end if;
+
+ -- For a class wide type, the corresponding specific type is
+ -- frozen as well (RM 13.14(14))
+
+ elsif Is_Class_Wide_Type (E) then
+ Freeze_And_Append (Root_Type (E), Loc, Result);
+
+ -- If the Class_Wide_Type is an Itype (when type is the anonymous
+ -- parent of a derived type) and it is a library-level entity,
+ -- generate an itype reference for it. Otherwise, its first
+ -- explicit reference may be in an inner scope, which will be
+ -- rejected by the back-end.
+
+ if Is_Itype (E)
+ and then Is_Compilation_Unit (Scope (E))
+ then
+
+ declare
+ Ref : Node_Id := Make_Itype_Reference (Loc);
+
+ begin
+ Set_Itype (Ref, E);
+ if No (Result) then
+ Result := New_List (Ref);
+ else
+ Append (Ref, Result);
+ end if;
+ end;
+ end if;
+
+ -- For record (sub)type, freeze all the component types (RM
+ -- 13.14(14). We test for E_Record_(sub)Type here, rather than
+ -- using Is_Record_Type, because we don't want to attempt the
+ -- freeze for the case of a private type with record extension
+ -- (we will do that later when the full type is frozen).
+
+ elsif Ekind (E) = E_Record_Type
+ or else Ekind (E) = E_Record_Subtype
+ then
+ Freeze_Record_Type (E);
+
+ -- For a concurrent type, freeze corresponding record type. This
+ -- does not correpond to any specific rule in the RM, but the
+ -- record type is essentially part of the concurrent type.
+ -- Freeze as well all local entities. This includes record types
+ -- created for entry parameter blocks, and whatever local entities
+ -- may appear in the private part.
+
+ elsif Is_Concurrent_Type (E) then
+ if Present (Corresponding_Record_Type (E)) then
+ Freeze_And_Append
+ (Corresponding_Record_Type (E), Loc, Result);
+ end if;
+
+ Comp := First_Entity (E);
+
+ while Present (Comp) loop
+ if Is_Type (Comp) then
+ Freeze_And_Append (Comp, Loc, Result);
+
+ elsif (Ekind (Comp)) /= E_Function then
+ Freeze_And_Append (Etype (Comp), Loc, Result);
+ end if;
+
+ Next_Entity (Comp);
+ end loop;
+
+ -- Private types are required to point to the same freeze node
+ -- as their corresponding full views. The freeze node itself
+ -- has to point to the partial view of the entity (because
+ -- from the partial view, we can retrieve the full view, but
+ -- not the reverse). However, in order to freeze correctly,
+ -- we need to freeze the full view. If we are freezing at the
+ -- end of a scope (or within the scope of the private type),
+ -- the partial and full views will have been swapped, the
+ -- full view appears first in the entity chain and the swapping
+ -- mechanism enusres that the pointers are properly set (on
+ -- scope exit).
+
+ -- If we encounter the partial view before the full view
+ -- (e.g. when freezing from another scope), we freeze the
+ -- full view, and then set the pointers appropriately since
+ -- we cannot rely on swapping to fix things up (subtypes in an
+ -- outer scope might not get swapped).
+
+ elsif Is_Incomplete_Or_Private_Type (E)
+ and then not Is_Generic_Type (E)
+ then
+ -- Case of full view present
+
+ if Present (Full_View (E)) then
+
+ -- If full view has already been frozen, then no
+ -- further processing is required
+
+ if Is_Frozen (Full_View (E)) then
+
+ Set_Has_Delayed_Freeze (E, False);
+ Set_Freeze_Node (E, Empty);
+ Check_Debug_Info_Needed (E);
+
+ -- Otherwise freeze full view and patch the pointers
+
+ else
+ if Is_Private_Type (Full_View (E))
+ and then Present (Underlying_Full_View (Full_View (E)))
+ then
+ Freeze_And_Append
+ (Underlying_Full_View (Full_View (E)), Loc, Result);
+ end if;
+
+ Freeze_And_Append (Full_View (E), Loc, Result);
+
+ if Has_Delayed_Freeze (E) then
+ F_Node := Freeze_Node (Full_View (E));
+
+ if Present (F_Node) then
+ Set_Freeze_Node (E, F_Node);
+ Set_Entity (F_Node, E);
+ else
+ -- {Incomplete,Private}_Subtypes
+ -- with Full_Views constrained by discriminants
+
+ Set_Has_Delayed_Freeze (E, False);
+ Set_Freeze_Node (E, Empty);
+ end if;
+ end if;
+
+ Check_Debug_Info_Needed (E);
+ end if;
+
+ -- AI-117 requires that the convention of a partial view
+ -- be the same as the convention of the full view. Note
+ -- that this is a recognized breach of privacy, but it's
+ -- essential for logical consistency of representation,
+ -- and the lack of a rule in RM95 was an oversight.
+
+ Set_Convention (E, Convention (Full_View (E)));
+
+ Set_Size_Known_At_Compile_Time (E,
+ Size_Known_At_Compile_Time (Full_View (E)));
+
+ -- Size information is copied from the full view to the
+ -- incomplete or private view for consistency
+
+ -- We skip this is the full view is not a type. This is
+ -- very strange of course, and can only happen as a result
+ -- of certain illegalities, such as a premature attempt to
+ -- derive from an incomplete type.
+
+ if Is_Type (Full_View (E)) then
+ Set_Size_Info (E, Full_View (E));
+ Set_RM_Size (E, RM_Size (Full_View (E)));
+ end if;
+
+ return Result;
+
+ -- Case of no full view present. If entity is derived or subtype,
+ -- it is safe to freeze, correctness depends on the frozen status
+ -- of parent. Otherwise it is either premature usage, or a Taft
+ -- amendment type, so diagnosis is at the point of use and the
+ -- type might be frozen later.
+
+ elsif E /= Base_Type (E)
+ or else Is_Derived_Type (E)
+ then
+ null;
+
+ else
+ Set_Is_Frozen (E, False);
+ return No_List;
+ end if;
+
+ -- For access subprogram, freeze types of all formals, the return
+ -- type was already frozen, since it is the Etype of the function.
+
+ elsif Ekind (E) = E_Subprogram_Type then
+ Formal := First_Formal (E);
+ while Present (Formal) loop
+ Freeze_And_Append (Etype (Formal), Loc, Result);
+ Next_Formal (Formal);
+ end loop;
+
+ -- If the return type requires a transient scope, and we are on
+ -- a target allowing functions to return with a depressed stack
+ -- pointer, then we mark the function as requiring this treatment.
+
+ if Functions_Return_By_DSP_On_Target
+ and then Requires_Transient_Scope (Etype (E))
+ then
+ Set_Function_Returns_With_DSP (E);
+ end if;
+
+ Freeze_Subprogram (E);
+
+ -- For access to a protected subprogram, freeze the equivalent
+ -- type (however this is not set if we are not generating code)
+ -- or if this is an anonymous type used just for resolution).
+
+ elsif Ekind (E) = E_Access_Protected_Subprogram_Type
+ and then Operating_Mode = Generate_Code
+ and then Present (Equivalent_Type (E))
+ then
+ Freeze_And_Append (Equivalent_Type (E), Loc, Result);
+ end if;
+
+ -- Generic types are never seen by the back-end, and are also not
+ -- processed by the expander (since the expander is turned off for
+ -- generic processing), so we never need freeze nodes for them.
+
+ if Is_Generic_Type (E) then
+ return Result;
+ end if;
+
+ -- Some special processing for non-generic types to complete
+ -- representation details not known till the freeze point.
+
+ if Is_Fixed_Point_Type (E) then
+ Freeze_Fixed_Point_Type (E);
+
+ elsif Is_Enumeration_Type (E) then
+ Freeze_Enumeration_Type (E);
+
+ elsif Is_Integer_Type (E) then
+ Adjust_Esize_For_Alignment (E);
+
+ elsif Is_Access_Type (E)
+ and then No (Associated_Storage_Pool (E))
+ then
+ Check_Restriction (No_Standard_Storage_Pools, E);
+ end if;
+
+ -- If the current entity is an array or record subtype and has
+ -- discriminants used to constrain it, it must not freeze, because
+ -- Freeze_Entity nodes force Gigi to process the frozen type.
+
+ if Is_Composite_Type (E) then
+
+ if Is_Array_Type (E) then
+
+ declare
+ Index : Node_Id := First_Index (E);
+ Expr1 : Node_Id;
+ Expr2 : Node_Id;
+
+ begin
+ while Present (Index) loop
+ if Etype (Index) /= Any_Type then
+ Get_Index_Bounds (Index, Expr1, Expr2);
+
+ for J in 1 .. 2 loop
+ if Nkind (Expr1) = N_Identifier
+ and then Ekind (Entity (Expr1)) = E_Discriminant
+ then
+ Set_Has_Delayed_Freeze (E, False);
+ Set_Freeze_Node (E, Empty);
+ Check_Debug_Info_Needed (E);
+ return Result;
+ end if;
+
+ Expr1 := Expr2;
+ end loop;
+ end if;
+
+ Next_Index (Index);
+ end loop;
+ end;
+
+ elsif Has_Discriminants (E)
+ and Is_Constrained (E)
+ then
+
+ declare
+ Constraint : Elmt_Id;
+ Expr : Node_Id;
+ begin
+ Constraint := First_Elmt (Discriminant_Constraint (E));
+
+ while Present (Constraint) loop
+
+ Expr := Node (Constraint);
+ if Nkind (Expr) = N_Identifier
+ and then Ekind (Entity (Expr)) = E_Discriminant
+ then
+ Set_Has_Delayed_Freeze (E, False);
+ Set_Freeze_Node (E, Empty);
+ Check_Debug_Info_Needed (E);
+ return Result;
+ end if;
+
+ Next_Elmt (Constraint);
+ end loop;
+ end;
+
+ end if;
+
+ -- AI-117 requires that all new primitives of a tagged type
+ -- must inherit the convention of the full view of the type.
+ -- Inherited and overriding operations are defined to inherit
+ -- the convention of their parent or overridden subprogram
+ -- (also specified in AI-117), and that will have occurred
+ -- earlier (in Derive_Subprogram and New_Overloaded_Entity).
+ -- Here we set the convention of primitives that are still
+ -- convention Ada, which will ensure that any new primitives
+ -- inherit the type's convention. Class-wide types can have
+ -- a foreign convention inherited from their specific type,
+ -- but are excluded from this since they don't have any
+ -- associated primitives.
+
+ if Is_Tagged_Type (E)
+ and then not Is_Class_Wide_Type (E)
+ and then Convention (E) /= Convention_Ada
+ then
+ declare
+ Prim_List : constant Elist_Id := Primitive_Operations (E);
+ Prim : Elmt_Id := First_Elmt (Prim_List);
+
+ begin
+ while Present (Prim) loop
+ if Convention (Node (Prim)) = Convention_Ada then
+ Set_Convention (Node (Prim), Convention (E));
+ end if;
+
+ Next_Elmt (Prim);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ -- Now that all types from which E may depend are frozen, see
+ -- if the size is known at compile time, if it must be unsigned,
+ -- or if strict alignent is required
+
+ Check_Compile_Time_Size (E);
+ Check_Unsigned_Type (E);
+
+ if Base_Type (E) = E then
+ Check_Strict_Alignment (E);
+ end if;
+
+ -- Do not allow a size clause for a type which does not have a size
+ -- that is known at compile time
+
+ if Has_Size_Clause (E)
+ and then not Size_Known_At_Compile_Time (E)
+ then
+ Error_Msg_N
+ ("size clause not allowed for variable length type",
+ Size_Clause (E));
+ end if;
+
+ -- Remaining process is to set/verify the representation information,
+ -- in particular the size and alignment values. This processing is
+ -- not required for generic types, since generic types do not play
+ -- any part in code generation, and so the size and alignment values
+ -- for suhc types are irrelevant.
+
+ if Is_Generic_Type (E) then
+ return Result;
+
+ -- Otherwise we call the layout procedure
+
+ else
+ Layout_Type (E);
+ end if;
+
+ -- End of freeze processing for type entities
+ end if;
+
+ -- Here is where we logically freeze the current entity. If it has a
+ -- freeze node, then this is the point at which the freeze node is
+ -- linked into the result list.
+
+ if Has_Delayed_Freeze (E) then
+
+ -- If a freeze node is already allocated, use it, otherwise allocate
+ -- a new one. The preallocation happens in the case of anonymous base
+ -- types, where we preallocate so that we can set First_Subtype_Link.
+ -- Note that we reset the Sloc to the current freeze location.
+
+ if Present (Freeze_Node (E)) then
+ F_Node := Freeze_Node (E);
+ Set_Sloc (F_Node, Loc);
+
+ else
+ F_Node := New_Node (N_Freeze_Entity, Loc);
+ Set_Freeze_Node (E, F_Node);
+ Set_Access_Types_To_Process (F_Node, No_Elist);
+ Set_TSS_Elist (F_Node, No_Elist);
+ Set_Actions (F_Node, No_List);
+ end if;
+
+ Set_Entity (F_Node, E);
+
+ if Result = No_List then
+ Result := New_List (F_Node);
+ else
+ Append (F_Node, Result);
+ end if;
+
+ end if;
+
+ -- When a type is frozen, the first subtype of the type is frozen as
+ -- well (RM 13.14(15)). This has to be done after freezing the type,
+ -- since obviously the first subtype depends on its own base type.
+
+ if Is_Type (E) then
+ Freeze_And_Append (First_Subtype (E), Loc, Result);
+
+ -- If we just froze a tagged non-class wide record, then freeze the
+ -- corresponding class-wide type. This must be done after the tagged
+ -- type itself is frozen, because the class-wide type refers to the
+ -- tagged type which generates the class.
+
+ if Is_Tagged_Type (E)
+ and then not Is_Class_Wide_Type (E)
+ and then Present (Class_Wide_Type (E))
+ then
+ Freeze_And_Append (Class_Wide_Type (E), Loc, Result);
+ end if;
+ end if;
+
+ Check_Debug_Info_Needed (E);
+
+ -- Special handling for subprograms
+
+ if Is_Subprogram (E) then
+
+ -- If subprogram has address clause then reset Is_Public flag, since
+ -- we do not want the backend to generate external references.
+
+ if Present (Address_Clause (E))
+ and then not Is_Library_Level_Entity (E)
+ then
+ Set_Is_Public (E, False);
+
+ -- If no address clause and not intrinsic, then for imported
+ -- subprogram in main unit, generate descriptor if we are in
+ -- Propagate_Exceptions mode.
+
+ elsif Propagate_Exceptions
+ and then Is_Imported (E)
+ and then not Is_Intrinsic_Subprogram (E)
+ and then Convention (E) /= Convention_Stubbed
+ then
+ if Result = No_List then
+ Result := Empty_List;
+ end if;
+
+ Generate_Subprogram_Descriptor_For_Imported_Subprogram
+ (E, Result);
+ end if;
+
+ end if;
+
+ return Result;
+ end Freeze_Entity;
+
+ -----------------------------
+ -- Freeze_Enumeration_Type --
+ -----------------------------
+
+ procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
+ begin
+ if Has_Foreign_Convention (Typ)
+ and then not Has_Size_Clause (Typ)
+ and then Esize (Typ) < Standard_Integer_Size
+ then
+ Init_Esize (Typ, Standard_Integer_Size);
+
+ else
+ Adjust_Esize_For_Alignment (Typ);
+ end if;
+ end Freeze_Enumeration_Type;
+
+ -----------------------
+ -- Freeze_Expression --
+ -----------------------
+
+ procedure Freeze_Expression (N : Node_Id) is
+ In_Def_Exp : constant Boolean := In_Default_Expression;
+ Typ : Entity_Id;
+ Nam : Entity_Id;
+ Desig_Typ : Entity_Id;
+ P : Node_Id;
+ Parent_P : Node_Id;
+
+ Freeze_Outside : Boolean := False;
+ -- This flag is set true if the entity must be frozen outside the
+ -- current subprogram. This happens in the case of expander generated
+ -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
+ -- not freeze all entities like other bodies, but which nevertheless
+ -- may reference entities that have to be frozen before the body and
+ -- obviously cannot be frozen inside the body.
+
+ function In_Exp_Body (N : Node_Id) return Boolean;
+ -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
+ -- it is the handled statement sequence of an expander generated
+ -- subprogram (init proc, or stream subprogram). If so, it returns
+ -- True, otherwise False.
+
+ function In_Exp_Body (N : Node_Id) return Boolean is
+ P : Node_Id;
+
+ begin
+ if Nkind (N) = N_Subprogram_Body then
+ P := N;
+ else
+ P := Parent (N);
+ end if;
+
+ if Nkind (P) /= N_Subprogram_Body then
+ return False;
+
+ else
+ P := Defining_Unit_Name (Specification (P));
+
+ if Nkind (P) = N_Defining_Identifier
+ and then (Chars (P) = Name_uInit_Proc or else
+ Chars (P) = Name_uInput or else
+ Chars (P) = Name_uOutput or else
+ Chars (P) = Name_uRead or else
+ Chars (P) = Name_uWrite)
+ then
+ return True;
+ else
+ return False;
+ end if;
+ end if;
+
+ end In_Exp_Body;
+
+ -- Start of processing for Freeze_Expression
+
+ begin
+ -- Immediate return if freezing is inhibited. This flag is set by
+ -- the analyzer to stop freezing on generated expressions that would
+ -- cause freezing if they were in the source program, but which are
+ -- not supposed to freeze, since they are created.
+
+ if Must_Not_Freeze (N) then
+ return;
+ end if;
+
+ -- If expression is non-static, then it does not freeze in a default
+ -- expression, see section "Handling of Default Expressions" in the
+ -- spec of package Sem for further details. Note that we have to
+ -- make sure that we actually have a real expression (if we have
+ -- a subtype indication, we can't test Is_Static_Expression!)
+
+ if In_Def_Exp
+ and then Nkind (N) in N_Subexpr
+ and then not Is_Static_Expression (N)
+ then
+ return;
+ end if;
+
+ -- Freeze type of expression if not frozen already
+
+ if Nkind (N) in N_Has_Etype
+ and then not Is_Frozen (Etype (N))
+ then
+ Typ := Etype (N);
+ else
+ Typ := Empty;
+ end if;
+
+ -- For entity name, freeze entity if not frozen already. A special
+ -- exception occurs for an identifier that did not come from source.
+ -- We don't let such identifiers freeze a non-internal entity, i.e.
+ -- an entity that did come from source, since such an identifier was
+ -- generated by the expander, and cannot have any semantic effect on
+ -- the freezing semantics. For example, this stops the parameter of
+ -- an initialization procedure from freezing the variable.
+
+ if Is_Entity_Name (N)
+ and then not Is_Frozen (Entity (N))
+ and then (Nkind (N) /= N_Identifier
+ or else Comes_From_Source (N)
+ or else not Comes_From_Source (Entity (N)))
+ then
+ Nam := Entity (N);
+
+ else
+ Nam := Empty;
+ end if;
+
+ -- For an allocator freeze designated type if not frozen already.
+
+ -- For an aggregate whose component type is an access type, freeze
+ -- the designated type now, so that its freeze does not appear within
+ -- the loop that might be created in the expansion of the aggregate.
+ -- If the designated type is a private type without full view, the
+ -- expression cannot contain an allocator, so the type is not frozen.
+
+ Desig_Typ := Empty;
+ case Nkind (N) is
+
+ when N_Allocator =>
+ Desig_Typ := Designated_Type (Etype (N));
+
+ when N_Aggregate =>
+ if Is_Array_Type (Etype (N))
+ and then Is_Access_Type (Component_Type (Etype (N)))
+ then
+ Desig_Typ := Designated_Type (Component_Type (Etype (N)));
+ end if;
+
+ when N_Selected_Component |
+ N_Indexed_Component |
+ N_Slice =>
+
+ if Is_Access_Type (Etype (Prefix (N))) then
+ Desig_Typ := Designated_Type (Etype (Prefix (N)));
+ end if;
+
+ when others =>
+ null;
+
+ end case;
+
+ if Desig_Typ /= Empty
+ and then (Is_Frozen (Desig_Typ)
+ or else (not Is_Fully_Defined (Desig_Typ)))
+ then
+ Desig_Typ := Empty;
+ end if;
+
+ -- All done if nothing needs freezing
+
+ if No (Typ)
+ and then No (Nam)
+ and then No (Desig_Typ)
+ then
+ return;
+ end if;
+
+ -- Loop for looking at the right place to insert the freeze nodes
+ -- exiting from the loop when it is appropriate to insert the freeze
+ -- node before the current node P.
+
+ -- Also checks some special exceptions to the freezing rules. These
+ -- cases result in a direct return, bypassing the freeze action.
+
+ P := N;
+ loop
+ Parent_P := Parent (P);
+
+ -- If we don't have a parent, then we are not in a well-formed
+ -- tree. This is an unusual case, but there are some legitimate
+ -- situations in which this occurs, notably when the expressions
+ -- in the range of a type declaration are resolved. We simply
+ -- ignore the freeze request in this case. Is this right ???
+
+ if No (Parent_P) then
+ return;
+ end if;
+
+ -- See if we have got to an appropriate point in the tree
+
+ case Nkind (Parent_P) is
+
+ -- A special test for the exception of (RM 13.14(8)) for the
+ -- case of per-object expressions (RM 3.8(18)) occurring in a
+ -- component definition or a discrete subtype definition. Note
+ -- that we test for a component declaration which includes both
+ -- cases we are interested in, and furthermore the tree does not
+ -- have explicit nodes for either of these two constructs.
+
+ when N_Component_Declaration =>
+
+ -- The case we want to test for here is an identifier that is
+ -- a per-object expression, this is either a discriminant that
+ -- appears in a context other than the component declaration
+ -- or it is a reference to the type of the enclosing construct.
+
+ -- For either of these cases, we skip the freezing
+
+ if not In_Default_Expression
+ and then Nkind (N) = N_Identifier
+ and then (Present (Entity (N)))
+ then
+ -- We recognize the discriminant case by just looking for
+ -- a reference to a discriminant. It can only be one for
+ -- the enclosing construct. Skip freezing in this case.
+
+ if Ekind (Entity (N)) = E_Discriminant then
+ return;
+
+ -- For the case of a reference to the enclosing record,
+ -- (or task or protected type), we look for a type that
+ -- matches the current scope.
+
+ elsif Entity (N) = Current_Scope then
+ return;
+ end if;
+ end if;
+
+ -- If we have an enumeration literal that appears as the
+ -- choice in the aggregate of an enumeration representation
+ -- clause, then freezing does not occur (RM 13.14(9)).
+
+ when N_Enumeration_Representation_Clause =>
+
+ -- The case we are looking for is an enumeration literal
+
+ if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
+ and then Is_Enumeration_Type (Etype (N))
+ then
+ -- If enumeration literal appears directly as the choice,
+ -- do not freeze (this is the normal non-overloade case)
+
+ if Nkind (Parent (N)) = N_Component_Association
+ and then First (Choices (Parent (N))) = N
+ then
+ return;
+
+ -- If enumeration literal appears as the name of a
+ -- function which is the choice, then also do not freeze.
+ -- This happens in the overloaded literal case, where the
+ -- enumeration literal is temporarily changed to a function
+ -- call for overloading analysis purposes.
+
+ elsif Nkind (Parent (N)) = N_Function_Call
+ and then
+ Nkind (Parent (Parent (N))) = N_Component_Association
+ and then
+ First (Choices (Parent (Parent (N)))) = Parent (N)
+ then
+ return;
+ end if;
+ end if;
+
+ -- Normally if the parent is a handled sequence of statements,
+ -- then the current node must be a statement, and that is an
+ -- appropriate place to insert a freeze node.
+
+ when N_Handled_Sequence_Of_Statements =>
+
+ -- An exception occurs when the sequence of statements is
+ -- for an expander generated body that did not do the usual
+ -- freeze all operation. In this case we usually want to
+ -- freeze outside this body, not inside it, and we skip
+ -- past the subprogram body that we are inside.
+
+ if In_Exp_Body (Parent_P) then
+
+ -- However, we *do* want to freeze at this point if we have
+ -- an entity to freeze, and that entity is declared *inside*
+ -- the body of the expander generated procedure. This case
+ -- is recognized by the scope of the type, which is either
+ -- the spec for some enclosing body, or (in the case of
+ -- init_procs, for which there are no separate specs) the
+ -- current scope.
+
+ declare
+ Subp : constant Node_Id := Parent (Parent_P);
+ Cspc : Entity_Id;
+
+ begin
+ if Nkind (Subp) = N_Subprogram_Body then
+ Cspc := Corresponding_Spec (Subp);
+
+ if (Present (Typ) and then Scope (Typ) = Cspc)
+ or else
+ (Present (Nam) and then Scope (Nam) = Cspc)
+ then
+ exit;
+
+ elsif Present (Typ)
+ and then Scope (Typ) = Current_Scope
+ and then Current_Scope = Defining_Entity (Subp)
+ then
+ exit;
+ end if;
+ end if;
+ end;
+
+ -- If not that exception to the exception, then this is
+ -- where we delay the freeze till outside the body.
+
+ Parent_P := Parent (Parent_P);
+ Freeze_Outside := True;
+
+ -- Here if normal case where we are in handled statement
+ -- sequence and want to do the insertion right there.
+
+ else
+ exit;
+ end if;
+
+ -- If parent is a body or a spec or a block, then the current
+ -- node is a statement or declaration and we can insert the
+ -- freeze node before it.
+
+ when N_Package_Specification |
+ N_Package_Body |
+ N_Subprogram_Body |
+ N_Task_Body |
+ N_Protected_Body |
+ N_Entry_Body |
+ N_Block_Statement => exit;
+
+ -- The expander is allowed to define types in any statements list,
+ -- so any of the following parent nodes also mark a freezing point
+ -- if the actual node is in a list of statements or declarations.
+
+ when N_Exception_Handler |
+ N_If_Statement |
+ N_Elsif_Part |
+ N_Case_Statement_Alternative |
+ N_Compilation_Unit_Aux |
+ N_Selective_Accept |
+ N_Accept_Alternative |
+ N_Delay_Alternative |
+ N_Conditional_Entry_Call |
+ N_Entry_Call_Alternative |
+ N_Triggering_Alternative |
+ N_Abortable_Part |
+ N_Freeze_Entity =>
+
+ exit when Is_List_Member (P);
+
+ -- Note: The N_Loop_Statement is a special case. A type that
+ -- appears in the source can never be frozen in a loop (this
+ -- occurs only because of a loop expanded by the expander),
+ -- so we keep on going. Otherwise we terminate the search.
+ -- Same is true of any entity which comes from source. (if they
+ -- have a predefined type, that type does not appear to come
+ -- from source, but the entity should not be frozen here).
+
+ when N_Loop_Statement =>
+ exit when not Comes_From_Source (Etype (N))
+ and then (No (Nam) or else not Comes_From_Source (Nam));
+
+ -- For all other cases, keep looking at parents
+
+ when others =>
+ null;
+ end case;
+
+ -- We fall through the case if we did not yet find the proper
+ -- place in the free for inserting the freeze node, so climb!
+
+ P := Parent_P;
+ end loop;
+
+ -- If the expression appears in a record or an initialization
+ -- procedure, the freeze nodes are collected and attached to
+ -- the current scope, to be inserted and analyzed on exit from
+ -- the scope, to insure that generated entities appear in the
+ -- correct scope. If the expression is a default for a discriminant
+ -- specification, the scope is still void. The expression can also
+ -- appear in the discriminant part of a private or concurrent type.
+
+ -- The other case requiring this special handling is if we are in
+ -- a default expression, since in that case we are about to freeze
+ -- a static type, and the freeze scope needs to be the outer scope,
+ -- not the scope of the subprogram with the default parameter.
+
+ -- For default expressions in generic units, the Move_Freeze_Nodes
+ -- mechanism (see sem_ch12.adb) takes care of placing them at the
+ -- proper place, after the generic unit.
+
+ if (In_Def_Exp and not Inside_A_Generic)
+ or else Freeze_Outside
+ or else (Is_Type (Current_Scope)
+ and then (not Is_Concurrent_Type (Current_Scope)
+ or else not Has_Completion (Current_Scope)))
+ or else Ekind (Current_Scope) = E_Void
+ then
+ declare
+ Loc : constant Source_Ptr := Sloc (Current_Scope);
+ Freeze_Nodes : List_Id := No_List;
+
+ begin
+ if Present (Desig_Typ) then
+ Freeze_And_Append (Desig_Typ, Loc, Freeze_Nodes);
+ end if;
+
+ if Present (Typ) then
+ Freeze_And_Append (Typ, Loc, Freeze_Nodes);
+ end if;
+
+ if Present (Nam) then
+ Freeze_And_Append (Nam, Loc, Freeze_Nodes);
+ end if;
+
+ if Is_Non_Empty_List (Freeze_Nodes) then
+
+ if No (Scope_Stack.Table
+ (Scope_Stack.Last).Pending_Freeze_Actions)
+ then
+ Scope_Stack.Table
+ (Scope_Stack.Last).Pending_Freeze_Actions :=
+ Freeze_Nodes;
+ else
+ Append_List (Freeze_Nodes, Scope_Stack.Table
+ (Scope_Stack.Last).Pending_Freeze_Actions);
+ end if;
+ end if;
+ end;
+
+ return;
+ end if;
+
+ -- Now we have the right place to do the freezing. First, a special
+ -- adjustment, if we are in default expression analysis mode, these
+ -- freeze actions must not be thrown away (normally all inserted
+ -- actions are thrown away in this mode. However, the freeze actions
+ -- are from static expressions and one of the important reasons we
+ -- are doing this special analysis is to get these freeze actions.
+ -- Therefore we turn off the In_Default_Expression mode to propagate
+ -- these freeze actions. This also means they get properly analyzed
+ -- and expanded.
+
+ In_Default_Expression := False;
+
+ -- Freeze the designated type of an allocator (RM 13.14(12))
+
+ if Present (Desig_Typ) then
+ Freeze_Before (P, Desig_Typ);
+ end if;
+
+ -- Freeze type of expression (RM 13.14(9)). Note that we took care of
+ -- the enumeration representation clause exception in the loop above.
+
+ if Present (Typ) then
+ Freeze_Before (P, Typ);
+ end if;
+
+ -- Freeze name if one is present (RM 13.14(10))
+
+ if Present (Nam) then
+ Freeze_Before (P, Nam);
+ end if;
+
+ In_Default_Expression := In_Def_Exp;
+ end Freeze_Expression;
+
+ -----------------------------
+ -- Freeze_Fixed_Point_Type --
+ -----------------------------
+
+ -- Certain fixed-point types and subtypes, including implicit base
+ -- types and declared first subtypes, have not yet set up a range.
+ -- This is because the range cannot be set until the Small and Size
+ -- values are known, and these are not known till the type is frozen.
+
+ -- To signal this case, Scalar_Range contains an unanalyzed syntactic
+ -- range whose bounds are unanalyzed real literals. This routine will
+ -- recognize this case, and transform this range node into a properly
+ -- typed range with properly analyzed and resolved values.
+
+ procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
+ Rng : constant Node_Id := Scalar_Range (Typ);
+ Lo : constant Node_Id := Low_Bound (Rng);
+ Hi : constant Node_Id := High_Bound (Rng);
+ Btyp : constant Entity_Id := Base_Type (Typ);
+ Brng : constant Node_Id := Scalar_Range (Btyp);
+ BLo : constant Node_Id := Low_Bound (Brng);
+ BHi : constant Node_Id := High_Bound (Brng);
+ Small : constant Ureal := Small_Value (Typ);
+ Loval : Ureal;
+ Hival : Ureal;
+ Atype : Entity_Id;
+
+ Actual_Size : Nat;
+
+ function Fsize (Lov, Hiv : Ureal) return Nat;
+ -- Returns size of type with given bounds. Also leaves these
+ -- bounds set as the current bounds of the Typ.
+
+ function Fsize (Lov, Hiv : Ureal) return Nat is
+ begin
+ Set_Realval (Lo, Lov);
+ Set_Realval (Hi, Hiv);
+ return Minimum_Size (Typ);
+ end Fsize;
+
+ -- Start of processing for Freeze_Fixed_Point_Type;
+
+ begin
+ -- If Esize of a subtype has not previously been set, set it now
+
+ if Unknown_Esize (Typ) then
+ Atype := Ancestor_Subtype (Typ);
+
+ if Present (Atype) then
+ Set_Size_Info (Typ, Atype);
+ else
+ Set_Size_Info (Typ, Base_Type (Typ));
+ end if;
+ end if;
+
+ -- Immediate return if the range is already analyzed. This means
+ -- that the range is already set, and does not need to be computed
+ -- by this routine.
+
+ if Analyzed (Rng) then
+ return;
+ end if;
+
+ -- Immediate return if either of the bounds raises Constraint_Error
+
+ if Raises_Constraint_Error (Lo)
+ or else Raises_Constraint_Error (Hi)
+ then
+ return;
+ end if;
+
+ Loval := Realval (Lo);
+ Hival := Realval (Hi);
+
+ -- Ordinary fixed-point case
+
+ if Is_Ordinary_Fixed_Point_Type (Typ) then
+
+ -- For the ordinary fixed-point case, we are allowed to fudge the
+ -- end-points up or down by small. Generally we prefer to fudge
+ -- up, i.e. widen the bounds for non-model numbers so that the
+ -- end points are included. However there are cases in which this
+ -- cannot be done, and indeed cases in which we may need to narrow
+ -- the bounds. The following circuit makes the decision.
+
+ -- Note: our terminology here is that Incl_EP means that the
+ -- bounds are widened by Small if necessary to include the end
+ -- points, and Excl_EP means that the bounds are narrowed by
+ -- Small to exclude the end-points if this reduces the size.
+
+ -- Note that in the Incl case, all we care about is including the
+ -- end-points. In the Excl case, we want to narrow the bounds as
+ -- much as permitted by the RM, to give the smallest possible size.
+
+ Fudge : declare
+ Loval_Incl_EP : Ureal;
+ Hival_Incl_EP : Ureal;
+
+ Loval_Excl_EP : Ureal;
+ Hival_Excl_EP : Ureal;
+
+ Size_Incl_EP : Nat;
+ Size_Excl_EP : Nat;
+
+ Model_Num : Ureal;
+ First_Subt : Entity_Id;
+ Actual_Lo : Ureal;
+ Actual_Hi : Ureal;
+
+ begin
+ -- First step. Base types are required to be symmetrical. Right
+ -- now, the base type range is a copy of the first subtype range.
+ -- This will be corrected before we are done, but right away we
+ -- need to deal with the case where both bounds are non-negative.
+ -- In this case, we set the low bound to the negative of the high
+ -- bound, to make sure that the size is computed to include the
+ -- required sign. Note that we do not need to worry about the
+ -- case of both bounds negative, because the sign will be dealt
+ -- with anyway. Furthermore we can't just go making such a bound
+ -- symmetrical, since in a twos-complement system, there is an
+ -- extra negative value which could not be accomodated on the
+ -- positive side.
+
+ if Typ = Btyp
+ and then not UR_Is_Negative (Loval)
+ and then Hival > Loval
+ then
+ Loval := -Hival;
+ Set_Realval (Lo, Loval);
+ end if;
+
+ -- Compute the fudged bounds. If the number is a model number,
+ -- then we do nothing to include it, but we are allowed to
+ -- backoff to the next adjacent model number when we exclude
+ -- it. If it is not a model number then we straddle the two
+ -- values with the model numbers on either side.
+
+ Model_Num := UR_Trunc (Loval / Small) * Small;
+
+ if Loval = Model_Num then
+ Loval_Incl_EP := Model_Num;
+ else
+ Loval_Incl_EP := Model_Num - Small;
+ end if;
+
+ -- The low value excluding the end point is Small greater, but
+ -- we do not do this exclusion if the low value is positive,
+ -- since it can't help the size and could actually hurt by
+ -- crossing the high bound.
+
+ if UR_Is_Negative (Loval_Incl_EP) then
+ Loval_Excl_EP := Loval_Incl_EP + Small;
+ else
+ Loval_Excl_EP := Loval_Incl_EP;
+ end if;
+
+ -- Similar processing for upper bound and high value
+
+ Model_Num := UR_Trunc (Hival / Small) * Small;
+
+ if Hival = Model_Num then
+ Hival_Incl_EP := Model_Num;
+ else
+ Hival_Incl_EP := Model_Num + Small;
+ end if;
+
+ if UR_Is_Positive (Hival_Incl_EP) then
+ Hival_Excl_EP := Hival_Incl_EP - Small;
+ else
+ Hival_Excl_EP := Hival_Incl_EP;
+ end if;
+
+ -- One further adjustment is needed. In the case of subtypes,
+ -- we cannot go outside the range of the base type, or we get
+ -- peculiarities, and the base type range is already set. This
+ -- only applies to the Incl values, since clearly the Excl
+ -- values are already as restricted as they are allowed to be.
+
+ if Typ /= Btyp then
+ Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
+ Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
+ end if;
+
+ -- Get size including and excluding end points
+
+ Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
+ Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
+
+ -- No need to exclude end-points if it does not reduce size
+
+ if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
+ Loval_Excl_EP := Loval_Incl_EP;
+ end if;
+
+ if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
+ Hival_Excl_EP := Hival_Incl_EP;
+ end if;
+
+ -- Now we set the actual size to be used. We want to use the
+ -- bounds fudged up to include the end-points but only if this
+ -- can be done without violating a specifically given size
+ -- size clause or causing an unacceptable increase in size.
+
+ -- Case of size clause given
+
+ if Has_Size_Clause (Typ) then
+
+ -- Use the inclusive size only if it is consistent with
+ -- the explicitly specified size.
+
+ if Size_Incl_EP <= RM_Size (Typ) then
+ Actual_Lo := Loval_Incl_EP;
+ Actual_Hi := Hival_Incl_EP;
+ Actual_Size := Size_Incl_EP;
+
+ -- If the inclusive size is too large, we try excluding
+ -- the end-points (will be caught later if does not work).
+
+ else
+ Actual_Lo := Loval_Excl_EP;
+ Actual_Hi := Hival_Excl_EP;
+ Actual_Size := Size_Excl_EP;
+ end if;
+
+ -- Case of size clause not given
+
+ else
+ -- If we have a base type whose corresponding first subtype
+ -- has an explicit size that is large enough to include our
+ -- end-points, then do so. There is no point in working hard
+ -- to get a base type whose size is smaller than the specified
+ -- size of the first subtype.
+
+ First_Subt := First_Subtype (Typ);
+
+ if Has_Size_Clause (First_Subt)
+ and then Size_Incl_EP <= Esize (First_Subt)
+ then
+ Actual_Size := Size_Incl_EP;
+ Actual_Lo := Loval_Incl_EP;
+ Actual_Hi := Hival_Incl_EP;
+
+ -- If excluding the end-points makes the size smaller and
+ -- results in a size of 8,16,32,64, then we take the smaller
+ -- size. For the 64 case, this is compulsory. For the other
+ -- cases, it seems reasonable. We like to include end points
+ -- if we can, but not at the expense of moving to the next
+ -- natural boundary of size.
+
+ elsif Size_Incl_EP /= Size_Excl_EP
+ and then
+ (Size_Excl_EP = 8 or else
+ Size_Excl_EP = 16 or else
+ Size_Excl_EP = 32 or else
+ Size_Excl_EP = 64)
+ then
+ Actual_Size := Size_Excl_EP;
+ Actual_Lo := Loval_Excl_EP;
+ Actual_Hi := Hival_Excl_EP;
+
+ -- Otherwise we can definitely include the end points
+
+ else
+ Actual_Size := Size_Incl_EP;
+ Actual_Lo := Loval_Incl_EP;
+ Actual_Hi := Hival_Incl_EP;
+ end if;
+
+ -- One pathological case: normally we never fudge a low
+ -- bound down, since it would seem to increase the size
+ -- (if it has any effect), but for ranges containing a
+ -- single value, or no values, the high bound can be
+ -- small too large. Consider:
+
+ -- type t is delta 2.0**(-14)
+ -- range 131072.0 .. 0;
+
+ -- That lower bound is *just* outside the range of 32
+ -- bits, and does need fudging down in this case. Note
+ -- that the bounds will always have crossed here, since
+ -- the high bound will be fudged down if necessary, as
+ -- in the case of:
+
+ -- type t is delta 2.0**(-14)
+ -- range 131072.0 .. 131072.0;
+
+ -- So we can detect the situation by looking for crossed
+ -- bounds, and if the bounds are crossed, and the low
+ -- bound is greater than zero, we will always back it
+ -- off by small, since this is completely harmless.
+
+ if Actual_Lo > Actual_Hi then
+ if UR_Is_Positive (Actual_Lo) then
+ Actual_Lo := Loval_Incl_EP - Small;
+ Actual_Size := Fsize (Actual_Lo, Actual_Hi);
+
+ -- And of course, we need to do exactly the same parallel
+ -- fudge for flat ranges in the negative region.
+
+ elsif UR_Is_Negative (Actual_Hi) then
+ Actual_Hi := Hival_Incl_EP + Small;
+ Actual_Size := Fsize (Actual_Lo, Actual_Hi);
+ end if;
+ end if;
+ end if;
+
+ Set_Realval (Lo, Actual_Lo);
+ Set_Realval (Hi, Actual_Hi);
+ end Fudge;
+
+ -- For the decimal case, none of this fudging is required, since there
+ -- are no end-point problems in the decimal case (the end-points are
+ -- always included).
+
+ else
+ Actual_Size := Fsize (Loval, Hival);
+ end if;
+
+ -- At this stage, the actual size has been calculated and the proper
+ -- required bounds are stored in the low and high bounds.
+
+ if Actual_Size > 64 then
+ Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
+ Error_Msg_N
+ ("size required (^) for type& too large, maximum is 64", Typ);
+ Actual_Size := 64;
+ end if;
+
+ -- Check size against explicit given size
+
+ if Has_Size_Clause (Typ) then
+ if Actual_Size > RM_Size (Typ) then
+ Error_Msg_Uint_1 := RM_Size (Typ);
+ Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
+ Error_Msg_NE
+ ("size given (^) for type& too small, minimum is ^",
+ Size_Clause (Typ), Typ);
+
+ else
+ Actual_Size := UI_To_Int (Esize (Typ));
+ end if;
+
+ -- Increase size to next natural boundary if no size clause given
+
+ else
+ if Actual_Size <= 8 then
+ Actual_Size := 8;
+ elsif Actual_Size <= 16 then
+ Actual_Size := 16;
+ elsif Actual_Size <= 32 then
+ Actual_Size := 32;
+ else
+ Actual_Size := 64;
+ end if;
+
+ Init_Esize (Typ, Actual_Size);
+ Adjust_Esize_For_Alignment (Typ);
+ end if;
+
+ -- If we have a base type, then expand the bounds so that they
+ -- extend to the full width of the allocated size in bits, to
+ -- avoid junk range checks on intermediate computations.
+
+ if Base_Type (Typ) = Typ then
+ Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
+ Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
+ end if;
+
+ -- Final step is to reanalyze the bounds using the proper type
+ -- and set the Corresponding_Integer_Value fields of the literals.
+
+ Set_Etype (Lo, Empty);
+ Set_Analyzed (Lo, False);
+ Analyze (Lo);
+
+ -- Resolve with universal fixed if the base type, and the base
+ -- type if it is a subtype. Note we can't resolve the base type
+ -- with itself, that would be a reference before definition.
+
+ if Typ = Btyp then
+ Resolve (Lo, Universal_Fixed);
+ else
+ Resolve (Lo, Btyp);
+ end if;
+
+ -- Set corresponding integer value for bound
+
+ Set_Corresponding_Integer_Value
+ (Lo, UR_To_Uint (Realval (Lo) / Small));
+
+ -- Similar processing for high bound
+
+ Set_Etype (Hi, Empty);
+ Set_Analyzed (Hi, False);
+ Analyze (Hi);
+
+ if Typ = Btyp then
+ Resolve (Hi, Universal_Fixed);
+ else
+ Resolve (Hi, Btyp);
+ end if;
+
+ Set_Corresponding_Integer_Value
+ (Hi, UR_To_Uint (Realval (Hi) / Small));
+
+ -- Set type of range to correspond to bounds
+
+ Set_Etype (Rng, Etype (Lo));
+
+ -- Set Esize to calculated size and also set RM_Size
+
+ Init_Esize (Typ, Actual_Size);
+
+ -- Set RM_Size if not already set. If already set, check value
+
+ declare
+ Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
+
+ begin
+ if RM_Size (Typ) /= Uint_0 then
+ if RM_Size (Typ) < Minsiz then
+ Error_Msg_Uint_1 := RM_Size (Typ);
+ Error_Msg_Uint_2 := Minsiz;
+ Error_Msg_NE
+ ("size given (^) for type& too small, minimum is ^",
+ Size_Clause (Typ), Typ);
+ end if;
+
+ else
+ Set_RM_Size (Typ, Minsiz);
+ end if;
+ end;
+
+ end Freeze_Fixed_Point_Type;
+
+ ------------------
+ -- Freeze_Itype --
+ ------------------
+
+ procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
+ L : List_Id;
+
+ begin
+ Set_Has_Delayed_Freeze (T);
+ L := Freeze_Entity (T, Sloc (N));
+
+ if Is_Non_Empty_List (L) then
+ Insert_Actions (N, L);
+ end if;
+ end Freeze_Itype;
+
+ --------------------------
+ -- Freeze_Static_Object --
+ --------------------------
+
+ procedure Freeze_Static_Object (E : Entity_Id) is
+
+ Cannot_Be_Static : exception;
+ -- Exception raised if the type of a static object cannot be made
+ -- static. This happens if the type depends on non-global objects.
+
+ procedure Ensure_Expression_Is_SA (N : Node_Id);
+ -- Called to ensure that an expression used as part of a type
+ -- definition is statically allocatable, which means that the type
+ -- of the expression is statically allocatable, and the expression
+ -- is either static, or a reference to a library level constant.
+
+ procedure Ensure_Type_Is_SA (Typ : Entity_Id);
+ -- Called to mark a type as static, checking that it is possible
+ -- to set the type as static. If it is not possible, then the
+ -- exception Cannot_Be_Static is raised.
+
+ -----------------------------
+ -- Ensure_Expression_Is_SA --
+ -----------------------------
+
+ procedure Ensure_Expression_Is_SA (N : Node_Id) is
+ Ent : Entity_Id;
+
+ begin
+ Ensure_Type_Is_SA (Etype (N));
+
+ if Is_Static_Expression (N) then
+ return;
+
+ elsif Nkind (N) = N_Identifier then
+ Ent := Entity (N);
+
+ if Present (Ent)
+ and then Ekind (Ent) = E_Constant
+ and then Is_Library_Level_Entity (Ent)
+ then
+ return;
+ end if;
+ end if;
+
+ raise Cannot_Be_Static;
+ end Ensure_Expression_Is_SA;
+
+ -----------------------
+ -- Ensure_Type_Is_SA --
+ -----------------------
+
+ procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
+ N : Node_Id;
+ C : Entity_Id;
+
+ begin
+ -- If type is library level, we are all set
+
+ if Is_Library_Level_Entity (Typ) then
+ return;
+ end if;
+
+ -- We are also OK if the type is already marked as statically
+ -- allocated, which means we processed it before.
+
+ if Is_Statically_Allocated (Typ) then
+ return;
+ end if;
+
+ -- Mark type as statically allocated
+
+ Set_Is_Statically_Allocated (Typ);
+
+ -- Check that it is safe to statically allocate this type
+
+ if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
+ Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
+ Ensure_Expression_Is_SA (Type_High_Bound (Typ));
+
+ elsif Is_Array_Type (Typ) then
+ N := First_Index (Typ);
+ while Present (N) loop
+ Ensure_Type_Is_SA (Etype (N));
+ Next_Index (N);
+ end loop;
+
+ Ensure_Type_Is_SA (Component_Type (Typ));
+
+ elsif Is_Access_Type (Typ) then
+ if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
+
+ declare
+ F : Entity_Id;
+ T : constant Entity_Id := Etype (Designated_Type (Typ));
+
+ begin
+ if T /= Standard_Void_Type then
+ Ensure_Type_Is_SA (T);
+ end if;
+
+ F := First_Formal (Designated_Type (Typ));
+
+ while Present (F) loop
+ Ensure_Type_Is_SA (Etype (F));
+ Next_Formal (F);
+ end loop;
+ end;
+
+ else
+ Ensure_Type_Is_SA (Designated_Type (Typ));
+ end if;
+
+ elsif Is_Record_Type (Typ) then
+ C := First_Entity (Typ);
+
+ while Present (C) loop
+ if Ekind (C) = E_Discriminant
+ or else Ekind (C) = E_Component
+ then
+ Ensure_Type_Is_SA (Etype (C));
+
+ elsif Is_Type (C) then
+ Ensure_Type_Is_SA (C);
+ end if;
+
+ Next_Entity (C);
+ end loop;
+
+ elsif Ekind (Typ) = E_Subprogram_Type then
+ Ensure_Type_Is_SA (Etype (Typ));
+
+ C := First_Formal (Typ);
+ while Present (C) loop
+ Ensure_Type_Is_SA (Etype (C));
+ Next_Formal (C);
+ end loop;
+
+ else
+ raise Cannot_Be_Static;
+ end if;
+ end Ensure_Type_Is_SA;
+
+ -- Start of processing for Freeze_Static_Object
+
+ begin
+ Ensure_Type_Is_SA (Etype (E));
+
+ exception
+ when Cannot_Be_Static =>
+
+ -- If the object that cannot be static is imported or exported,
+ -- then we give an error message saying that this object cannot
+ -- be imported or exported.
+
+ if Is_Imported (E) then
+ Error_Msg_N
+ ("& cannot be imported (local type is not constant)", E);
+
+ -- Otherwise must be exported, something is wrong if compiler
+ -- is marking something as statically allocated which cannot be).
+
+ else pragma Assert (Is_Exported (E));
+ Error_Msg_N
+ ("& cannot be exported (local type is not constant)", E);
+ end if;
+ end Freeze_Static_Object;
+
+ -----------------------
+ -- Freeze_Subprogram --
+ -----------------------
+
+ procedure Freeze_Subprogram (E : Entity_Id) is
+ Retype : Entity_Id;
+ F : Entity_Id;
+
+ begin
+ -- Subprogram may not have an address clause unless it is imported
+
+ if Present (Address_Clause (E)) then
+ if not Is_Imported (E) then
+ Error_Msg_N
+ ("address clause can only be given " &
+ "for imported subprogram",
+ Name (Address_Clause (E)));
+ end if;
+ end if;
+
+ -- For non-foreign convention subprograms, this is where we create
+ -- the extra formals (for accessibility level and constrained bit
+ -- information). We delay this till the freeze point precisely so
+ -- that we know the convention!
+
+ if not Has_Foreign_Convention (E) then
+ Create_Extra_Formals (E);
+ Set_Mechanisms (E);
+
+ -- If this is convention Ada and a Valued_Procedure, that's odd
+
+ if Ekind (E) = E_Procedure
+ and then Is_Valued_Procedure (E)
+ and then Convention (E) = Convention_Ada
+ then
+ Error_Msg_N
+ ("?Valued_Procedure has no effect for convention Ada", E);
+ Set_Is_Valued_Procedure (E, False);
+ end if;
+
+ -- Case of foreign convention
+
+ else
+ Set_Mechanisms (E);
+
+ -- For foreign conventions, do not permit return of an
+ -- unconstrained array.
+
+ -- Note: we *do* allow a return by descriptor for the VMS case,
+ -- though here there is probably more to be done ???
+
+ if Ekind (E) = E_Function then
+ Retype := Underlying_Type (Etype (E));
+
+ -- If no return type, probably some other error, e.g. a
+ -- missing full declaration, so ignore.
+
+ if No (Retype) then
+ null;
+
+ -- If the return type is generic, we have emitted a warning
+ -- earlier on, and there is nothing else to check here.
+ -- Specific instantiations may lead to erroneous behavior.
+
+ elsif Is_Generic_Type (Etype (E)) then
+ null;
+
+ elsif Is_Array_Type (Retype)
+ and then not Is_Constrained (Retype)
+ and then Mechanism (E) not in Descriptor_Codes
+ then
+ Error_Msg_NE
+ ("convention for& does not permit returning " &
+ "unconstrained array type", E, E);
+ return;
+ end if;
+ end if;
+
+ -- If any of the formals for an exported foreign convention
+ -- subprogram have defaults, then emit an appropriate warning
+ -- since this is odd (default cannot be used from non-Ada code)
+
+ if Is_Exported (E) then
+ F := First_Formal (E);
+ while Present (F) loop
+ if Present (Default_Value (F)) then
+ Error_Msg_N
+ ("?parameter cannot be defaulted in non-Ada call",
+ Default_Value (F));
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end if;
+ end if;
+
+ -- For VMS, descriptor mechanisms for parameters are allowed only
+ -- for imported subprograms.
+
+ if OpenVMS_On_Target then
+ if not Is_Imported (E) then
+ F := First_Formal (E);
+ while Present (F) loop
+ if Mechanism (F) in Descriptor_Codes then
+ Error_Msg_N
+ ("descriptor mechanism for parameter not permitted", F);
+ Error_Msg_N
+ ("\can only be used for imported subprogram", F);
+ end if;
+
+ Next_Formal (F);
+ end loop;
+ end if;
+ end if;
+
+ end Freeze_Subprogram;
+
+ -----------------------
+ -- Is_Fully_Defined --
+ -----------------------
+
+ -- Should this be in Sem_Util ???
+
+ function Is_Fully_Defined (T : Entity_Id) return Boolean is
+ begin
+ if Ekind (T) = E_Class_Wide_Type then
+ return Is_Fully_Defined (Etype (T));
+ else
+ return not Is_Private_Type (T)
+ or else Present (Full_View (Base_Type (T)));
+ end if;
+ end Is_Fully_Defined;
+
+ ---------------------------------
+ -- Process_Default_Expressions --
+ ---------------------------------
+
+ procedure Process_Default_Expressions
+ (E : Entity_Id;
+ After : in out Node_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (E);
+ Dbody : Node_Id;
+ Formal : Node_Id;
+ Dcopy : Node_Id;
+ Dnam : Entity_Id;
+
+ begin
+ Set_Default_Expressions_Processed (E);
+
+ -- A subprogram instance and its associated anonymous subprogram
+ -- share their signature. The default expression functions are defined
+ -- in the wrapper packages for the anonymous subprogram, and should
+ -- not be generated again for the instance.
+
+ if Is_Generic_Instance (E)
+ and then Present (Alias (E))
+ and then Default_Expressions_Processed (Alias (E))
+ then
+ return;
+ end if;
+
+ Formal := First_Formal (E);
+
+ while Present (Formal) loop
+ if Present (Default_Value (Formal)) then
+
+ -- We work with a copy of the default expression because we
+ -- do not want to disturb the original, since this would mess
+ -- up the conformance checking.
+
+ Dcopy := New_Copy_Tree (Default_Value (Formal));
+
+ -- The analysis of the expression may generate insert actions,
+ -- which of course must not be executed. We wrap those actions
+ -- in a procedure that is not called, and later on eliminated.
+ -- The following cases have no side-effects, and are analyzed
+ -- directly.
+
+ if Nkind (Dcopy) = N_Identifier
+ or else Nkind (Dcopy) = N_Expanded_Name
+ or else Nkind (Dcopy) = N_Integer_Literal
+ or else (Nkind (Dcopy) = N_Real_Literal
+ and then not Vax_Float (Etype (Dcopy)))
+ or else Nkind (Dcopy) = N_Character_Literal
+ or else Nkind (Dcopy) = N_String_Literal
+ or else Nkind (Dcopy) = N_Null
+ or else (Nkind (Dcopy) = N_Attribute_Reference
+ and then
+ Attribute_Name (Dcopy) = Name_Null_Parameter)
+
+ then
+
+ -- If there is no default function, we must still do a full
+ -- analyze call on the default value, to ensure that all
+ -- error checks are performed, e.g. those associated with
+ -- static evaluation. Note that this branch will always be
+ -- taken if the analyzer is turned off (but we still need the
+ -- error checks).
+
+ -- Note: the setting of parent here is to meet the requirement
+ -- that we can only analyze the expression while attached to
+ -- the tree. Really the requirement is that the parent chain
+ -- be set, we don't actually need to be in the tree.
+
+ Set_Parent (Dcopy, Declaration_Node (Formal));
+ Analyze (Dcopy);
+
+ -- Default expressions are resolved with their own type if the
+ -- context is generic, to avoid anomalies with private types.
+
+ if Ekind (Scope (E)) = E_Generic_Package then
+ Resolve (Dcopy, Etype (Dcopy));
+ else
+ Resolve (Dcopy, Etype (Formal));
+ end if;
+
+ -- If that resolved expression will raise constraint error,
+ -- then flag the default value as raising constraint error.
+ -- This allows a proper error message on the calls.
+
+ if Raises_Constraint_Error (Dcopy) then
+ Set_Raises_Constraint_Error (Default_Value (Formal));
+ end if;
+
+ -- If the default is a parameterless call, we use the name of
+ -- the called function directly, and there is no body to build.
+
+ elsif Nkind (Dcopy) = N_Function_Call
+ and then No (Parameter_Associations (Dcopy))
+ then
+ null;
+
+ -- Else construct and analyze the body of a wrapper procedure
+ -- that contains an object declaration to hold the expression.
+ -- Given that this is done only to complete the analysis, it
+ -- simpler to build a procedure than a function which might
+ -- involve secondary stack expansion.
+
+ else
+ Dnam :=
+ Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
+
+ Dbody :=
+ Make_Subprogram_Body (Loc,
+ Specification =>
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Dnam),
+
+ Declarations => New_List (
+ Make_Object_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc,
+ New_Internal_Name ('T')),
+ Object_Definition =>
+ New_Occurrence_Of (Etype (Formal), Loc),
+ Expression => New_Copy_Tree (Dcopy))),
+
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List));
+
+ Set_Scope (Dnam, Scope (E));
+ Set_Assignment_OK (First (Declarations (Dbody)));
+ Set_Is_Eliminated (Dnam);
+ Insert_After (After, Dbody);
+ Analyze (Dbody);
+ After := Dbody;
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ end Process_Default_Expressions;
+
+ ----------------------------------------
+ -- Set_Component_Alignment_If_Not_Set --
+ ----------------------------------------
+
+ procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
+ begin
+ -- Ignore if not base type, subtypes don't need anything
+
+ if Typ /= Base_Type (Typ) then
+ return;
+ end if;
+
+ -- Do not override existing representation
+
+ if Is_Packed (Typ) then
+ return;
+
+ elsif Has_Specified_Layout (Typ) then
+ return;
+
+ elsif Component_Alignment (Typ) /= Calign_Default then
+ return;
+
+ else
+ Set_Component_Alignment
+ (Typ, Scope_Stack.Table
+ (Scope_Stack.Last).Component_Alignment_Default);
+ end if;
+ end Set_Component_Alignment_If_Not_Set;
+
+ ---------------------------
+ -- Set_Debug_Info_Needed --
+ ---------------------------
+
+ procedure Set_Debug_Info_Needed (T : Entity_Id) is
+ begin
+ if No (T)
+ or else Needs_Debug_Info (T)
+ or else Debug_Info_Off (T)
+ then
+ return;
+ else
+ Set_Needs_Debug_Info (T);
+ end if;
+
+ if Is_Object (T) then
+ Set_Debug_Info_Needed (Etype (T));
+
+ elsif Is_Type (T) then
+ Set_Debug_Info_Needed (Etype (T));
+
+ if Is_Record_Type (T) then
+ declare
+ Ent : Entity_Id := First_Entity (T);
+ begin
+ while Present (Ent) loop
+ Set_Debug_Info_Needed (Ent);
+ Next_Entity (Ent);
+ end loop;
+ end;
+
+ elsif Is_Array_Type (T) then
+ Set_Debug_Info_Needed (Component_Type (T));
+
+ declare
+ Indx : Node_Id := First_Index (T);
+ begin
+ while Present (Indx) loop
+ Set_Debug_Info_Needed (Etype (Indx));
+ Indx := Next_Index (Indx);
+ end loop;
+ end;
+
+ if Is_Packed (T) then
+ Set_Debug_Info_Needed (Packed_Array_Type (T));
+ end if;
+
+ elsif Is_Access_Type (T) then
+ Set_Debug_Info_Needed (Directly_Designated_Type (T));
+
+ elsif Is_Private_Type (T) then
+ Set_Debug_Info_Needed (Full_View (T));
+
+ elsif Is_Protected_Type (T) then
+ Set_Debug_Info_Needed (Corresponding_Record_Type (T));
+ end if;
+ end if;
+
+ end Set_Debug_Info_Needed;
+
+end Freeze;