summaryrefslogtreecommitdiff
path: root/libgo/go/math
diff options
context:
space:
mode:
authorian <ian@138bc75d-0d04-0410-961f-82ee72b054a4>2012-10-23 04:31:11 +0000
committerian <ian@138bc75d-0d04-0410-961f-82ee72b054a4>2012-10-23 04:31:11 +0000
commitfb08d0057f91d420b6f48c112264fc87dc91b532 (patch)
tree46bb86f514fbf6bad82da48e69a18fb09d878834 /libgo/go/math
parentf507227a181bb31fa87d23a082485f99f3ef9183 (diff)
downloadgcc-fb08d0057f91d420b6f48c112264fc87dc91b532.tar.gz
libgo: Update to current sources.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@192704 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libgo/go/math')
-rw-r--r--libgo/go/math/acosh.go2
-rw-r--r--libgo/go/math/all_test.go4
-rw-r--r--libgo/go/math/asinh.go2
-rw-r--r--libgo/go/math/atan.go99
-rw-r--r--libgo/go/math/atanh.go2
-rw-r--r--libgo/go/math/big/arith_test.go86
-rw-r--r--libgo/go/math/big/calibrate_test.go42
-rw-r--r--libgo/go/math/big/gcd_test.go47
-rw-r--r--libgo/go/math/big/int.go91
-rw-r--r--libgo/go/math/big/int_test.go148
-rw-r--r--libgo/go/math/big/nat.go167
-rw-r--r--libgo/go/math/big/nat_test.go92
-rw-r--r--libgo/go/math/big/rat.go118
-rw-r--r--libgo/go/math/big/rat_test.go90
-rw-r--r--libgo/go/math/cbrt.go2
-rw-r--r--libgo/go/math/copysign.go2
-rw-r--r--libgo/go/math/erf.go4
-rw-r--r--libgo/go/math/gamma.go27
-rw-r--r--libgo/go/math/hypot.go2
-rw-r--r--libgo/go/math/logb.go4
-rw-r--r--libgo/go/math/rand/rand_test.go13
-rw-r--r--libgo/go/math/sincos.go2
-rw-r--r--libgo/go/math/tanh.go89
23 files changed, 815 insertions, 320 deletions
diff --git a/libgo/go/math/acosh.go b/libgo/go/math/acosh.go
index c6c8645e1ae..e394008b078 100644
--- a/libgo/go/math/acosh.go
+++ b/libgo/go/math/acosh.go
@@ -33,7 +33,7 @@ package math
// acosh(NaN) is NaN without signal.
//
-// Acosh(x) calculates the inverse hyperbolic cosine of x.
+// Acosh returns the inverse hyperbolic cosine of x.
//
// Special cases are:
// Acosh(+Inf) = +Inf
diff --git a/libgo/go/math/all_test.go b/libgo/go/math/all_test.go
index 35c33ce3859..cdea8035f9a 100644
--- a/libgo/go/math/all_test.go
+++ b/libgo/go/math/all_test.go
@@ -1128,11 +1128,11 @@ var vfgammaSC = []float64{
NaN(),
}
var gammaSC = []float64{
+ NaN(),
+ NaN(),
Inf(-1),
Inf(1),
Inf(1),
- Inf(1),
- Inf(1),
NaN(),
}
diff --git a/libgo/go/math/asinh.go b/libgo/go/math/asinh.go
index 0defbb9bef2..ff2de0215f5 100644
--- a/libgo/go/math/asinh.go
+++ b/libgo/go/math/asinh.go
@@ -30,7 +30,7 @@ package math
// := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2)))
//
-// Asinh(x) calculates the inverse hyperbolic sine of x.
+// Asinh returns the inverse hyperbolic sine of x.
//
// Special cases are:
// Asinh(±0) = ±0
diff --git a/libgo/go/math/atan.go b/libgo/go/math/atan.go
index b739721e81c..986ba068661 100644
--- a/libgo/go/math/atan.go
+++ b/libgo/go/math/atan.go
@@ -6,44 +6,85 @@ package math
/*
Floating-point arctangent.
-
- Atan returns the value of the arctangent of its
- argument in the range [-pi/2,pi/2].
- There are no error returns.
- Coefficients are #5077 from Hart & Cheney. (19.56D)
*/
-// xatan evaluates a series valid in the
-// range [-0.414...,+0.414...]. (tan(pi/8))
-func xatan(arg float64) float64 {
+// The original C code, the long comment, and the constants below were
+// from http://netlib.sandia.gov/cephes/cmath/atan.c, available from
+// http://www.netlib.org/cephes/cmath.tgz.
+// The go code is a version of the original C.
+//
+// atan.c
+// Inverse circular tangent (arctangent)
+//
+// SYNOPSIS:
+// double x, y, atan();
+// y = atan( x );
+//
+// DESCRIPTION:
+// Returns radian angle between -pi/2 and +pi/2 whose tangent is x.
+//
+// Range reduction is from three intervals into the interval from zero to 0.66.
+// The approximant uses a rational function of degree 4/5 of the form
+// x + x**3 P(x)/Q(x).
+//
+// ACCURACY:
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -10, 10 50000 2.4e-17 8.3e-18
+// IEEE -10, 10 10^6 1.8e-16 5.0e-17
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+// Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+// The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+// Stephen L. Moshier
+// moshier@na-net.ornl.gov
+
+// xatan evaluates a series valid in the range [0, 0.66].
+func xatan(x float64) float64 {
const (
- P4 = .161536412982230228262e2
- P3 = .26842548195503973794141e3
- P2 = .11530293515404850115428136e4
- P1 = .178040631643319697105464587e4
- P0 = .89678597403663861959987488e3
- Q4 = .5895697050844462222791e2
- Q3 = .536265374031215315104235e3
- Q2 = .16667838148816337184521798e4
- Q1 = .207933497444540981287275926e4
- Q0 = .89678597403663861962481162e3
+ P0 = -8.750608600031904122785e-01
+ P1 = -1.615753718733365076637e+01
+ P2 = -7.500855792314704667340e+01
+ P3 = -1.228866684490136173410e+02
+ P4 = -6.485021904942025371773e+01
+ Q0 = +2.485846490142306297962e+01
+ Q1 = +1.650270098316988542046e+02
+ Q2 = +4.328810604912902668951e+02
+ Q3 = +4.853903996359136964868e+02
+ Q4 = +1.945506571482613964425e+02
)
- sq := arg * arg
- value := ((((P4*sq+P3)*sq+P2)*sq+P1)*sq + P0)
- value = value / (((((sq+Q4)*sq+Q3)*sq+Q2)*sq+Q1)*sq + Q0)
- return value * arg
+ z := x * x
+ z = z * ((((P0*z+P1)*z+P2)*z+P3)*z + P4) / (((((z+Q0)*z+Q1)*z+Q2)*z+Q3)*z + Q4)
+ z = x*z + x
+ return z
}
// satan reduces its argument (known to be positive)
-// to the range [0,0.414...] and calls xatan.
-func satan(arg float64) float64 {
- if arg < Sqrt2-1 {
- return xatan(arg)
+// to the range [0, 0.66] and calls xatan.
+func satan(x float64) float64 {
+ const (
+ Morebits = 6.123233995736765886130e-17 // pi/2 = PIO2 + Morebits
+ Tan3pio8 = 2.41421356237309504880 // tan(3*pi/8)
+ )
+ if x <= 0.66 {
+ return xatan(x)
}
- if arg > Sqrt2+1 {
- return Pi/2 - xatan(1/arg)
+ if x > Tan3pio8 {
+ return Pi/2 - xatan(1/x) + Morebits
}
- return Pi/4 + xatan((arg-1)/(arg+1))
+ return Pi/4 + xatan((x-1)/(x+1)) + 0.5*Morebits
}
// Atan returns the arctangent of x.
diff --git a/libgo/go/math/atanh.go b/libgo/go/math/atanh.go
index 5b5d468559b..113d5c103c0 100644
--- a/libgo/go/math/atanh.go
+++ b/libgo/go/math/atanh.go
@@ -36,7 +36,7 @@ package math
// atanh(+-1) is +-INF with signal.
//
-// Atanh(x) calculates the inverse hyperbolic tangent of x.
+// Atanh returns the inverse hyperbolic tangent of x.
//
// Special cases are:
// Atanh(1) = +Inf
diff --git a/libgo/go/math/big/arith_test.go b/libgo/go/math/big/arith_test.go
index c7e3d284c2d..3615a659c3b 100644
--- a/libgo/go/math/big/arith_test.go
+++ b/libgo/go/math/big/arith_test.go
@@ -4,7 +4,10 @@
package big
-import "testing"
+import (
+ "math/rand"
+ "testing"
+)
type funWW func(x, y, c Word) (z1, z0 Word)
type argWW struct {
@@ -100,6 +103,43 @@ func TestFunVV(t *testing.T) {
}
}
+// Always the same seed for reproducible results.
+var rnd = rand.New(rand.NewSource(0))
+
+func rndW() Word {
+ return Word(rnd.Int63()<<1 | rnd.Int63n(2))
+}
+
+func rndV(n int) []Word {
+ v := make([]Word, n)
+ for i := range v {
+ v[i] = rndW()
+ }
+ return v
+}
+
+func benchmarkFunVV(b *testing.B, f funVV, n int) {
+ x := rndV(n)
+ y := rndV(n)
+ z := make([]Word, n)
+ b.SetBytes(int64(n * _W))
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ f(z, x, y)
+ }
+}
+
+func BenchmarkAddVV_1(b *testing.B) { benchmarkFunVV(b, addVV, 1) }
+func BenchmarkAddVV_2(b *testing.B) { benchmarkFunVV(b, addVV, 2) }
+func BenchmarkAddVV_3(b *testing.B) { benchmarkFunVV(b, addVV, 3) }
+func BenchmarkAddVV_4(b *testing.B) { benchmarkFunVV(b, addVV, 4) }
+func BenchmarkAddVV_5(b *testing.B) { benchmarkFunVV(b, addVV, 5) }
+func BenchmarkAddVV_1e1(b *testing.B) { benchmarkFunVV(b, addVV, 1e1) }
+func BenchmarkAddVV_1e2(b *testing.B) { benchmarkFunVV(b, addVV, 1e2) }
+func BenchmarkAddVV_1e3(b *testing.B) { benchmarkFunVV(b, addVV, 1e3) }
+func BenchmarkAddVV_1e4(b *testing.B) { benchmarkFunVV(b, addVV, 1e4) }
+func BenchmarkAddVV_1e5(b *testing.B) { benchmarkFunVV(b, addVV, 1e5) }
+
type funVW func(z, x []Word, y Word) (c Word)
type argVW struct {
z, x nat
@@ -210,6 +250,28 @@ func TestFunVW(t *testing.T) {
}
}
+func benchmarkFunVW(b *testing.B, f funVW, n int) {
+ x := rndV(n)
+ y := rndW()
+ z := make([]Word, n)
+ b.SetBytes(int64(n * _W))
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ f(z, x, y)
+ }
+}
+
+func BenchmarkAddVW_1(b *testing.B) { benchmarkFunVW(b, addVW, 1) }
+func BenchmarkAddVW_2(b *testing.B) { benchmarkFunVW(b, addVW, 2) }
+func BenchmarkAddVW_3(b *testing.B) { benchmarkFunVW(b, addVW, 3) }
+func BenchmarkAddVW_4(b *testing.B) { benchmarkFunVW(b, addVW, 4) }
+func BenchmarkAddVW_5(b *testing.B) { benchmarkFunVW(b, addVW, 5) }
+func BenchmarkAddVW_1e1(b *testing.B) { benchmarkFunVW(b, addVW, 1e1) }
+func BenchmarkAddVW_1e2(b *testing.B) { benchmarkFunVW(b, addVW, 1e2) }
+func BenchmarkAddVW_1e3(b *testing.B) { benchmarkFunVW(b, addVW, 1e3) }
+func BenchmarkAddVW_1e4(b *testing.B) { benchmarkFunVW(b, addVW, 1e4) }
+func BenchmarkAddVW_1e5(b *testing.B) { benchmarkFunVW(b, addVW, 1e5) }
+
type funVWW func(z, x []Word, y, r Word) (c Word)
type argVWW struct {
z, x nat
@@ -334,6 +396,28 @@ func TestMulAddWWW(t *testing.T) {
}
}
+func benchmarkAddMulVVW(b *testing.B, n int) {
+ x := rndV(n)
+ y := rndW()
+ z := make([]Word, n)
+ b.SetBytes(int64(n * _W))
+ b.ResetTimer()
+ for i := 0; i < b.N; i++ {
+ addMulVVW(z, x, y)
+ }
+}
+
+func BenchmarkAddMulVVW_1(b *testing.B) { benchmarkAddMulVVW(b, 1) }
+func BenchmarkAddMulVVW_2(b *testing.B) { benchmarkAddMulVVW(b, 2) }
+func BenchmarkAddMulVVW_3(b *testing.B) { benchmarkAddMulVVW(b, 3) }
+func BenchmarkAddMulVVW_4(b *testing.B) { benchmarkAddMulVVW(b, 4) }
+func BenchmarkAddMulVVW_5(b *testing.B) { benchmarkAddMulVVW(b, 5) }
+func BenchmarkAddMulVVW_1e1(b *testing.B) { benchmarkAddMulVVW(b, 1e1) }
+func BenchmarkAddMulVVW_1e2(b *testing.B) { benchmarkAddMulVVW(b, 1e2) }
+func BenchmarkAddMulVVW_1e3(b *testing.B) { benchmarkAddMulVVW(b, 1e3) }
+func BenchmarkAddMulVVW_1e4(b *testing.B) { benchmarkAddMulVVW(b, 1e4) }
+func BenchmarkAddMulVVW_1e5(b *testing.B) { benchmarkAddMulVVW(b, 1e5) }
+
func testWordBitLen(t *testing.T, fname string, f func(Word) int) {
for i := 0; i <= _W; i++ {
x := Word(1) << uint(i-1) // i == 0 => x == 0
diff --git a/libgo/go/math/big/calibrate_test.go b/libgo/go/math/big/calibrate_test.go
index efe1837bba3..f69ffbf5cf1 100644
--- a/libgo/go/math/big/calibrate_test.go
+++ b/libgo/go/math/big/calibrate_test.go
@@ -21,15 +21,17 @@ import (
var calibrate = flag.Bool("calibrate", false, "run calibration test")
-// measure returns the time to run f
-func measure(f func()) time.Duration {
- const N = 100
- start := time.Now()
- for i := N; i > 0; i-- {
- f()
- }
- stop := time.Now()
- return stop.Sub(start) / N
+func karatsubaLoad(b *testing.B) {
+ BenchmarkMul(b)
+}
+
+// measureKaratsuba returns the time to run a Karatsuba-relevant benchmark
+// given Karatsuba threshold th.
+func measureKaratsuba(th int) time.Duration {
+ th, karatsubaThreshold = karatsubaThreshold, th
+ res := testing.Benchmark(karatsubaLoad)
+ karatsubaThreshold = th
+ return time.Duration(res.NsPerOp())
}
func computeThresholds() {
@@ -37,35 +39,33 @@ func computeThresholds() {
fmt.Printf("(run repeatedly for good results)\n")
// determine Tk, the work load execution time using basic multiplication
- karatsubaThreshold = 1e9 // disable karatsuba
- Tb := measure(benchmarkMulLoad)
- fmt.Printf("Tb = %dns\n", Tb)
+ Tb := measureKaratsuba(1e9) // th == 1e9 => Karatsuba multiplication disabled
+ fmt.Printf("Tb = %10s\n", Tb)
// thresholds
- n := 8 // any lower values for the threshold lead to very slow multiplies
+ th := 4
th1 := -1
th2 := -1
var deltaOld time.Duration
- for count := -1; count != 0; count-- {
+ for count := -1; count != 0 && th < 128; count-- {
// determine Tk, the work load execution time using Karatsuba multiplication
- karatsubaThreshold = n // enable karatsuba
- Tk := measure(benchmarkMulLoad)
+ Tk := measureKaratsuba(th)
// improvement over Tb
delta := (Tb - Tk) * 100 / Tb
- fmt.Printf("n = %3d Tk = %8dns %4d%%", n, Tk, delta)
+ fmt.Printf("th = %3d Tk = %10s %4d%%", th, Tk, delta)
// determine break-even point
if Tk < Tb && th1 < 0 {
- th1 = n
+ th1 = th
fmt.Print(" break-even point")
}
// determine diminishing return
if 0 < delta && delta < deltaOld && th2 < 0 {
- th2 = n
+ th2 = th
fmt.Print(" diminishing return")
}
deltaOld = delta
@@ -74,10 +74,10 @@ func computeThresholds() {
// trigger counter
if th1 >= 0 && th2 >= 0 && count < 0 {
- count = 20 // this many extra measurements after we got both thresholds
+ count = 10 // this many extra measurements after we got both thresholds
}
- n++
+ th++
}
}
diff --git a/libgo/go/math/big/gcd_test.go b/libgo/go/math/big/gcd_test.go
new file mode 100644
index 00000000000..c0b9f583000
--- /dev/null
+++ b/libgo/go/math/big/gcd_test.go
@@ -0,0 +1,47 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements a GCD benchmark.
+// Usage: go test math/big -test.bench GCD
+
+package big
+
+import (
+ "math/rand"
+ "testing"
+)
+
+// randInt returns a pseudo-random Int in the range [1<<(size-1), (1<<size) - 1]
+func randInt(r *rand.Rand, size uint) *Int {
+ n := new(Int).Lsh(intOne, size-1)
+ x := new(Int).Rand(r, n)
+ return x.Add(x, n) // make sure result > 1<<(size-1)
+}
+
+func runGCD(b *testing.B, aSize, bSize uint) {
+ b.StopTimer()
+ var r = rand.New(rand.NewSource(1234))
+ aa := randInt(r, aSize)
+ bb := randInt(r, bSize)
+ b.StartTimer()
+ for i := 0; i < b.N; i++ {
+ new(Int).GCD(nil, nil, aa, bb)
+ }
+}
+
+func BenchmarkGCD10x10(b *testing.B) { runGCD(b, 10, 10) }
+func BenchmarkGCD10x100(b *testing.B) { runGCD(b, 10, 100) }
+func BenchmarkGCD10x1000(b *testing.B) { runGCD(b, 10, 1000) }
+func BenchmarkGCD10x10000(b *testing.B) { runGCD(b, 10, 10000) }
+func BenchmarkGCD10x100000(b *testing.B) { runGCD(b, 10, 100000) }
+func BenchmarkGCD100x100(b *testing.B) { runGCD(b, 100, 100) }
+func BenchmarkGCD100x1000(b *testing.B) { runGCD(b, 100, 1000) }
+func BenchmarkGCD100x10000(b *testing.B) { runGCD(b, 100, 10000) }
+func BenchmarkGCD100x100000(b *testing.B) { runGCD(b, 100, 100000) }
+func BenchmarkGCD1000x1000(b *testing.B) { runGCD(b, 1000, 1000) }
+func BenchmarkGCD1000x10000(b *testing.B) { runGCD(b, 1000, 10000) }
+func BenchmarkGCD1000x100000(b *testing.B) { runGCD(b, 1000, 100000) }
+func BenchmarkGCD10000x10000(b *testing.B) { runGCD(b, 10000, 10000) }
+func BenchmarkGCD10000x100000(b *testing.B) { runGCD(b, 10000, 100000) }
+func BenchmarkGCD100000x100000(b *testing.B) { runGCD(b, 100000, 100000) }
diff --git a/libgo/go/math/big/int.go b/libgo/go/math/big/int.go
index cd2cd0e2da0..4bd7958ae50 100644
--- a/libgo/go/math/big/int.go
+++ b/libgo/go/math/big/int.go
@@ -581,12 +581,12 @@ func (z *Int) Exp(x, y, m *Int) *Int {
return z
}
-// GCD sets z to the greatest common divisor of a and b, which must be
-// positive numbers, and returns z.
+// GCD sets z to the greatest common divisor of a and b, which both must
+// be > 0, and returns z.
// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
-// If either a or b is not positive, GCD sets z = x = y = 0.
+// If either a or b is <= 0, GCD sets z = x = y = 0.
func (z *Int) GCD(x, y, a, b *Int) *Int {
- if a.neg || b.neg {
+ if a.Sign() <= 0 || b.Sign() <= 0 {
z.SetInt64(0)
if x != nil {
x.SetInt64(0)
@@ -596,6 +596,9 @@ func (z *Int) GCD(x, y, a, b *Int) *Int {
}
return z
}
+ if x == nil && y == nil {
+ return z.binaryGCD(a, b)
+ }
A := new(Int).Set(a)
B := new(Int).Set(b)
@@ -640,6 +643,63 @@ func (z *Int) GCD(x, y, a, b *Int) *Int {
return z
}
+// binaryGCD sets z to the greatest common divisor of a and b, which both must
+// be > 0, and returns z.
+// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
+func (z *Int) binaryGCD(a, b *Int) *Int {
+ u := z
+ v := new(Int)
+
+ // use one Euclidean iteration to ensure that u and v are approx. the same size
+ switch {
+ case len(a.abs) > len(b.abs):
+ u.Set(b)
+ v.Rem(a, b)
+ case len(a.abs) < len(b.abs):
+ u.Set(a)
+ v.Rem(b, a)
+ default:
+ u.Set(a)
+ v.Set(b)
+ }
+
+ // v might be 0 now
+ if len(v.abs) == 0 {
+ return u
+ }
+ // u > 0 && v > 0
+
+ // determine largest k such that u = u' << k, v = v' << k
+ k := u.abs.trailingZeroBits()
+ if vk := v.abs.trailingZeroBits(); vk < k {
+ k = vk
+ }
+ u.Rsh(u, k)
+ v.Rsh(v, k)
+
+ // determine t (we know that u > 0)
+ t := new(Int)
+ if u.abs[0]&1 != 0 {
+ // u is odd
+ t.Neg(v)
+ } else {
+ t.Set(u)
+ }
+
+ for len(t.abs) > 0 {
+ // reduce t
+ t.Rsh(t, t.abs.trailingZeroBits())
+ if t.neg {
+ v.Neg(t)
+ } else {
+ u.Set(t)
+ }
+ t.Sub(u, v)
+ }
+
+ return u.Lsh(u, k)
+}
+
// ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
// If it returns true, x is prime with probability 1 - 1/4^n.
// If it returns false, x is not prime.
@@ -697,6 +757,13 @@ func (z *Int) Rsh(x *Int, n uint) *Int {
// Bit returns the value of the i'th bit of x. That is, it
// returns (x>>i)&1. The bit index i must be >= 0.
func (x *Int) Bit(i int) uint {
+ if i == 0 {
+ // optimization for common case: odd/even test of x
+ if len(x.abs) > 0 {
+ return uint(x.abs[0] & 1) // bit 0 is same for -x
+ }
+ return 0
+ }
if i < 0 {
panic("negative bit index")
}
@@ -894,3 +961,19 @@ func (z *Int) GobDecode(buf []byte) error {
z.abs = z.abs.setBytes(buf[1:])
return nil
}
+
+// MarshalJSON implements the json.Marshaler interface.
+func (x *Int) MarshalJSON() ([]byte, error) {
+ // TODO(gri): get rid of the []byte/string conversions
+ return []byte(x.String()), nil
+}
+
+// UnmarshalJSON implements the json.Unmarshaler interface.
+func (z *Int) UnmarshalJSON(x []byte) error {
+ // TODO(gri): get rid of the []byte/string conversions
+ _, ok := z.SetString(string(x), 0)
+ if !ok {
+ return fmt.Errorf("math/big: cannot unmarshal %s into a *big.Int", x)
+ }
+ return nil
+}
diff --git a/libgo/go/math/big/int_test.go b/libgo/go/math/big/int_test.go
index 9700a9b5a7c..27834cec6af 100644
--- a/libgo/go/math/big/int_test.go
+++ b/libgo/go/math/big/int_test.go
@@ -8,6 +8,7 @@ import (
"bytes"
"encoding/gob"
"encoding/hex"
+ "encoding/json"
"fmt"
"math/rand"
"testing"
@@ -817,14 +818,12 @@ func TestExp(t *testing.T) {
}
func checkGcd(aBytes, bBytes []byte) bool {
- a := new(Int).SetBytes(aBytes)
- b := new(Int).SetBytes(bBytes)
-
x := new(Int)
y := new(Int)
- d := new(Int)
+ a := new(Int).SetBytes(aBytes)
+ b := new(Int).SetBytes(bBytes)
- d.GCD(x, y, a, b)
+ d := new(Int).GCD(x, y, a, b)
x.Mul(x, a)
y.Mul(y, b)
x.Add(x, y)
@@ -833,32 +832,70 @@ func checkGcd(aBytes, bBytes []byte) bool {
}
var gcdTests = []struct {
- a, b int64
- d, x, y int64
+ d, x, y, a, b string
}{
- {120, 23, 1, -9, 47},
-}
-
-func TestGcd(t *testing.T) {
- for i, test := range gcdTests {
- a := NewInt(test.a)
- b := NewInt(test.b)
+ // a <= 0 || b <= 0
+ {"0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "7"},
+ {"0", "0", "0", "11", "0"},
+ {"0", "0", "0", "-77", "35"},
+ {"0", "0", "0", "64515", "-24310"},
+ {"0", "0", "0", "-64515", "-24310"},
+
+ {"1", "-9", "47", "120", "23"},
+ {"7", "1", "-2", "77", "35"},
+ {"935", "-3", "8", "64515", "24310"},
+ {"935000000000000000", "-3", "8", "64515000000000000000", "24310000000000000000"},
+ {"1", "-221", "22059940471369027483332068679400581064239780177629666810348940098015901108344", "98920366548084643601728869055592650835572950932266967461790948584315647051443", "991"},
+
+ // test early exit (after one Euclidean iteration) in binaryGCD
+ {"1", "", "", "1", "98920366548084643601728869055592650835572950932266967461790948584315647051443"},
+}
+
+func testGcd(t *testing.T, d, x, y, a, b *Int) {
+ var X *Int
+ if x != nil {
+ X = new(Int)
+ }
+ var Y *Int
+ if y != nil {
+ Y = new(Int)
+ }
- x := new(Int)
- y := new(Int)
- d := new(Int)
+ D := new(Int).GCD(X, Y, a, b)
+ if D.Cmp(d) != 0 {
+ t.Errorf("GCD(%s, %s): got d = %s, want %s", a, b, D, d)
+ }
+ if x != nil && X.Cmp(x) != 0 {
+ t.Errorf("GCD(%s, %s): got x = %s, want %s", a, b, X, x)
+ }
+ if y != nil && Y.Cmp(y) != 0 {
+ t.Errorf("GCD(%s, %s): got y = %s, want %s", a, b, Y, y)
+ }
- expectedX := NewInt(test.x)
- expectedY := NewInt(test.y)
- expectedD := NewInt(test.d)
+ // binaryGCD requires a > 0 && b > 0
+ if a.Sign() <= 0 || b.Sign() <= 0 {
+ return
+ }
- d.GCD(x, y, a, b)
+ D.binaryGCD(a, b)
+ if D.Cmp(d) != 0 {
+ t.Errorf("binaryGcd(%s, %s): got d = %s, want %s", a, b, D, d)
+ }
+}
- if expectedX.Cmp(x) != 0 ||
- expectedY.Cmp(y) != 0 ||
- expectedD.Cmp(d) != 0 {
- t.Errorf("#%d got (%s %s %s) want (%s %s %s)", i, x, y, d, expectedX, expectedY, expectedD)
- }
+func TestGcd(t *testing.T) {
+ for _, test := range gcdTests {
+ d, _ := new(Int).SetString(test.d, 0)
+ x, _ := new(Int).SetString(test.x, 0)
+ y, _ := new(Int).SetString(test.y, 0)
+ a, _ := new(Int).SetString(test.a, 0)
+ b, _ := new(Int).SetString(test.b, 0)
+
+ testGcd(t, d, nil, nil, a, b)
+ testGcd(t, d, x, nil, a, b)
+ testGcd(t, d, nil, y, a, b)
+ testGcd(t, d, x, y, a, b)
}
quick.Check(checkGcd, nil)
@@ -1368,8 +1405,12 @@ func TestModInverse(t *testing.T) {
}
}
-// used by TestIntGobEncoding and TestRatGobEncoding
-var gobEncodingTests = []string{
+var encodingTests = []string{
+ "-539345864568634858364538753846587364875430589374589",
+ "-678645873",
+ "-100",
+ "-2",
+ "-1",
"0",
"1",
"2",
@@ -1383,26 +1424,37 @@ func TestIntGobEncoding(t *testing.T) {
var medium bytes.Buffer
enc := gob.NewEncoder(&medium)
dec := gob.NewDecoder(&medium)
- for i, test := range gobEncodingTests {
- for j := 0; j < 2; j++ {
- medium.Reset() // empty buffer for each test case (in case of failures)
- stest := test
- if j != 0 {
- // negative numbers
- stest = "-" + test
- }
- var tx Int
- tx.SetString(stest, 10)
- if err := enc.Encode(&tx); err != nil {
- t.Errorf("#%d%c: encoding failed: %s", i, 'a'+j, err)
- }
- var rx Int
- if err := dec.Decode(&rx); err != nil {
- t.Errorf("#%d%c: decoding failed: %s", i, 'a'+j, err)
- }
- if rx.Cmp(&tx) != 0 {
- t.Errorf("#%d%c: transmission failed: got %s want %s", i, 'a'+j, &rx, &tx)
- }
+ for _, test := range encodingTests {
+ medium.Reset() // empty buffer for each test case (in case of failures)
+ var tx Int
+ tx.SetString(test, 10)
+ if err := enc.Encode(&tx); err != nil {
+ t.Errorf("encoding of %s failed: %s", &tx, err)
+ }
+ var rx Int
+ if err := dec.Decode(&rx); err != nil {
+ t.Errorf("decoding of %s failed: %s", &tx, err)
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("transmission of %s failed: got %s want %s", &tx, &rx, &tx)
+ }
+ }
+}
+
+func TestIntJSONEncoding(t *testing.T) {
+ for _, test := range encodingTests {
+ var tx Int
+ tx.SetString(test, 10)
+ b, err := json.Marshal(&tx)
+ if err != nil {
+ t.Errorf("marshaling of %s failed: %s", &tx, err)
+ }
+ var rx Int
+ if err := json.Unmarshal(b, &rx); err != nil {
+ t.Errorf("unmarshaling of %s failed: %s", &tx, err)
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("JSON encoding of %s failed: got %s want %s", &tx, &rx, &tx)
}
}
}
diff --git a/libgo/go/math/big/nat.go b/libgo/go/math/big/nat.go
index 6d81823bb4a..2d5a5c9587d 100644
--- a/libgo/go/math/big/nat.go
+++ b/libgo/go/math/big/nat.go
@@ -236,7 +236,7 @@ func karatsubaSub(z, x nat, n int) {
// Operands that are shorter than karatsubaThreshold are multiplied using
// "grade school" multiplication; for longer operands the Karatsuba algorithm
// is used.
-var karatsubaThreshold int = 32 // computed by calibrate.go
+var karatsubaThreshold int = 40 // computed by calibrate.go
// karatsuba multiplies x and y and leaves the result in z.
// Both x and y must have the same length n and n must be a
@@ -342,7 +342,7 @@ func alias(x, y nat) bool {
return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
}
-// addAt implements z += x*(1<<(_W*i)); z must be long enough.
+// addAt implements z += x<<(_W*i); z must be long enough.
// (we don't use nat.add because we need z to stay the same
// slice, and we don't need to normalize z after each addition)
func addAt(z, x nat, i int) {
@@ -405,8 +405,8 @@ func (z nat) mul(x, y nat) nat {
// determine Karatsuba length k such that
//
- // x = x1*b + x0
- // y = y1*b + y0 (and k <= len(y), which implies k <= len(x))
+ // x = xh*b + x0 (0 <= x0 < b)
+ // y = yh*b + y0 (0 <= y0 < b)
// b = 1<<(_W*k) ("base" of digits xi, yi)
//
k := karatsubaLen(n)
@@ -417,27 +417,44 @@ func (z nat) mul(x, y nat) nat {
y0 := y[0:k] // y0 is not normalized
z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
karatsuba(z, x0, y0)
- z = z[0 : m+n] // z has final length but may be incomplete, upper portion is garbage
-
- // If x1 and/or y1 are not 0, add missing terms to z explicitly:
- //
- // m+n 2*k 0
- // z = [ ... | x0*y0 ]
- // + [ x1*y1 ]
- // + [ x1*y0 ]
- // + [ x0*y1 ]
+ z = z[0 : m+n] // z has final length but may be incomplete
+ z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
+
+ // If xh != 0 or yh != 0, add the missing terms to z. For
+ //
+ // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
+ // yh = y1*b (0 <= y1 < b)
+ //
+ // the missing terms are
+ //
+ // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
+ //
+ // since all the yi for i > 1 are 0 by choice of k: If any of them
+ // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
+ // be a larger valid threshold contradicting the assumption about k.
//
if k < n || m != n {
- x1 := x[k:] // x1 is normalized because x is
- y1 := y[k:] // y1 is normalized because y is
var t nat
- t = t.mul(x1, y1)
- copy(z[2*k:], t)
- z[2*k+len(t):].clear() // upper portion of z is garbage
- t = t.mul(x1, y0.norm())
- addAt(z, t, k)
- t = t.mul(x0.norm(), y1)
+
+ // add x0*y1*b
+ x0 := x0.norm()
+ y1 := y[k:] // y1 is normalized because y is
+ t = t.mul(x0, y1) // update t so we don't lose t's underlying array
addAt(z, t, k)
+
+ // add xi*y0<<i, xi*y1*b<<(i+k)
+ y0 := y0.norm()
+ for i := k; i < len(x); i += k {
+ xi := x[i:]
+ if len(xi) > k {
+ xi = xi[:k]
+ }
+ xi = xi.norm()
+ t = t.mul(xi, y0)
+ addAt(z, t, i)
+ t = t.mul(xi, y1)
+ addAt(z, t, i+k)
+ }
}
return z.norm()
@@ -493,14 +510,9 @@ func (z nat) div(z2, u, v nat) (q, r nat) {
}
if len(v) == 1 {
- var rprime Word
- q, rprime = z.divW(u, v[0])
- if rprime > 0 {
- r = z2.make(1)
- r[0] = rprime
- } else {
- r = z2.make(0)
- }
+ var r2 Word
+ q, r2 = z.divW(u, v[0])
+ r = z2.setWord(r2)
return
}
@@ -740,7 +752,7 @@ func (x nat) string(charset string) string {
// convert power of two and non power of two bases separately
if b == b&-b {
// shift is base-b digit size in bits
- shift := uint(trailingZeroBits(b)) // shift > 0 because b >= 2
+ shift := trailingZeroBits(b) // shift > 0 because b >= 2
mask := Word(1)<<shift - 1
w := x[0]
nbits := uint(_W) // number of unprocessed bits in w
@@ -993,10 +1005,9 @@ var deBruijn64Lookup = []byte{
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
-// trailingZeroBits returns the number of consecutive zero bits on the right
-// side of the given Word.
-// See Knuth, volume 4, section 7.3.1
-func trailingZeroBits(x Word) int {
+// trailingZeroBits returns the number of consecutive least significant zero
+// bits of x.
+func trailingZeroBits(x Word) uint {
// x & -x leaves only the right-most bit set in the word. Let k be the
// index of that bit. Since only a single bit is set, the value is two
// to the power of k. Multiplying by a power of two is equivalent to
@@ -1005,18 +1016,33 @@ func trailingZeroBits(x Word) int {
// Therefore, if we have a left shifted version of this constant we can
// find by how many bits it was shifted by looking at which six bit
// substring ended up at the top of the word.
+ // (Knuth, volume 4, section 7.3.1)
switch _W {
case 32:
- return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
+ return uint(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
case 64:
- return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
+ return uint(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
default:
- panic("Unknown word size")
+ panic("unknown word size")
}
return 0
}
+// trailingZeroBits returns the number of consecutive least significant zero
+// bits of x.
+func (x nat) trailingZeroBits() uint {
+ if len(x) == 0 {
+ return 0
+ }
+ var i uint
+ for x[i] == 0 {
+ i++
+ }
+ // x[i] != 0
+ return i*_W + trailingZeroBits(x[i])
+}
+
// z = x << s
func (z nat) shl(x nat, s uint) nat {
m := len(x)
@@ -1169,29 +1195,6 @@ func (x nat) modW(d Word) (r Word) {
return divWVW(q, 0, x, d)
}
-// powersOfTwoDecompose finds q and k with x = q * 1<<k and q is odd, or q and k are 0.
-func (x nat) powersOfTwoDecompose() (q nat, k int) {
- if len(x) == 0 {
- return x, 0
- }
-
- // One of the words must be non-zero by definition,
- // so this loop will terminate with i < len(x), and
- // i is the number of 0 words.
- i := 0
- for x[i] == 0 {
- i++
- }
- n := trailingZeroBits(x[i]) // x[i] != 0
-
- q = make(nat, len(x)-i)
- shrVU(q, x[i:], uint(n))
-
- q = q.norm()
- k = i*_W + n
- return
-}
-
// random creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
@@ -1207,17 +1210,19 @@ func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
mask := Word((1 << bitLengthOfMSW) - 1)
for {
- for i := range z {
- switch _W {
- case 32:
+ switch _W {
+ case 32:
+ for i := range z {
z[i] = Word(rand.Uint32())
- case 64:
+ }
+ case 64:
+ for i := range z {
z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
}
+ default:
+ panic("unknown word size")
}
-
z[len(limit)-1] &= mask
-
if z.cmp(limit) < 0 {
break
}
@@ -1230,7 +1235,7 @@ func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
// reuses the storage of z if possible.
func (z nat) expNN(x, y, m nat) nat {
if alias(z, x) || alias(z, y) {
- // We cannot allow in place modification of x or y.
+ // We cannot allow in-place modification of x or y.
z = nil
}
@@ -1259,15 +1264,21 @@ func (z nat) expNN(x, y, m nat) nat {
// we also multiply by x, thus adding one to the power.
w := _W - int(shift)
+ // zz and r are used to avoid allocating in mul and div as
+ // otherwise the arguments would alias.
+ var zz, r nat
for j := 0; j < w; j++ {
- z = z.mul(z, z)
+ zz = zz.mul(z, z)
+ zz, z = z, zz
if v&mask != 0 {
- z = z.mul(z, x)
+ zz = zz.mul(z, x)
+ zz, z = z, zz
}
if m != nil {
- q, z = q.div(z, z, m)
+ zz, r = zz.div(r, z, m)
+ zz, r, q, z = q, z, zz, r
}
v <<= 1
@@ -1277,14 +1288,17 @@ func (z nat) expNN(x, y, m nat) nat {
v = y[i]
for j := 0; j < _W; j++ {
- z = z.mul(z, z)
+ zz = zz.mul(z, z)
+ zz, z = z, zz
if v&mask != 0 {
- z = z.mul(z, x)
+ zz = zz.mul(z, x)
+ zz, z = z, zz
}
if m != nil {
- q, z = q.div(z, z, m)
+ zz, r = zz.div(r, z, m)
+ zz, r, q, z = q, z, zz, r
}
v <<= 1
@@ -1343,8 +1357,9 @@ func (n nat) probablyPrime(reps int) bool {
}
nm1 := nat(nil).sub(n, natOne)
- // 1<<k * q = nm1;
- q, k := nm1.powersOfTwoDecompose()
+ // determine q, k such that nm1 = q << k
+ k := nm1.trailingZeroBits()
+ q := nat(nil).shr(nm1, k)
nm3 := nat(nil).sub(nm1, natTwo)
rand := rand.New(rand.NewSource(int64(n[0])))
@@ -1360,7 +1375,7 @@ NextRandom:
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
continue
}
- for j := 1; j < k; j++ {
+ for j := uint(1); j < k; j++ {
y = y.mul(y, y)
quotient, y = quotient.div(y, y, n)
if y.cmp(nm1) == 0 {
diff --git a/libgo/go/math/big/nat_test.go b/libgo/go/math/big/nat_test.go
index becde5d1719..68dd1a96d3c 100644
--- a/libgo/go/math/big/nat_test.go
+++ b/libgo/go/math/big/nat_test.go
@@ -6,6 +6,7 @@ package big
import (
"io"
+ "runtime"
"strings"
"testing"
)
@@ -62,6 +63,36 @@ var prodNN = []argNN{
{nat{0, 0, 991 * 991}, nat{0, 991}, nat{0, 991}},
{nat{1 * 991, 2 * 991, 3 * 991, 4 * 991}, nat{1, 2, 3, 4}, nat{991}},
{nat{4, 11, 20, 30, 20, 11, 4}, nat{1, 2, 3, 4}, nat{4, 3, 2, 1}},
+ // 3^100 * 3^28 = 3^128
+ {
+ natFromString("11790184577738583171520872861412518665678211592275841109096961"),
+ natFromString("515377520732011331036461129765621272702107522001"),
+ natFromString("22876792454961"),
+ },
+ // z = 111....1 (70000 digits)
+ // x = 10^(99*700) + ... + 10^1400 + 10^700 + 1
+ // y = 111....1 (700 digits, larger than Karatsuba threshold on 32-bit and 64-bit)
+ {
+ natFromString(strings.Repeat("1", 70000)),
+ natFromString("1" + strings.Repeat(strings.Repeat("0", 699)+"1", 99)),
+ natFromString(strings.Repeat("1", 700)),
+ },
+ // z = 111....1 (20000 digits)
+ // x = 10^10000 + 1
+ // y = 111....1 (10000 digits)
+ {
+ natFromString(strings.Repeat("1", 20000)),
+ natFromString("1" + strings.Repeat("0", 9999) + "1"),
+ natFromString(strings.Repeat("1", 10000)),
+ },
+}
+
+func natFromString(s string) nat {
+ x, _, err := nat(nil).scan(strings.NewReader(s), 0)
+ if err != nil {
+ panic(err)
+ }
+ return x
}
func TestSet(t *testing.T) {
@@ -135,26 +166,42 @@ func TestMulRangeN(t *testing.T) {
}
}
-var mulArg, mulTmp nat
-
-func init() {
- const n = 1000
- mulArg = make(nat, n)
- for i := 0; i < n; i++ {
- mulArg[i] = _M
+// allocBytes returns the number of bytes allocated by invoking f.
+func allocBytes(f func()) uint64 {
+ var stats runtime.MemStats
+ runtime.ReadMemStats(&stats)
+ t := stats.TotalAlloc
+ f()
+ runtime.ReadMemStats(&stats)
+ return stats.TotalAlloc - t
+}
+
+// TestMulUnbalanced tests that multiplying numbers of different lengths
+// does not cause deep recursion and in turn allocate too much memory.
+// Test case for issue 3807.
+func TestMulUnbalanced(t *testing.T) {
+ x := rndNat(50000)
+ y := rndNat(40)
+ allocSize := allocBytes(func() {
+ nat(nil).mul(x, y)
+ })
+ inputSize := uint64(len(x)+len(y)) * _S
+ if ratio := allocSize / uint64(inputSize); ratio > 10 {
+ t.Errorf("multiplication uses too much memory (%d > %d times the size of inputs)", allocSize, ratio)
}
}
-func benchmarkMulLoad() {
- for j := 1; j <= 10; j++ {
- x := mulArg[0 : j*100]
- mulTmp.mul(x, x)
- }
+func rndNat(n int) nat {
+ return nat(rndV(n)).norm()
}
func BenchmarkMul(b *testing.B) {
+ mulx := rndNat(1e4)
+ muly := rndNat(1e4)
+ b.ResetTimer()
for i := 0; i < b.N; i++ {
- benchmarkMulLoad()
+ var z nat
+ z.mul(mulx, muly)
}
}
@@ -616,14 +663,23 @@ func TestModW(t *testing.T) {
}
func TestTrailingZeroBits(t *testing.T) {
- var x Word
- x--
- for i := 0; i < _W; i++ {
- if trailingZeroBits(x) != i {
- t.Errorf("Failed at step %d: x: %x got: %d", i, x, trailingZeroBits(x))
+ x := Word(1)
+ for i := uint(0); i <= _W; i++ {
+ n := trailingZeroBits(x)
+ if n != i%_W {
+ t.Errorf("got trailingZeroBits(%#x) = %d; want %d", x, n, i%_W)
}
x <<= 1
}
+
+ y := nat(nil).set(natOne)
+ for i := uint(0); i <= 3*_W; i++ {
+ n := y.trailingZeroBits()
+ if n != i {
+ t.Errorf("got 0x%s.trailingZeroBits() = %d; want %d", y.string(lowercaseDigits[0:16]), n, i)
+ }
+ y = y.shl(y, 1)
+ }
}
var expNNTests = []struct {
diff --git a/libgo/go/math/big/rat.go b/libgo/go/math/big/rat.go
index 7bd83fc0fb2..eccf34e482f 100644
--- a/libgo/go/math/big/rat.go
+++ b/libgo/go/math/big/rat.go
@@ -16,8 +16,10 @@ import (
// A Rat represents a quotient a/b of arbitrary precision.
// The zero value for a Rat represents the value 0.
type Rat struct {
- a Int
- b nat // len(b) == 0 acts like b == 1
+ // To make zero values for Rat work w/o initialization,
+ // a zero value of b (len(b) == 0) acts like b == 1.
+ // a.neg determines the sign of the Rat, b.neg is ignored.
+ a, b Int
}
// NewRat creates a new Rat with numerator a and denominator b.
@@ -36,7 +38,7 @@ func (z *Rat) SetFrac(a, b *Int) *Rat {
babs = nat(nil).set(babs) // make a copy
}
z.a.abs = z.a.abs.set(a.abs)
- z.b = z.b.set(babs)
+ z.b.abs = z.b.abs.set(babs)
return z.norm()
}
@@ -50,21 +52,21 @@ func (z *Rat) SetFrac64(a, b int64) *Rat {
b = -b
z.a.neg = !z.a.neg
}
- z.b = z.b.setUint64(uint64(b))
+ z.b.abs = z.b.abs.setUint64(uint64(b))
return z.norm()
}
// SetInt sets z to x (by making a copy of x) and returns z.
func (z *Rat) SetInt(x *Int) *Rat {
z.a.Set(x)
- z.b = z.b.make(0)
+ z.b.abs = z.b.abs.make(0)
return z
}
// SetInt64 sets z to x and returns z.
func (z *Rat) SetInt64(x int64) *Rat {
z.a.SetInt64(x)
- z.b = z.b.make(0)
+ z.b.abs = z.b.abs.make(0)
return z
}
@@ -72,7 +74,7 @@ func (z *Rat) SetInt64(x int64) *Rat {
func (z *Rat) Set(x *Rat) *Rat {
if z != x {
z.a.Set(&x.a)
- z.b = z.b.set(x.b)
+ z.b.Set(&x.b)
}
return z
}
@@ -97,15 +99,15 @@ func (z *Rat) Inv(x *Rat) *Rat {
panic("division by zero")
}
z.Set(x)
- a := z.b
+ a := z.b.abs
if len(a) == 0 {
- a = a.setWord(1) // materialize numerator
+ a = a.set(natOne) // materialize numerator
}
b := z.a.abs
if b.cmp(natOne) == 0 {
b = b.make(0) // normalize denominator
}
- z.a.abs, z.b = a, b // sign doesn't change
+ z.a.abs, z.b.abs = a, b // sign doesn't change
return z
}
@@ -121,38 +123,26 @@ func (x *Rat) Sign() int {
// IsInt returns true if the denominator of x is 1.
func (x *Rat) IsInt() bool {
- return len(x.b) == 0 || x.b.cmp(natOne) == 0
+ return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
}
// Num returns the numerator of x; it may be <= 0.
// The result is a reference to x's numerator; it
-// may change if a new value is assigned to x.
+// may change if a new value is assigned to x, and vice versa.
+// The sign of the numerator corresponds to the sign of x.
func (x *Rat) Num() *Int {
return &x.a
}
// Denom returns the denominator of x; it is always > 0.
// The result is a reference to x's denominator; it
-// may change if a new value is assigned to x.
+// may change if a new value is assigned to x, and vice versa.
func (x *Rat) Denom() *Int {
- if len(x.b) == 0 {
- return &Int{abs: nat{1}}
+ x.b.neg = false // the result is always >= 0
+ if len(x.b.abs) == 0 {
+ x.b.abs = x.b.abs.set(natOne) // materialize denominator
}
- return &Int{abs: x.b}
-}
-
-func gcd(x, y nat) nat {
- // Euclidean algorithm.
- var a, b nat
- a = a.set(x)
- b = b.set(y)
- for len(b) != 0 {
- var q, r nat
- _, r = q.div(r, a, b)
- a = b
- b = r
- }
- return a
+ return &x.b
}
func (z *Rat) norm() *Rat {
@@ -160,17 +150,25 @@ func (z *Rat) norm() *Rat {
case len(z.a.abs) == 0:
// z == 0 - normalize sign and denominator
z.a.neg = false
- z.b = z.b.make(0)
- case len(z.b) == 0:
+ z.b.abs = z.b.abs.make(0)
+ case len(z.b.abs) == 0:
// z is normalized int - nothing to do
- case z.b.cmp(natOne) == 0:
+ case z.b.abs.cmp(natOne) == 0:
// z is int - normalize denominator
- z.b = z.b.make(0)
+ z.b.abs = z.b.abs.make(0)
default:
- if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 {
- z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
- z.b, _ = z.b.div(nil, z.b, f)
+ neg := z.a.neg
+ z.a.neg = false
+ z.b.neg = false
+ if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 {
+ z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
+ z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
+ if z.b.abs.cmp(natOne) == 0 {
+ // z is int - normalize denominator
+ z.b.abs = z.b.abs.make(0)
+ }
}
+ z.a.neg = neg
}
return z
}
@@ -207,31 +205,31 @@ func scaleDenom(x *Int, f nat) *Int {
// +1 if x > y
//
func (x *Rat) Cmp(y *Rat) int {
- return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b))
+ return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
}
// Add sets z to the sum x+y and returns z.
func (z *Rat) Add(x, y *Rat) *Rat {
- a1 := scaleDenom(&x.a, y.b)
- a2 := scaleDenom(&y.a, x.b)
+ a1 := scaleDenom(&x.a, y.b.abs)
+ a2 := scaleDenom(&y.a, x.b.abs)
z.a.Add(a1, a2)
- z.b = mulDenom(z.b, x.b, y.b)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Sub sets z to the difference x-y and returns z.
func (z *Rat) Sub(x, y *Rat) *Rat {
- a1 := scaleDenom(&x.a, y.b)
- a2 := scaleDenom(&y.a, x.b)
+ a1 := scaleDenom(&x.a, y.b.abs)
+ a2 := scaleDenom(&y.a, x.b.abs)
z.a.Sub(a1, a2)
- z.b = mulDenom(z.b, x.b, y.b)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Mul sets z to the product x*y and returns z.
func (z *Rat) Mul(x, y *Rat) *Rat {
z.a.Mul(&x.a, &y.a)
- z.b = mulDenom(z.b, x.b, y.b)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
@@ -241,10 +239,10 @@ func (z *Rat) Quo(x, y *Rat) *Rat {
if len(y.a.abs) == 0 {
panic("division by zero")
}
- a := scaleDenom(&x.a, y.b)
- b := scaleDenom(&y.a, x.b)
+ a := scaleDenom(&x.a, y.b.abs)
+ b := scaleDenom(&y.a, x.b.abs)
z.a.abs = a.abs
- z.b = b.abs
+ z.b.abs = b.abs
z.a.neg = a.neg != b.neg
return z.norm()
}
@@ -286,7 +284,7 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
}
s = s[sep+1:]
var err error
- if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil {
+ if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
return nil, false
}
return z.norm(), true
@@ -317,11 +315,11 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
}
powTen := nat(nil).expNN(natTen, exp.abs, nil)
if exp.neg {
- z.b = powTen
+ z.b.abs = powTen
z.norm()
} else {
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
- z.b = z.b.make(0)
+ z.b.abs = z.b.abs.make(0)
}
return z, true
@@ -330,8 +328,8 @@ func (z *Rat) SetString(s string) (*Rat, bool) {
// String returns a string representation of z in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
s := "/1"
- if len(x.b) != 0 {
- s = "/" + x.b.decimalString()
+ if len(x.b.abs) != 0 {
+ s = "/" + x.b.abs.decimalString()
}
return x.a.String() + s
}
@@ -355,9 +353,9 @@ func (x *Rat) FloatString(prec int) string {
}
return s
}
- // x.b != 0
+ // x.b.abs != 0
- q, r := nat(nil).div(nat(nil), x.a.abs, x.b)
+ q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
p := natOne
if prec > 0 {
@@ -365,11 +363,11 @@ func (x *Rat) FloatString(prec int) string {
}
r = r.mul(r, p)
- r, r2 := r.div(nat(nil), r, x.b)
+ r, r2 := r.div(nat(nil), r, x.b.abs)
// see if we need to round up
r2 = r2.add(r2, r2)
- if x.b.cmp(r2) <= 0 {
+ if x.b.abs.cmp(r2) <= 0 {
r = r.add(r, natOne)
if r.cmp(p) >= 0 {
q = nat(nil).add(q, natOne)
@@ -396,8 +394,8 @@ const ratGobVersion byte = 1
// GobEncode implements the gob.GobEncoder interface.
func (x *Rat) GobEncode() ([]byte, error) {
- buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
- i := x.b.bytes(buf)
+ buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
+ i := x.b.abs.bytes(buf)
j := x.a.abs.bytes(buf[0:i])
n := i - j
if int(uint32(n)) != n {
@@ -427,6 +425,6 @@ func (z *Rat) GobDecode(buf []byte) error {
i := j + binary.BigEndian.Uint32(buf[j-4:j])
z.a.neg = b&1 != 0
z.a.abs = z.a.abs.setBytes(buf[j:i])
- z.b = z.b.setBytes(buf[i:])
+ z.b.abs = z.b.abs.setBytes(buf[i:])
return nil
}
diff --git a/libgo/go/math/big/rat_test.go b/libgo/go/math/big/rat_test.go
index f7f31ae1a20..7c634233ff8 100644
--- a/libgo/go/math/big/rat_test.go
+++ b/libgo/go/math/big/rat_test.go
@@ -387,30 +387,19 @@ func TestRatGobEncoding(t *testing.T) {
var medium bytes.Buffer
enc := gob.NewEncoder(&medium)
dec := gob.NewDecoder(&medium)
- for i, test := range gobEncodingTests {
- for j := 0; j < 4; j++ {
- medium.Reset() // empty buffer for each test case (in case of failures)
- stest := test
- if j&1 != 0 {
- // negative numbers
- stest = "-" + test
- }
- if j%2 != 0 {
- // fractions
- stest = stest + "." + test
- }
- var tx Rat
- tx.SetString(stest)
- if err := enc.Encode(&tx); err != nil {
- t.Errorf("#%d%c: encoding failed: %s", i, 'a'+j, err)
- }
- var rx Rat
- if err := dec.Decode(&rx); err != nil {
- t.Errorf("#%d%c: decoding failed: %s", i, 'a'+j, err)
- }
- if rx.Cmp(&tx) != 0 {
- t.Errorf("#%d%c: transmission failed: got %s want %s", i, 'a'+j, &rx, &tx)
- }
+ for _, test := range encodingTests {
+ medium.Reset() // empty buffer for each test case (in case of failures)
+ var tx Rat
+ tx.SetString(test + ".14159265")
+ if err := enc.Encode(&tx); err != nil {
+ t.Errorf("encoding of %s failed: %s", &tx, err)
+ }
+ var rx Rat
+ if err := dec.Decode(&rx); err != nil {
+ t.Errorf("decoding of %s failed: %s", &tx, err)
+ }
+ if rx.Cmp(&tx) != 0 {
+ t.Errorf("transmission of %s failed: got %s want %s", &tx, &rx, &tx)
}
}
}
@@ -454,3 +443,56 @@ func TestIssue2379(t *testing.T) {
t.Errorf("5) got %s want %s", x, q)
}
}
+
+func TestIssue3521(t *testing.T) {
+ a := new(Int)
+ b := new(Int)
+ a.SetString("64375784358435883458348587", 0)
+ b.SetString("4789759874531", 0)
+
+ // 0) a raw zero value has 1 as denominator
+ zero := new(Rat)
+ one := NewInt(1)
+ if zero.Denom().Cmp(one) != 0 {
+ t.Errorf("0) got %s want %s", zero.Denom(), one)
+ }
+
+ // 1a) a zero value remains zero independent of denominator
+ x := new(Rat)
+ x.Denom().Set(new(Int).Neg(b))
+ if x.Cmp(zero) != 0 {
+ t.Errorf("1a) got %s want %s", x, zero)
+ }
+
+ // 1b) a zero value may have a denominator != 0 and != 1
+ x.Num().Set(a)
+ qab := new(Rat).SetFrac(a, b)
+ if x.Cmp(qab) != 0 {
+ t.Errorf("1b) got %s want %s", x, qab)
+ }
+
+ // 2a) an integral value becomes a fraction depending on denominator
+ x.SetFrac64(10, 2)
+ x.Denom().SetInt64(3)
+ q53 := NewRat(5, 3)
+ if x.Cmp(q53) != 0 {
+ t.Errorf("2a) got %s want %s", x, q53)
+ }
+
+ // 2b) an integral value becomes a fraction depending on denominator
+ x = NewRat(10, 2)
+ x.Denom().SetInt64(3)
+ if x.Cmp(q53) != 0 {
+ t.Errorf("2b) got %s want %s", x, q53)
+ }
+
+ // 3) changing the numerator/denominator of a Rat changes the Rat
+ x.SetFrac(a, b)
+ a = x.Num()
+ b = x.Denom()
+ a.SetInt64(5)
+ b.SetInt64(3)
+ if x.Cmp(q53) != 0 {
+ t.Errorf("3) got %s want %s", x, q53)
+ }
+}
diff --git a/libgo/go/math/cbrt.go b/libgo/go/math/cbrt.go
index 8c43f0afbc8..272e3092310 100644
--- a/libgo/go/math/cbrt.go
+++ b/libgo/go/math/cbrt.go
@@ -12,7 +12,7 @@ package math
(http://www.jstor.org/stable/2006387?seq=9, accessed 11-Feb-2010)
*/
-// Cbrt returns the cube root of its argument.
+// Cbrt returns the cube root of x.
//
// Special cases are:
// Cbrt(±0) = ±0
diff --git a/libgo/go/math/copysign.go b/libgo/go/math/copysign.go
index ee65456a1ce..719c64b9eba 100644
--- a/libgo/go/math/copysign.go
+++ b/libgo/go/math/copysign.go
@@ -4,7 +4,7 @@
package math
-// Copysign(x, y) returns a value with the magnitude
+// Copysign returns a value with the magnitude
// of x and the sign of y.
func Copysign(x, y float64) float64 {
const sign = 1 << 63
diff --git a/libgo/go/math/erf.go b/libgo/go/math/erf.go
index c6f32bdbe28..4cd80f80c3b 100644
--- a/libgo/go/math/erf.go
+++ b/libgo/go/math/erf.go
@@ -179,7 +179,7 @@ const (
sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62
)
-// Erf(x) returns the error function of x.
+// Erf returns the error function of x.
//
// Special cases are:
// Erf(+Inf) = 1
@@ -256,7 +256,7 @@ func Erf(x float64) float64 {
return 1 - r/x
}
-// Erfc(x) returns the complementary error function of x.
+// Erfc returns the complementary error function of x.
//
// Special cases are:
// Erfc(+Inf) = 0
diff --git a/libgo/go/math/gamma.go b/libgo/go/math/gamma.go
index 7c6f421bad1..164f54f332b 100644
--- a/libgo/go/math/gamma.go
+++ b/libgo/go/math/gamma.go
@@ -110,19 +110,26 @@ func stirling(x float64) float64 {
return y
}
-// Gamma(x) returns the Gamma function of x.
+// Gamma returns the Gamma function of x.
//
// Special cases are:
-// Gamma(±Inf) = ±Inf
+// Gamma(+Inf) = +Inf
+// Gamma(+0) = +Inf
+// Gamma(-0) = -Inf
+// Gamma(x) = NaN for integer x < 0
+// Gamma(-Inf) = NaN
// Gamma(NaN) = NaN
-// Large values overflow to +Inf.
-// Zero and negative integer arguments return ±Inf.
func Gamma(x float64) float64 {
const Euler = 0.57721566490153286060651209008240243104215933593992 // A001620
// special cases
switch {
- case IsInf(x, -1) || IsNaN(x):
- return x
+ case isNegInt(x) || IsInf(x, -1) || IsNaN(x):
+ return NaN()
+ case x == 0:
+ if Signbit(x) {
+ return Inf(-1)
+ }
+ return Inf(1)
case x < -170.5674972726612 || x > 171.61447887182298:
return Inf(1)
}
@@ -185,3 +192,11 @@ small:
}
return z / ((1 + Euler*x) * x)
}
+
+func isNegInt(x float64) bool {
+ if x < 0 {
+ _, xf := Modf(x)
+ return xf == 0
+ }
+ return false
+}
diff --git a/libgo/go/math/hypot.go b/libgo/go/math/hypot.go
index 57d8e343720..a6fa84c7655 100644
--- a/libgo/go/math/hypot.go
+++ b/libgo/go/math/hypot.go
@@ -8,7 +8,7 @@ package math
Hypot -- sqrt(p*p + q*q), but overflows only if the result does.
*/
-// Hypot computes Sqrt(p*p + q*q), taking care to avoid
+// Hypot returns Sqrt(p*p + q*q), taking care to avoid
// unnecessary overflow and underflow.
//
// Special cases are:
diff --git a/libgo/go/math/logb.go b/libgo/go/math/logb.go
index d32f9f1000c..f2769d4fd75 100644
--- a/libgo/go/math/logb.go
+++ b/libgo/go/math/logb.go
@@ -4,7 +4,7 @@
package math
-// Logb(x) returns the binary exponent of x.
+// Logb returns the binary exponent of x.
//
// Special cases are:
// Logb(±Inf) = +Inf
@@ -23,7 +23,7 @@ func Logb(x float64) float64 {
return float64(ilogb(x))
}
-// Ilogb(x) returns the binary exponent of x as an integer.
+// Ilogb returns the binary exponent of x as an integer.
//
// Special cases are:
// Ilogb(±Inf) = MaxInt32
diff --git a/libgo/go/math/rand/rand_test.go b/libgo/go/math/rand/rand_test.go
index bbd44e3f8b1..4d3abdb606c 100644
--- a/libgo/go/math/rand/rand_test.go
+++ b/libgo/go/math/rand/rand_test.go
@@ -57,16 +57,13 @@ func (this *statsResults) checkSimilarDistribution(expected *statsResults) error
func getStatsResults(samples []float64) *statsResults {
res := new(statsResults)
- var sum float64
- for i := range samples {
- sum += samples[i]
+ var sum, squaresum float64
+ for _, s := range samples {
+ sum += s
+ squaresum += s * s
}
res.mean = sum / float64(len(samples))
- var devsum float64
- for i := range samples {
- devsum += math.Pow(samples[i]-res.mean, 2)
- }
- res.stddev = math.Sqrt(devsum / float64(len(samples)))
+ res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
return res
}
diff --git a/libgo/go/math/sincos.go b/libgo/go/math/sincos.go
index 75e6e7541e6..b3a2f8a8619 100644
--- a/libgo/go/math/sincos.go
+++ b/libgo/go/math/sincos.go
@@ -6,7 +6,7 @@ package math
// Coefficients _sin[] and _cos[] are found in pkg/math/sin.go.
-// Sincos(x) returns Sin(x), Cos(x).
+// Sincos returns Sin(x), Cos(x).
//
// Special cases are:
// Sincos(±0) = ±0, 1
diff --git a/libgo/go/math/tanh.go b/libgo/go/math/tanh.go
index 03a641b4da0..7305be66c7f 100644
--- a/libgo/go/math/tanh.go
+++ b/libgo/go/math/tanh.go
@@ -4,12 +4,66 @@
package math
-/*
- Floating-point hyperbolic tangent.
+// The original C code, the long comment, and the constants
+// below were from http://netlib.sandia.gov/cephes/cmath/sin.c,
+// available from http://www.netlib.org/cephes/cmath.tgz.
+// The go code is a simplified version of the original C.
+// tanh.c
+//
+// Hyperbolic tangent
+//
+// SYNOPSIS:
+//
+// double x, y, tanh();
+//
+// y = tanh( x );
+//
+// DESCRIPTION:
+//
+// Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG.
+// MAXLOG = 8.8029691931113054295988e+01 = log(2**127)
+// MINLOG = -8.872283911167299960540e+01 = log(2**-128)
+//
+// A rational function is used for |x| < 0.625. The form
+// x + x**3 P(x)/Q(x) of Cody & Waite is employed.
+// Otherwise,
+// tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1).
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// IEEE -2,2 30000 2.5e-16 5.8e-17
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+// Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+// The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+// Stephen L. Moshier
+// moshier@na-net.ornl.gov
+//
- Sinh and Cosh are called except for large arguments, which
- would cause overflow improperly.
-*/
+var tanhP = [...]float64{
+ -9.64399179425052238628E-1,
+ -9.92877231001918586564E1,
+ -1.61468768441708447952E3,
+}
+var tanhQ = [...]float64{
+ 1.12811678491632931402E2,
+ 2.23548839060100448583E3,
+ 4.84406305325125486048E3,
+}
// Tanh computes the hyperbolic tangent of x.
//
@@ -18,15 +72,26 @@ package math
// Tanh(±Inf) = ±1
// Tanh(NaN) = NaN
func Tanh(x float64) float64 {
- if x < 0 {
- x = -x
- if x > 21 {
+ const MAXLOG = 8.8029691931113054295988e+01 // log(2**127)
+ z := Abs(x)
+ switch {
+ case z > 0.5*MAXLOG:
+ if x < 0 {
return -1
}
- return -Sinh(x) / Cosh(x)
- }
- if x > 21 {
return 1
+ case z >= 0.625:
+ s := Exp(2 * z)
+ z = 1 - 2/(s+1)
+ if x < 0 {
+ z = -z
+ }
+ default:
+ if x == 0 {
+ return x
+ }
+ s := x * x
+ z = x + x*s*((tanhP[0]*s+tanhP[1])*s+tanhP[2])/(((s+tanhQ[0])*s+tanhQ[1])*s+tanhQ[2])
}
- return Sinh(x) / Cosh(x)
+ return z
}