summaryrefslogtreecommitdiff
path: root/libstdc++-v3
diff options
context:
space:
mode:
authorpaolo <paolo@138bc75d-0d04-0410-961f-82ee72b054a4>2005-06-15 17:48:00 +0000
committerpaolo <paolo@138bc75d-0d04-0410-961f-82ee72b054a4>2005-06-15 17:48:00 +0000
commit4bf3802e9465faf044e5bf26cfe9f7df2ea86f86 (patch)
treedb2eab0b3aaa61c5d759cd1dd4375619e19c733c /libstdc++-v3
parentd7bac116dcc95bd7c840b9d8ac71497350d77def (diff)
downloadgcc-4bf3802e9465faf044e5bf26cfe9f7df2ea86f86.tar.gz
2005-06-15 Paolo Carlini <pcarlini@suse.de>
* include/tr1/hashtable: Trivial formatting fixes. * include/tr1/unordered_map: Likewise. * include/tr1/unordered_set: Likewise. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@100988 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libstdc++-v3')
-rw-r--r--libstdc++-v3/ChangeLog6
-rw-r--r--libstdc++-v3/include/tr1/hashtable2786
-rw-r--r--libstdc++-v3/include/tr1/unordered_map236
-rw-r--r--libstdc++-v3/include/tr1/unordered_set229
4 files changed, 1771 insertions, 1486 deletions
diff --git a/libstdc++-v3/ChangeLog b/libstdc++-v3/ChangeLog
index b5346501cff..d1f7e03cadc 100644
--- a/libstdc++-v3/ChangeLog
+++ b/libstdc++-v3/ChangeLog
@@ -1,3 +1,9 @@
+2005-06-15 Paolo Carlini <pcarlini@suse.de>
+
+ * include/tr1/hashtable: Trivial formatting fixes.
+ * include/tr1/unordered_map: Likewise.
+ * include/tr1/unordered_set: Likewise.
+
2005-06-14 Tom Tromey <tromey@redhat.com>
PR libgcj/19877:
diff --git a/libstdc++-v3/include/tr1/hashtable b/libstdc++-v3/include/tr1/hashtable
index c015e9edf69..add5f5bde15 100644
--- a/libstdc++-v3/include/tr1/hashtable
+++ b/libstdc++-v3/include/tr1/hashtable
@@ -64,40 +64,39 @@
//----------------------------------------------------------------------
// General utilities
-namespace Internal {
-template <bool Flag, typename IfTrue, typename IfFalse> struct IF;
-
-template <typename IfTrue, typename IfFalse>
-struct IF <true, IfTrue, IfFalse> { typedef IfTrue type; };
-
-template <typename IfTrue, typename IfFalse>
-struct IF <false, IfTrue, IfFalse> { typedef IfFalse type; };
-
-// Helper function: return distance(first, last) for forward
-// iterators, or 0 for input iterators.
-
-template <class Iterator>
-inline typename std::iterator_traits<Iterator>::difference_type
-distance_fw (Iterator first, Iterator last, std::input_iterator_tag)
-{
- return 0;
-}
-
-template <class Iterator>
-inline typename std::iterator_traits<Iterator>::difference_type
-distance_fw (Iterator first, Iterator last, std::forward_iterator_tag)
-{
- return std::distance(first, last);
-}
-
-template <class Iterator>
-inline typename std::iterator_traits<Iterator>::difference_type
-distance_fw (Iterator first, Iterator last)
+namespace Internal
{
- typedef typename std::iterator_traits<Iterator>::iterator_category tag;
- return distance_fw(first, last, tag());
-}
+ template<bool Flag, typename IfTrue, typename IfFalse>
+ struct IF;
+ template<typename IfTrue, typename IfFalse>
+ struct IF<true, IfTrue, IfFalse>
+ { typedef IfTrue type; };
+
+ template <typename IfTrue, typename IfFalse>
+ struct IF<false, IfTrue, IfFalse>
+ { typedef IfFalse type; };
+
+ // Helper function: return distance(first, last) for forward
+ // iterators, or 0 for input iterators.
+ template<class Iterator>
+ inline typename std::iterator_traits<Iterator>::difference_type
+ distance_fw(Iterator first, Iterator last, std::input_iterator_tag)
+ { return 0; }
+
+ template<class Iterator>
+ inline typename std::iterator_traits<Iterator>::difference_type
+ distance_fw(Iterator first, Iterator last, std::forward_iterator_tag)
+ { return std::distance(first, last); }
+
+ template<class Iterator>
+ inline typename std::iterator_traits<Iterator>::difference_type
+ distance_fw(Iterator first, Iterator last)
+ {
+ typedef typename std::iterator_traits<Iterator>::iterator_category tag;
+ return distance_fw(first, last, tag());
+ }
+
} // namespace Internal
//----------------------------------------------------------------------
@@ -109,140 +108,187 @@ distance_fw (Iterator first, Iterator last)
// nodes also store a hash code. In some cases (e.g. strings) this may
// be a performance win.
-namespace Internal {
-
-template <typename Value, bool cache_hash_code> struct hash_node;
-
-template <typename Value>
-struct hash_node<Value, true> {
- Value m_v;
- std::size_t hash_code;
- hash_node* m_next;
-};
-
-template <typename Value>
-struct hash_node<Value, false> {
- Value m_v;
- hash_node* m_next;
-};
-
-// Local iterators, used to iterate within a bucket but not between
-// buckets.
-
-template <typename Value, bool cache>
-struct node_iterator_base {
- node_iterator_base(hash_node<Value, cache>* p) : m_cur(p) { }
- void incr() { m_cur = m_cur->m_next; }
-
- hash_node<Value, cache>* m_cur;
-};
-
-template <typename Value, bool cache>
-inline bool operator== (const node_iterator_base<Value, cache>& x,
- const node_iterator_base<Value, cache>& y)
+namespace Internal
{
- return x.m_cur == y.m_cur;
-}
-
-template <typename Value, bool cache>
-inline bool operator!= (const node_iterator_base<Value, cache>& x,
- const node_iterator_base<Value, cache>& y)
-{
- return x.m_cur != y.m_cur;
-}
-
-template <typename Value, bool is_const, bool cache>
-struct node_iterator : public node_iterator_base<Value, cache> {
- typedef Value value_type;
- typedef typename IF<is_const, const Value*, Value*>::type pointer;
- typedef typename IF<is_const, const Value&, Value&>::type reference;
- typedef std::ptrdiff_t difference_type;
- typedef std::forward_iterator_tag iterator_category;
-
- explicit node_iterator (hash_node<Value, cache>* p = 0)
- : node_iterator_base<Value, cache>(p) { }
- node_iterator (const node_iterator<Value, true, cache>& x)
- : node_iterator_base<Value, cache>(x.m_cur) { }
-
- reference operator*() const { return this->m_cur->m_v; }
- pointer operator->() const { return &this->m_cur->m_v; }
-
- node_iterator& operator++() { this->incr(); return *this; }
- node_iterator operator++(int)
- { node_iterator tmp(*this); this->incr(); return tmp; }
-};
-
-template <typename Value, bool cache>
-struct hashtable_iterator_base {
- hashtable_iterator_base(hash_node<Value, cache>* node,
- hash_node<Value, cache>** bucket)
- : m_cur_node (node), m_cur_bucket (bucket)
- { }
+ template<typename Value, bool cache_hash_code>
+ struct hash_node;
+
+ template<typename Value>
+ struct hash_node<Value, true>
+ {
+ Value m_v;
+ std::size_t hash_code;
+ hash_node* m_next;
+ };
+
+ template<typename Value>
+ struct hash_node<Value, false>
+ {
+ Value m_v;
+ hash_node* m_next;
+ };
+
+ // Local iterators, used to iterate within a bucket but not between
+ // buckets.
+
+ template<typename Value, bool cache>
+ struct node_iterator_base
+ {
+ node_iterator_base(hash_node<Value, cache>* p)
+ : m_cur(p) { }
+
+ void
+ incr()
+ { m_cur = m_cur->m_next; }
+
+ hash_node<Value, cache>* m_cur;
+ };
+
+ template<typename Value, bool cache>
+ inline bool
+ operator==(const node_iterator_base<Value, cache>& x,
+ const node_iterator_base<Value, cache>& y)
+ { return x.m_cur == y.m_cur; }
+
+ template<typename Value, bool cache>
+ inline bool
+ operator!=(const node_iterator_base<Value, cache>& x,
+ const node_iterator_base<Value, cache>& y)
+ { return x.m_cur != y.m_cur; }
+
+ template<typename Value, bool is_const, bool cache>
+ struct node_iterator
+ : public node_iterator_base<Value, cache>
+ {
+ typedef Value value_type;
+ typedef typename IF<is_const, const Value*, Value*>::type pointer;
+ typedef typename IF<is_const, const Value&, Value&>::type reference;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::forward_iterator_tag iterator_category;
+
+ explicit
+ node_iterator(hash_node<Value, cache>* p = 0)
+ : node_iterator_base<Value, cache>(p) { }
+
+ node_iterator(const node_iterator<Value, true, cache>& x)
+ : node_iterator_base<Value, cache>(x.m_cur) { }
+
+ reference
+ operator*() const
+ { return this->m_cur->m_v; }
+
+ pointer
+ operator->() const
+ { return &this->m_cur->m_v; }
+
+ node_iterator&
+ operator++()
+ {
+ this->incr();
+ return *this;
+ }
+
+ node_iterator
+ operator++(int)
+ {
+ node_iterator tmp(*this);
+ this->incr();
+ return tmp;
+ }
+ };
+
+ template<typename Value, bool cache>
+ struct hashtable_iterator_base
+ {
+ hashtable_iterator_base(hash_node<Value, cache>* node,
+ hash_node<Value, cache>** bucket)
+ : m_cur_node(node), m_cur_bucket(bucket)
+ { }
+
+ void
+ incr()
+ {
+ m_cur_node = m_cur_node->m_next;
+ if (!m_cur_node)
+ m_incr_bucket();
+ }
- void incr() {
- m_cur_node = m_cur_node->m_next;
- if (!m_cur_node)
+ void
m_incr_bucket();
- }
-
- void m_incr_bucket();
-
- hash_node<Value, cache>* m_cur_node;
- hash_node<Value, cache>** m_cur_bucket;
-};
-
-// Global iterators, used for arbitrary iteration within a hash
-// table. Larger and more expensive than local iterators.
-
-template <typename Value, bool cache>
-void hashtable_iterator_base<Value, cache>::m_incr_bucket()
-{
- ++m_cur_bucket;
-
- // This loop requires the bucket array to have a non-null sentinel
- while (!*m_cur_bucket)
- ++m_cur_bucket;
- m_cur_node = *m_cur_bucket;
-}
-
-template <typename Value, bool cache>
-inline bool operator== (const hashtable_iterator_base<Value, cache>& x,
- const hashtable_iterator_base<Value, cache>& y)
-{
- return x.m_cur_node == y.m_cur_node;
-}
+ hash_node<Value, cache>* m_cur_node;
+ hash_node<Value, cache>** m_cur_bucket;
+ };
+
+ // Global iterators, used for arbitrary iteration within a hash
+ // table. Larger and more expensive than local iterators.
+ template<typename Value, bool cache>
+ void
+ hashtable_iterator_base<Value, cache>::
+ m_incr_bucket()
+ {
+ ++m_cur_bucket;
+
+ // This loop requires the bucket array to have a non-null sentinel.
+ while (!*m_cur_bucket)
+ ++m_cur_bucket;
+ m_cur_node = *m_cur_bucket;
+ }
-template <typename Value, bool cache>
-inline bool operator!= (const hashtable_iterator_base<Value, cache>& x,
- const hashtable_iterator_base<Value, cache>& y)
-{
- return x.m_cur_node != y.m_cur_node;
-}
+ template<typename Value, bool cache>
+ inline bool
+ operator==(const hashtable_iterator_base<Value, cache>& x,
+ const hashtable_iterator_base<Value, cache>& y)
+ { return x.m_cur_node == y.m_cur_node; }
+
+ template<typename Value, bool cache>
+ inline bool
+ operator!=(const hashtable_iterator_base<Value, cache>& x,
+ const hashtable_iterator_base<Value, cache>& y)
+ { return x.m_cur_node != y.m_cur_node; }
+
+ template<typename Value, bool is_const, bool cache>
+ struct hashtable_iterator
+ : public hashtable_iterator_base<Value, cache>
+ {
+ typedef Value value_type;
+ typedef typename IF<is_const, const Value*, Value*>::type pointer;
+ typedef typename IF<is_const, const Value&, Value&>::type reference;
+ typedef std::ptrdiff_t difference_type;
+ typedef std::forward_iterator_tag iterator_category;
+
+ hashtable_iterator(hash_node<Value, cache>* p,
+ hash_node<Value, cache>** b)
+ : hashtable_iterator_base<Value, cache>(p, b) { }
+
+ hashtable_iterator(hash_node<Value, cache>** b)
+ : hashtable_iterator_base<Value, cache>(*b, b) { }
+
+ hashtable_iterator(const hashtable_iterator<Value, true, cache>& x)
+ : hashtable_iterator_base<Value, cache>(x.m_cur_node, x.m_cur_bucket) { }
-template <typename Value, bool is_const, bool cache>
-struct hashtable_iterator : public hashtable_iterator_base<Value, cache>
-{
- typedef Value value_type;
- typedef typename IF<is_const, const Value*, Value*>::type pointer;
- typedef typename IF<is_const, const Value&, Value&>::type reference;
- typedef std::ptrdiff_t difference_type;
- typedef std::forward_iterator_tag iterator_category;
-
- hashtable_iterator (hash_node<Value, cache>* p, hash_node<Value, cache>** b)
- : hashtable_iterator_base<Value, cache>(p, b) { }
- hashtable_iterator (hash_node<Value, cache>** b)
- : hashtable_iterator_base<Value, cache>(*b, b) { }
- hashtable_iterator (const hashtable_iterator<Value, true, cache>& x)
- : hashtable_iterator_base<Value, cache>(x.m_cur_node, x.m_cur_bucket) { }
-
- reference operator*() const { return this->m_cur_node->m_v; }
- pointer operator->() const { return &this->m_cur_node->m_v; }
-
- hashtable_iterator& operator++() { this->incr(); return *this; }
- hashtable_iterator operator++(int)
- { hashtable_iterator tmp(*this); this->incr(); return tmp; }
-};
+ reference
+ operator*() const
+ { return this->m_cur_node->m_v; }
+
+ pointer
+ operator->() const
+ { return &this->m_cur_node->m_v; }
+
+ hashtable_iterator&
+ operator++()
+ {
+ this->incr();
+ return *this;
+ }
+
+ hashtable_iterator
+ operator++(int)
+ {
+ hashtable_iterator tmp(*this);
+ this->incr();
+ return tmp; }
+ };
} // namespace Internal
@@ -250,193 +296,218 @@ struct hashtable_iterator : public hashtable_iterator_base<Value, cache>
// Many of class template hashtable's template parameters are policy
// classes. These are defaults for the policies.
-namespace Internal {
-
-// The two key extraction policies used by the *set and *map variants.
-template <typename T>
-struct identity {
- T operator()(const T& t) const { return t; }
-};
-
-template <typename Pair>
-struct extract1st {
- typename Pair::first_type operator()(const Pair& p) const { return p.first; }
-};
-
-// Default range hashing function: use division to fold a large number
-// into the range [0, N).
-struct mod_range_hashing
+namespace Internal
{
- typedef std::size_t first_argument_type;
- typedef std::size_t second_argument_type;
- typedef std::size_t result_type;
+ // The two key extraction policies used by the *set and *map variants.
+ template<typename T>
+ struct identity
+ {
+ T
+ operator()(const T& t) const
+ { return t; }
+ };
+
+ template<typename Pair>
+ struct extract1st
+ {
+ typename Pair::first_type
+ operator()(const Pair& p) const
+ { return p.first; }
+ };
+
+ // Default range hashing function: use division to fold a large number
+ // into the range [0, N).
+ struct mod_range_hashing
+ {
+ typedef std::size_t first_argument_type;
+ typedef std::size_t second_argument_type;
+ typedef std::size_t result_type;
- result_type operator() (first_argument_type r, second_argument_type N) const
+ result_type
+ operator() (first_argument_type r, second_argument_type N) const
{ return r % N; }
-};
-
-// Default ranged hash function H. In principle it should be a
-// function object composed from objects of type H1 and H2 such that
-// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
-// h1 and h2. So instead we'll just use a tag to tell class template
-// hashtable to do that composition.
-struct default_ranged_hash { };
+ };
-// Default value for rehash policy. Bucket size is (usually) the
-// smallest prime that keeps the load factor small enough.
+ // Default ranged hash function H. In principle it should be a
+ // function object composed from objects of type H1 and H2 such that
+ // h(k, N) = h2(h1(k), N), but that would mean making extra copies of
+ // h1 and h2. So instead we'll just use a tag to tell class template
+ // hashtable to do that composition.
+ struct default_ranged_hash { };
-struct prime_rehash_policy
-{
- prime_rehash_policy (float z = 1.0);
-
- float max_load_factor() const;
-
- // Return a bucket size no smaller than n.
- std::size_t next_bkt (std::size_t n) const;
-
- // Return a bucket count appropriate for n elements
- std::size_t bkt_for_elements (std::size_t n) const;
-
- // n_bkt is current bucket count, n_elt is current element count,
- // and n_ins is number of elements to be inserted. Do we need to
- // increase bucket count? If so, return make_pair(true, n), where n
- // is the new bucket count. If not, return make_pair(false, 0).
- std::pair<bool, std::size_t>
- need_rehash (std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const;
-
- float m_max_load_factor;
- float m_growth_factor;
- mutable std::size_t m_next_resize;
-};
-
-// XXX This is a hack. prime_rehash_policy's member functions, and
-// certainly the list of primes, should be defined in a .cc file.
-// We're temporarily putting them in a header because we don't have a
-// place to put TR1 .cc files yet. There's no good reason for any of
-// prime_rehash_policy's member functions to be inline, and there's
-// certainly no good reason for X<> to exist at all.
-
-struct lt {
- template <typename X, typename Y> bool operator()(X x, Y y) { return x < y; }
-};
-
-template <int dummy>
-struct X {
- static const int n_primes = 256;
- static const unsigned long primes[n_primes + 1];
-};
-
-template <int dummy>
-const int X<dummy>::n_primes;
-
-template <int dummy>
-const unsigned long X<dummy>::primes[n_primes + 1] =
+ // Default value for rehash policy. Bucket size is (usually) the
+ // smallest prime that keeps the load factor small enough.
+ struct prime_rehash_policy
{
- 2ul, 3ul, 5ul, 7ul, 11ul, 13ul, 17ul, 19ul, 23ul, 29ul, 31ul,
- 37ul, 41ul, 43ul, 47ul, 53ul, 59ul, 61ul, 67ul, 71ul, 73ul, 79ul,
- 83ul, 89ul, 97ul, 103ul, 109ul, 113ul, 127ul, 137ul, 139ul, 149ul,
- 157ul, 167ul, 179ul, 193ul, 199ul, 211ul, 227ul, 241ul, 257ul,
- 277ul, 293ul, 313ul, 337ul, 359ul, 383ul, 409ul, 439ul, 467ul,
- 503ul, 541ul, 577ul, 619ul, 661ul, 709ul, 761ul, 823ul, 887ul,
- 953ul, 1031ul, 1109ul, 1193ul, 1289ul, 1381ul, 1493ul, 1613ul,
- 1741ul, 1879ul, 2029ul, 2179ul, 2357ul, 2549ul, 2753ul, 2971ul,
- 3209ul, 3469ul, 3739ul, 4027ul, 4349ul, 4703ul, 5087ul, 5503ul,
- 5953ul, 6427ul, 6949ul, 7517ul, 8123ul, 8783ul, 9497ul, 10273ul,
- 11113ul, 12011ul, 12983ul, 14033ul, 15173ul, 16411ul, 17749ul,
- 19183ul, 20753ul, 22447ul, 24281ul, 26267ul, 28411ul, 30727ul,
- 33223ul, 35933ul, 38873ul, 42043ul, 45481ul, 49201ul, 53201ul,
- 57557ul, 62233ul, 67307ul, 72817ul, 78779ul, 85229ul, 92203ul,
- 99733ul, 107897ul, 116731ul, 126271ul, 136607ul, 147793ul,
- 159871ul, 172933ul, 187091ul, 202409ul, 218971ul, 236897ul,
- 256279ul, 277261ul, 299951ul, 324503ul, 351061ul, 379787ul,
- 410857ul, 444487ul, 480881ul, 520241ul, 562841ul, 608903ul,
- 658753ul, 712697ul, 771049ul, 834181ul, 902483ul, 976369ul,
- 1056323ul, 1142821ul, 1236397ul, 1337629ul, 1447153ul, 1565659ul,
- 1693859ul, 1832561ul, 1982627ul, 2144977ul, 2320627ul, 2510653ul,
- 2716249ul, 2938679ul, 3179303ul, 3439651ul, 3721303ul, 4026031ul,
- 4355707ul, 4712381ul, 5098259ul, 5515729ul, 5967347ul, 6456007ul,
- 6984629ul, 7556579ul, 8175383ul, 8844859ul, 9569143ul, 10352717ul,
- 11200489ul, 12117689ul, 13109983ul, 14183539ul, 15345007ul,
- 16601593ul, 17961079ul, 19431899ul, 21023161ul, 22744717ul,
- 24607243ul, 26622317ul, 28802401ul, 31160981ul, 33712729ul,
- 36473443ul, 39460231ul, 42691603ul, 46187573ul, 49969847ul,
- 54061849ul, 58488943ul, 63278561ul, 68460391ul, 74066549ul,
- 80131819ul, 86693767ul, 93793069ul, 101473717ul, 109783337ul,
- 118773397ul, 128499677ul, 139022417ul, 150406843ul, 162723577ul,
- 176048909ul, 190465427ul, 206062531ul, 222936881ul, 241193053ul,
- 260944219ul, 282312799ul, 305431229ul, 330442829ul, 357502601ul,
- 386778277ul, 418451333ul, 452718089ul, 489790921ul, 529899637ul,
- 573292817ul, 620239453ul, 671030513ul, 725980837ul, 785430967ul,
- 849749479ul, 919334987ul, 994618837ul, 1076067617ul, 1164186217ul,
- 1259520799ul, 1362662261ul, 1474249943ul, 1594975441ul,
- 1725587117ul, 1866894511ul, 2019773507ul, 2185171673ul,
- 2364114217ul, 2557710269ul, 2767159799ul, 2993761039ul,
- 3238918481ul, 3504151727ul, 3791104843ul, 4101556399ul,
- 4294967291ul,
- 4294967291ul // sentinel so we don't have to test result of lower_bound
+ prime_rehash_policy(float z = 1.0);
+
+ float
+ max_load_factor() const;
+
+ // Return a bucket size no smaller than n.
+ std::size_t
+ next_bkt(std::size_t n) const;
+
+ // Return a bucket count appropriate for n elements
+ std::size_t
+ bkt_for_elements(std::size_t n) const;
+
+ // n_bkt is current bucket count, n_elt is current element count,
+ // and n_ins is number of elements to be inserted. Do we need to
+ // increase bucket count? If so, return make_pair(true, n), where n
+ // is the new bucket count. If not, return make_pair(false, 0).
+ std::pair<bool, std::size_t>
+ need_rehash(std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const;
+
+ float m_max_load_factor;
+ float m_growth_factor;
+ mutable std::size_t m_next_resize;
};
-inline prime_rehash_policy::prime_rehash_policy (float z)
- : m_max_load_factor(z),
- m_growth_factor (2.f),
- m_next_resize (0)
-{ }
-
-inline float prime_rehash_policy::max_load_factor() const
-{
- return m_max_load_factor;
-}
+ // XXX This is a hack. prime_rehash_policy's member functions, and
+ // certainly the list of primes, should be defined in a .cc file.
+ // We're temporarily putting them in a header because we don't have a
+ // place to put TR1 .cc files yet. There's no good reason for any of
+ // prime_rehash_policy's member functions to be inline, and there's
+ // certainly no good reason for X<> to exist at all.
+
+ struct lt
+ {
+ template<typename X, typename Y>
+ bool
+ operator()(X x, Y y)
+ { return x < y; }
+ };
-// Return a prime no smaller than n.
-inline std::size_t prime_rehash_policy::next_bkt (std::size_t n) const
-{
- const unsigned long* const last = X<0>::primes + X<0>::n_primes;
- const unsigned long* p = std::lower_bound (X<0>::primes, last, n);
- m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
- return *p;
-}
+ template<int dummy>
+ struct X
+ {
+ static const int n_primes = 256;
+ static const unsigned long primes[n_primes + 1];
+ };
+
+ template<int dummy>
+ const int X<dummy>::n_primes;
+
+ template<int dummy>
+ const unsigned long X<dummy>::primes[n_primes + 1] =
+ {
+ 2ul, 3ul, 5ul, 7ul, 11ul, 13ul, 17ul, 19ul, 23ul, 29ul, 31ul,
+ 37ul, 41ul, 43ul, 47ul, 53ul, 59ul, 61ul, 67ul, 71ul, 73ul, 79ul,
+ 83ul, 89ul, 97ul, 103ul, 109ul, 113ul, 127ul, 137ul, 139ul, 149ul,
+ 157ul, 167ul, 179ul, 193ul, 199ul, 211ul, 227ul, 241ul, 257ul,
+ 277ul, 293ul, 313ul, 337ul, 359ul, 383ul, 409ul, 439ul, 467ul,
+ 503ul, 541ul, 577ul, 619ul, 661ul, 709ul, 761ul, 823ul, 887ul,
+ 953ul, 1031ul, 1109ul, 1193ul, 1289ul, 1381ul, 1493ul, 1613ul,
+ 1741ul, 1879ul, 2029ul, 2179ul, 2357ul, 2549ul, 2753ul, 2971ul,
+ 3209ul, 3469ul, 3739ul, 4027ul, 4349ul, 4703ul, 5087ul, 5503ul,
+ 5953ul, 6427ul, 6949ul, 7517ul, 8123ul, 8783ul, 9497ul, 10273ul,
+ 11113ul, 12011ul, 12983ul, 14033ul, 15173ul, 16411ul, 17749ul,
+ 19183ul, 20753ul, 22447ul, 24281ul, 26267ul, 28411ul, 30727ul,
+ 33223ul, 35933ul, 38873ul, 42043ul, 45481ul, 49201ul, 53201ul,
+ 57557ul, 62233ul, 67307ul, 72817ul, 78779ul, 85229ul, 92203ul,
+ 99733ul, 107897ul, 116731ul, 126271ul, 136607ul, 147793ul,
+ 159871ul, 172933ul, 187091ul, 202409ul, 218971ul, 236897ul,
+ 256279ul, 277261ul, 299951ul, 324503ul, 351061ul, 379787ul,
+ 410857ul, 444487ul, 480881ul, 520241ul, 562841ul, 608903ul,
+ 658753ul, 712697ul, 771049ul, 834181ul, 902483ul, 976369ul,
+ 1056323ul, 1142821ul, 1236397ul, 1337629ul, 1447153ul, 1565659ul,
+ 1693859ul, 1832561ul, 1982627ul, 2144977ul, 2320627ul, 2510653ul,
+ 2716249ul, 2938679ul, 3179303ul, 3439651ul, 3721303ul, 4026031ul,
+ 4355707ul, 4712381ul, 5098259ul, 5515729ul, 5967347ul, 6456007ul,
+ 6984629ul, 7556579ul, 8175383ul, 8844859ul, 9569143ul, 10352717ul,
+ 11200489ul, 12117689ul, 13109983ul, 14183539ul, 15345007ul,
+ 16601593ul, 17961079ul, 19431899ul, 21023161ul, 22744717ul,
+ 24607243ul, 26622317ul, 28802401ul, 31160981ul, 33712729ul,
+ 36473443ul, 39460231ul, 42691603ul, 46187573ul, 49969847ul,
+ 54061849ul, 58488943ul, 63278561ul, 68460391ul, 74066549ul,
+ 80131819ul, 86693767ul, 93793069ul, 101473717ul, 109783337ul,
+ 118773397ul, 128499677ul, 139022417ul, 150406843ul, 162723577ul,
+ 176048909ul, 190465427ul, 206062531ul, 222936881ul, 241193053ul,
+ 260944219ul, 282312799ul, 305431229ul, 330442829ul, 357502601ul,
+ 386778277ul, 418451333ul, 452718089ul, 489790921ul, 529899637ul,
+ 573292817ul, 620239453ul, 671030513ul, 725980837ul, 785430967ul,
+ 849749479ul, 919334987ul, 994618837ul, 1076067617ul, 1164186217ul,
+ 1259520799ul, 1362662261ul, 1474249943ul, 1594975441ul,
+ 1725587117ul, 1866894511ul, 2019773507ul, 2185171673ul,
+ 2364114217ul, 2557710269ul, 2767159799ul, 2993761039ul,
+ 3238918481ul, 3504151727ul, 3791104843ul, 4101556399ul,
+ 4294967291ul,
+ 4294967291ul // sentinel so we don't have to test result of lower_bound
+ };
+
+ inline
+ prime_rehash_policy::
+ prime_rehash_policy(float z)
+ : m_max_load_factor(z), m_growth_factor(2.f), m_next_resize(0)
+ { }
-// Return the smallest prime p such that alpha p >= n, where alpha
-// is the load factor.
-inline std::size_t prime_rehash_policy::bkt_for_elements (std::size_t n) const
-{
- const unsigned long* const last = X<0>::primes + X<0>::n_primes;
- const float min_bkts = n / m_max_load_factor;
- const unsigned long* p = std::lower_bound (X<0>::primes, last, min_bkts, lt());
- m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
- return *p;
-}
+ inline float
+ prime_rehash_policy::
+ max_load_factor() const
+ { return m_max_load_factor; }
-// Finds the smallest prime p such that alpha p > n_elt + n_ins.
-// If p > n_bkt, return make_pair(true, p); otherwise return
-// make_pair(false, 0). In principle this isn't very different from
-// bkt_for_elements.
+ // Return a prime no smaller than n.
+ inline std::size_t
+ prime_rehash_policy::
+ next_bkt(std::size_t n) const
+ {
+ const unsigned long* const last = X<0>::primes + X<0>::n_primes;
+ const unsigned long* p = std::lower_bound (X<0>::primes, last, n);
+ m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+ return *p;
+ }
-// The only tricky part is that we're caching the element count at
-// which we need to rehash, so we don't have to do a floating-point
-// multiply for every insertion.
+ // Return the smallest prime p such that alpha p >= n, where alpha
+ // is the load factor.
+ inline std::size_t
+ prime_rehash_policy::
+ bkt_for_elements(std::size_t n) const
+ {
+ const unsigned long* const last = X<0>::primes + X<0>::n_primes;
+ const float min_bkts = n / m_max_load_factor;
+ const unsigned long* p = std::lower_bound (X<0>::primes, last,
+ min_bkts, lt());
+ m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+ return *p;
+ }
-inline std::pair<bool, std::size_t>
-prime_rehash_policy
-::need_rehash (std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const
-{
- if (n_elt + n_ins > m_next_resize) {
- float min_bkts = (float(n_ins) + float(n_elt)) / m_max_load_factor;
- if (min_bkts > n_bkt) {
- min_bkts = std::max (min_bkts, m_growth_factor * n_bkt);
- const unsigned long* const last = X<0>::primes + X<0>::n_primes;
- const unsigned long* p = std::lower_bound (X<0>::primes, last, min_bkts, lt());
- m_next_resize = static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
- return std::make_pair(true, *p);
- }
- else {
- m_next_resize = static_cast<std::size_t>(std::ceil(n_bkt * m_max_load_factor));
+ // Finds the smallest prime p such that alpha p > n_elt + n_ins.
+ // If p > n_bkt, return make_pair(true, p); otherwise return
+ // make_pair(false, 0). In principle this isn't very different from
+ // bkt_for_elements.
+
+ // The only tricky part is that we're caching the element count at
+ // which we need to rehash, so we don't have to do a floating-point
+ // multiply for every insertion.
+
+ inline std::pair<bool, std::size_t>
+ prime_rehash_policy::
+ need_rehash(std::size_t n_bkt, std::size_t n_elt, std::size_t n_ins) const
+ {
+ if (n_elt + n_ins > m_next_resize)
+ {
+ float min_bkts = (float(n_ins) + float(n_elt)) / m_max_load_factor;
+ if (min_bkts > n_bkt)
+ {
+ min_bkts = std::max (min_bkts, m_growth_factor * n_bkt);
+ const unsigned long* const last = X<0>::primes + X<0>::n_primes;
+ const unsigned long* p = std::lower_bound (X<0>::primes, last,
+ min_bkts, lt());
+ m_next_resize =
+ static_cast<std::size_t>(std::ceil(*p * m_max_load_factor));
+ return std::make_pair(true, *p);
+ }
+ else
+ {
+ m_next_resize =
+ static_cast<std::size_t>(std::ceil(n_bkt * m_max_load_factor));
+ return std::make_pair(false, 0);
+ }
+ }
+ else
return std::make_pair(false, 0);
- }
}
- else
- return std::make_pair(false, 0);
-}
} // namespace Internal
@@ -449,983 +520,1182 @@ prime_rehash_policy
// need to access other members of class template hashtable, so we use
// the "curiously recurring template pattern" for them.
-namespace Internal {
-
-// class template map_base. If the hashtable has a value type of the
-// form pair<T1, T2> and a key extraction policy that returns the
-// first part of the pair, the hashtable gets a mapped_type typedef.
-// If it satisfies those criteria and also has unique keys, then it
-// also gets an operator[].
-
-template <typename K, typename V, typename Ex, bool unique, typename Hashtable>
-struct map_base { };
-
-template <typename K, typename Pair, typename Hashtable>
-struct map_base<K, Pair, extract1st<Pair>, false, Hashtable>
-{
- typedef typename Pair::second_type mapped_type;
-};
-
-template <typename K, typename Pair, typename Hashtable>
-struct map_base<K, Pair, extract1st<Pair>, true, Hashtable>
-{
- typedef typename Pair::second_type mapped_type;
- mapped_type& operator[](const K& k) {
- Hashtable* h = static_cast<Hashtable*>(this);
- typename Hashtable::iterator it = h->insert(std::make_pair(k, mapped_type())).first;
- return it->second;
- }
-};
-
-// class template rehash_base. Give hashtable the max_load_factor
-// functions iff the rehash policy is prime_rehash_policy.
-template <typename RehashPolicy, typename Hashtable>
-struct rehash_base { };
-
-template <typename Hashtable>
-struct rehash_base<prime_rehash_policy, Hashtable>
+namespace Internal
{
- float max_load_factor() const {
- const Hashtable* This = static_cast<const Hashtable*>(this);
- return This->rehash_policy()->max_load_factor();
- }
-
- void max_load_factor(float z) {
- Hashtable* This = static_cast<Hashtable*>(this);
- This->rehash_policy(prime_rehash_policy(z));
- }
-};
-
-// Class template hash_code_base. Encapsulates two policy issues that
-// aren't quite orthogonal.
-// (1) the difference between using a ranged hash function and using
-// the combination of a hash function and a range-hashing function.
-// In the former case we don't have such things as hash codes, so
-// we have a dummy type as placeholder.
-// (2) Whether or not we cache hash codes. Caching hash codes is
-// meaningless if we have a ranged hash function.
-// We also put the key extraction and equality comparison function
-// objects here, for convenience.
-
-// Primary template: unused except as a hook for specializations.
-
-template <typename Key, typename Value,
- typename ExtractKey, typename Equal,
- typename H1, typename H2, typename H,
- bool cache_hash_code>
-struct hash_code_base;
-
-// Specialization: ranged hash function, no caching hash codes. H1
-// and H2 are provided but ignored. We define a dummy hash code type.
-template <typename Key, typename Value,
- typename ExtractKey, typename Equal,
- typename H1, typename H2, typename H>
-struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, H, false>
-{
-protected:
- hash_code_base (const ExtractKey& ex, const Equal& eq,
- const H1&, const H2&, const H& h)
- : m_extract(ex), m_eq(eq), m_ranged_hash(h) { }
-
- typedef void* hash_code_t;
- hash_code_t m_hash_code (const Key& k) const { return 0; }
- std::size_t bucket_index (const Key& k, hash_code_t, std::size_t N) const
- { return m_ranged_hash (k, N); }
- std::size_t bucket_index (const hash_node<Value, false>* p, std::size_t N) const {
- return m_ranged_hash (m_extract (p->m_v), N);
- }
+ // class template map_base. If the hashtable has a value type of the
+ // form pair<T1, T2> and a key extraction policy that returns the
+ // first part of the pair, the hashtable gets a mapped_type typedef.
+ // If it satisfies those criteria and also has unique keys, then it
+ // also gets an operator[].
- bool compare (const Key& k, hash_code_t, hash_node<Value, false>* n) const
- { return m_eq (k, m_extract(n->m_v)); }
-
- void copy_code (hash_node<Value, false>*, const hash_node<Value, false>*) const { }
-
- void m_swap(hash_code_base& x) {
- m_extract.m_swap(x);
- m_eq.m_swap(x);
- m_ranged_hash.m_swap(x);
- }
-
-protected:
- ExtractKey m_extract;
- Equal m_eq;
- H m_ranged_hash;
-};
-
-
-// No specialization for ranged hash function while caching hash codes.
-// That combination is meaningless, and trying to do it is an error.
+ template<typename K, typename V, typename Ex, bool unique, typename Hashtable>
+ struct map_base { };
+
+ template<typename K, typename Pair, typename Hashtable>
+ struct map_base<K, Pair, extract1st<Pair>, false, Hashtable>
+ {
+ typedef typename Pair::second_type mapped_type;
+ };
+
+ template<typename K, typename Pair, typename Hashtable>
+ struct map_base<K, Pair, extract1st<Pair>, true, Hashtable>
+ {
+ typedef typename Pair::second_type mapped_type;
+
+ mapped_type&
+ operator[](const K& k)
+ {
+ Hashtable* h = static_cast<Hashtable*>(this);
+ typename Hashtable::iterator it =
+ h->insert(std::make_pair(k, mapped_type())).first;
+ return it->second;
+ }
+ };
+
+ // class template rehash_base. Give hashtable the max_load_factor
+ // functions iff the rehash policy is prime_rehash_policy.
+ template<typename RehashPolicy, typename Hashtable>
+ struct rehash_base { };
+
+ template<typename Hashtable>
+ struct rehash_base<prime_rehash_policy, Hashtable>
+ {
+ float
+ max_load_factor() const
+ {
+ const Hashtable* This = static_cast<const Hashtable*>(this);
+ return This->rehash_policy()->max_load_factor();
+ }
+ void
+ max_load_factor(float z)
+ {
+ Hashtable* This = static_cast<Hashtable*>(this);
+ This->rehash_policy(prime_rehash_policy(z));
+ }
+ };
+
+ // Class template hash_code_base. Encapsulates two policy issues that
+ // aren't quite orthogonal.
+ // (1) the difference between using a ranged hash function and using
+ // the combination of a hash function and a range-hashing function.
+ // In the former case we don't have such things as hash codes, so
+ // we have a dummy type as placeholder.
+ // (2) Whether or not we cache hash codes. Caching hash codes is
+ // meaningless if we have a ranged hash function.
+ // We also put the key extraction and equality comparison function
+ // objects here, for convenience.
+
+ // Primary template: unused except as a hook for specializations.
+
+ template<typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2, typename H,
+ bool cache_hash_code>
+ struct hash_code_base;
+
+ // Specialization: ranged hash function, no caching hash codes. H1
+ // and H2 are provided but ignored. We define a dummy hash code type.
+ template<typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2, typename H>
+ struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, false>
+ {
+ protected:
+ hash_code_base(const ExtractKey& ex, const Equal& eq,
+ const H1&, const H2&, const H& h)
+ : m_extract(ex), m_eq(eq), m_ranged_hash(h) { }
+
+ typedef void* hash_code_t;
+
+ hash_code_t
+ m_hash_code(const Key& k) const
+ { return 0; }
+
+ std::size_t
+ bucket_index(const Key& k, hash_code_t, std::size_t N) const
+ { return m_ranged_hash (k, N); }
-// Specialization: ranged hash function, cache hash codes. This
-// combination is meaningless, so we provide only a declaration
-// and no definition.
+ std::size_t
+ bucket_index(const hash_node<Value, false>* p, std::size_t N) const
+ { return m_ranged_hash (m_extract (p->m_v), N); }
+
+ bool
+ compare(const Key& k, hash_code_t, hash_node<Value, false>* n) const
+ { return m_eq (k, m_extract(n->m_v)); }
+
+ void
+ copy_code(hash_node<Value, false>*, const hash_node<Value, false>*) const
+ { }
+
+ void
+ m_swap(hash_code_base& x)
+ {
+ m_extract.m_swap(x);
+ m_eq.m_swap(x);
+ m_ranged_hash.m_swap(x);
+ }
-template <typename Key, typename Value,
- typename ExtractKey, typename Equal,
- typename H1, typename H2, typename H>
-struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, H, true>;
+ protected:
+ ExtractKey m_extract;
+ Equal m_eq;
+ H m_ranged_hash;
+ };
-// Specialization: hash function and range-hashing function, no
-// caching of hash codes. H is provided but ignored. Provides
-// typedef and accessor required by TR1.
+ // No specialization for ranged hash function while caching hash codes.
+ // That combination is meaningless, and trying to do it is an error.
+
+
+ // Specialization: ranged hash function, cache hash codes. This
+ // combination is meaningless, so we provide only a declaration
+ // and no definition.
+
+ template<typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2, typename H>
+ struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, true>;
-template <typename Key, typename Value,
- typename ExtractKey, typename Equal,
- typename H1, typename H2>
-struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, default_ranged_hash, false>
-{
- typedef H1 hasher;
- hasher hash_function() const { return m_h1; }
-
-protected:
- hash_code_base (const ExtractKey& ex, const Equal& eq,
- const H1& h1, const H2& h2, const default_ranged_hash&)
- : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }
-
- typedef std::size_t hash_code_t;
- hash_code_t m_hash_code (const Key& k) const { return m_h1(k); }
- std::size_t bucket_index (const Key&, hash_code_t c, std::size_t N) const
- { return m_h2 (c, N); }
- std::size_t bucket_index (const hash_node<Value, false>* p, std::size_t N) const {
- return m_h2 (m_h1 (m_extract (p->m_v)), N);
- }
- bool compare (const Key& k, hash_code_t, hash_node<Value, false>* n) const
- { return m_eq (k, m_extract(n->m_v)); }
+ // Specialization: hash function and range-hashing function, no
+ // caching of hash codes. H is provided but ignored. Provides
+ // typedef and accessor required by TR1.
+
+ template<typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2>
+ struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2,
+ default_ranged_hash, false>
+ {
+ typedef H1 hasher;
+
+ hasher
+ hash_function() const
+ { return m_h1; }
+
+ protected:
+ hash_code_base(const ExtractKey& ex, const Equal& eq,
+ const H1& h1, const H2& h2, const default_ranged_hash&)
+ : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }
+
+ typedef std::size_t hash_code_t;
+
+ hash_code_t
+ m_hash_code(const Key& k) const
+ { return m_h1(k); }
+
+ std::size_t
+ bucket_index(const Key&, hash_code_t c, std::size_t N) const
+ { return m_h2 (c, N); }
+
+ std::size_t
+ bucket_index(const hash_node<Value, false>* p, std::size_t N) const
+ { return m_h2 (m_h1 (m_extract (p->m_v)), N); }
+
+ bool
+ compare(const Key& k, hash_code_t, hash_node<Value, false>* n) const
+ { return m_eq (k, m_extract(n->m_v)); }
+
+ void
+ copy_code(hash_node<Value, false>*, const hash_node<Value, false>*) const
+ { }
+
+ void
+ m_swap(hash_code_base& x)
+ {
+ m_extract.m_swap(x);
+ m_eq.m_swap(x);
+ m_h1.m_swap(x);
+ m_h2.m_swap(x);
+ }
- void copy_code (hash_node<Value, false>*, const hash_node<Value, false>*) const { }
+ protected:
+ ExtractKey m_extract;
+ Equal m_eq;
+ H1 m_h1;
+ H2 m_h2;
+ };
+
+ // Specialization: hash function and range-hashing function,
+ // caching hash codes. H is provided but ignored. Provides
+ // typedef and accessor required by TR1.
+ template<typename Key, typename Value,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2>
+ struct hash_code_base<Key, Value, ExtractKey, Equal, H1, H2,
+ default_ranged_hash, true>
+ {
+ typedef H1 hasher;
+
+ hasher
+ hash_function() const
+ { return m_h1; }
+
+ protected:
+ hash_code_base(const ExtractKey& ex, const Equal& eq,
+ const H1& h1, const H2& h2, const default_ranged_hash&)
+ : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }
+
+ typedef std::size_t hash_code_t;
+
+ hash_code_t
+ m_hash_code (const Key& k) const
+ { return m_h1(k); }
+
+ std::size_t
+ bucket_index(const Key&, hash_code_t c, std::size_t N) const
+ { return m_h2 (c, N); }
+
+ std::size_t
+ bucket_index(const hash_node<Value, true>* p, std::size_t N) const
+ { return m_h2 (p->hash_code, N); }
+
+ bool
+ compare(const Key& k, hash_code_t c, hash_node<Value, true>* n) const
+ { return c == n->hash_code && m_eq(k, m_extract(n->m_v)); }
+
+ void
+ copy_code(hash_node<Value, true>* to,
+ const hash_node<Value, true>* from) const
+ { to->hash_code = from->hash_code; }
+
+ void
+ m_swap(hash_code_base& x)
+ {
+ m_extract.m_swap(x);
+ m_eq.m_swap(x);
+ m_h1.m_swap(x);
+ m_h2.m_swap(x);
+ }
+
+ protected:
+ ExtractKey m_extract;
+ Equal m_eq;
+ H1 m_h1;
+ H2 m_h2;
+ };
- void m_swap(hash_code_base& x) {
- m_extract.m_swap(x);
- m_eq.m_swap(x);
- m_h1.m_swap(x);
- m_h2.m_swap(x);
- }
+} // namespace internal
-protected:
- ExtractKey m_extract;
- Equal m_eq;
- H1 m_h1;
- H2 m_h2;
-};
-
-// Specialization: hash function and range-hashing function,
-// caching hash codes. H is provided but ignored. Provides
-// typedef and accessor required by TR1.
-template <typename Key, typename Value,
- typename ExtractKey, typename Equal,
- typename H1, typename H2>
-struct hash_code_base <Key, Value, ExtractKey, Equal, H1, H2, default_ranged_hash, true>
+namespace std
+{
+namespace tr1
{
- typedef H1 hasher;
- hasher hash_function() const { return m_h1; }
-
-protected:
- hash_code_base (const ExtractKey& ex, const Equal& eq,
- const H1& h1, const H2& h2, const default_ranged_hash&)
- : m_extract(ex), m_eq(eq), m_h1(h1), m_h2(h2) { }
-
- typedef std::size_t hash_code_t;
- hash_code_t m_hash_code (const Key& k) const { return m_h1(k); }
- std::size_t bucket_index (const Key&, hash_code_t c, std::size_t N) const
- { return m_h2 (c, N); }
-
- std::size_t bucket_index (const hash_node<Value, true>* p, std::size_t N) const {
- return m_h2 (p->hash_code, N);
- }
-
- bool compare (const Key& k, hash_code_t c, hash_node<Value, true>* n) const
- { return c == n->hash_code && m_eq (k, m_extract(n->m_v)); }
+ //----------------------------------------------------------------------
+ // Class template hashtable, class definition.
+
+ // Meaning of class template hashtable's template parameters
+
+ // Key and Value: arbitrary CopyConstructible types.
+
+ // Allocator: an allocator type ([lib.allocator.requirements]) whose
+ // value type is Value.
+
+ // ExtractKey: function object that takes a object of type Value
+ // and returns a value of type Key.
+
+ // Equal: function object that takes two objects of type k and returns
+ // a bool-like value that is true if the two objects are considered equal.
+
+ // H1: the hash function. A unary function object with argument type
+ // Key and result type size_t. Return values should be distributed
+ // over the entire range [0, numeric_limits<size_t>:::max()].
+
+ // H2: the range-hashing function (in the terminology of Tavori and
+ // Dreizin). A binary function object whose argument types and result
+ // type are all size_t. Given arguments r and N, the return value is
+ // in the range [0, N).
+
+ // H: the ranged hash function (Tavori and Dreizin). A binary function
+ // whose argument types are Key and size_t and whose result type is
+ // size_t. Given arguments k and N, the return value is in the range
+ // [0, N). Default: h(k, N) = h2(h1(k), N). If H is anything other
+ // than the default, H1 and H2 are ignored.
+
+ // RehashPolicy: Policy class with three members, all of which govern
+ // the bucket count. n_bkt(n) returns a bucket count no smaller
+ // than n. bkt_for_elements(n) returns a bucket count appropriate
+ // for an element count of n. need_rehash(n_bkt, n_elt, n_ins)
+ // determines whether, if the current bucket count is n_bkt and the
+ // current element count is n_elt, we need to increase the bucket
+ // count. If so, returns make_pair(true, n), where n is the new
+ // bucket count. If not, returns make_pair(false, <anything>).
+
+ // ??? Right now it is hard-wired that the number of buckets never
+ // shrinks. Should we allow RehashPolicy to change that?
+
+ // cache_hash_code: bool. true if we store the value of the hash
+ // function along with the value. This is a time-space tradeoff.
+ // Storing it may improve lookup speed by reducing the number of times
+ // we need to call the Equal function.
+
+ // mutable_iterators: bool. true if hashtable::iterator is a mutable
+ // iterator, false if iterator and const_iterator are both const
+ // iterators. This is true for unordered_map and unordered_multimap,
+ // false for unordered_set and unordered_multiset.
+
+ // unique_keys: bool. true if the return value of hashtable::count(k)
+ // is always at most one, false if it may be an arbitrary number. This
+ // true for unordered_set and unordered_map, false for unordered_multiset
+ // and unordered_multimap.
+
+ template<typename Key, typename Value,
+ typename Allocator,
+ typename ExtractKey, typename Equal,
+ typename H1, typename H2,
+ typename H, typename RehashPolicy,
+ bool cache_hash_code,
+ bool mutable_iterators,
+ bool unique_keys>
+ class hashtable
+ : public Internal::rehash_base<RehashPolicy,
+ hashtable<Key, Value, Allocator, ExtractKey,
+ Equal, H1, H2, H, RehashPolicy,
+ cache_hash_code, mutable_iterators,
+ unique_keys> >,
+ public Internal::hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H,
+ cache_hash_code>,
+ public Internal::map_base<Key, Value, ExtractKey, unique_keys,
+ hashtable<Key, Value, Allocator, ExtractKey,
+ Equal, H1, H2, H, RehashPolicy,
+ cache_hash_code, mutable_iterators,
+ unique_keys> >
+ {
+ public:
+ typedef Allocator allocator_type;
+ typedef Value value_type;
+ typedef Key key_type;
+ typedef Equal key_equal;
+ // mapped_type, if present, comes from map_base.
+ // hasher, if present, comes from hash_code_base.
+ typedef typename Allocator::difference_type difference_type;
+ typedef typename Allocator::size_type size_type;
+ typedef typename Allocator::reference reference;
+ typedef typename Allocator::const_reference const_reference;
+
+ typedef Internal::node_iterator<value_type, !mutable_iterators,
+ cache_hash_code>
+ local_iterator;
+ typedef Internal::node_iterator<value_type, false, cache_hash_code>
+ const_local_iterator;
+
+ typedef Internal::hashtable_iterator<value_type, !mutable_iterators,
+ cache_hash_code>
+ iterator;
+ typedef Internal::hashtable_iterator<value_type, false, cache_hash_code>
+ const_iterator;
+
+ private:
+ typedef Internal::hash_node<Value, cache_hash_code> node;
+ typedef typename Allocator::template rebind<node>::other
+ node_allocator_t;
+ typedef typename Allocator::template rebind<node*>::other
+ bucket_allocator_t;
+
+ private:
+ node_allocator_t m_node_allocator;
+ node** m_buckets;
+ size_type m_bucket_count;
+ size_type m_element_count;
+ RehashPolicy m_rehash_policy;
+
+ node*
+ m_allocate_node(const value_type& v);
+
+ void
+ m_deallocate_node(node* n);
+
+ void
+ m_deallocate_nodes(node**, size_type);
- void copy_code (hash_node<Value, true>* to, const hash_node<Value, true>* from) const
- { to->hash_code = from->hash_code; }
+ node**
+ m_allocate_buckets(size_type n);
+
+ void
+ m_deallocate_buckets(node**, size_type n);
+
+ public: // Constructor, destructor, assignment, swap
+ hashtable(size_type bucket_hint,
+ const H1&, const H2&, const H&,
+ const Equal&, const ExtractKey&,
+ const allocator_type&);
+
+ template<typename InIter>
+ hashtable(InIter first, InIter last,
+ size_type bucket_hint,
+ const H1&, const H2&, const H&,
+ const Equal&, const ExtractKey&,
+ const allocator_type&);
+
+ hashtable(const hashtable&);
+
+ hashtable&
+ operator=(const hashtable&);
+
+ ~hashtable();
+
+ void swap(hashtable&);
+
+ public: // Basic container operations
+ iterator
+ begin()
+ {
+ iterator i(m_buckets);
+ if (!i.m_cur_node)
+ i.m_incr_bucket();
+ return i;
+ }
- void m_swap(hash_code_base& x) {
- m_extract.m_swap(x);
- m_eq.m_swap(x);
- m_h1.m_swap(x);
- m_h2.m_swap(x);
- }
+ const_iterator
+ begin() const
+ {
+ const_iterator i(m_buckets);
+ if (!i.m_cur_node)
+ i.m_incr_bucket();
+ return i;
+ }
-protected:
- ExtractKey m_extract;
- Equal m_eq;
- H1 m_h1;
- H2 m_h2;
-};
+ iterator
+ end()
+ { return iterator(m_buckets + m_bucket_count); }
-} // namespace internal
+ const_iterator
+ end() const
+ { return const_iterator(m_buckets + m_bucket_count); }
-namespace std { namespace tr1 {
+ size_type
+ size() const
+ { return m_element_count; }
+
+ bool
+ empty() const
+ { return size() == 0; }
-//----------------------------------------------------------------------
-// Class template hashtable, class definition.
-
-// Meaning of class template hashtable's template parameters
-
-// Key and Value: arbitrary CopyConstructible types.
-
-// Allocator: an allocator type ([lib.allocator.requirements]) whose
-// value type is Value.
-
-// ExtractKey: function object that takes a object of type Value
-// and returns a value of type Key.
-
-// Equal: function object that takes two objects of type k and returns
-// a bool-like value that is true if the two objects are considered equal.
-
-// H1: the hash function. A unary function object with argument type
-// Key and result type size_t. Return values should be distributed
-// over the entire range [0, numeric_limits<size_t>:::max()].
-
-// H2: the range-hashing function (in the terminology of Tavori and
-// Dreizin). A binary function object whose argument types and result
-// type are all size_t. Given arguments r and N, the return value is
-// in the range [0, N).
-
-// H: the ranged hash function (Tavori and Dreizin). A binary function
-// whose argument types are Key and size_t and whose result type is
-// size_t. Given arguments k and N, the return value is in the range
-// [0, N). Default: h(k, N) = h2(h1(k), N). If H is anything other
-// than the default, H1 and H2 are ignored.
-
-// RehashPolicy: Policy class with three members, all of which govern
-// the bucket count. n_bkt(n) returns a bucket count no smaller
-// than n. bkt_for_elements(n) returns a bucket count appropriate
-// for an element count of n. need_rehash(n_bkt, n_elt, n_ins)
-// determines whether, if the current bucket count is n_bkt and the
-// current element count is n_elt, we need to increase the bucket
-// count. If so, returns make_pair(true, n), where n is the new
-// bucket count. If not, returns make_pair(false, <anything>).
-
-// ??? Right now it is hard-wired that the number of buckets never
-// shrinks. Should we allow RehashPolicy to change that?
-
-// cache_hash_code: bool. true if we store the value of the hash
-// function along with the value. This is a time-space tradeoff.
-// Storing it may improve lookup speed by reducing the number of times
-// we need to call the Equal function.
-
-// mutable_iterators: bool. true if hashtable::iterator is a mutable
-// iterator, false if iterator and const_iterator are both const
-// iterators. This is true for unordered_map and unordered_multimap,
-// false for unordered_set and unordered_multiset.
-
-// unique_keys: bool. true if the return value of hashtable::count(k)
-// is always at most one, false if it may be an arbitrary number. This
-// true for unordered_set and unordered_map, false for unordered_multiset
-// and unordered_multimap.
-
-template <typename Key, typename Value,
- typename Allocator,
- typename ExtractKey, typename Equal,
- typename H1, typename H2,
- typename H, typename RehashPolicy,
- bool cache_hash_code,
- bool mutable_iterators,
- bool unique_keys>
-class hashtable
- : public Internal::rehash_base<RehashPolicy, hashtable<Key, Value, Allocator, ExtractKey, Equal, H1, H2, H, RehashPolicy, cache_hash_code, mutable_iterators, unique_keys> >,
- public Internal::hash_code_base<Key, Value, ExtractKey, Equal, H1, H2, H, cache_hash_code>,
- public Internal::map_base<Key, Value, ExtractKey, unique_keys, hashtable<Key, Value, Allocator, ExtractKey, Equal, H1, H2, H, RehashPolicy, cache_hash_code, mutable_iterators, unique_keys> >
-{
-public:
- typedef Allocator allocator_type;
- typedef Value value_type;
- typedef Key key_type;
- typedef Equal key_equal;
- // mapped_type, if present, comes from map_base.
- // hasher, if present, comes from hash_code_base.
- typedef typename Allocator::difference_type difference_type;
- typedef typename Allocator::size_type size_type;
- typedef typename Allocator::reference reference;
- typedef typename Allocator::const_reference const_reference;
-
- typedef Internal::node_iterator<value_type, !mutable_iterators, cache_hash_code>
- local_iterator;
- typedef Internal::node_iterator<value_type, false, cache_hash_code>
- const_local_iterator;
-
- typedef Internal::hashtable_iterator<value_type, !mutable_iterators, cache_hash_code>
- iterator;
- typedef Internal::hashtable_iterator<value_type, false, cache_hash_code>
- const_iterator;
-
-private:
- typedef Internal::hash_node<Value, cache_hash_code> node;
- typedef typename Allocator::template rebind<node>::other node_allocator_t;
- typedef typename Allocator::template rebind<node*>::other bucket_allocator_t;
-
-private:
- node_allocator_t m_node_allocator;
- node** m_buckets;
- size_type m_bucket_count;
- size_type m_element_count;
- RehashPolicy m_rehash_policy;
-
- node* m_allocate_node (const value_type& v);
- void m_deallocate_node (node* n);
- void m_deallocate_nodes (node**, size_type);
-
- node** m_allocate_buckets (size_type n);
- void m_deallocate_buckets (node**, size_type n);
-
-public: // Constructor, destructor, assignment, swap
- hashtable(size_type bucket_hint,
- const H1&, const H2&, const H&,
- const Equal&, const ExtractKey&,
- const allocator_type&);
+ allocator_type
+ get_allocator() const
+ { return m_node_allocator; }
- template <typename InIter>
- hashtable(InIter first, InIter last,
- size_type bucket_hint,
- const H1&, const H2&, const H&,
- const Equal&, const ExtractKey&,
- const allocator_type&);
+ size_type
+ max_size() const
+ { return m_node_allocator.max_size(); }
+
+ public: // Bucket operations
+ size_type
+ bucket_count() const
+ { return m_bucket_count; }
- hashtable(const hashtable&);
- hashtable& operator=(const hashtable&);
- ~hashtable();
-
- void swap(hashtable&);
-
-public: // Basic container operations
- iterator begin() {
- iterator i(m_buckets);
- if (!i.m_cur_node)
- i.m_incr_bucket();
- return i;
- }
-
- const_iterator begin() const {
- const_iterator i(m_buckets);
- if (!i.m_cur_node)
- i.m_incr_bucket();
- return i;
- }
+ size_type
+ max_bucket_count() const
+ { return max_size(); }
+
+ size_type
+ bucket_size(size_type n) const
+ { return std::distance(begin(n), end(n)); }
+
+ size_type bucket(const key_type& k) const
+ {
+ return this->bucket_index(k, this->m_hash_code, this->m_bucket_count);
+ }
- iterator end()
- { return iterator(m_buckets + m_bucket_count); }
- const_iterator end() const
- { return const_iterator(m_buckets + m_bucket_count); }
-
- size_type size() const { return m_element_count; }
- bool empty() const { return size() == 0; }
-
- allocator_type get_allocator() const { return m_node_allocator; }
- size_type max_size() const { return m_node_allocator.max_size(); }
-
-public: // Bucket operations
- size_type bucket_count() const
- { return m_bucket_count; }
- size_type max_bucket_count() const
- { return max_size(); }
- size_type bucket_size (size_type n) const
- { return std::distance(begin(n), end(n)); }
- size_type bucket (const key_type& k) const
- { return this->bucket_index (k, this->m_hash_code, this->m_bucket_count); }
-
- local_iterator begin(size_type n)
- { return local_iterator(m_buckets[n]); }
- local_iterator end(size_type n)
- { return local_iterator(0); }
- const_local_iterator begin(size_type n) const
- { return const_local_iterator(m_buckets[n]); }
- const_local_iterator end(size_type n) const
- { return const_local_iterator(0); }
-
- float load_factor() const
- { return static_cast<float>(size()) / static_cast<float>(bucket_count()); }
- // max_load_factor, if present, comes from rehash_base.
-
- // Generalization of max_load_factor. Extension, not found in TR1. Only
- // useful if RehashPolicy is something other than the default.
- const RehashPolicy& rehash_policy() const { return m_rehash_policy; }
- void rehash_policy (const RehashPolicy&);
-
-public: // lookup
- iterator find(const key_type&);
- const_iterator find(const key_type& k) const;
- size_type count(const key_type& k) const;
- std::pair<iterator, iterator> equal_range(const key_type& k);
- std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
-
-private: // Insert and erase helper functions
- // ??? This dispatching is a workaround for the fact that we don't
- // have partial specialization of member templates; it would be
- // better to just specialize insert on unique_keys. There may be a
- // cleaner workaround.
- typedef typename Internal::IF<unique_keys, std::pair<iterator, bool>, iterator>::type
- Insert_Return_Type;
-
- node* find_node (node* p, const key_type& k, typename hashtable::hash_code_t c);
-
- std::pair<iterator, bool> insert (const value_type&, std::tr1::true_type);
- iterator insert (const value_type&, std::tr1::false_type);
-
-public: // Insert and erase
- Insert_Return_Type insert (const value_type& v)
- { return this->insert (v, std::tr1::integral_constant<bool, unique_keys>()); }
- Insert_Return_Type insert (const_iterator, const value_type& v)
- { return this->insert(v); }
-
- template <typename InIter> void insert(InIter first, InIter last);
-
- void erase(const_iterator);
- size_type erase(const key_type&);
- void erase(const_iterator, const_iterator);
- void clear();
-
-public:
- // Set number of buckets to be apropriate for container of n element.
- void rehash (size_type n);
-
-private:
- // Unconditionally change size of bucket array to n.
- void m_rehash (size_type n);
-};
+ local_iterator
+ begin(size_type n)
+ { return local_iterator(m_buckets[n]); }
+
+ local_iterator
+ end(size_type n)
+ { return local_iterator(0); }
+
+ const_local_iterator
+ begin(size_type n) const
+ { return const_local_iterator(m_buckets[n]); }
+
+ const_local_iterator
+ end(size_type n) const
+ { return const_local_iterator(0); }
+
+ float
+ load_factor() const
+ {
+ return static_cast<float>(size()) / static_cast<float>(bucket_count());
+ }
+ // max_load_factor, if present, comes from rehash_base.
+
+ // Generalization of max_load_factor. Extension, not found in TR1. Only
+ // useful if RehashPolicy is something other than the default.
+ const RehashPolicy&
+ rehash_policy() const
+ { return m_rehash_policy; }
+
+ void
+ rehash_policy(const RehashPolicy&);
+
+ public: // lookup
+ iterator
+ find(const key_type&);
+
+ const_iterator
+ find(const key_type& k) const;
+
+ size_type
+ count(const key_type& k) const;
+
+ std::pair<iterator, iterator>
+ equal_range(const key_type& k);
+
+ std::pair<const_iterator, const_iterator>
+ equal_range(const key_type& k) const;
+
+ private: // Insert and erase helper functions
+ // ??? This dispatching is a workaround for the fact that we don't
+ // have partial specialization of member templates; it would be
+ // better to just specialize insert on unique_keys. There may be a
+ // cleaner workaround.
+ typedef typename Internal::IF<unique_keys,
+ std::pair<iterator, bool>, iterator>::type
+ Insert_Return_Type;
+
+ node*
+ find_node(node* p, const key_type& k, typename hashtable::hash_code_t c);
+
+ std::pair<iterator, bool>
+ insert(const value_type&, std::tr1::true_type);
+
+ iterator
+ insert
+ (const value_type&, std::tr1::false_type);
+
+ public: // Insert and erase
+ Insert_Return_Type
+ insert(const value_type& v)
+ {
+ return this->insert(v, std::tr1::integral_constant<bool,
+ unique_keys>());
+ }
+
+ Insert_Return_Type
+ insert(const_iterator, const value_type& v)
+ { return this->insert(v); }
-//----------------------------------------------------------------------
-// Definitions of class template hashtable's out-of-line member functions.
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node*
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_allocate_node (const value_type& v)
-{
- node* n = m_node_allocator.allocate(1);
- try {
- get_allocator().construct(&n->m_v, v);
- n->m_next = 0;
- return n;
- }
- catch(...) {
- m_node_allocator.deallocate(n, 1);
- throw;
- }
-}
+ template<typename InIter>
+ void
+ insert(InIter first, InIter last);
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_deallocate_node (node* n)
-{
- get_allocator().destroy(&n->m_v);
- m_node_allocator.deallocate(n, 1);
-}
+ void
+ erase(const_iterator);
+
+ size_type
+ erase(const key_type&);
+
+ void
+ erase(const_iterator, const_iterator);
+
+ void
+ clear();
+
+ public:
+ // Set number of buckets to be apropriate for container of n element.
+ void rehash (size_type n);
+
+ private:
+ // Unconditionally change size of bucket array to n.
+ void m_rehash (size_type n);
+ };
+
+ //----------------------------------------------------------------------
+ // Definitions of class template hashtable's out-of-line member functions.
+
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::node*
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ m_allocate_node(const value_type& v)
+ {
+ node* n = m_node_allocator.allocate(1);
+ try
+ {
+ get_allocator().construct(&n->m_v, v);
+ n->m_next = 0;
+ return n;
+ }
+ catch(...)
+ {
+ m_node_allocator.deallocate(n, 1);
+ throw;
+ }
+ }
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::m_deallocate_nodes (node** array, size_type n)
-{
- for (size_type i = 0; i < n; ++i) {
- node* p = array[i];
- while (p) {
- node* tmp = p;
- p = p->m_next;
- m_deallocate_node (tmp);
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ m_deallocate_node(node* n)
+ {
+ get_allocator().destroy(&n->m_v);
+ m_node_allocator.deallocate(n, 1);
}
- array[i] = 0;
- }
-}
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node**
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_allocate_buckets (size_type n)
-{
- bucket_allocator_t alloc(m_node_allocator);
-
- // We allocate one extra bucket to hold a sentinel, an arbitrary
- // non-null pointer. Iterator increment relies on this.
- node** p = alloc.allocate(n+1);
- std::fill(p, p+n, (node*) 0);
- p[n] = reinterpret_cast<node*>(0x1000);
- return p;
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ m_deallocate_nodes(node** array, size_type n)
+ {
+ for (size_type i = 0; i < n; ++i)
+ {
+ node* p = array[i];
+ while (p)
+ {
+ node* tmp = p;
+ p = p->m_next;
+ m_deallocate_node (tmp);
+ }
+ array[i] = 0;
+ }
+ }
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::m_deallocate_buckets (node** p, size_type n)
-{
- bucket_allocator_t alloc(m_node_allocator);
- alloc.deallocate(p, n+1);
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::node**
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ m_allocate_buckets(size_type n)
+ {
+ bucket_allocator_t alloc(m_node_allocator);
+
+ // We allocate one extra bucket to hold a sentinel, an arbitrary
+ // non-null pointer. Iterator increment relies on this.
+ node** p = alloc.allocate(n+1);
+ std::fill(p, p+n, (node*) 0);
+ p[n] = reinterpret_cast<node*>(0x1000);
+ return p;
+ }
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::hashtable(size_type bucket_hint,
- const H1& h1, const H2& h2, const H& h,
- const Eq& eq, const Ex& exk,
- const allocator_type& a)
- : Internal::rehash_base<RP,hashtable> (),
- Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (exk, eq, h1, h2, h),
- Internal::map_base<K,V,Ex,u,hashtable> (),
- m_node_allocator(a),
- m_bucket_count (0),
- m_element_count (0),
- m_rehash_policy ()
-{
- m_bucket_count = m_rehash_policy.next_bkt(bucket_hint);
- m_buckets = m_allocate_buckets (m_bucket_count);
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ m_deallocate_buckets(node** p, size_type n)
+ {
+ bucket_allocator_t alloc(m_node_allocator);
+ alloc.deallocate(p, n+1);
+ }
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-template <typename InIter>
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::hashtable(InIter f, InIter l,
- size_type bucket_hint,
- const H1& h1, const H2& h2, const H& h,
- const Eq& eq, const Ex& exk,
- const allocator_type& a)
- : Internal::rehash_base<RP,hashtable> (),
- Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (exk, eq, h1, h2, h),
- Internal::map_base<K,V,Ex,u,hashtable> (),
- m_node_allocator(a),
- m_bucket_count (0),
- m_element_count (0),
- m_rehash_policy ()
-{
- m_bucket_count = std::max(m_rehash_policy.next_bkt(bucket_hint),
- m_rehash_policy.bkt_for_elements(Internal::distance_fw(f, l)));
- m_buckets = m_allocate_buckets (m_bucket_count);
- try {
- for (; f != l; ++f)
- this->insert (*f);
- }
- catch(...) {
- clear();
- m_deallocate_buckets (m_buckets, m_bucket_count);
- throw;
- }
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ hashtable(size_type bucket_hint,
+ const H1& h1, const H2& h2, const H& h,
+ const Eq& eq, const Ex& exk,
+ const allocator_type& a)
+ : Internal::rehash_base<RP,hashtable>(),
+ Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>(exk, eq, h1, h2, h),
+ Internal::map_base<K, V, Ex, u, hashtable>(),
+ m_node_allocator(a),
+ m_bucket_count(0),
+ m_element_count(0),
+ m_rehash_policy()
+ {
+ m_bucket_count = m_rehash_policy.next_bkt(bucket_hint);
+ m_buckets = m_allocate_buckets(m_bucket_count);
+ }
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::hashtable(const hashtable& ht)
- : Internal::rehash_base<RP,hashtable> (ht),
- Internal::hash_code_base<K,V,Ex,Eq,H1,H2,H,c> (ht),
- Internal::map_base<K,V,Ex,u,hashtable> (ht),
- m_node_allocator(ht.get_allocator()),
- m_bucket_count (ht.m_bucket_count),
- m_element_count (ht.m_element_count),
- m_rehash_policy (ht.m_rehash_policy)
-{
- m_buckets = m_allocate_buckets (m_bucket_count);
- try {
- for (size_t i = 0; i < ht.m_bucket_count; ++i) {
- node* n = ht.m_buckets[i];
- node** tail = m_buckets + i;
- while (n) {
- *tail = m_allocate_node (n);
- (*tail).copy_code_from (n);
- tail = &((*tail)->m_next);
- n = n->m_next;
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ template<typename InIter>
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ hashtable(InIter f, InIter l,
+ size_type bucket_hint,
+ const H1& h1, const H2& h2, const H& h,
+ const Eq& eq, const Ex& exk,
+ const allocator_type& a)
+ : Internal::rehash_base<RP,hashtable>(),
+ Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c> (exk, eq,
+ h1, h2, h),
+ Internal::map_base<K,V,Ex,u,hashtable>(),
+ m_node_allocator(a),
+ m_bucket_count (0),
+ m_element_count(0),
+ m_rehash_policy()
+ {
+ m_bucket_count = std::max(m_rehash_policy.next_bkt(bucket_hint),
+ m_rehash_policy.
+ bkt_for_elements(Internal::
+ distance_fw(f, l)));
+ m_buckets = m_allocate_buckets(m_bucket_count);
+ try
+ {
+ for (; f != l; ++f)
+ this->insert(*f);
+ }
+ catch(...)
+ {
+ clear();
+ m_deallocate_buckets(m_buckets, m_bucket_count);
+ throw;
+ }
}
+
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ hashtable(const hashtable& ht)
+ : Internal::rehash_base<RP, hashtable>(ht),
+ Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>(ht),
+ Internal::map_base<K, V, Ex, u, hashtable>(ht),
+ m_node_allocator(ht.get_allocator()),
+ m_bucket_count(ht.m_bucket_count),
+ m_element_count(ht.m_element_count),
+ m_rehash_policy(ht.m_rehash_policy)
+ {
+ m_buckets = m_allocate_buckets (m_bucket_count);
+ try
+ {
+ for (size_t i = 0; i < ht.m_bucket_count; ++i)
+ {
+ node* n = ht.m_buckets[i];
+ node** tail = m_buckets + i;
+ while (n)
+ {
+ *tail = m_allocate_node(n);
+ (*tail).copy_code_from(n);
+ tail = &((*tail)->m_next);
+ n = n->m_next;
+ }
+ }
+ }
+ catch (...)
+ {
+ clear();
+ m_deallocate_buckets (m_buckets, m_bucket_count);
+ throw;
+ }
}
- }
- catch (...) {
- clear();
- m_deallocate_buckets (m_buckets, m_bucket_count);
- throw;
- }
-}
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>&
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::operator= (const hashtable& ht)
-{
- hashtable tmp(ht);
- this->swap(tmp);
- return *this;
-}
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::~hashtable()
-{
- clear();
- m_deallocate_buckets(m_buckets, m_bucket_count);
-}
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::swap (hashtable& x)
-{
- // The only base class with member variables is hash_code_base. We
- // define hash_code_base::m_swap because different specializations
- // have different members.
- Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>::m_swap(x);
-
- // open LWG issue 431
- // std::swap(m_node_allocator, x.m_node_allocator);
- std::swap (m_rehash_policy, x.m_rehash_policy);
- std::swap (m_buckets, x.m_buckets);
- std::swap (m_bucket_count, x.m_bucket_count);
- std::swap (m_element_count, x.m_element_count);
-}
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::rehash_policy (const RP& pol)
-{
- m_rehash_policy = pol;
- size_type n_bkt = pol.bkt_for_elements(m_element_count);
- if (n_bkt > m_bucket_count)
- m_rehash (n_bkt);
-}
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::find (const key_type& k)
-{
- typename hashtable::hash_code_t code = this->m_hash_code (k);
- std::size_t n = this->bucket_index (k, code, this->bucket_count());
- node* p = find_node (m_buckets[n], k, code);
- return p ? iterator(p, m_buckets + n) : this->end();
-}
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::find (const key_type& k) const
-{
- typename hashtable::hash_code_t code = this->m_hash_code (k);
- std::size_t n = this->bucket_index (k, code, this->bucket_count());
- node* p = find_node (m_buckets[n], k, code);
- return p ? const_iterator(p, m_buckets + n) : this->end();
-}
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::size_type
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::count (const key_type& k) const
-{
- typename hashtable::hash_code_t code = this->m_hash_code (k);
- std::size_t n = this->bucket_index (k, code, this->bucket_count());
- size_t result = 0;
- for (node* p = m_buckets[n]; p ; p = p->m_next)
- if (this->compare (k, code, p))
- ++result;
- return result;
-}
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator,
- typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator>
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::equal_range (const key_type& k)
-{
- typename hashtable::hash_code_t code = this->m_hash_code (k);
- std::size_t n = this->bucket_index (k, code, this->bucket_count());
- node** head = m_buckets + n;
- node* p = find_node (*head, k, code);
-
- if (p) {
- node* p1 = p->m_next;
- for (; p1 ; p1 = p1->m_next)
- if (!this->compare (k, code, p1))
- break;
- iterator first(p, head);
- iterator last(p1, head);
- if (!p1)
- last.m_incr_bucket();
- return std::make_pair(first, last);
- }
- else
- return std::make_pair (this->end(), this->end());
-}
-
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator,
- typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::const_iterator>
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::equal_range (const key_type& k) const
-{
- typename hashtable::hash_code_t code = this->m_hash_code (k);
- std::size_t n = this->bucket_index (k, code, this->bucket_count());
- node** head = m_buckets + n;
- node* p = find_node (*head, k, code);
-
- if (p) {
- node* p1 = p->m_next;
- for (; p1 ; p1 = p1->m_next)
- if (!this->compare (k, code, p1))
- break;
- const_iterator first(p, head);
- const_iterator last(p1, head);
- if (!p1)
- last.m_incr_bucket();
- return std::make_pair(first, last);
- }
- else
- return std::make_pair (this->end(), this->end());
-}
-
-// Find the node whose key compares equal to k, beginning the search
-// at p (usually the head of a bucket). Return nil if no node is found.
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::node*
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::find_node (node* p, const key_type& k, typename hashtable::hash_code_t code)
-{
- for ( ; p ; p = p->m_next)
- if (this->compare (k, code, p))
- return p;
- return false;
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>&
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ operator=(const hashtable& ht)
+ {
+ hashtable tmp(ht);
+ this->swap(tmp);
+ return *this;
+ }
-// Insert v if no element with its key is already present.
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-std::pair<typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator, bool>
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::insert (const value_type& v, std::tr1::true_type)
-{
- const key_type& k = this->m_extract(v);
- typename hashtable::hash_code_t code = this->m_hash_code (k);
- size_type n = this->bucket_index (k, code, m_bucket_count);
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ ~hashtable()
+ {
+ clear();
+ m_deallocate_buckets(m_buckets, m_bucket_count);
+ }
- if (node* p = find_node (m_buckets[n], k, code))
- return std::make_pair(iterator(p, m_buckets + n), false);
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ swap(hashtable& x)
+ {
+ // The only base class with member variables is hash_code_base. We
+ // define hash_code_base::m_swap because different specializations
+ // have different members.
+ Internal::hash_code_base<K, V, Ex, Eq, H1, H2, H, c>::m_swap(x);
+
+ // open LWG issue 431
+ // std::swap(m_node_allocator, x.m_node_allocator);
+ std::swap(m_rehash_policy, x.m_rehash_policy);
+ std::swap(m_buckets, x.m_buckets);
+ std::swap(m_bucket_count, x.m_bucket_count);
+ std::swap(m_element_count, x.m_element_count);
+ }
- std::pair<bool, size_t> do_rehash
- = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ rehash_policy(const RP& pol)
+ {
+ m_rehash_policy = pol;
+ size_type n_bkt = pol.bkt_for_elements(m_element_count);
+ if (n_bkt > m_bucket_count)
+ m_rehash (n_bkt);
+ }
- // Allocate the new node before doing the rehash so that we don't
- // do a rehash if the allocation throws.
- node* new_node = m_allocate_node (v);
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::iterator
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ find(const key_type& k)
+ {
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index(k, code, this->bucket_count());
+ node* p = find_node (m_buckets[n], k, code);
+ return p ? iterator(p, m_buckets + n) : this->end();
+ }
+
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::const_iterator
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ find(const key_type& k) const
+ {
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index(k, code, this->bucket_count());
+ node* p = find_node (m_buckets[n], k, code);
+ return p ? const_iterator(p, m_buckets + n) : this->end();
+ }
+
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::size_type
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ count(const key_type& k) const
+ {
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index (k, code, this->bucket_count());
+ size_t result = 0;
+ for (node* p = m_buckets[n]; p ; p = p->m_next)
+ if (this->compare (k, code, p))
+ ++result;
+ return result;
+ }
- try {
- if (do_rehash.first) {
- n = this->bucket_index (k, code, do_rehash.second);
- m_rehash(do_rehash.second);
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
+ H2, H, RP, c, m, u>::iterator,
+ typename hashtable<K, V, A, Ex, Eq, H1,
+ H2, H, RP, c, m, u>::iterator>
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ equal_range(const key_type& k)
+ {
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index(k, code, this->bucket_count());
+ node** head = m_buckets + n;
+ node* p = find_node (*head, k, code);
+
+ if (p)
+ {
+ node* p1 = p->m_next;
+ for (; p1 ; p1 = p1->m_next)
+ if (!this->compare (k, code, p1))
+ break;
+
+ iterator first(p, head);
+ iterator last(p1, head);
+ if (!p1)
+ last.m_incr_bucket();
+ return std::make_pair(first, last);
+ }
+ else
+ return std::make_pair(this->end(), this->end());
}
- new_node->m_next = m_buckets[n];
- m_buckets[n] = new_node;
- ++m_element_count;
- return std::make_pair(iterator (new_node, m_buckets + n), true);
- }
- catch (...) {
- m_deallocate_node (new_node);
- throw;
- }
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
+ H2, H, RP, c, m, u>::const_iterator,
+ typename hashtable<K, V, A, Ex, Eq, H1,
+ H2, H, RP, c, m, u>::const_iterator>
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ equal_range(const key_type& k) const
+ {
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ std::size_t n = this->bucket_index(k, code, this->bucket_count());
+ node** head = m_buckets + n;
+ node* p = find_node (*head, k, code);
+
+ if (p)
+ {
+ node* p1 = p->m_next;
+ for (; p1 ; p1 = p1->m_next)
+ if (!this->compare (k, code, p1))
+ break;
+
+ const_iterator first(p, head);
+ const_iterator last(p1, head);
+ if (!p1)
+ last.m_incr_bucket();
+ return std::make_pair(first, last);
+ }
+ else
+ return std::make_pair(this->end(), this->end());
+ }
-// Insert v unconditionally.
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::iterator
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::insert (const value_type& v, std::tr1::false_type)
-{
- std::pair<bool, std::size_t> do_rehash
- = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
- if (do_rehash.first)
- m_rehash(do_rehash.second);
-
- const key_type& k = this->m_extract(v);
- typename hashtable::hash_code_t code = this->m_hash_code (k);
- size_type n = this->bucket_index (k, code, m_bucket_count);
-
- node* new_node = m_allocate_node (v);
- node* prev = find_node (m_buckets[n], k, code);
- if (prev) {
- new_node->m_next = prev->m_next;
- prev->m_next = new_node;
- }
- else {
- new_node->m_next = m_buckets[n];
- m_buckets[n] = new_node;
- }
+ // Find the node whose key compares equal to k, beginning the search
+ // at p (usually the head of a bucket). Return nil if no node is found.
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::node*
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ find_node(node* p, const key_type& k, typename hashtable::hash_code_t code)
+ {
+ for ( ; p ; p = p->m_next)
+ if (this->compare (k, code, p))
+ return p;
+ return false;
+ }
- ++m_element_count;
- return iterator (new_node, m_buckets + n);
-}
+ // Insert v if no element with its key is already present.
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ std::pair<typename hashtable<K, V, A, Ex, Eq, H1,
+ H2, H, RP, c, m, u>::iterator, bool>
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ insert(const value_type& v, std::tr1::true_type)
+ {
+ const key_type& k = this->m_extract(v);
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ size_type n = this->bucket_index(k, code, m_bucket_count);
+
+ if (node* p = find_node(m_buckets[n], k, code))
+ return std::make_pair(iterator(p, m_buckets + n), false);
+
+ std::pair<bool, size_t> do_rehash
+ = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
+
+ // Allocate the new node before doing the rehash so that we don't
+ // do a rehash if the allocation throws.
+ node* new_node = m_allocate_node (v);
+
+ try
+ {
+ if (do_rehash.first)
+ {
+ n = this->bucket_index(k, code, do_rehash.second);
+ m_rehash(do_rehash.second);
+ }
+
+ new_node->m_next = m_buckets[n];
+ m_buckets[n] = new_node;
+ ++m_element_count;
+ return std::make_pair(iterator(new_node, m_buckets + n), true);
+ }
+ catch (...)
+ {
+ m_deallocate_node (new_node);
+ throw;
+ }
+ }
+
+ // Insert v unconditionally.
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::iterator
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ insert(const value_type& v, std::tr1::false_type)
+ {
+ std::pair<bool, std::size_t> do_rehash
+ = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, 1);
+ if (do_rehash.first)
+ m_rehash(do_rehash.second);
+
+ const key_type& k = this->m_extract(v);
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ size_type n = this->bucket_index(k, code, m_bucket_count);
+
+ node* new_node = m_allocate_node (v);
+ node* prev = find_node(m_buckets[n], k, code);
+ if (prev)
+ {
+ new_node->m_next = prev->m_next;
+ prev->m_next = new_node;
+ }
+ else
+ {
+ new_node->m_next = m_buckets[n];
+ m_buckets[n] = new_node;
+ }
+
+ ++m_element_count;
+ return iterator(new_node, m_buckets + n);
+ }
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-template <typename InIter>
-void
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::insert(InIter first, InIter last)
-{
- size_type n_elt = Internal::distance_fw (first, last);
- std::pair<bool, std::size_t> do_rehash
- = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, n_elt);
- if (do_rehash.first)
- m_rehash(do_rehash.second);
-
- for (; first != last; ++first)
- this->insert (*first);
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ template<typename InIter>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ insert(InIter first, InIter last)
+ {
+ size_type n_elt = Internal::distance_fw (first, last);
+ std::pair<bool, std::size_t> do_rehash
+ = m_rehash_policy.need_rehash(m_bucket_count, m_element_count, n_elt);
+ if (do_rehash.first)
+ m_rehash(do_rehash.second);
+
+ for (; first != last; ++first)
+ this->insert (*first);
+ }
-// XXX We're following the TR in giving this a return type of void,
-// but that ought to change. The return type should be const_iterator,
-// and it should return the iterator following the one we've erased.
-// That would simplify range erase.
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::erase (const_iterator i)
-{
- node* p = i.m_cur_node;
- node* cur = *i.m_cur_bucket;
- if (cur == p)
- *i.m_cur_bucket = cur->m_next;
- else {
- node* next = cur->m_next;
- while (next != p) {
- cur = next;
- next = cur->m_next;
+ // XXX We're following the TR in giving this a return type of void,
+ // but that ought to change. The return type should be const_iterator,
+ // and it should return the iterator following the one we've erased.
+ // That would simplify range erase.
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ erase(const_iterator i)
+ {
+ node* p = i.m_cur_node;
+ node* cur = *i.m_cur_bucket;
+ if (cur == p)
+ *i.m_cur_bucket = cur->m_next;
+ else
+ {
+ node* next = cur->m_next;
+ while (next != p)
+ {
+ cur = next;
+ next = cur->m_next;
+ }
+ cur->m_next = next->m_next;
+ }
+
+ m_deallocate_node (p);
+ --m_element_count;
}
- cur->m_next = next->m_next;
- }
-
- m_deallocate_node (p);
- --m_element_count;
-}
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-typename hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::size_type
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::erase(const key_type& k)
-{
- typename hashtable::hash_code_t code = this->m_hash_code (k);
- size_type n = this->bucket_index (k, code, m_bucket_count);
-
- node** slot = m_buckets + n;
- while (*slot && ! this->compare (k, code, *slot))
- slot = &((*slot)->m_next);
-
- while (*slot && this->compare (k, code, *slot)) {
- node* n = *slot;
- *slot = n->m_next;
- m_deallocate_node (n);
- --m_element_count;
- }
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ typename hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::size_type
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ erase(const key_type& k)
+ {
+ typename hashtable::hash_code_t code = this->m_hash_code (k);
+ size_type n = this->bucket_index(k, code, m_bucket_count);
+
+ node** slot = m_buckets + n;
+ while (*slot && ! this->compare (k, code, *slot))
+ slot = &((*slot)->m_next);
+
+ while (*slot && this->compare (k, code, *slot))
+ {
+ node* n = *slot;
+ *slot = n->m_next;
+ m_deallocate_node (n);
+ --m_element_count;
+ }
+ }
-// ??? This could be optimized by taking advantage of the bucket
-// structure, but it's not clear that it's worth doing. It probably
-// wouldn't even be an optimization unless the load factor is large.
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>
-::erase(const_iterator first, const_iterator last)
-{
- while (first != last) {
- const_iterator next = first;
- ++next;
- this->erase(first);
- first = next;
- }
-}
+ // ??? This could be optimized by taking advantage of the bucket
+ // structure, but it's not clear that it's worth doing. It probably
+ // wouldn't even be an optimization unless the load factor is large.
+ template <typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ erase(const_iterator first, const_iterator last)
+ {
+ while (first != last)
+ {
+ const_iterator next = first;
+ ++next;
+ this->erase(first);
+ first = next;
+ }
+ }
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::clear()
-{
- m_deallocate_nodes (m_buckets, m_bucket_count);
- m_element_count = 0;
-}
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ clear()
+ {
+ m_deallocate_nodes(m_buckets, m_bucket_count);
+ m_element_count = 0;
+ }
-template <typename K, typename V,
- typename A, typename Ex, typename Eq,
- typename H1, typename H2, typename H, typename RP,
- bool c, bool m, bool u>
-void
-hashtable<K,V,A,Ex,Eq,H1,H2,H,RP,c,m,u>::m_rehash (size_type N)
-{
- node** new_array = m_allocate_buckets (N);
- try {
- for (size_type i = 0; i < m_bucket_count; ++i)
- while (node* p = m_buckets[i]) {
- size_type new_index = this->bucket_index (p, N);
- m_buckets[i] = p->m_next;
- p->m_next = new_array[new_index];
- new_array[new_index] = p;
- }
- m_deallocate_buckets (m_buckets, m_bucket_count);
- m_bucket_count = N;
- m_buckets = new_array;
- }
- catch (...) {
- // A failure here means that a hash function threw an exception.
- // We can't restore the previous state without calling the hash
- // function again, so the only sensible recovery is to delete
- // everything.
- m_deallocate_nodes (new_array, N);
- m_deallocate_buckets (new_array, N);
- m_deallocate_nodes (m_buckets, m_bucket_count);
- m_element_count = 0;
- throw;
- }
+ template<typename K, typename V,
+ typename A, typename Ex, typename Eq,
+ typename H1, typename H2, typename H, typename RP,
+ bool c, bool m, bool u>
+ void
+ hashtable<K, V, A, Ex, Eq, H1, H2, H, RP, c, m, u>::
+ m_rehash(size_type N)
+ {
+ node** new_array = m_allocate_buckets (N);
+ try
+ {
+ for (size_type i = 0; i < m_bucket_count; ++i)
+ while (node* p = m_buckets[i])
+ {
+ size_type new_index = this->bucket_index (p, N);
+ m_buckets[i] = p->m_next;
+ p->m_next = new_array[new_index];
+ new_array[new_index] = p;
+ }
+ m_deallocate_buckets(m_buckets, m_bucket_count);
+ m_bucket_count = N;
+ m_buckets = new_array;
+ }
+ catch (...)
+ {
+ // A failure here means that a hash function threw an exception.
+ // We can't restore the previous state without calling the hash
+ // function again, so the only sensible recovery is to delete
+ // everything.
+ m_deallocate_nodes(new_array, N);
+ m_deallocate_buckets(new_array, N);
+ m_deallocate_nodes(m_buckets, m_bucket_count);
+ m_element_count = 0;
+ throw;
+ }
+ }
+
}
-
-} } // Namespace std::tr1
+} // Namespace std::tr1
#endif /* GNU_LIBSTDCXX_TR1_HASHTABLE_ */
diff --git a/libstdc++-v3/include/tr1/unordered_map b/libstdc++-v3/include/tr1/unordered_map
index e35683d36aa..4750c2aaf90 100644
--- a/libstdc++-v3/include/tr1/unordered_map
+++ b/libstdc++-v3/include/tr1/unordered_map
@@ -40,127 +40,131 @@
#include <utility>
#include <memory>
-namespace std { namespace tr1 {
-
-// XXX When we get typedef templates these class definitions will be unnecessary.
-
-template <class Key, class T,
- class Hash = hash<Key>,
- class Pred = std::equal_to<Key>,
- class Alloc = std::allocator<std::pair<const Key, T> >,
- bool cache_hash_code = false>
-class unordered_map
- : public hashtable <Key, std::pair<const Key, T>,
- Alloc,
- Internal::extract1st<std::pair<const Key, T> >, Pred,
- Hash, Internal::mod_range_hashing, Internal::default_ranged_hash,
- Internal::prime_rehash_policy,
- cache_hash_code, true, true>
+namespace std
{
- typedef hashtable <Key, std::pair<const Key, T>,
- Alloc,
- Internal::extract1st<std::pair<const Key, T> >, Pred,
- Hash, Internal::mod_range_hashing, Internal::default_ranged_hash,
- Internal::prime_rehash_policy,
- cache_hash_code, true, true>
- Base;
-
-public:
- typedef typename Base::size_type size_type;
- typedef typename Base::hasher hasher;
- typedef typename Base::key_equal key_equal;
- typedef typename Base::allocator_type allocator_type;
-
- explicit unordered_map(size_type n = 10,
+namespace tr1
+{
+ // XXX When we get typedef templates these class definitions
+ // will be unnecessary.
+
+ template<class Key, class T,
+ class Hash = hash<Key>,
+ class Pred = std::equal_to<Key>,
+ class Alloc = std::allocator<std::pair<const Key, T> >,
+ bool cache_hash_code = false>
+ class unordered_map
+ : public hashtable <Key, std::pair<const Key, T>,
+ Alloc,
+ Internal::extract1st<std::pair<const Key, T> >, Pred,
+ Hash, Internal::mod_range_hashing,
+ Internal::default_ranged_hash,
+ Internal::prime_rehash_policy,
+ cache_hash_code, true, true>
+ {
+ typedef hashtable <Key, std::pair<const Key, T>,
+ Alloc,
+ Internal::extract1st<std::pair<const Key, T> >, Pred,
+ Hash, Internal::mod_range_hashing,
+ Internal::default_ranged_hash,
+ Internal::prime_rehash_policy,
+ cache_hash_code, true, true>
+ Base;
+
+ public:
+ typedef typename Base::size_type size_type;
+ typedef typename Base::hasher hasher;
+ typedef typename Base::key_equal key_equal;
+ typedef typename Base::allocator_type allocator_type;
+
+ explicit
+ unordered_map(size_type n = 10,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& a = allocator_type())
+ : Base(n, hf, Internal::mod_range_hashing(),
+ Internal::default_ranged_hash(),
+ eql, Internal::extract1st<std::pair<const Key, T> >(), a)
+ { }
+
+ template<typename InputIterator>
+ unordered_map(InputIterator f, InputIterator l,
+ size_type n = 10,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& a = allocator_type())
+ : Base (f, l, n, hf, Internal::mod_range_hashing(),
+ Internal::default_ranged_hash(),
+ eql, Internal::extract1st<std::pair<const Key, T> >(), a)
+ { }
+ };
+
+ template<class Key, class T,
+ class Hash = hash<Key>,
+ class Pred = std::equal_to<Key>,
+ class Alloc = std::allocator<std::pair<const Key, T> >,
+ bool cache_hash_code = false>
+ class unordered_multimap
+ : public hashtable <Key, std::pair<const Key, T>,
+ Alloc,
+ Internal::extract1st<std::pair<const Key, T> >, Pred,
+ Hash, Internal::mod_range_hashing,
+ Internal::default_ranged_hash,
+ Internal::prime_rehash_policy,
+ cache_hash_code, true, false>
+ {
+ typedef hashtable <Key, std::pair<const Key, T>,
+ Alloc,
+ Internal::extract1st<std::pair<const Key, T> >, Pred,
+ Hash, Internal::mod_range_hashing,
+ Internal::default_ranged_hash,
+ Internal::prime_rehash_policy,
+ cache_hash_code, true, false>
+ Base;
+
+ public:
+ typedef typename Base::size_type size_type;
+ typedef typename Base::hasher hasher;
+ typedef typename Base::key_equal key_equal;
+ typedef typename Base::allocator_type allocator_type;
+
+ explicit
+ unordered_multimap(size_type n = 10,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type())
- : Base (n,
- hf, Internal::mod_range_hashing(), Internal::default_ranged_hash(),
- eql, Internal::extract1st<std::pair<const Key, T> >(),
- a)
- { }
-
- template <typename InputIterator>
- unordered_map(InputIterator f, InputIterator l,
- size_type n = 10,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& a = allocator_type())
- : Base (f, l,
- n,
- hf, Internal::mod_range_hashing(), Internal::default_ranged_hash(),
- eql, Internal::extract1st<std::pair<const Key, T> >(),
- a)
- { }
-};
-
-template <class Key, class T,
- class Hash = hash<Key>,
- class Pred = std::equal_to<Key>,
- class Alloc = std::allocator<std::pair<const Key, T> >,
- bool cache_hash_code = false>
-class unordered_multimap
- : public hashtable <Key, std::pair<const Key, T>,
- Alloc,
- Internal::extract1st<std::pair<const Key, T> >, Pred,
- Hash, Internal::mod_range_hashing, Internal::default_ranged_hash,
- Internal::prime_rehash_policy,
- cache_hash_code, true, false>
-{
- typedef hashtable <Key, std::pair<const Key, T>,
- Alloc,
- Internal::extract1st<std::pair<const Key, T> >, Pred,
- Hash, Internal::mod_range_hashing, Internal::default_ranged_hash,
- Internal::prime_rehash_policy,
- cache_hash_code, true, false>
- Base;
-
-public:
- typedef typename Base::size_type size_type;
- typedef typename Base::hasher hasher;
- typedef typename Base::key_equal key_equal;
- typedef typename Base::allocator_type allocator_type;
-
- explicit unordered_multimap(size_type n = 10,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& a = allocator_type())
- : Base (n,
- hf, Internal::mod_range_hashing(), Internal::default_ranged_hash(),
- eql, Internal::extract1st<std::pair<const Key, T> >(),
- a)
- { }
-
-
- template <typename InputIterator>
- unordered_multimap(InputIterator f, InputIterator l,
- typename Base::size_type n = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& a = allocator_type())
- : Base (f, l,
- n,
- hf, Internal::mod_range_hashing(), Internal::default_ranged_hash(),
- eql, Internal::extract1st<std::pair<const Key, T> >(),
- a)
- { }
-};
-
-template <class Key, class T, class Hash, class Pred, class Alloc, bool cache_hash_code>
-inline void swap (unordered_map<Key, T, Hash, Pred, Alloc, cache_hash_code>& x,
- unordered_map<Key, T, Hash, Pred, Alloc, cache_hash_code>& y)
-{
- x.swap(y);
-}
+ : Base (n, hf, Internal::mod_range_hashing(),
+ Internal::default_ranged_hash(),
+ eql, Internal::extract1st<std::pair<const Key, T> >(), a)
+ { }
+
+
+ template<typename InputIterator>
+ unordered_multimap(InputIterator f, InputIterator l,
+ typename Base::size_type n = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& a = allocator_type())
+ : Base (f, l, n, hf, Internal::mod_range_hashing(),
+ Internal::default_ranged_hash(),
+ eql, Internal::extract1st<std::pair<const Key, T> >(), a)
+ { }
+ };
+
+ template<class Key, class T, class Hash, class Pred, class Alloc,
+ bool cache_hash_code>
+ inline void
+ swap(unordered_map<Key, T, Hash, Pred, Alloc, cache_hash_code>& x,
+ unordered_map<Key, T, Hash, Pred, Alloc, cache_hash_code>& y)
+ { x.swap(y); }
+
+ template<class Key, class T, class Hash, class Pred, class Alloc,
+ bool cache_hash_code>
+ inline void
+ swap(unordered_multimap<Key, T, Hash, Pred, Alloc, cache_hash_code>& x,
+ unordered_multimap<Key, T, Hash, Pred, Alloc, cache_hash_code>& y)
+ { x.swap(y); }
-template <class Key, class T, class Hash, class Pred, class Alloc, bool cache_hash_code>
-inline void swap (unordered_multimap<Key, T, Hash, Pred, Alloc, cache_hash_code>& x,
- unordered_multimap<Key, T, Hash, Pred, Alloc, cache_hash_code>& y)
-{
- x.swap(y);
}
-
-} }
+}
#endif /* GNU_LIBSTDCXX_TR1_UNORDERED_MAP_ */
diff --git a/libstdc++-v3/include/tr1/unordered_set b/libstdc++-v3/include/tr1/unordered_set
index e0f75f05c13..ecf8e7a968a 100644
--- a/libstdc++-v3/include/tr1/unordered_set
+++ b/libstdc++-v3/include/tr1/unordered_set
@@ -38,123 +38,128 @@
#include <tr1/functional>
#include <memory>
-namespace std { namespace tr1 {
-
-// XXX When we get typedef templates these class definitions will be unnecessary.
-
-template <class Value,
- class Hash = hash<Value>,
- class Pred = std::equal_to<Value>,
- class Alloc = std::allocator<Value>,
- bool cache_hash_code = false>
-class unordered_set
- : public hashtable <Value, Value, Alloc,
- Internal::identity<Value>, Pred,
- Hash, Internal::mod_range_hashing, Internal::default_ranged_hash,
- Internal::prime_rehash_policy,
- cache_hash_code, false, true>
+namespace std
+{
+namespace tr1
{
- typedef hashtable <Value, Value, Alloc,
- Internal::identity<Value>, Pred,
- Hash, Internal::mod_range_hashing, Internal::default_ranged_hash,
- Internal::prime_rehash_policy,
- cache_hash_code, false, true>
- Base;
-
-public:
- typedef typename Base::size_type size_type;
- typedef typename Base::hasher hasher;
- typedef typename Base::key_equal key_equal;
- typedef typename Base::allocator_type allocator_type;
-
- explicit unordered_set(size_type n = 10,
+
+ // XXX When we get typedef templates these class definitions
+ // will be unnecessary.
+
+ template<class Value,
+ class Hash = hash<Value>,
+ class Pred = std::equal_to<Value>,
+ class Alloc = std::allocator<Value>,
+ bool cache_hash_code = false>
+ class unordered_set
+ : public hashtable<Value, Value, Alloc,
+ Internal::identity<Value>, Pred,
+ Hash, Internal::mod_range_hashing,
+ Internal::default_ranged_hash,
+ Internal::prime_rehash_policy,
+ cache_hash_code, false, true>
+ {
+ typedef hashtable<Value, Value, Alloc,
+ Internal::identity<Value>, Pred,
+ Hash, Internal::mod_range_hashing,
+ Internal::default_ranged_hash,
+ Internal::prime_rehash_policy,
+ cache_hash_code, false, true>
+ Base;
+
+ public:
+ typedef typename Base::size_type size_type;
+ typedef typename Base::hasher hasher;
+ typedef typename Base::key_equal key_equal;
+ typedef typename Base::allocator_type allocator_type;
+
+ explicit
+ unordered_set(size_type n = 10,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& a = allocator_type())
+ : Base (n, hf, Internal::mod_range_hashing(),
+ Internal::default_ranged_hash(),
+ eql, Internal::identity<Value>(), a)
+ { }
+
+ template<typename InputIterator>
+ unordered_set(InputIterator f, InputIterator l,
+ size_type n = 10,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& a = allocator_type())
+ : Base (f, l, n, hf, Internal::mod_range_hashing(),
+ Internal::default_ranged_hash(),
+ eql, Internal::identity<Value>(), a)
+ { }
+ };
+
+ template<class Value,
+ class Hash = hash<Value>,
+ class Pred = std::equal_to<Value>,
+ class Alloc = std::allocator<Value>,
+ bool cache_hash_code = false>
+ class unordered_multiset
+ : public hashtable <Value, Value, Alloc,
+ Internal::identity<Value>, Pred,
+ Hash, Internal::mod_range_hashing,
+ Internal::default_ranged_hash,
+ Internal::prime_rehash_policy,
+ cache_hash_code, false, false>
+ {
+ typedef hashtable<Value, Value, Alloc,
+ Internal::identity<Value>, Pred,
+ Hash, Internal::mod_range_hashing,
+ Internal::default_ranged_hash,
+ Internal::prime_rehash_policy,
+ cache_hash_code, false, false>
+ Base;
+
+ public:
+ typedef typename Base::size_type size_type;
+ typedef typename Base::hasher hasher;
+ typedef typename Base::key_equal key_equal;
+ typedef typename Base::allocator_type allocator_type;
+
+ explicit
+ unordered_multiset(size_type n = 10,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type())
- : Base (n,
- hf, Internal::mod_range_hashing(), Internal::default_ranged_hash(),
- eql, Internal::identity<Value>(),
- a)
- { }
-
- template <typename InputIterator>
- unordered_set(InputIterator f, InputIterator l,
- size_type n = 10,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& a = allocator_type())
- : Base (f, l,
- n,
- hf, Internal::mod_range_hashing(), Internal::default_ranged_hash(),
- eql, Internal::identity<Value>(),
- a)
- { }
-};
-
-template <class Value,
- class Hash = hash<Value>,
- class Pred = std::equal_to<Value>,
- class Alloc = std::allocator<Value>,
- bool cache_hash_code = false>
-class unordered_multiset
- : public hashtable <Value, Value, Alloc,
- Internal::identity<Value>, Pred,
- Hash, Internal::mod_range_hashing, Internal::default_ranged_hash,
- Internal::prime_rehash_policy,
- cache_hash_code, false, false>
-{
- typedef hashtable <Value, Value, Alloc,
- Internal::identity<Value>, Pred,
- Hash, Internal::mod_range_hashing, Internal::default_ranged_hash,
- Internal::prime_rehash_policy,
- cache_hash_code, false, false>
- Base;
-
-public:
- typedef typename Base::size_type size_type;
- typedef typename Base::hasher hasher;
- typedef typename Base::key_equal key_equal;
- typedef typename Base::allocator_type allocator_type;
-
- explicit unordered_multiset(size_type n = 10,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& a = allocator_type())
- : Base (n,
- hf, Internal::mod_range_hashing(), Internal::default_ranged_hash(),
- eql, Internal::identity<Value>(),
- a)
- { }
-
-
- template <typename InputIterator>
- unordered_multiset(InputIterator f, InputIterator l,
- typename Base::size_type n = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& a = allocator_type())
- : Base (f, l,
- n,
- hf, Internal::mod_range_hashing(), Internal::default_ranged_hash(),
- eql, Internal::identity<Value>(),
- a)
- { }
-};
-
-template <class Value, class Hash, class Pred, class Alloc, bool cache_hash_code>
-inline void swap (unordered_set<Value, Hash, Pred, Alloc, cache_hash_code>& x,
- unordered_set<Value, Hash, Pred, Alloc, cache_hash_code>& y)
-{
- x.swap(y);
-}
+ : Base (n, hf, Internal::mod_range_hashing(),
+ Internal::default_ranged_hash(),
+ eql, Internal::identity<Value>(), a)
+ { }
+
+
+ template<typename InputIterator>
+ unordered_multiset(InputIterator f, InputIterator l,
+ typename Base::size_type n = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& a = allocator_type())
+ : Base (f, l, n, hf, Internal::mod_range_hashing(),
+ Internal::default_ranged_hash(), eql,
+ Internal::identity<Value>(), a)
+ { }
+ };
+
+ template<class Value, class Hash, class Pred, class Alloc,
+ bool cache_hash_code>
+ inline void
+ swap (unordered_set<Value, Hash, Pred, Alloc, cache_hash_code>& x,
+ unordered_set<Value, Hash, Pred, Alloc, cache_hash_code>& y)
+ { x.swap(y); }
+
+ template<class Value, class Hash, class Pred, class Alloc,
+ bool cache_hash_code>
+ inline void
+ swap(unordered_multiset<Value, Hash, Pred, Alloc, cache_hash_code>& x,
+ unordered_multiset<Value, Hash, Pred, Alloc, cache_hash_code>& y)
+ { x.swap(y); }
-template <class Value, class Hash, class Pred, class Alloc, bool cache_hash_code>
-inline void swap (unordered_multiset<Value, Hash, Pred, Alloc, cache_hash_code>& x,
- unordered_multiset<Value, Hash, Pred, Alloc, cache_hash_code>& y)
-{
- x.swap(y);
}
-
-} }
+}
#endif /* GNU_LIBSTDCXX_TR1_UNORDERED_SET_ */