diff options
author | wmi <wmi@138bc75d-0d04-0410-961f-82ee72b054a4> | 2012-11-22 22:03:11 +0000 |
---|---|---|
committer | wmi <wmi@138bc75d-0d04-0410-961f-82ee72b054a4> | 2012-11-22 22:03:11 +0000 |
commit | 9cf754572854d9d9cd43c277eb7afb12e4911358 (patch) | |
tree | f83ad11b95452b47f813e942d24914f31a50394e /libsanitizer/tsan/tsan_rtl.h | |
parent | b077695d9e39a87da6f8bc68451a9d60467e7020 (diff) | |
download | gcc-9cf754572854d9d9cd43c277eb7afb12e4911358.tar.gz |
libsanitizer/
* tsan: New directory. Import tsan runtime from llvm.
* configure.ac: Add 64 bits tsan build.
* Makefile.am: Likewise.
* configure: Regenerated.
* Makefile.in: Likewise.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@193737 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libsanitizer/tsan/tsan_rtl.h')
-rw-r--r-- | libsanitizer/tsan/tsan_rtl.h | 554 |
1 files changed, 554 insertions, 0 deletions
diff --git a/libsanitizer/tsan/tsan_rtl.h b/libsanitizer/tsan/tsan_rtl.h new file mode 100644 index 00000000000..3df229c8844 --- /dev/null +++ b/libsanitizer/tsan/tsan_rtl.h @@ -0,0 +1,554 @@ +//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is a part of ThreadSanitizer (TSan), a race detector. +// +// Main internal TSan header file. +// +// Ground rules: +// - C++ run-time should not be used (static CTORs, RTTI, exceptions, static +// function-scope locals) +// - All functions/classes/etc reside in namespace __tsan, except for those +// declared in tsan_interface.h. +// - Platform-specific files should be used instead of ifdefs (*). +// - No system headers included in header files (*). +// - Platform specific headres included only into platform-specific files (*). +// +// (*) Except when inlining is critical for performance. +//===----------------------------------------------------------------------===// + +#ifndef TSAN_RTL_H +#define TSAN_RTL_H + +#include "sanitizer_common/sanitizer_common.h" +#if __WORDSIZE == 64 +#include "sanitizer_common/sanitizer_allocator64.h" +#else +#include "sanitizer_common/sanitizer_allocator.h" +#endif +#include "tsan_clock.h" +#include "tsan_defs.h" +#include "tsan_flags.h" +#include "tsan_sync.h" +#include "tsan_trace.h" +#include "tsan_vector.h" +#include "tsan_report.h" + +namespace __tsan { + +// Descriptor of user's memory block. +struct MBlock { + Mutex mtx; + uptr size; + u32 alloc_tid; + u32 alloc_stack_id; + SyncVar *head; +}; + +#ifndef TSAN_GO +#if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW +const uptr kAllocatorSpace = 0x7d0000000000ULL; +#else +const uptr kAllocatorSpace = 0x7d0000000000ULL; +#endif +const uptr kAllocatorSize = 0x10000000000ULL; // 1T. + +typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock), + DefaultSizeClassMap> PrimaryAllocator; +typedef SizeClassAllocatorLocalCache<PrimaryAllocator::kNumClasses, + PrimaryAllocator> AllocatorCache; +typedef LargeMmapAllocator SecondaryAllocator; +typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, + SecondaryAllocator> Allocator; +Allocator *allocator(); +#endif + +void TsanCheckFailed(const char *file, int line, const char *cond, + u64 v1, u64 v2); +void TsanPrintf(const char *format, ...); + +// FastState (from most significant bit): +// unused : 1 +// tid : kTidBits +// epoch : kClkBits +// unused : - +// ignore_bit : 1 +class FastState { + public: + FastState(u64 tid, u64 epoch) { + x_ = tid << kTidShift; + x_ |= epoch << kClkShift; + DCHECK(tid == this->tid()); + DCHECK(epoch == this->epoch()); + } + + explicit FastState(u64 x) + : x_(x) { + } + + u64 raw() const { + return x_; + } + + u64 tid() const { + u64 res = x_ >> kTidShift; + return res; + } + + u64 epoch() const { + u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits); + return res; + } + + void IncrementEpoch() { + u64 old_epoch = epoch(); + x_ += 1 << kClkShift; + DCHECK_EQ(old_epoch + 1, epoch()); + (void)old_epoch; + } + + void SetIgnoreBit() { x_ |= kIgnoreBit; } + void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } + bool GetIgnoreBit() const { return x_ & kIgnoreBit; } + + private: + friend class Shadow; + static const int kTidShift = 64 - kTidBits - 1; + static const int kClkShift = kTidShift - kClkBits; + static const u64 kIgnoreBit = 1ull; + static const u64 kFreedBit = 1ull << 63; + u64 x_; +}; + +// Shadow (from most significant bit): +// freed : 1 +// tid : kTidBits +// epoch : kClkBits +// is_write : 1 +// size_log : 2 +// addr0 : 3 +class Shadow : public FastState { + public: + explicit Shadow(u64 x) : FastState(x) { } + + explicit Shadow(const FastState &s) : FastState(s.x_) { } + + void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { + DCHECK_EQ(x_ & 31, 0); + DCHECK_LE(addr0, 7); + DCHECK_LE(kAccessSizeLog, 3); + x_ |= (kAccessSizeLog << 3) | addr0; + DCHECK_EQ(kAccessSizeLog, size_log()); + DCHECK_EQ(addr0, this->addr0()); + } + + void SetWrite(unsigned kAccessIsWrite) { + DCHECK_EQ(x_ & 32, 0); + if (kAccessIsWrite) + x_ |= 32; + DCHECK_EQ(kAccessIsWrite, is_write()); + } + + bool IsZero() const { return x_ == 0; } + + static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { + u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; + DCHECK_EQ(shifted_xor == 0, s1.tid() == s2.tid()); + return shifted_xor == 0; + } + + static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { + u64 masked_xor = (s1.x_ ^ s2.x_) & 31; + return masked_xor == 0; + } + + static inline bool TwoRangesIntersect(Shadow s1, Shadow s2, + unsigned kS2AccessSize) { + bool res = false; + u64 diff = s1.addr0() - s2.addr0(); + if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT + // if (s1.addr0() + size1) > s2.addr0()) return true; + if (s1.size() > -diff) res = true; + } else { + // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; + if (kS2AccessSize > diff) res = true; + } + DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2)); + DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1)); + return res; + } + + // The idea behind the offset is as follows. + // Consider that we have 8 bool's contained within a single 8-byte block + // (mapped to a single shadow "cell"). Now consider that we write to the bools + // from a single thread (which we consider the common case). + // W/o offsetting each access will have to scan 4 shadow values at average + // to find the corresponding shadow value for the bool. + // With offsetting we start scanning shadow with the offset so that + // each access hits necessary shadow straight off (at least in an expected + // optimistic case). + // This logic works seamlessly for any layout of user data. For example, + // if user data is {int, short, char, char}, then accesses to the int are + // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses + // from a single thread won't need to scan all 8 shadow values. + unsigned ComputeSearchOffset() { + return x_ & 7; + } + u64 addr0() const { return x_ & 7; } + u64 size() const { return 1ull << size_log(); } + bool is_write() const { return x_ & 32; } + + // The idea behind the freed bit is as follows. + // When the memory is freed (or otherwise unaccessible) we write to the shadow + // values with tid/epoch related to the free and the freed bit set. + // During memory accesses processing the freed bit is considered + // as msb of tid. So any access races with shadow with freed bit set + // (it is as if write from a thread with which we never synchronized before). + // This allows us to detect accesses to freed memory w/o additional + // overheads in memory access processing and at the same time restore + // tid/epoch of free. + void MarkAsFreed() { + x_ |= kFreedBit; + } + + bool GetFreedAndReset() { + bool res = x_ & kFreedBit; + x_ &= ~kFreedBit; + return res; + } + + private: + u64 size_log() const { return (x_ >> 3) & 3; } + + static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) { + if (s1.addr0() == s2.addr0()) return true; + if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) + return true; + if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) + return true; + return false; + } +}; + +// Freed memory. +// As if 8-byte write by thread 0xff..f at epoch 0xff..f, races with everything. +const u64 kShadowFreed = 0xfffffffffffffff8ull; + +struct SignalContext; + +// This struct is stored in TLS. +struct ThreadState { + FastState fast_state; + // Synch epoch represents the threads's epoch before the last synchronization + // action. It allows to reduce number of shadow state updates. + // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, + // if we are processing write to X from the same thread at epoch=200, + // we do nothing, because both writes happen in the same 'synch epoch'. + // That is, if another memory access does not race with the former write, + // it does not race with the latter as well. + // QUESTION: can we can squeeze this into ThreadState::Fast? + // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are + // taken by epoch between synchs. + // This way we can save one load from tls. + u64 fast_synch_epoch; + // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. + // We do not distinguish beteween ignoring reads and writes + // for better performance. + int ignore_reads_and_writes; + uptr *shadow_stack_pos; + u64 *racy_shadow_addr; + u64 racy_state[2]; + Trace trace; +#ifndef TSAN_GO + // C/C++ uses embed shadow stack of fixed size. + uptr shadow_stack[kShadowStackSize]; +#else + // Go uses satellite shadow stack with dynamic size. + uptr *shadow_stack; + uptr *shadow_stack_end; +#endif + ThreadClock clock; +#ifndef TSAN_GO + AllocatorCache alloc_cache; +#endif + u64 stat[StatCnt]; + const int tid; + const int unique_id; + int in_rtl; + bool is_alive; + const uptr stk_addr; + const uptr stk_size; + const uptr tls_addr; + const uptr tls_size; + + DeadlockDetector deadlock_detector; + + bool in_signal_handler; + SignalContext *signal_ctx; + +#ifndef TSAN_GO + u32 last_sleep_stack_id; + ThreadClock last_sleep_clock; +#endif + + // Set in regions of runtime that must be signal-safe and fork-safe. + // If set, malloc must not be called. + int nomalloc; + + explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, + uptr stk_addr, uptr stk_size, + uptr tls_addr, uptr tls_size); +}; + +Context *CTX(); + +#ifndef TSAN_GO +extern THREADLOCAL char cur_thread_placeholder[]; +INLINE ThreadState *cur_thread() { + return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); +} +#endif + +enum ThreadStatus { + ThreadStatusInvalid, // Non-existent thread, data is invalid. + ThreadStatusCreated, // Created but not yet running. + ThreadStatusRunning, // The thread is currently running. + ThreadStatusFinished, // Joinable thread is finished but not yet joined. + ThreadStatusDead // Joined, but some info (trace) is still alive. +}; + +// An info about a thread that is hold for some time after its termination. +struct ThreadDeadInfo { + Trace trace; +}; + +struct ThreadContext { + const int tid; + int unique_id; // Non-rolling thread id. + uptr os_id; // pid + uptr user_id; // Some opaque user thread id (e.g. pthread_t). + ThreadState *thr; + ThreadStatus status; + bool detached; + int reuse_count; + SyncClock sync; + // Epoch at which the thread had started. + // If we see an event from the thread stamped by an older epoch, + // the event is from a dead thread that shared tid with this thread. + u64 epoch0; + u64 epoch1; + StackTrace creation_stack; + ThreadDeadInfo *dead_info; + ThreadContext *dead_next; // In dead thread list. + + explicit ThreadContext(int tid); +}; + +struct RacyStacks { + MD5Hash hash[2]; + bool operator==(const RacyStacks &other) const { + if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) + return true; + if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) + return true; + return false; + } +}; + +struct RacyAddress { + uptr addr_min; + uptr addr_max; +}; + +struct FiredSuppression { + ReportType type; + uptr pc; +}; + +struct Context { + Context(); + + bool initialized; + + SyncTab synctab; + + Mutex report_mtx; + int nreported; + int nmissed_expected; + + Mutex thread_mtx; + unsigned thread_seq; + unsigned unique_thread_seq; + int alive_threads; + int max_alive_threads; + ThreadContext *threads[kMaxTid]; + int dead_list_size; + ThreadContext* dead_list_head; + ThreadContext* dead_list_tail; + + Vector<RacyStacks> racy_stacks; + Vector<RacyAddress> racy_addresses; + Vector<FiredSuppression> fired_suppressions; + + Flags flags; + + u64 stat[StatCnt]; + u64 int_alloc_cnt[MBlockTypeCount]; + u64 int_alloc_siz[MBlockTypeCount]; +}; + +class ScopedInRtl { + public: + ScopedInRtl(); + ~ScopedInRtl(); + private: + ThreadState*thr_; + int in_rtl_; + int errno_; +}; + +class ScopedReport { + public: + explicit ScopedReport(ReportType typ); + ~ScopedReport(); + + void AddStack(const StackTrace *stack); + void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack); + void AddThread(const ThreadContext *tctx); + void AddMutex(const SyncVar *s); + void AddLocation(uptr addr, uptr size); + void AddSleep(u32 stack_id); + + const ReportDesc *GetReport() const; + + private: + Context *ctx_; + ReportDesc *rep_; + + ScopedReport(const ScopedReport&); + void operator = (const ScopedReport&); +}; + +void RestoreStack(int tid, const u64 epoch, StackTrace *stk); + +void StatAggregate(u64 *dst, u64 *src); +void StatOutput(u64 *stat); +void ALWAYS_INLINE INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { + if (kCollectStats) + thr->stat[typ] += n; +} + +void InitializeShadowMemory(); +void InitializeInterceptors(); +void InitializeDynamicAnnotations(); + +void ReportRace(ThreadState *thr); +bool OutputReport(Context *ctx, + const ScopedReport &srep, + const ReportStack *suppress_stack = 0); +bool IsFiredSuppression(Context *ctx, + const ScopedReport &srep, + const StackTrace &trace); +bool IsExpectedReport(uptr addr, uptr size); + +#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 +# define DPrintf TsanPrintf +#else +# define DPrintf(...) +#endif + +#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 +# define DPrintf2 TsanPrintf +#else +# define DPrintf2(...) +#endif + +u32 CurrentStackId(ThreadState *thr, uptr pc); +void PrintCurrentStack(ThreadState *thr, uptr pc); + +void Initialize(ThreadState *thr); +int Finalize(ThreadState *thr); + +void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, + int kAccessSizeLog, bool kAccessIsWrite); +void MemoryAccessImpl(ThreadState *thr, uptr addr, + int kAccessSizeLog, bool kAccessIsWrite, FastState fast_state, + u64 *shadow_mem, Shadow cur); +void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr); +void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr); +void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr); +void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr); +void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, + uptr size, bool is_write); +void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); +void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); +void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); +void IgnoreCtl(ThreadState *thr, bool write, bool begin); + +void FuncEntry(ThreadState *thr, uptr pc); +void FuncExit(ThreadState *thr); + +int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); +void ThreadStart(ThreadState *thr, int tid, uptr os_id); +void ThreadFinish(ThreadState *thr); +int ThreadTid(ThreadState *thr, uptr pc, uptr uid); +void ThreadJoin(ThreadState *thr, uptr pc, int tid); +void ThreadDetach(ThreadState *thr, uptr pc, int tid); +void ThreadFinalize(ThreadState *thr); +void ThreadFinalizerGoroutine(ThreadState *thr); + +void MutexCreate(ThreadState *thr, uptr pc, uptr addr, + bool rw, bool recursive, bool linker_init); +void MutexDestroy(ThreadState *thr, uptr pc, uptr addr); +void MutexLock(ThreadState *thr, uptr pc, uptr addr); +void MutexUnlock(ThreadState *thr, uptr pc, uptr addr); +void MutexReadLock(ThreadState *thr, uptr pc, uptr addr); +void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); +void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); + +void Acquire(ThreadState *thr, uptr pc, uptr addr); +void Release(ThreadState *thr, uptr pc, uptr addr); +void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); +void AfterSleep(ThreadState *thr, uptr pc); + +// The hacky call uses custom calling convention and an assembly thunk. +// It is considerably faster that a normal call for the caller +// if it is not executed (it is intended for slow paths from hot functions). +// The trick is that the call preserves all registers and the compiler +// does not treat it as a call. +// If it does not work for you, use normal call. +#if TSAN_DEBUG == 0 +// The caller may not create the stack frame for itself at all, +// so we create a reserve stack frame for it (1024b must be enough). +#define HACKY_CALL(f) \ + __asm__ __volatile__("sub $1024, %%rsp;" \ + "/*.cfi_adjust_cfa_offset 1024;*/" \ + "call " #f "_thunk;" \ + "add $1024, %%rsp;" \ + "/*.cfi_adjust_cfa_offset -1024;*/" \ + ::: "memory", "cc"); +#else +#define HACKY_CALL(f) f() +#endif + +void TraceSwitch(ThreadState *thr); + +extern "C" void __tsan_trace_switch(); +void ALWAYS_INLINE INLINE TraceAddEvent(ThreadState *thr, u64 epoch, + EventType typ, uptr addr) { + StatInc(thr, StatEvents); + if (UNLIKELY((epoch % kTracePartSize) == 0)) { + TraceSwitch(thr); + } + Event *evp = &thr->trace.events[epoch % kTraceSize]; + Event ev = (u64)addr | ((u64)typ << 61); + *evp = ev; +} + +} // namespace __tsan + +#endif // TSAN_RTL_H |