diff options
author | jvdelisle <jvdelisle@138bc75d-0d04-0410-961f-82ee72b054a4> | 2016-11-15 23:03:00 +0000 |
---|---|---|
committer | jvdelisle <jvdelisle@138bc75d-0d04-0410-961f-82ee72b054a4> | 2016-11-15 23:03:00 +0000 |
commit | a7c1a652b4c0ddd19119ec7377a4af27b1b52862 (patch) | |
tree | 2043e90433038a86fd6bc5e64566a9569951e672 /libgfortran | |
parent | 4377b2b3a76a7d3f9d3c19e30484863f232a5bd8 (diff) | |
download | gcc-a7c1a652b4c0ddd19119ec7377a4af27b1b52862.tar.gz |
2016-11-15 Jerry DeLisle <jvdelisle@gcc.gnu.org>
Thomas Koenig <tkoenig@gcc.gnu.org>
PR libgfortran/51119
* Makefile.am: Add new optimization flags matmul.
* Makefile.in: Regenerate.
* m4/matmul.m4: For the case of all strides = 1, implement a
fast blocked matrix multiply. Fix some whitespace.
* generated/matmul_c10.c: Regenerate.
* generated/matmul_c16.c: Regenerate.
* generated/matmul_c4.c: Regenerate.
* generated/matmul_c8.c: Regenerate.
* generated/matmul_i1.c: Regenerate.
* generated/matmul_i16.c: Regenerate.
* generated/matmul_i2.c: Regenerate.
* generated/matmul_i4.c: Regenerate.
* generated/matmul_i8.c: Regenerate.
* generated/matmul_r10.c: Regenerate.
* generated/matmul_r16.c: Regenerate.
* generated/matmul_r4.c: Regenerate.
* generated/matmul_r8.c: Regenerate.
2016-11-15 Thomas Koenig <tkoenig@gcc.gnu.org>
PR libgfortran/51119
* gfortran.dg/matmul_12.f90: New test case.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@242462 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libgfortran')
-rw-r--r-- | libgfortran/ChangeLog | 22 | ||||
-rw-r--r-- | libgfortran/Makefile.am | 2 | ||||
-rw-r--r-- | libgfortran/Makefile.in | 2 | ||||
-rw-r--r-- | libgfortran/generated/matmul_c10.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_c16.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_c4.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_c8.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_i1.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_i16.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_i2.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_i4.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_i8.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_r10.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_r16.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_r4.c | 396 | ||||
-rw-r--r-- | libgfortran/generated/matmul_r8.c | 396 | ||||
-rw-r--r-- | libgfortran/m4/matmul.m4 | 400 |
17 files changed, 4436 insertions, 1138 deletions
diff --git a/libgfortran/ChangeLog b/libgfortran/ChangeLog index da3b3e0878f..50305af70a8 100644 --- a/libgfortran/ChangeLog +++ b/libgfortran/ChangeLog @@ -1,3 +1,25 @@ +2016-11-15 Jerry DeLisle <jvdelisle@gcc.gnu.org> + Thomas Koenig <tkoenig@gcc.gnu.org> + + PR libgfortran/51119 + * Makefile.am: Add new optimization flags matmul. + * Makefile.in: Regenerate. + * m4/matmul.m4: For the case of all strides = 1, implement a + fast blocked matrix multiply. Fix some whitespace. + * generated/matmul_c10.c: Regenerate. + * generated/matmul_c16.c: Regenerate. + * generated/matmul_c4.c: Regenerate. + * generated/matmul_c8.c: Regenerate. + * generated/matmul_i1.c: Regenerate. + * generated/matmul_i16.c: Regenerate. + * generated/matmul_i2.c: Regenerate. + * generated/matmul_i4.c: Regenerate. + * generated/matmul_i8.c: Regenerate. + * generated/matmul_r10.c: Regenerate. + * generated/matmul_r16.c: Regenerate. + * generated/matmul_r4.c: Regenerate. + * generated/matmul_r8.c: Regenerate. + 2016-11-15 Matthias Klose <doko@ubuntu.com> * configure: Regenerate. diff --git a/libgfortran/Makefile.am b/libgfortran/Makefile.am index 39d3e11d223..7f4002dcad4 100644 --- a/libgfortran/Makefile.am +++ b/libgfortran/Makefile.am @@ -850,7 +850,7 @@ intrinsics/dprod_r8.f90 \ intrinsics/f2c_specifics.F90 # Turn on vectorization and loop unrolling for matmul. -$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ftree-vectorize -funroll-loops +$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ffast-math -fno-protect-parens -fstack-arrays -ftree-vectorize -funroll-loops --param max-unroll-times=4 # Logical matmul doesn't vectorize. $(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops diff --git a/libgfortran/Makefile.in b/libgfortran/Makefile.in index 7ed080cf7b0..c1a37d78c40 100644 --- a/libgfortran/Makefile.in +++ b/libgfortran/Makefile.in @@ -5956,7 +5956,7 @@ uninstall-am: uninstall-cafexeclibLTLIBRARIES \ @LIBGFOR_USE_SYMVER_SUN_TRUE@@LIBGFOR_USE_SYMVER_TRUE@ > $@ || (rm -f $@ ; exit 1) # Turn on vectorization and loop unrolling for matmul. -$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ftree-vectorize -funroll-loops +$(patsubst %.c,%.lo,$(notdir $(i_matmul_c))): AM_CFLAGS += -ffast-math -fno-protect-parens -fstack-arrays -ftree-vectorize -funroll-loops --param max-unroll-times=4 # Logical matmul doesn't vectorize. $(patsubst %.c,%.lo,$(notdir $(i_matmull_c))): AM_CFLAGS += -funroll-loops diff --git a/libgfortran/generated/matmul_c10.c b/libgfortran/generated/matmul_c10.c index c9558184988..c784a2630cd 100644 --- a/libgfortran/generated/matmul_c10.c +++ b/libgfortran/generated/matmul_c10.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_COMPLEX_10) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_c10 (gfc_array_c10 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_c10 (gfc_array_c10 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_10)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_c10 (gfc_array_c10 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_COMPLEX_10 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_COMPLEX_10 * restrict bbase_y; - GFC_COMPLEX_10 * restrict dest_y; - const GFC_COMPLEX_10 * restrict abase_n; - GFC_COMPLEX_10 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_COMPLEX_10 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_COMPLEX_10) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_COMPLEX_10)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_COMPLEX_10 *a, *b; + GFC_COMPLEX_10 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_COMPLEX_10 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_COMPLEX_10)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_c10 (gfc_array_c10 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_c10 (gfc_array_c10 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_c16.c b/libgfortran/generated/matmul_c16.c index 25fe56e7674..47e1bea729b 100644 --- a/libgfortran/generated/matmul_c16.c +++ b/libgfortran/generated/matmul_c16.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_COMPLEX_16) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_c16 (gfc_array_c16 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_c16 (gfc_array_c16 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_c16 (gfc_array_c16 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_COMPLEX_16 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_COMPLEX_16 * restrict bbase_y; - GFC_COMPLEX_16 * restrict dest_y; - const GFC_COMPLEX_16 * restrict abase_n; - GFC_COMPLEX_16 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_COMPLEX_16 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_COMPLEX_16) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_COMPLEX_16)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_COMPLEX_16 *a, *b; + GFC_COMPLEX_16 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_COMPLEX_16 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_COMPLEX_16)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_c16 (gfc_array_c16 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_c16 (gfc_array_c16 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_c4.c b/libgfortran/generated/matmul_c4.c index e9d2ed33d5c..4eb18965d91 100644 --- a/libgfortran/generated/matmul_c4.c +++ b/libgfortran/generated/matmul_c4.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_COMPLEX_4) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_c4 (gfc_array_c4 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_c4 (gfc_array_c4 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_4)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_c4 (gfc_array_c4 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_COMPLEX_4 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_COMPLEX_4 * restrict bbase_y; - GFC_COMPLEX_4 * restrict dest_y; - const GFC_COMPLEX_4 * restrict abase_n; - GFC_COMPLEX_4 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_COMPLEX_4 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_COMPLEX_4) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_COMPLEX_4)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_COMPLEX_4 *a, *b; + GFC_COMPLEX_4 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_COMPLEX_4 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_COMPLEX_4)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_c4 (gfc_array_c4 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_c4 (gfc_array_c4 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_c8.c b/libgfortran/generated/matmul_c8.c index 8a127da860e..2321b9effbd 100644 --- a/libgfortran/generated/matmul_c8.c +++ b/libgfortran/generated/matmul_c8.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_COMPLEX_8) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_c8 (gfc_array_c8 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_c8 (gfc_array_c8 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_8)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_c8 (gfc_array_c8 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_COMPLEX_8 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_COMPLEX_8 * restrict bbase_y; - GFC_COMPLEX_8 * restrict dest_y; - const GFC_COMPLEX_8 * restrict abase_n; - GFC_COMPLEX_8 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_COMPLEX_8 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_COMPLEX_8) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_COMPLEX_8)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_COMPLEX_8 *a, *b; + GFC_COMPLEX_8 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_COMPLEX_8 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_COMPLEX_8)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_c8 (gfc_array_c8 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_c8 (gfc_array_c8 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_i1.c b/libgfortran/generated/matmul_i1.c index fdb30926911..81c067b2ce1 100644 --- a/libgfortran/generated/matmul_i1.c +++ b/libgfortran/generated/matmul_i1.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_INTEGER_1) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_i1 (gfc_array_i1 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_i1 (gfc_array_i1 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_1)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_i1 (gfc_array_i1 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_INTEGER_1 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_INTEGER_1 * restrict bbase_y; - GFC_INTEGER_1 * restrict dest_y; - const GFC_INTEGER_1 * restrict abase_n; - GFC_INTEGER_1 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_1 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_INTEGER_1) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_INTEGER_1)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_1 *a, *b; + GFC_INTEGER_1 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_1 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_1)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_i1 (gfc_array_i1 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_i1 (gfc_array_i1 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_i16.c b/libgfortran/generated/matmul_i16.c index 80eb63c31ce..d1b1761014a 100644 --- a/libgfortran/generated/matmul_i16.c +++ b/libgfortran/generated/matmul_i16.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_INTEGER_16) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_i16 (gfc_array_i16 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_i16 (gfc_array_i16 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_16)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_i16 (gfc_array_i16 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_INTEGER_16 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_INTEGER_16 * restrict bbase_y; - GFC_INTEGER_16 * restrict dest_y; - const GFC_INTEGER_16 * restrict abase_n; - GFC_INTEGER_16 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_16 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_INTEGER_16) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_INTEGER_16)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_16 *a, *b; + GFC_INTEGER_16 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_16 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_16)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_i16 (gfc_array_i16 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_i16 (gfc_array_i16 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_i2.c b/libgfortran/generated/matmul_i2.c index 281a0133cbb..5a06fcc6a2c 100644 --- a/libgfortran/generated/matmul_i2.c +++ b/libgfortran/generated/matmul_i2.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_INTEGER_2) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_i2 (gfc_array_i2 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_i2 (gfc_array_i2 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_2)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_i2 (gfc_array_i2 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_INTEGER_2 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_INTEGER_2 * restrict bbase_y; - GFC_INTEGER_2 * restrict dest_y; - const GFC_INTEGER_2 * restrict abase_n; - GFC_INTEGER_2 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_2 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_INTEGER_2) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_INTEGER_2)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_2 *a, *b; + GFC_INTEGER_2 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_2 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_2)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_i2 (gfc_array_i2 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_i2 (gfc_array_i2 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_i4.c b/libgfortran/generated/matmul_i4.c index 2dc526d9b9c..aee8e4d55d5 100644 --- a/libgfortran/generated/matmul_i4.c +++ b/libgfortran/generated/matmul_i4.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_INTEGER_4) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_i4 (gfc_array_i4 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_i4 (gfc_array_i4 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_4)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_i4 (gfc_array_i4 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_INTEGER_4 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_INTEGER_4 * restrict bbase_y; - GFC_INTEGER_4 * restrict dest_y; - const GFC_INTEGER_4 * restrict abase_n; - GFC_INTEGER_4 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_4 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_INTEGER_4) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_INTEGER_4)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_4 *a, *b; + GFC_INTEGER_4 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_4 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_4)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_i4 (gfc_array_i4 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_i4 (gfc_array_i4 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_i8.c b/libgfortran/generated/matmul_i8.c index 0ff728d90e9..902b2840751 100644 --- a/libgfortran/generated/matmul_i8.c +++ b/libgfortran/generated/matmul_i8.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_INTEGER_8) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_i8 (gfc_array_i8 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_i8 (gfc_array_i8 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_INTEGER_8)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_i8 (gfc_array_i8 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_INTEGER_8 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_INTEGER_8 * restrict bbase_y; - GFC_INTEGER_8 * restrict dest_y; - const GFC_INTEGER_8 * restrict abase_n; - GFC_INTEGER_8 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_INTEGER_8 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_INTEGER_8) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_INTEGER_8)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_INTEGER_8 *a, *b; + GFC_INTEGER_8 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_INTEGER_8 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_INTEGER_8)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_i8 (gfc_array_i8 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_i8 (gfc_array_i8 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_r10.c b/libgfortran/generated/matmul_r10.c index a34856f010f..8bb1e6297bb 100644 --- a/libgfortran/generated/matmul_r10.c +++ b/libgfortran/generated/matmul_r10.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_REAL_10) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_r10 (gfc_array_r10 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_r10 (gfc_array_r10 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_10)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_r10 (gfc_array_r10 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_REAL_10 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_REAL_10 * restrict bbase_y; - GFC_REAL_10 * restrict dest_y; - const GFC_REAL_10 * restrict abase_n; - GFC_REAL_10 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_REAL_10 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_REAL_10) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_REAL_10)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_REAL_10 *a, *b; + GFC_REAL_10 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_REAL_10 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_REAL_10)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_r10 (gfc_array_r10 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_r10 (gfc_array_r10 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_r16.c b/libgfortran/generated/matmul_r16.c index d2f11bdd984..4ebd104594b 100644 --- a/libgfortran/generated/matmul_r16.c +++ b/libgfortran/generated/matmul_r16.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_REAL_16) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_r16 (gfc_array_r16 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_r16 (gfc_array_r16 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_16)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_r16 (gfc_array_r16 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_REAL_16 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_REAL_16 * restrict bbase_y; - GFC_REAL_16 * restrict dest_y; - const GFC_REAL_16 * restrict abase_n; - GFC_REAL_16 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_REAL_16 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_REAL_16) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_REAL_16)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_REAL_16 *a, *b; + GFC_REAL_16 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_REAL_16 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_REAL_16)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_r16 (gfc_array_r16 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_r16 (gfc_array_r16 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_r4.c b/libgfortran/generated/matmul_r4.c index ff3b93ff4d4..cf3ffa35232 100644 --- a/libgfortran/generated/matmul_r4.c +++ b/libgfortran/generated/matmul_r4.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_REAL_4) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_r4 (gfc_array_r4 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_r4 (gfc_array_r4 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_4)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_r4 (gfc_array_r4 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_REAL_4 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_REAL_4 * restrict bbase_y; - GFC_REAL_4 * restrict dest_y; - const GFC_REAL_4 * restrict abase_n; - GFC_REAL_4 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_REAL_4 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_REAL_4) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_REAL_4)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_REAL_4 *a, *b; + GFC_REAL_4 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_REAL_4 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_REAL_4)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_r4 (gfc_array_r4 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_r4 (gfc_array_r4 * const restrict retarray, } } } - #endif diff --git a/libgfortran/generated/matmul_r8.c b/libgfortran/generated/matmul_r8.c index af805ee45ee..9a70a23df0b 100644 --- a/libgfortran/generated/matmul_r8.c +++ b/libgfortran/generated/matmul_r8.c @@ -32,7 +32,7 @@ see the files COPYING3 and COPYING.RUNTIME respectively. If not, see #if defined (HAVE_GFC_REAL_8) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we'll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -99,7 +99,7 @@ matmul_r8 (gfc_array_r8 * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -127,47 +127,47 @@ matmul_r8 (gfc_array_r8 * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_REAL_8)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } if (GFC_DESCRIPTOR_RANK (retarray) == 1) @@ -230,61 +230,294 @@ matmul_r8 (gfc_array_r8 * const restrict retarray, bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we're performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const GFC_REAL_8 one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const GFC_REAL_8 * restrict bbase_y; - GFC_REAL_8 * restrict dest_y; - const GFC_REAL_8 * restrict abase_n; - GFC_REAL_8 bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const GFC_REAL_8 one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof (GFC_REAL_8) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = (GFC_REAL_8)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const GFC_REAL_8 *a, *b; + GFC_REAL_8 *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + GFC_REAL_8 t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = (GFC_REAL_8)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -334,7 +567,9 @@ matmul_r8 (gfc_array_r8 * const restrict retarray, for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -372,5 +607,4 @@ matmul_r8 (gfc_array_r8 * const restrict retarray, } } } - #endif diff --git a/libgfortran/m4/matmul.m4 b/libgfortran/m4/matmul.m4 index 468615b6c42..77ed4408425 100644 --- a/libgfortran/m4/matmul.m4 +++ b/libgfortran/m4/matmul.m4 @@ -33,7 +33,7 @@ include(iparm.m4)dnl `#if defined (HAVE_'rtype_name`) /* Prototype for the BLAS ?gemm subroutine, a pointer to which can be - passed to us by the front-end, in which case we''`ll call it for large + passed to us by the front-end, in which case we call it for large matrices. */ typedef void (*blas_call)(const char *, const char *, const int *, const int *, @@ -100,7 +100,7 @@ matmul_'rtype_code` ('rtype` * const restrict retarray, o One-dimensional argument B is implicitly treated as a column matrix dimensioned [count, 1], so ycount=1. - */ +*/ if (retarray->base_addr == NULL) { @@ -128,47 +128,47 @@ matmul_'rtype_code` ('rtype` * const restrict retarray, = xmallocarray (size0 ((array_t *) retarray), sizeof ('rtype_name`)); retarray->offset = 0; } - else if (unlikely (compile_options.bounds_check)) - { - index_type ret_extent, arg_extent; - - if (GFC_DESCRIPTOR_RANK (a) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else if (GFC_DESCRIPTOR_RANK (b) == 1) - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic: is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - else - { - arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 1:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - - arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); - ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); - if (arg_extent != ret_extent) - runtime_error ("Incorrect extent in return array in" - " MATMUL intrinsic for dimension 2:" - " is %ld, should be %ld", - (long int) ret_extent, (long int) arg_extent); - } - } + else if (unlikely (compile_options.bounds_check)) + { + index_type ret_extent, arg_extent; + + if (GFC_DESCRIPTOR_RANK (a) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else if (GFC_DESCRIPTOR_RANK (b) == 1) + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic: is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + else + { + arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 1:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + + arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); + if (arg_extent != ret_extent) + runtime_error ("Incorrect extent in return array in" + " MATMUL intrinsic for dimension 2:" + " is %ld, should be %ld", + (long int) ret_extent, (long int) arg_extent); + } + } ' sinclude(`matmul_asm_'rtype_code`.m4')dnl ` @@ -232,61 +232,294 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl bbase = b->base_addr; dest = retarray->base_addr; - - /* Now that everything is set up, we''`re performing the multiplication + /* Now that everything is set up, we perform the multiplication itself. */ #define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x))) +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#define max(a,b) ((a) >= (b) ? (a) : (b)) if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1) && (bxstride == 1 || bystride == 1) && (((float) xcount) * ((float) ycount) * ((float) count) > POW3(blas_limit))) - { - const int m = xcount, n = ycount, k = count, ldc = rystride; - const 'rtype_name` one = 1, zero = 0; - const int lda = (axstride == 1) ? aystride : axstride, - ldb = (bxstride == 1) ? bystride : bxstride; - - if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) - { - assert (gemm != NULL); - gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k, - &one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1); - return; - } - } - - if (rxstride == 1 && axstride == 1 && bxstride == 1) { - const 'rtype_name` * restrict bbase_y; - 'rtype_name` * restrict dest_y; - const 'rtype_name` * restrict abase_n; - 'rtype_name` bbase_yn; + const int m = xcount, n = ycount, k = count, ldc = rystride; + const 'rtype_name` one = 1, zero = 0; + const int lda = (axstride == 1) ? aystride : axstride, + ldb = (bxstride == 1) ? bystride : bxstride; - if (rystride == xcount) - memset (dest, 0, (sizeof ('rtype_name`) * xcount * ycount)); - else + if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1) { - for (y = 0; y < ycount; y++) - for (x = 0; x < xcount; x++) - dest[x + y*rystride] = ('rtype_name`)0; + assert (gemm != NULL); + gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, + &n, &k, &one, abase, &lda, bbase, &ldb, &zero, dest, + &ldc, 1, 1); + return; } + } - for (y = 0; y < ycount; y++) + if (rxstride == 1 && axstride == 1 && bxstride == 1) + { + /* This block of code implements a tuned matmul, derived from + Superscalar GEMM-based level 3 BLAS, Beta version 0.1 + + Bo Kagstrom and Per Ling + Department of Computing Science + Umea University + S-901 87 Umea, Sweden + + from netlib.org, translated to C, and modified for matmul.m4. */ + + const 'rtype_name` *a, *b; + 'rtype_name` *c; + const index_type m = xcount, n = ycount, k = count; + + /* System generated locals */ + index_type a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, + i1, i2, i3, i4, i5, i6; + + /* Local variables */ + 'rtype_name` t1[65536], /* was [256][256] */ + f11, f12, f21, f22, f31, f32, f41, f42, + f13, f14, f23, f24, f33, f34, f43, f44; + index_type i, j, l, ii, jj, ll; + index_type isec, jsec, lsec, uisec, ujsec, ulsec; + + a = abase; + b = bbase; + c = retarray->base_addr; + + /* Parameter adjustments */ + c_dim1 = rystride; + c_offset = 1 + c_dim1; + c -= c_offset; + a_dim1 = aystride; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = bystride; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Early exit if possible */ + if (m == 0 || n == 0 || k == 0) + return; + + /* Empty c first. */ + for (j=1; j<=n; j++) + for (i=1; i<=m; i++) + c[i + j * c_dim1] = ('rtype_name`)0; + + /* Start turning the crank. */ + i1 = n; + for (jj = 1; jj <= i1; jj += 512) { - bbase_y = bbase + y*bystride; - dest_y = dest + y*rystride; - for (n = 0; n < count; n++) + /* Computing MIN */ + i2 = 512; + i3 = n - jj + 1; + jsec = min(i2,i3); + ujsec = jsec - jsec % 4; + i2 = k; + for (ll = 1; ll <= i2; ll += 256) { - abase_n = abase + n*aystride; - bbase_yn = bbase_y[n]; - for (x = 0; x < xcount; x++) + /* Computing MIN */ + i3 = 256; + i4 = k - ll + 1; + lsec = min(i3,i4); + ulsec = lsec - lsec % 2; + + i3 = m; + for (ii = 1; ii <= i3; ii += 256) { - dest_y[x] += abase_n[x] * bbase_yn; + /* Computing MIN */ + i4 = 256; + i5 = m - ii + 1; + isec = min(i4,i5); + uisec = isec - isec % 2; + i4 = ll + ulsec - 1; + for (l = ll; l <= i4; l += 2) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 2) + { + t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] = + a[i + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 1) << 8) - 257] = + a[i + (l + 1) * a_dim1]; + t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + l * a_dim1]; + t1[l - ll + 2 + ((i - ii + 2) << 8) - 257] = + a[i + 1 + (l + 1) * a_dim1]; + } + if (uisec < isec) + { + t1[l - ll + 1 + (isec << 8) - 257] = + a[ii + isec - 1 + l * a_dim1]; + t1[l - ll + 2 + (isec << 8) - 257] = + a[ii + isec - 1 + (l + 1) * a_dim1]; + } + } + if (ulsec < lsec) + { + i4 = ii + isec - 1; + for (i = ii; i<= i4; ++i) + { + t1[lsec + ((i - ii + 1) << 8) - 257] = + a[i + (ll + lsec - 1) * a_dim1]; + } + } + + uisec = isec - isec % 4; + i4 = jj + ujsec - 1; + for (j = jj; j <= i4; j += 4) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f22 = c[i + 1 + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f23 = c[i + 1 + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + f24 = c[i + 1 + (j + 3) * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + f32 = c[i + 2 + (j + 1) * c_dim1]; + f42 = c[i + 3 + (j + 1) * c_dim1]; + f33 = c[i + 2 + (j + 2) * c_dim1]; + f43 = c[i + 3 + (j + 2) * c_dim1]; + f34 = c[i + 2 + (j + 3) * c_dim1]; + f44 = c[i + 3 + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f22 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f23 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f24 += t1[l - ll + 1 + ((i - ii + 2) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + j * b_dim1]; + f32 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f42 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 1) * b_dim1]; + f33 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f43 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 2) * b_dim1]; + f34 += t1[l - ll + 1 + ((i - ii + 3) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + f44 += t1[l - ll + 1 + ((i - ii + 4) << 8) - 257] + * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + (j + 1) * c_dim1] = f12; + c[i + 1 + (j + 1) * c_dim1] = f22; + c[i + (j + 2) * c_dim1] = f13; + c[i + 1 + (j + 2) * c_dim1] = f23; + c[i + (j + 3) * c_dim1] = f14; + c[i + 1 + (j + 3) * c_dim1] = f24; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + c[i + 2 + (j + 1) * c_dim1] = f32; + c[i + 3 + (j + 1) * c_dim1] = f42; + c[i + 2 + (j + 2) * c_dim1] = f33; + c[i + 3 + (j + 2) * c_dim1] = f43; + c[i + 2 + (j + 3) * c_dim1] = f34; + c[i + 3 + (j + 3) * c_dim1] = f44; + } + if (uisec < isec) + { + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + f12 = c[i + (j + 1) * c_dim1]; + f13 = c[i + (j + 2) * c_dim1]; + f14 = c[i + (j + 3) * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f12 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 1) * b_dim1]; + f13 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 2) * b_dim1]; + f14 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + (j + 3) * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + (j + 1) * c_dim1] = f12; + c[i + (j + 2) * c_dim1] = f13; + c[i + (j + 3) * c_dim1] = f14; + } + } + } + if (ujsec < jsec) + { + i4 = jj + jsec - 1; + for (j = jj + ujsec; j <= i4; ++j) + { + i5 = ii + uisec - 1; + for (i = ii; i <= i5; i += 4) + { + f11 = c[i + j * c_dim1]; + f21 = c[i + 1 + j * c_dim1]; + f31 = c[i + 2 + j * c_dim1]; + f41 = c[i + 3 + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + f21 += t1[l - ll + 1 + ((i - ii + 2) << 8) - + 257] * b[l + j * b_dim1]; + f31 += t1[l - ll + 1 + ((i - ii + 3) << 8) - + 257] * b[l + j * b_dim1]; + f41 += t1[l - ll + 1 + ((i - ii + 4) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + c[i + 1 + j * c_dim1] = f21; + c[i + 2 + j * c_dim1] = f31; + c[i + 3 + j * c_dim1] = f41; + } + i5 = ii + isec - 1; + for (i = ii + uisec; i <= i5; ++i) + { + f11 = c[i + j * c_dim1]; + i6 = ll + lsec - 1; + for (l = ll; l <= i6; ++l) + { + f11 += t1[l - ll + 1 + ((i - ii + 1) << 8) - + 257] * b[l + j * b_dim1]; + } + c[i + j * c_dim1] = f11; + } + } + } } } } + return; } else if (rxstride == 1 && aystride == 1 && bxstride == 1) { @@ -336,7 +569,9 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl for (n = 0; n < count; n++) for (x = 0; x < xcount; x++) /* dest[x,y] += a[x,n] * b[n,y] */ - dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride]; + dest[x*rxstride + y*rystride] += + abase[x*axstride + n*aystride] * + bbase[n*bxstride + y*bystride]; } else if (GFC_DESCRIPTOR_RANK (a) == 1) { @@ -373,6 +608,5 @@ sinclude(`matmul_asm_'rtype_code`.m4')dnl } } } -} - -#endif' +}' +#endif |