summaryrefslogtreecommitdiff
path: root/libgfortran/m4
diff options
context:
space:
mode:
authortkoenig <tkoenig@138bc75d-0d04-0410-961f-82ee72b054a4>2008-03-23 22:19:19 +0000
committertkoenig <tkoenig@138bc75d-0d04-0410-961f-82ee72b054a4>2008-03-23 22:19:19 +0000
commitd3a070785376fdc330f9e2fda77daab88255af00 (patch)
treeb07d6c628b5ec47255fa6723cf727cb89ace575e /libgfortran/m4
parentffc0b1edcad561e7c8304c3f6cb38ec31502b024 (diff)
downloadgcc-d3a070785376fdc330f9e2fda77daab88255af00.tar.gz
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org
PR libfortran/32972 * Makefile.am: Add new variable, i_unpack_c, containing unpack_i1.c, unpack_i2.c, unpack_i4.c, unpack_i8.c, unpack_i16.c, unpack_r4.c, unpack_r8.c, unpack_r10.c, unpack_r16.c, unpack_c4.c, unpack_c8.c, unpack_c10.c and unpack_c16.c Add i_unpack_c to gfor_built_src. Add rule to generate i_unpack_c from m4/unpack.m4. * Makefile.in: Regenerated. * libgfortran.h: Add prototypes for unpack0_i1, unpack0_i2, unpack0_i4, unpack0_i8, unpack0_i16, unpack0_r4, unpack0_r8, unpack0_r10, unpack0_r16, unpack0_c4, unpack0_c8, unpack0_c10, unpack0_c16, unpack1_i1, unpack1_i2, unpack1_i4, unpack1_i8, unpack1_i16, unpack1_r4, unpack1_r8, unpack1_r10, unpack1_r16, unpack1_c4, unpack1_c8, unpack1_c10 and unpack1_c16. * intrinsics/pack_generic.c (unpack1): Add calls to specific unpack1 functions. (unpack0): Add calls to specific unpack0 functions. * m4/unpack.m4: New file. * generated/unpack_i1.c: New file. * generated/unpack_i2.c: New file. * generated/unpack_i4.c: New file. * generated/unpack_i8.c: New file. * generated/unpack_i16.c: New file. * generated/unpack_r4.c: New file. * generated/unpack_r8.c: New file. * generated/unpack_r10.c: New file. * generated/unpack_r16.c: New file. * generated/unpack_c4.c: New file. * generated/unpack_c8.c: New file. * generated/unpack_c10.c: New file. * generated/unpack_c16.c: New file. 2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org PR libfortran/32972 * gfortran.dg/intrinsic_unpack_1.f90: New test case. * gfortran.dg/intrinsic_unpack_2.f90: New test case. * gfortran.dg/intrinsic_unpack_3.f90: New test case. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@133469 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libgfortran/m4')
-rw-r--r--libgfortran/m4/unpack.m4339
1 files changed, 339 insertions, 0 deletions
diff --git a/libgfortran/m4/unpack.m4 b/libgfortran/m4/unpack.m4
new file mode 100644
index 00000000000..2ad6841a081
--- /dev/null
+++ b/libgfortran/m4/unpack.m4
@@ -0,0 +1,339 @@
+`/* Specific implementation of the UNPACK intrinsic
+ Copyright 2008 Free Software Foundation, Inc.
+ Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
+ unpack_generic.c by Paul Brook <paul@nowt.org>.
+
+This file is part of the GNU Fortran 95 runtime library (libgfortran).
+
+Libgfortran is free software; you can redistribute it and/or
+modify it under the terms of the GNU General Public
+License as published by the Free Software Foundation; either
+version 2 of the License, or (at your option) any later version.
+
+In addition to the permissions in the GNU General Public License, the
+Free Software Foundation gives you unlimited permission to link the
+compiled version of this file into combinations with other programs,
+and to distribute those combinations without any restriction coming
+from the use of this file. (The General Public License restrictions
+do apply in other respects; for example, they cover modification of
+the file, and distribution when not linked into a combine
+executable.)
+
+Ligbfortran is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public
+License along with libgfortran; see the file COPYING. If not,
+write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+Boston, MA 02110-1301, USA. */
+
+#include "libgfortran.h"
+#include <stdlib.h>
+#include <assert.h>
+#include <string.h>'
+
+include(iparm.m4)dnl
+
+`#if defined (HAVE_'rtype_name`)
+
+void
+unpack0_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
+ const gfc_array_l1 *mask, const 'rtype_name` *fptr)
+{
+ /* r.* indicates the return array. */
+ index_type rstride[GFC_MAX_DIMENSIONS];
+ index_type rstride0;
+ index_type rs;
+ 'rtype_name` *rptr;
+ /* v.* indicates the vector array. */
+ index_type vstride0;
+ 'rtype_name` *vptr;
+ /* Value for field, this is constant. */
+ const 'rtype_name` fval = *fptr;
+ /* m.* indicates the mask array. */
+ index_type mstride[GFC_MAX_DIMENSIONS];
+ index_type mstride0;
+ const GFC_LOGICAL_1 *mptr;
+
+ index_type count[GFC_MAX_DIMENSIONS];
+ index_type extent[GFC_MAX_DIMENSIONS];
+ index_type n;
+ index_type dim;
+
+ int empty;
+ int mask_kind;
+
+ empty = 0;
+
+ mptr = mask->data;
+
+ /* Use the same loop for all logical types, by using GFC_LOGICAL_1
+ and using shifting to address size and endian issues. */
+
+ mask_kind = GFC_DESCRIPTOR_SIZE (mask);
+
+ if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
+#ifdef HAVE_GFC_LOGICAL_16
+ || mask_kind == 16
+#endif
+ )
+ {
+ /* Do not convert a NULL pointer as we use test for NULL below. */
+ if (mptr)
+ mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
+ }
+ else
+ runtime_error ("Funny sized logical array");
+
+ if (ret->data == NULL)
+ {
+ /* The front end has signalled that we need to populate the
+ return array descriptor. */
+ dim = GFC_DESCRIPTOR_RANK (mask);
+ rs = 1;
+ for (n = 0; n < dim; n++)
+ {
+ count[n] = 0;
+ ret->dim[n].stride = rs;
+ ret->dim[n].lbound = 0;
+ ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
+ extent[n] = ret->dim[n].ubound + 1;
+ empty = empty || extent[n] <= 0;
+ rstride[n] = ret->dim[n].stride;
+ mstride[n] = mask->dim[n].stride * mask_kind;
+ rs *= extent[n];
+ }
+ ret->offset = 0;
+ ret->data = internal_malloc_size (rs * sizeof ('rtype_name`));
+ }
+ else
+ {
+ dim = GFC_DESCRIPTOR_RANK (ret);
+ for (n = 0; n < dim; n++)
+ {
+ count[n] = 0;
+ extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
+ empty = empty || extent[n] <= 0;
+ rstride[n] = ret->dim[n].stride;
+ mstride[n] = mask->dim[n].stride * mask_kind;
+ }
+ if (rstride[0] == 0)
+ rstride[0] = 1;
+ }
+
+ if (empty)
+ return;
+
+ if (mstride[0] == 0)
+ mstride[0] = 1;
+
+ vstride0 = vector->dim[0].stride;
+ if (vstride0 == 0)
+ vstride0 = 1;
+ rstride0 = rstride[0];
+ mstride0 = mstride[0];
+ rptr = ret->data;
+ vptr = vector->data;
+
+ while (rptr)
+ {
+ if (*mptr)
+ {
+ /* From vector. */
+ *rptr = *vptr;
+ vptr += vstride0;
+ }
+ else
+ {
+ /* From field. */
+ *rptr = fval;
+ }
+ /* Advance to the next element. */
+ rptr += rstride0;
+ mptr += mstride0;
+ count[0]++;
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it and increment
+ the next dimension. */
+ count[n] = 0;
+ /* We could precalculate these products, but this is a less
+ frequently used path so probably not worth it. */
+ rptr -= rstride[n] * extent[n];
+ mptr -= mstride[n] * extent[n];
+ n++;
+ if (n >= dim)
+ {
+ /* Break out of the loop. */
+ rptr = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ rptr += rstride[n];
+ mptr += mstride[n];
+ }
+ }
+ }
+}
+
+void
+unpack1_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
+ const gfc_array_l1 *mask, const 'rtype` *field)
+{
+ /* r.* indicates the return array. */
+ index_type rstride[GFC_MAX_DIMENSIONS];
+ index_type rstride0;
+ index_type rs;
+ 'rtype_name` *rptr;
+ /* v.* indicates the vector array. */
+ index_type vstride0;
+ 'rtype_name` *vptr;
+ /* f.* indicates the field array. */
+ index_type fstride[GFC_MAX_DIMENSIONS];
+ index_type fstride0;
+ const 'rtype_name` *fptr;
+ /* m.* indicates the mask array. */
+ index_type mstride[GFC_MAX_DIMENSIONS];
+ index_type mstride0;
+ const GFC_LOGICAL_1 *mptr;
+
+ index_type count[GFC_MAX_DIMENSIONS];
+ index_type extent[GFC_MAX_DIMENSIONS];
+ index_type n;
+ index_type dim;
+
+ int empty;
+ int mask_kind;
+
+ empty = 0;
+
+ mptr = mask->data;
+
+ /* Use the same loop for all logical types, by using GFC_LOGICAL_1
+ and using shifting to address size and endian issues. */
+
+ mask_kind = GFC_DESCRIPTOR_SIZE (mask);
+
+ if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
+#ifdef HAVE_GFC_LOGICAL_16
+ || mask_kind == 16
+#endif
+ )
+ {
+ /* Do not convert a NULL pointer as we use test for NULL below. */
+ if (mptr)
+ mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
+ }
+ else
+ runtime_error ("Funny sized logical array");
+
+ if (ret->data == NULL)
+ {
+ /* The front end has signalled that we need to populate the
+ return array descriptor. */
+ dim = GFC_DESCRIPTOR_RANK (mask);
+ rs = 1;
+ for (n = 0; n < dim; n++)
+ {
+ count[n] = 0;
+ ret->dim[n].stride = rs;
+ ret->dim[n].lbound = 0;
+ ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
+ extent[n] = ret->dim[n].ubound + 1;
+ empty = empty || extent[n] <= 0;
+ rstride[n] = ret->dim[n].stride;
+ fstride[n] = field->dim[n].stride;
+ mstride[n] = mask->dim[n].stride * mask_kind;
+ rs *= extent[n];
+ }
+ ret->offset = 0;
+ ret->data = internal_malloc_size (rs * sizeof ('rtype_name`));
+ }
+ else
+ {
+ dim = GFC_DESCRIPTOR_RANK (ret);
+ for (n = 0; n < dim; n++)
+ {
+ count[n] = 0;
+ extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
+ empty = empty || extent[n] <= 0;
+ rstride[n] = ret->dim[n].stride;
+ fstride[n] = field->dim[n].stride;
+ mstride[n] = mask->dim[n].stride * mask_kind;
+ }
+ if (rstride[0] == 0)
+ rstride[0] = 1;
+ }
+
+ if (empty)
+ return;
+
+ if (fstride[0] == 0)
+ fstride[0] = 1;
+ if (mstride[0] == 0)
+ mstride[0] = 1;
+
+ vstride0 = vector->dim[0].stride;
+ if (vstride0 == 0)
+ vstride0 = 1;
+ rstride0 = rstride[0];
+ fstride0 = fstride[0];
+ mstride0 = mstride[0];
+ rptr = ret->data;
+ fptr = field->data;
+ vptr = vector->data;
+
+ while (rptr)
+ {
+ if (*mptr)
+ {
+ /* From vector. */
+ *rptr = *vptr;
+ vptr += vstride0;
+ }
+ else
+ {
+ /* From field. */
+ *rptr = *fptr;
+ }
+ /* Advance to the next element. */
+ rptr += rstride0;
+ fptr += fstride0;
+ mptr += mstride0;
+ count[0]++;
+ n = 0;
+ while (count[n] == extent[n])
+ {
+ /* When we get to the end of a dimension, reset it and increment
+ the next dimension. */
+ count[n] = 0;
+ /* We could precalculate these products, but this is a less
+ frequently used path so probably not worth it. */
+ rptr -= rstride[n] * extent[n];
+ fptr -= fstride[n] * extent[n];
+ mptr -= mstride[n] * extent[n];
+ n++;
+ if (n >= dim)
+ {
+ /* Break out of the loop. */
+ rptr = NULL;
+ break;
+ }
+ else
+ {
+ count[n]++;
+ rptr += rstride[n];
+ fptr += fstride[n];
+ mptr += mstride[n];
+ }
+ }
+ }
+}
+
+#endif
+'