diff options
author | bje <bje@138bc75d-0d04-0410-961f-82ee72b054a4> | 2009-03-29 23:44:21 +0000 |
---|---|---|
committer | bje <bje@138bc75d-0d04-0410-961f-82ee72b054a4> | 2009-03-29 23:44:21 +0000 |
commit | 44f87356379acbdf36d1d994810a2f4ebecc4fa5 (patch) | |
tree | 39c58619d1fe28f98392db47c16aa68d324c8ae5 /libdecnumber/decBasic.c | |
parent | 7f5f395354b35ab7f472d03dbcce1301ac4f8257 (diff) | |
download | gcc-44f87356379acbdf36d1d994810a2f4ebecc4fa5.tar.gz |
Temporarily revert revision 145222.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@145264 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'libdecnumber/decBasic.c')
-rw-r--r-- | libdecnumber/decBasic.c | 911 |
1 files changed, 385 insertions, 526 deletions
diff --git a/libdecnumber/decBasic.c b/libdecnumber/decBasic.c index 06aa8bae320..fddba979053 100644 --- a/libdecnumber/decBasic.c +++ b/libdecnumber/decBasic.c @@ -32,8 +32,8 @@ /* decBasic.c -- common base code for Basic decimal types */ /* ------------------------------------------------------------------ */ /* This module comprises code that is shared between decDouble and */ -/* decQuad (but not decSingle). The main arithmetic operations are */ -/* here (Add, Subtract, Multiply, FMA, and Division operators). */ +/* decQuad (but not decSingle). The main arithmetic operations are */ +/* here (Add, Subtract, Multiply, FMA, and Division operators). */ /* */ /* Unlike decNumber, parameterization takes place at compile time */ /* rather than at runtime. The parameters are set in the decDouble.c */ @@ -59,7 +59,7 @@ #define DIVIDE 0x80000000 /* Divide operations [as flags] */ #define REMAINDER 0x40000000 /* .. */ #define DIVIDEINT 0x20000000 /* .. */ -#define REMNEAR 0x10000000 /* .. */ +#define REMNEAR 0x10000000 /* .. */ /* Private functions (local, used only by routines in this module) */ static decFloat *decDivide(decFloat *, const decFloat *, @@ -81,7 +81,7 @@ static uInt decToInt32(const decFloat *, decContext *, enum rounding, /* decCanonical -- copy a decFloat, making canonical */ /* */ /* result gets the canonicalized df */ -/* df is the decFloat to copy and make canonical */ +/* df is the decFloat to copy and make canonical */ /* returns result */ /* */ /* This is exposed via decFloatCanonical for Double and Quad only. */ @@ -141,14 +141,14 @@ static decFloat * decCanonical(decFloat *result, const decFloat *df) { uoff-=32; dpd|=encode<<(10-uoff); /* get pending bits */ } - dpd&=0x3ff; /* clear uninteresting bits */ + dpd&=0x3ff; /* clear uninteresting bits */ if (dpd<0x16e) continue; /* must be canonical */ canon=BIN2DPD[DPD2BIN[dpd]]; /* determine canonical declet */ if (canon==dpd) continue; /* have canonical declet */ /* need to replace declet */ if (uoff>=10) { /* all within current word */ encode&=~(0x3ff<<(uoff-10)); /* clear the 10 bits ready for replace */ - encode|=canon<<(uoff-10); /* insert the canonical form */ + encode|=canon<<(uoff-10); /* insert the canonical form */ DFWORD(result, inword)=encode; /* .. and save */ continue; } @@ -167,16 +167,16 @@ static decFloat * decCanonical(decFloat *result, const decFloat *df) { /* decDivide -- divide operations */ /* */ /* result gets the result of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ -/* op is the operation selector */ +/* op is the operation selector */ /* returns result */ /* */ /* op is one of DIVIDE, REMAINDER, DIVIDEINT, or REMNEAR. */ /* ------------------------------------------------------------------ */ #define DIVCOUNT 0 /* 1 to instrument subtractions counter */ -#define DIVBASE ((uInt)BILLION) /* the base used for divide */ +#define DIVBASE BILLION /* the base used for divide */ #define DIVOPLEN DECPMAX9 /* operand length ('digits' base 10**9) */ #define DIVACCLEN (DIVOPLEN*3) /* accumulator length (ditto) */ static decFloat * decDivide(decFloat *result, const decFloat *dfl, @@ -184,18 +184,17 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, decFloat quotient; /* for remainders */ bcdnum num; /* for final conversion */ uInt acc[DIVACCLEN]; /* coefficent in base-billion .. */ - uInt div[DIVOPLEN]; /* divisor in base-billion .. */ + uInt div[DIVOPLEN]; /* divisor in base-billion .. */ uInt quo[DIVOPLEN+1]; /* quotient in base-billion .. */ - uByte bcdacc[(DIVOPLEN+1)*9+2]; /* for quotient in BCD, +1, +1 */ + uByte bcdacc[(DIVOPLEN+1)*9+2]; /* for quotient in BCD, +1, +1 */ uInt *msua, *msud, *msuq; /* -> msu of acc, div, and quo */ Int divunits, accunits; /* lengths */ Int quodigits; /* digits in quotient */ uInt *lsua, *lsuq; /* -> current acc and quo lsus */ Int length, multiplier; /* work */ uInt carry, sign; /* .. */ - uInt *ua, *ud, *uq; /* .. */ - uByte *ub; /* .. */ - uInt uiwork; /* for macros */ + uInt *ua, *ud, *uq; /* .. */ + uByte *ub; /* .. */ uInt divtop; /* top unit of div adjusted for estimating */ #if DIVCOUNT static uInt maxcount=0; /* worst-seen subtractions count */ @@ -236,7 +235,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); /* bad rem */ set->status|=DEC_Division_by_zero; DFWORD(result, 0)=num.sign; - return decInfinity(result, result); /* x/0 -> signed Infinity */ + return decInfinity(result, result); /* x/0 -> signed Infinity */ } num.exponent=GETEXPUN(dfl)-GETEXPUN(dfr); /* ideal exponent */ if (DFISZERO(dfl)) { /* 0/x (x!=0) */ @@ -247,7 +246,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, DFWORD(result, 0)|=num.sign; /* add sign */ return result; } - if (!(op&DIVIDE)) { /* a remainder */ + if (!(op&DIVIDE)) { /* a remainder */ /* exponent is the minimum of the operands */ num.exponent=MINI(GETEXPUN(dfl), GETEXPUN(dfr)); /* if the result is zero the sign shall be sign of dfl */ @@ -290,7 +289,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, #endif /* set msu and lsu pointers */ - msua=acc+DIVACCLEN-1; /* [leading zeros removed below] */ + msua=acc+DIVACCLEN-1; /* [leading zeros removed below] */ msuq=quo+DIVOPLEN; /*[loop for div will terminate because operands are non-zero] */ for (msud=div+DIVOPLEN-1; *msud==0;) msud--; @@ -299,7 +298,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, /* This moves one position towards the least possible for each */ /* iteration */ divunits=(Int)(msud-div+1); /* precalculate */ - lsua=msua-divunits+1; /* initial working lsu of acc */ + lsua=msua-divunits+1; /* initial working lsu of acc */ lsuq=msuq; /* and of quo */ /* set up the estimator for the multiplier; this is the msu of div, */ @@ -372,7 +371,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, for (ud=msud, ua=msua; ud>div; ud--, ua--) if (*ud!=*ua) break; /* [now at first mismatch or lsu] */ if (*ud>*ua) break; /* next time... */ - if (*ud==*ua) { /* all compared equal */ + if (*ud==*ua) { /* all compared equal */ *lsuq+=1; /* increment result */ msua=lsua; /* collapse acc units */ *msua=0; /* .. to a zero */ @@ -419,11 +418,10 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, } else if (divunits==1) { mul=(uLong)*msua * DIVBASE + *(msua-1); - mul/=*msud; /* no more to the right */ + mul/=*msud; /* no more to the right */ } else { - mul=(uLong)(*msua) * (uInt)(DIVBASE<<2) - + (*(msua-1)<<2); + mul=(uLong)(*msua) * (uInt)(DIVBASE<<2) + (*(msua-1)<<2); mul/=divtop; /* [divtop already allows for sticky bits] */ } multiplier=(Int)mul; @@ -542,10 +540,10 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, /* most significant end [offset by one into bcdacc to leave room */ /* for a possible carry digit if rounding for REMNEAR is needed] */ for (uq=msuq, ub=bcdacc+1; uq>=lsuq; uq--, ub+=9) { - uInt top, mid, rem; /* work */ + uInt top, mid, rem; /* work */ if (*uq==0) { /* no split needed */ - UBFROMUI(ub, 0); /* clear 9 BCD8s */ - UBFROMUI(ub+4, 0); /* .. */ + UINTAT(ub)=0; /* clear 9 BCD8s */ + UINTAT(ub+4)=0; /* .. */ *(ub+8)=0; /* .. */ continue; } @@ -560,11 +558,11 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, mid=rem/divsplit6; rem=rem%divsplit6; /* lay out the nine BCD digits (plus one unwanted byte) */ - UBFROMUI(ub, UBTOUI(&BIN2BCD8[top*4])); - UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4])); - UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4])); + UINTAT(ub) =UINTAT(&BIN2BCD8[top*4]); + UINTAT(ub+3)=UINTAT(&BIN2BCD8[mid*4]); + UINTAT(ub+6)=UINTAT(&BIN2BCD8[rem*4]); } /* BCD conversion loop */ - ub--; /* -> lsu */ + ub--; /* -> lsu */ /* complete the bcdnum; quodigits is correct, so the position of */ /* the first non-zero is known */ @@ -644,7 +642,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, num.msd--; /* use the 0 .. */ num.lsd=num.msd; /* .. at the new MSD place */ } - if (reround!=0) { /* discarding non-zero */ + if (reround!=0) { /* discarding non-zero */ uInt bump=0; /* rounding is DEC_ROUND_HALF_EVEN always */ if (reround>5) bump=1; /* >0.5 goes up */ @@ -653,7 +651,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, if (bump!=0) { /* need increment */ /* increment the coefficient; this might end up with 1000... */ ub=num.lsd; - for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0); + for (; UINTAT(ub-3)==0x09090909; ub-=4) UINTAT(ub-3)=0; for (; *ub==9; ub--) *ub=0; /* at most 3 more */ *ub+=1; if (ub<num.msd) num.msd--; /* carried */ @@ -682,7 +680,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, /* */ /* num gets the result of multiplying dfl and dfr */ /* bcdacc .. with the coefficient in this array */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* */ /* This effects the multiplication of two decFloats, both known to be */ @@ -697,7 +695,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, /* variables (Ints and uInts) or smaller; the other uses uLongs (for */ /* multiplication and addition only). Both implementations cover */ /* both arithmetic sizes (DOUBLE and QUAD) in order to allow timing */ -/* comparisons. In any one compilation only one implementation for */ +/* comparisons. In any one compilation only one implementation for */ /* each size can be used, and if DECUSE64 is 0 then use of the 32-bit */ /* version is forced. */ /* */ @@ -706,7 +704,7 @@ static decFloat * decDivide(decFloat *result, const decFloat *dfl, /* during lazy carry splitting because the initial quotient estimate */ /* (est) can exceed 32 bits. */ -#define MULTBASE ((uInt)BILLION) /* the base used for multiply */ +#define MULTBASE BILLION /* the base used for multiply */ #define MULOPLEN DECPMAX9 /* operand length ('digits' base 10**9) */ #define MULACCLEN (MULOPLEN*2) /* accumulator length (ditto) */ #define LEADZEROS (MULACCLEN*9 - DECPMAX*2) /* leading zeros always */ @@ -725,12 +723,11 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, uInt bufl[MULOPLEN]; /* left coefficient (base-billion) */ uInt bufr[MULOPLEN]; /* right coefficient (base-billion) */ uInt *ui, *uj; /* work */ - uByte *ub; /* .. */ - uInt uiwork; /* for macros */ + uByte *ub; /* .. */ #if DECUSE64 - uLong accl[MULACCLEN]; /* lazy accumulator (base-billion+) */ - uLong *pl; /* work -> lazy accumulator */ + uLong accl[MULACCLEN]; /* lazy accumulator (base-billion+) */ + uLong *pl; /* work -> lazy accumulator */ uInt acc[MULACCLEN]; /* coefficent in base-billion .. */ #else uInt acc[MULACCLEN*2]; /* accumulator in base-billion .. */ @@ -763,7 +760,7 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, /* zero the accumulator */ #if MULACCLEN==4 accl[0]=0; accl[1]=0; accl[2]=0; accl[3]=0; - #else /* use a loop */ + #else /* use a loop */ /* MULACCLEN is a multiple of four, asserted above */ for (pl=accl; pl<accl+MULACCLEN; pl+=4) { *pl=0; *(pl+1)=0; *(pl+2)=0; *(pl+3)=0;/* [reduce overhead] */ @@ -815,8 +812,8 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, /* */ /* Type OPLEN A B maxX maxError maxCorrection */ /* --------------------------------------------------------- */ - /* DOUBLE 2 29 32 <2*10**18 0.63 1 */ - /* QUAD 4 30 31 <4*10**18 1.17 2 */ + /* DOUBLE 2 29 32 <2*10**18 0.63 1 */ + /* QUAD 4 30 31 <4*10**18 1.17 2 */ /* */ /* In the OPLEN==2 case there is most choice, but the value for B */ /* of 32 has a big advantage as then the calculation of the */ @@ -843,7 +840,7 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, for (pl=accl, pa=acc; pl<accl+MULACCLEN; pl++, pa++) { /* each column position */ uInt lo, hop; /* work */ uInt est; /* cannot exceed 4E+9 */ - if (*pl>=MULTBASE) { + if (*pl>MULTBASE) { /* *pl holds a binary number which needs to be split */ hop=(uInt)(*pl>>MULSHIFTA); est=(uInt)(((uLong)hop*MULMAGIC)>>MULSHIFTB); @@ -908,7 +905,7 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, /* quotient/remainder has to be calculated for base-billion (1E+9). */ /* For this, Clark & Cowlishaw's quotient estimation approach (also */ /* used in decNumber) is needed, because 64-bit divide is generally */ - /* extremely slow on 32-bit machines. This algorithm splits X */ + /* extremely slow on 32-bit machines. This algorithm splits X */ /* using: */ /* */ /* magic=2**(A+B)/1E+9; // 'magic number' */ @@ -930,8 +927,8 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, /* */ /* Type OPLEN A B maxX maxError maxCorrection */ /* --------------------------------------------------------- */ - /* DOUBLE 2 29 32 <2*10**18 0.63 1 */ - /* QUAD 4 30 31 <4*10**18 1.17 2 */ + /* DOUBLE 2 29 32 <2*10**18 0.63 1 */ + /* QUAD 4 30 31 <4*10**18 1.17 2 */ /* */ /* In the OPLEN==2 case there is most choice, but the value for B */ /* of 32 has a big advantage as then the calculation of the */ @@ -955,15 +952,15 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, printf("\n"); #endif - for (pa=acc;; pa++) { /* each low uInt */ + for (pa=acc;; pa++) { /* each low uInt */ uInt hi, lo; /* words of exact multiply result */ uInt hop, estlo; /* work */ #if QUAD - uInt esthi; /* .. */ + uInt esthi; /* .. */ #endif lo=*pa; - hi=*(pa+MULACCLEN); /* top 32 bits */ + hi=*(pa+MULACCLEN); /* top 32 bits */ /* hi and lo now hold a binary number which needs to be split */ #if DOUBLE @@ -1035,7 +1032,7 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, uInt top, mid, rem; /* work */ /* *pa is non-zero -- split the base-billion acc digit into */ /* hi, mid, and low three-digits */ - #define mulsplit9 1000000 /* divisor */ + #define mulsplit9 1000000 /* divisor */ #define mulsplit6 1000 /* divisor */ /* The splitting is done by simple divides and remainders, */ /* assuming the compiler will optimize these where useful */ @@ -1045,13 +1042,13 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, mid=rem/mulsplit6; rem=rem%mulsplit6; /* lay out the nine BCD digits (plus one unwanted byte) */ - UBFROMUI(ub, UBTOUI(&BIN2BCD8[top*4])); - UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4])); - UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4])); + UINTAT(ub) =UINTAT(&BIN2BCD8[top*4]); + UINTAT(ub+3)=UINTAT(&BIN2BCD8[mid*4]); + UINTAT(ub+6)=UINTAT(&BIN2BCD8[rem*4]); } else { /* *pa==0 */ - UBFROMUI(ub, 0); /* clear 9 BCD8s */ - UBFROMUI(ub+4, 0); /* .. */ + UINTAT(ub)=0; /* clear 9 BCD8s */ + UINTAT(ub+4)=0; /* .. */ *(ub+8)=0; /* .. */ } if (pa==acc) break; @@ -1071,7 +1068,7 @@ static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, /* decFloatAbs -- absolute value, heeding NaNs, etc. */ /* */ /* result gets the canonicalized df with sign 0 */ -/* df is the decFloat to abs */ +/* df is the decFloat to abs */ /* set is the context */ /* returns result */ /* */ @@ -1093,45 +1090,26 @@ decFloat * decFloatAbs(decFloat *result, const decFloat *df, /* decFloatAdd -- add two decFloats */ /* */ /* result gets the result of adding dfl and dfr: */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ /* */ /* ------------------------------------------------------------------ */ -#if QUAD -/* Table for testing MSDs for fastpath elimination; returns the MSD of */ -/* a decDouble or decQuad (top 6 bits tested) ignoring the sign. */ -/* Infinities return -32 and NaNs return -128 so that summing the two */ -/* MSDs also allows rapid tests for the Specials (see code below). */ -const Int DECTESTMSD[64]={ - 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128, - 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128}; -#else -/* The table for testing MSDs is shared between the modules */ -extern const Int DECTESTMSD[64]; -#endif - decFloat * decFloatAdd(decFloat *result, const decFloat *dfl, const decFloat *dfr, decContext *set) { bcdnum num; /* for final conversion */ - Int bexpl, bexpr; /* left and right biased exponents */ - uByte *ub, *us, *ut; /* work */ - uInt uiwork; /* for macros */ - #if QUAD - uShort uswork; /* .. */ - #endif + Int expl, expr; /* left and right exponents */ + uInt *ui, *uj; /* work */ + uByte *ub; /* .. */ uInt sourhil, sourhir; /* top words from source decFloats */ - /* [valid only through end of */ - /* fastpath code -- before swap] */ + /* [valid only until specials */ + /* handled or exponents decoded] */ uInt diffsign; /* non-zero if signs differ */ uInt carry; /* carry: 0 or 1 before add loop */ - Int overlap; /* coefficient overlap (if full) */ - Int summ; /* sum of the MSDs */ + Int overlap; /* coefficient overlap (if full) */ /* the following buffers hold coefficients with various alignments */ /* (see commentary and diagrams below) */ uByte acc[4+2+DECPMAX*3+8]; @@ -1139,116 +1117,48 @@ decFloat * decFloatAdd(decFloat *result, uByte *umsd, *ulsd; /* local MSD and LSD pointers */ #if DECLITEND - #define CARRYPAT 0x01000000 /* carry=1 pattern */ + #define CARRYPAT 0x01000000 /* carry=1 pattern */ #else - #define CARRYPAT 0x00000001 /* carry=1 pattern */ + #define CARRYPAT 0x00000001 /* carry=1 pattern */ #endif /* Start decoding the arguments */ - /* The initial exponents are placed into the opposite Ints to */ + /* the initial exponents are placed into the opposite Ints to */ /* that which might be expected; there are two sets of data to */ /* keep track of (each decFloat and the corresponding exponent), */ /* and this scheme means that at the swap point (after comparing */ /* exponents) only one pair of words needs to be swapped */ - /* whichever path is taken (thereby minimising worst-case path). */ - /* The calculated exponents will be nonsense when the arguments are */ - /* Special, but are not used in that path */ + /* whichever path is taken (thereby minimising worst-case path) */ sourhil=DFWORD(dfl, 0); /* LHS top word */ - summ=DECTESTMSD[sourhil>>26]; /* get first MSD for testing */ - bexpr=DECCOMBEXP[sourhil>>26]; /* get exponent high bits (in place) */ - bexpr+=GETECON(dfl); /* .. + continuation */ - + expr=DECCOMBEXP[sourhil>>26]; /* get exponent high bits (in place) */ sourhir=DFWORD(dfr, 0); /* RHS top word */ - summ+=DECTESTMSD[sourhir>>26]; /* sum MSDs for testing */ - bexpl=DECCOMBEXP[sourhir>>26]; - bexpl+=GETECON(dfr); - - /* here bexpr has biased exponent from lhs, and vice versa */ + expl=DECCOMBEXP[sourhir>>26]; diffsign=(sourhil^sourhir)&DECFLOAT_Sign; - /* now determine whether to take a fast path or the full-function */ - /* slow path. The slow path must be taken when: */ - /* -- both numbers are finite, and: */ - /* the exponents are different, or */ - /* the signs are different, or */ - /* the sum of the MSDs is >8 (hence might overflow) */ - /* specialness and the sum of the MSDs can be tested at once using */ - /* the summ value just calculated, so the test for specials is no */ - /* longer on the worst-case path (as of 3.60) */ - - if (summ<=8) { /* MSD+MSD is good, or there is a special */ - if (summ<0) { /* there is a special */ - /* Inf+Inf would give -64; Inf+finite is -32 or higher */ - if (summ<-64) return decNaNs(result, dfl, dfr, set); /* one or two NaNs */ - /* two infinities with different signs is invalid */ - if (summ==-64 && diffsign) return decInvalid(result, set); - if (DFISINF(dfl)) return decInfinity(result, dfl); /* LHS is infinite */ - return decInfinity(result, dfr); /* RHS must be Inf */ - } - /* Here when both arguments are finite; fast path is possible */ - /* (currently only for aligned and same-sign) */ - if (bexpr==bexpl && !diffsign) { - uInt tac[DECLETS+1]; /* base-1000 coefficient */ - uInt encode; /* work */ - - /* Get one coefficient as base-1000 and add the other */ - GETCOEFFTHOU(dfl, tac); /* least-significant goes to [0] */ - ADDCOEFFTHOU(dfr, tac); - /* here the sum of the MSDs (plus any carry) will be <10 due to */ - /* the fastpath test earlier */ - - /* construct the result; low word is the same for both formats */ - encode =BIN2DPD[tac[0]]; - encode|=BIN2DPD[tac[1]]<<10; - encode|=BIN2DPD[tac[2]]<<20; - encode|=BIN2DPD[tac[3]]<<30; - DFWORD(result, (DECBYTES/4)-1)=encode; - - /* collect next two declets (all that remains, for Double) */ - encode =BIN2DPD[tac[3]]>>2; - encode|=BIN2DPD[tac[4]]<<8; - - #if QUAD - /* complete and lay out middling words */ - encode|=BIN2DPD[tac[5]]<<18; - encode|=BIN2DPD[tac[6]]<<28; - DFWORD(result, 2)=encode; - - encode =BIN2DPD[tac[6]]>>4; - encode|=BIN2DPD[tac[7]]<<6; - encode|=BIN2DPD[tac[8]]<<16; - encode|=BIN2DPD[tac[9]]<<26; - DFWORD(result, 1)=encode; - - /* and final two declets */ - encode =BIN2DPD[tac[9]]>>6; - encode|=BIN2DPD[tac[10]]<<4; - #endif - - /* add exponent continuation and sign (from either argument) */ - encode|=sourhil & (ECONMASK | DECFLOAT_Sign); - - /* create lookup index = MSD + top two bits of biased exponent <<4 */ - tac[DECLETS]|=(bexpl>>DECECONL)<<4; - encode|=DECCOMBFROM[tac[DECLETS]]; /* add constructed combination field */ - DFWORD(result, 0)=encode; /* complete */ + if (EXPISSPECIAL(expl | expr)) { /* either is special? */ + if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); + /* one or two infinities */ + /* two infinities with different signs is invalid */ + if (diffsign && DFISINF(dfl) && DFISINF(dfr)) + return decInvalid(result, set); + if (DFISINF(dfl)) return decInfinity(result, dfl); /* LHS is infinite */ + return decInfinity(result, dfr); /* RHS must be Infinite */ + } - /* decFloatShow(result, ">"); */ - return result; - } /* fast path OK */ - /* drop through to slow path */ - } /* low sum or Special(s) */ + /* Here when both arguments are finite */ - /* Slow path required -- arguments are finite and might overflow, */ - /* or require alignment, or might have different signs */ + /* complete exponent gathering (keeping swapped) */ + expr+=GETECON(dfl)-DECBIAS; /* .. + continuation and unbias */ + expl+=GETECON(dfr)-DECBIAS; + /* here expr has exponent from lhs, and vice versa */ /* now swap either exponents or argument pointers */ - if (bexpl<=bexpr) { + if (expl<=expr) { /* original left is bigger */ - Int bexpswap=bexpl; - bexpl=bexpr; - bexpr=bexpswap; + Int expswap=expl; + expl=expr; + expr=expswap; /* printf("left bigger\n"); */ } else { @@ -1257,7 +1167,7 @@ decFloat * decFloatAdd(decFloat *result, dfr=dfswap; /* printf("right bigger\n"); */ } - /* [here dfl and bexpl refer to the datum with the larger exponent, */ + /* [here dfl and expl refer to the datum with the larger exponent, */ /* of if the exponents are equal then the original LHS argument] */ /* if lhs is zero then result will be the rhs (now known to have */ @@ -1299,19 +1209,19 @@ decFloat * decFloatAdd(decFloat *result, #if DOUBLE #define COFF 4 /* offset into acc */ #elif QUAD - UBFROMUS(acc+4, 0); /* prefix 00 */ + USHORTAT(acc+4)=0; /* prefix 00 */ #define COFF 6 /* offset into acc */ #endif GETCOEFF(dfl, acc+COFF); /* decode from decFloat */ ulsd=acc+COFF+DECPMAX-1; umsd=acc+4; /* [having this here avoids */ - + /* weird GCC optimizer failure] */ #if DECTRACE {bcdnum tum; tum.msd=umsd; tum.lsd=ulsd; - tum.exponent=bexpl-DECBIAS; + tum.exponent=expl; tum.sign=DFWORD(dfl, 0) & DECFLOAT_Sign; decShowNum(&tum, "dflx");} #endif @@ -1325,16 +1235,16 @@ decFloat * decFloatAdd(decFloat *result, carry=0; /* assume no carry */ if (diffsign) { carry=CARRYPAT; /* for +1 during add */ - UBFROMUI(acc+ 4, 0x09090909-UBTOUI(acc+ 4)); - UBFROMUI(acc+ 8, 0x09090909-UBTOUI(acc+ 8)); - UBFROMUI(acc+12, 0x09090909-UBTOUI(acc+12)); - UBFROMUI(acc+16, 0x09090909-UBTOUI(acc+16)); + UINTAT(acc+ 4)=0x09090909-UINTAT(acc+ 4); + UINTAT(acc+ 8)=0x09090909-UINTAT(acc+ 8); + UINTAT(acc+12)=0x09090909-UINTAT(acc+12); + UINTAT(acc+16)=0x09090909-UINTAT(acc+16); #if QUAD - UBFROMUI(acc+20, 0x09090909-UBTOUI(acc+20)); - UBFROMUI(acc+24, 0x09090909-UBTOUI(acc+24)); - UBFROMUI(acc+28, 0x09090909-UBTOUI(acc+28)); - UBFROMUI(acc+32, 0x09090909-UBTOUI(acc+32)); - UBFROMUI(acc+36, 0x09090909-UBTOUI(acc+36)); + UINTAT(acc+20)=0x09090909-UINTAT(acc+20); + UINTAT(acc+24)=0x09090909-UINTAT(acc+24); + UINTAT(acc+28)=0x09090909-UINTAT(acc+28); + UINTAT(acc+32)=0x09090909-UINTAT(acc+32); + UINTAT(acc+36)=0x09090909-UINTAT(acc+36); #endif } /* diffsign */ @@ -1342,9 +1252,9 @@ decFloat * decFloatAdd(decFloat *result, /* it can be put straight into acc (with an appropriate gap, if */ /* needed) because no actual addition will be needed (except */ /* possibly to complete ten's complement) */ - overlap=DECPMAX-(bexpl-bexpr); + overlap=DECPMAX-(expl-expr); #if DECTRACE - printf("exps: %ld %ld\n", (LI)(bexpl-DECBIAS), (LI)(bexpr-DECBIAS)); + printf("exps: %ld %ld\n", (LI)expl, (LI)expr); printf("Overlap=%ld carry=%08lx\n", (LI)overlap, (LI)carry); #endif @@ -1364,13 +1274,13 @@ decFloat * decFloatAdd(decFloat *result, /* safe because the lhs is non-zero]. */ gap=-overlap; if (gap>DECPMAX) { - bexpr+=gap-1; + expr+=gap-1; gap=DECPMAX; } ub=ulsd+gap+1; /* where MSD will go */ /* Fill the gap with 0s; note that there is no addition to do */ - ut=acc+COFF+DECPMAX; /* start of gap */ - for (; ut<ub; ut+=4) UBFROMUI(ut, 0); /* mind the gap */ + ui=&UINTAT(acc+COFF+DECPMAX); /* start of gap */ + for (; ui<&UINTAT(ub); ui++) *ui=0; /* mind the gap */ if (overlap<-DECPMAX) { /* gap was > DECPMAX */ *ub=(uByte)(!DFISZERO(dfr)); /* make sticky digit */ } @@ -1384,74 +1294,63 @@ decFloat * decFloatAdd(decFloat *result, else { /* overlap>0 */ /* coefficients overlap (perhaps completely, although also */ /* perhaps only where zeros) */ - if (overlap==DECPMAX) { /* aligned */ - ub=buf+COFF; /* where msd will go */ - #if QUAD - UBFROMUS(buf+4, 0); /* clear quad's 00 */ - #endif - GETCOEFF(dfr, ub); /* decode from decFloat */ + ub=buf+COFF+DECPMAX-overlap; /* where MSD will go */ + /* Fill the prefix gap with 0s; 8 will cover most common */ + /* unalignments, so start with direct assignments (a loop is */ + /* then used for any remaining -- the loop (and the one in a */ + /* moment) is not then on the critical path because the number */ + /* of additions is reduced by (at least) two in this case) */ + UINTAT(buf+4)=0; /* [clears decQuad 00 too] */ + UINTAT(buf+8)=0; + if (ub>buf+12) { + ui=&UINTAT(buf+12); /* start of any remaining */ + for (; ui<&UINTAT(ub); ui++) *ui=0; /* fill them */ + } + GETCOEFF(dfr, ub); /* decode from decFloat */ + + /* now move tail of rhs across to main acc; again use direct */ + /* assignment for 8 digits-worth */ + UINTAT(acc+COFF+DECPMAX)=UINTAT(buf+COFF+DECPMAX); + UINTAT(acc+COFF+DECPMAX+4)=UINTAT(buf+COFF+DECPMAX+4); + if (buf+COFF+DECPMAX+8<ub+DECPMAX) { + uj=&UINTAT(buf+COFF+DECPMAX+8); /* source */ + ui=&UINTAT(acc+COFF+DECPMAX+8); /* target */ + for (; uj<&UINTAT(ub+DECPMAX); ui++, uj++) *ui=*uj; } - else { /* unaligned */ - ub=buf+COFF+DECPMAX-overlap; /* where MSD will go */ - /* Fill the prefix gap with 0s; 8 will cover most common */ - /* unalignments, so start with direct assignments (a loop is */ - /* then used for any remaining -- the loop (and the one in a */ - /* moment) is not then on the critical path because the number */ - /* of additions is reduced by (at least) two in this case) */ - UBFROMUI(buf+4, 0); /* [clears decQuad 00 too] */ - UBFROMUI(buf+8, 0); - if (ub>buf+12) { - ut=buf+12; /* start any remaining */ - for (; ut<ub; ut+=4) UBFROMUI(ut, 0); /* fill them */ - } - GETCOEFF(dfr, ub); /* decode from decFloat */ - - /* now move tail of rhs across to main acc; again use direct */ - /* copies for 8 digits-worth */ - UBFROMUI(acc+COFF+DECPMAX, UBTOUI(buf+COFF+DECPMAX)); - UBFROMUI(acc+COFF+DECPMAX+4, UBTOUI(buf+COFF+DECPMAX+4)); - if (buf+COFF+DECPMAX+8<ub+DECPMAX) { - us=buf+COFF+DECPMAX+8; /* source */ - ut=acc+COFF+DECPMAX+8; /* target */ - for (; us<ub+DECPMAX; us+=4, ut+=4) UBFROMUI(ut, UBTOUI(us)); - } - } /* unaligned */ ulsd=acc+(ub-buf+DECPMAX-1); /* update LSD pointer */ - /* Now do the add of the non-tail; this is all nicely aligned, */ + /* now do the add of the non-tail; this is all nicely aligned, */ /* and is over a multiple of four digits (because for Quad two */ - /* zero digits were added on the left); words in both acc and */ + /* two 0 digits were added on the left); words in both acc and */ /* buf (buf especially) will often be zero */ - /* [byte-by-byte add, here, is about 15% slower total effect than */ - /* the by-fours] */ + /* [byte-by-byte add, here, is about 15% slower than the by-fours] */ /* Now effect the add; this is harder on a little-endian */ /* machine as the inter-digit carry cannot use the usual BCD */ /* addition trick because the bytes are loaded in the wrong order */ /* [this loop could be unrolled, but probably scarcely worth it] */ - ut=acc+COFF+DECPMAX-4; /* target LSW (acc) */ - us=buf+COFF+DECPMAX-4; /* source LSW (buf, to add to acc) */ + ui=&UINTAT(acc+COFF+DECPMAX-4); /* target LSW (acc) */ + uj=&UINTAT(buf+COFF+DECPMAX-4); /* source LSW (buf, to add to acc) */ #if !DECLITEND - for (; ut>=acc+4; ut-=4, us-=4) { /* big-endian add loop */ + for (; ui>=&UINTAT(acc+4); ui--, uj--) { /* bcd8 add */ - carry+=UBTOUI(us); /* rhs + carry */ + carry+=*uj; /* rhs + carry */ if (carry==0) continue; /* no-op */ - carry+=UBTOUI(ut); /* lhs */ + carry+=*ui; /* lhs */ /* Big-endian BCD adjust (uses internal carry) */ carry+=0x76f6f6f6; /* note top nibble not all bits */ - /* apply BCD adjust and save */ - UBFROMUI(ut, (carry & 0x0f0f0f0f) - ((carry & 0x60606060)>>4)); + *ui=(carry & 0x0f0f0f0f) - ((carry & 0x60606060)>>4); /* BCD adjust */ carry>>=31; /* true carry was at far left */ } /* add loop */ #else - for (; ut>=acc+4; ut-=4, us-=4) { /* little-endian add loop */ + for (; ui>=&UINTAT(acc+4); ui--, uj--) { /* bcd8 add */ - carry+=UBTOUI(us); /* rhs + carry */ + carry+=*uj; /* rhs + carry */ if (carry==0) continue; /* no-op [common if unaligned] */ - carry+=UBTOUI(ut); /* lhs */ + carry+=*ui; /* lhs */ /* Little-endian BCD adjust; inter-digit carry must be manual */ /* because the lsb from the array will be in the most-significant */ /* byte of carry */ @@ -1460,13 +1359,12 @@ decFloat * decFloatAdd(decFloat *result, carry+=(carry & 0x00800000)>>15; carry+=(carry & 0x00008000)>>15; carry-=(carry & 0x60606060)>>4; /* BCD adjust back */ - UBFROMUI(ut, carry & 0x0f0f0f0f); /* clear debris and save */ + *ui=carry & 0x0f0f0f0f; /* clear debris and save */ /* here, final carry-out bit is at 0x00000080; move it ready */ /* for next word-add (i.e., to 0x01000000) */ carry=(carry & 0x00000080)<<17; } /* add loop */ #endif - #if DECTRACE {bcdnum tum; printf("Add done, carry=%08lx, diffsign=%ld\n", (LI)carry, (LI)diffsign); @@ -1494,36 +1392,36 @@ decFloat * decFloatAdd(decFloat *result, *(ulsd+1)=0; #endif /* there are always at least four coefficient words */ - UBFROMUI(umsd, 0x09090909-UBTOUI(umsd)); - UBFROMUI(umsd+4, 0x09090909-UBTOUI(umsd+4)); - UBFROMUI(umsd+8, 0x09090909-UBTOUI(umsd+8)); - UBFROMUI(umsd+12, 0x09090909-UBTOUI(umsd+12)); + UINTAT(umsd) =0x09090909-UINTAT(umsd); + UINTAT(umsd+4) =0x09090909-UINTAT(umsd+4); + UINTAT(umsd+8) =0x09090909-UINTAT(umsd+8); + UINTAT(umsd+12)=0x09090909-UINTAT(umsd+12); #if DOUBLE #define BNEXT 16 #elif QUAD - UBFROMUI(umsd+16, 0x09090909-UBTOUI(umsd+16)); - UBFROMUI(umsd+20, 0x09090909-UBTOUI(umsd+20)); - UBFROMUI(umsd+24, 0x09090909-UBTOUI(umsd+24)); - UBFROMUI(umsd+28, 0x09090909-UBTOUI(umsd+28)); - UBFROMUI(umsd+32, 0x09090909-UBTOUI(umsd+32)); + UINTAT(umsd+16)=0x09090909-UINTAT(umsd+16); + UINTAT(umsd+20)=0x09090909-UINTAT(umsd+20); + UINTAT(umsd+24)=0x09090909-UINTAT(umsd+24); + UINTAT(umsd+28)=0x09090909-UINTAT(umsd+28); + UINTAT(umsd+32)=0x09090909-UINTAT(umsd+32); #define BNEXT 36 #endif if (ulsd>=umsd+BNEXT) { /* unaligned */ /* eight will handle most unaligments for Double; 16 for Quad */ - UBFROMUI(umsd+BNEXT, 0x09090909-UBTOUI(umsd+BNEXT)); - UBFROMUI(umsd+BNEXT+4, 0x09090909-UBTOUI(umsd+BNEXT+4)); + UINTAT(umsd+BNEXT)=0x09090909-UINTAT(umsd+BNEXT); + UINTAT(umsd+BNEXT+4)=0x09090909-UINTAT(umsd+BNEXT+4); #if DOUBLE #define BNEXTY (BNEXT+8) #elif QUAD - UBFROMUI(umsd+BNEXT+8, 0x09090909-UBTOUI(umsd+BNEXT+8)); - UBFROMUI(umsd+BNEXT+12, 0x09090909-UBTOUI(umsd+BNEXT+12)); + UINTAT(umsd+BNEXT+8)=0x09090909-UINTAT(umsd+BNEXT+8); + UINTAT(umsd+BNEXT+12)=0x09090909-UINTAT(umsd+BNEXT+12); #define BNEXTY (BNEXT+16) #endif if (ulsd>=umsd+BNEXTY) { /* very unaligned */ - ut=umsd+BNEXTY; /* -> continue */ - for (;;ut+=4) { - UBFROMUI(ut, 0x09090909-UBTOUI(ut)); /* invert four digits */ - if (ut>=ulsd-3) break; /* all done */ + ui=&UINTAT(umsd+BNEXTY); /* -> continue */ + for (;;ui++) { + *ui=0x09090909-*ui; /* invert four digits */ + if (ui>=&UINTAT(ulsd-3)) break; /* all done */ } } } @@ -1548,10 +1446,10 @@ decFloat * decFloatAdd(decFloat *result, umsd=acc+COFF+DECPMAX-1; /* so far, so zero */ if (ulsd>umsd) { /* more to check */ umsd++; /* to align after checked area */ - for (; UBTOUI(umsd)==0 && umsd+3<ulsd;) umsd+=4; + for (; UINTAT(umsd)==0 && umsd+3<ulsd;) umsd+=4; for (; *umsd==0 && umsd<ulsd;) umsd++; } - if (*umsd==0) { /* must be true zero (and diffsign) */ + if (*umsd==0) { /* must be true zero (and diffsign) */ num.sign=0; /* assume + */ if (set->round==DEC_ROUND_FLOOR) num.sign=DECFLOAT_Sign; } @@ -1570,9 +1468,9 @@ decFloat * decFloatAdd(decFloat *result, #endif } /* same sign */ - num.msd=umsd; /* set MSD .. */ - num.lsd=ulsd; /* .. and LSD */ - num.exponent=bexpr-DECBIAS; /* set exponent to smaller, unbiassed */ + num.msd=umsd; /* set MSD .. */ + num.lsd=ulsd; /* .. and LSD */ + num.exponent=expr; /* set exponent to smaller */ #if DECTRACE decFloatShow(dfl, "dfl"); @@ -1586,12 +1484,12 @@ decFloat * decFloatAdd(decFloat *result, /* decFloatAnd -- logical digitwise AND of two decFloats */ /* */ /* result gets the result of ANDing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result, which will be canonical with sign=0 */ /* */ -/* The operands must be positive, finite with exponent q=0, and */ +/* The operands must be positive, finite with exponent q=0, and */ /* comprise just zeros and ones; if not, Invalid operation results. */ /* ------------------------------------------------------------------ */ decFloat * decFloatAnd(decFloat *result, @@ -1618,7 +1516,7 @@ decFloat * decFloatAnd(decFloat *result, /* decFloatCanonical -- copy a decFloat, making canonical */ /* */ /* result gets the canonicalized df */ -/* df is the decFloat to copy and make canonical */ +/* df is the decFloat to copy and make canonical */ /* returns result */ /* */ /* This works on specials, too; no error or exception is possible. */ @@ -1630,7 +1528,7 @@ decFloat * decFloatCanonical(decFloat *result, const decFloat *df) { /* ------------------------------------------------------------------ */ /* decFloatClass -- return the class of a decFloat */ /* */ -/* df is the decFloat to test */ +/* df is the decFloat to test */ /* returns the decClass that df falls into */ /* ------------------------------------------------------------------ */ enum decClass decFloatClass(const decFloat *df) { @@ -1662,7 +1560,7 @@ enum decClass decFloatClass(const decFloat *df) { /* ------------------------------------------------------------------ */ /* decFloatClassString -- return the class of a decFloat as a string */ /* */ -/* df is the decFloat to test */ +/* df is the decFloat to test */ /* returns a constant string describing the class df falls into */ /* ------------------------------------------------------------------ */ const char *decFloatClassString(const decFloat *df) { @@ -1681,10 +1579,10 @@ const char *decFloatClassString(const decFloat *df) { } /* decFloatClassString */ /* ------------------------------------------------------------------ */ -/* decFloatCompare -- compare two decFloats; quiet NaNs allowed */ +/* decFloatCompare -- compare two decFloats; quiet NaNs allowed */ /* */ /* result gets the result of comparing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result, which may be -1, 0, 1, or NaN (Unordered) */ @@ -1708,7 +1606,7 @@ decFloat * decFloatCompare(decFloat *result, /* decFloatCompareSignal -- compare two decFloats; all NaNs signal */ /* */ /* result gets the result of comparing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result, which may be -1, 0, 1, or NaN (Unordered) */ @@ -1735,21 +1633,17 @@ decFloat * decFloatCompareSignal(decFloat *result, /* decFloatCompareTotal -- compare two decFloats with total ordering */ /* */ /* result gets the result of comparing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* returns result, which may be -1, 0, or 1 */ /* ------------------------------------------------------------------ */ decFloat * decFloatCompareTotal(decFloat *result, const decFloat *dfl, const decFloat *dfr) { - Int comp; /* work */ - uInt uiwork; /* for macros */ - #if QUAD - uShort uswork; /* .. */ - #endif + Int comp; /* work */ if (DFISNAN(dfl) || DFISNAN(dfr)) { Int nanl, nanr; /* work */ /* morph NaNs to +/- 1 or 2, leave numbers as 0 */ - nanl=DFISSNAN(dfl)+DFISQNAN(dfl)*2; /* quiet > signalling */ + nanl=DFISSNAN(dfl)+DFISQNAN(dfl)*2; /* quiet > signalling */ if (DFISSIGNED(dfl)) nanl=-nanl; nanr=DFISSNAN(dfr)+DFISQNAN(dfr)*2; if (DFISSIGNED(dfr)) nanr=-nanr; @@ -1760,22 +1654,23 @@ decFloat * decFloatCompareTotal(decFloat *result, uByte bufl[DECPMAX+4]; /* for LHS coefficient + foot */ uByte bufr[DECPMAX+4]; /* for RHS coefficient + foot */ uByte *ub, *uc; /* work */ - Int sigl; /* signum of LHS */ + Int sigl; /* signum of LHS */ sigl=(DFISSIGNED(dfl) ? -1 : +1); /* decode the coefficients */ /* (shift both right two if Quad to make a multiple of four) */ #if QUAD - UBFROMUS(bufl, 0); - UBFROMUS(bufr, 0); + ub = bufl; /* avoid type-pun violation */ + USHORTAT(ub)=0; + uc = bufr; /* avoid type-pun violation */ + USHORTAT(uc)=0; #endif GETCOEFF(dfl, bufl+QUAD*2); /* decode from decFloat */ GETCOEFF(dfr, bufr+QUAD*2); /* .. */ /* all multiples of four, here */ comp=0; /* assume equal */ for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) { - uInt ui=UBTOUI(ub); - if (ui==UBTOUI(uc)) continue; /* so far so same */ + if (UINTAT(ub)==UINTAT(uc)) continue; /* so far so same */ /* about to find a winner; go by bytes in case little-endian */ for (;; ub++, uc++) { if (*ub==*uc) continue; @@ -1801,7 +1696,7 @@ decFloat * decFloatCompareTotal(decFloat *result, /* decFloatCompareTotalMag -- compare magnitudes with total ordering */ /* */ /* result gets the result of comparing abs(dfl) and abs(dfr) */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* returns result, which may be -1, 0, or 1 */ /* ------------------------------------------------------------------ */ @@ -1852,7 +1747,7 @@ decFloat * decFloatCopyAbs(decFloat *result, const decFloat *dfl) { /* ------------------------------------------------------------------ */ /* decFloatCopyNegate -- copy a decFloat as-is with inverted sign bit */ /* */ -/* result gets the copy of dfl with sign bit inverted */ +/* result gets the copy of dfl with sign bit inverted */ /* dfl is the decFloat to copy */ /* returns result */ /* */ @@ -1865,10 +1760,10 @@ decFloat * decFloatCopyNegate(decFloat *result, const decFloat *dfl) { } /* decFloatCopyNegate */ /* ------------------------------------------------------------------ */ -/* decFloatCopySign -- copy a decFloat with the sign of another */ +/* decFloatCopySign -- copy a decFloat with the sign of another */ /* */ -/* result gets the result of copying dfl with the sign of dfr */ -/* dfl is the first decFloat (lhs) */ +/* result gets the result of copying dfl with the sign of dfr */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* returns result */ /* */ @@ -1900,7 +1795,7 @@ decFloat * decFloatCopySign(decFloat *result, /* next one is used when it is known that the declet must be */ /* non-zero, or is the final zero declet */ #define dpdlendun(n, form) {dpd=(form)&0x3ff; \ - if (dpd==0) return 1; \ + if (dpd==0) return 1; \ return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]);} uInt decFloatDigits(const decFloat *df) { @@ -1924,7 +1819,7 @@ uInt decFloatDigits(const decFloat *df) { } /* [cannot drop through] */ sourlo=DFWORD(df, 1); /* sourhi not involved now */ if (sourlo&0xfff00000) { /* in one of first two */ - dpdlenchk(1, sourlo>>30); /* very rare */ + dpdlenchk(1, sourlo>>30); /* very rare */ dpdlendun(2, sourlo>>20); } /* [cannot drop through] */ dpdlenchk(3, sourlo>>10); @@ -1955,7 +1850,7 @@ uInt decFloatDigits(const decFloat *df) { } /* [cannot drop through] */ sourlo=DFWORD(df, 3); if (sourlo&0xfff00000) { /* in one of first two */ - dpdlenchk(7, sourlo>>30); /* very rare */ + dpdlenchk(7, sourlo>>30); /* very rare */ dpdlendun(8, sourlo>>20); } /* [cannot drop through] */ dpdlenchk(9, sourlo>>10); @@ -1968,7 +1863,7 @@ uInt decFloatDigits(const decFloat *df) { /* decFloatDivide -- divide a decFloat by another */ /* */ /* result gets the result of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -1985,7 +1880,7 @@ decFloat * decFloatDivide(decFloat *result, /* decFloatDivideInteger -- integer divide a decFloat by another */ /* */ /* result gets the result of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -2001,9 +1896,9 @@ decFloat * decFloatDivideInteger(decFloat *result, /* decFloatFMA -- multiply and add three decFloats, fused */ /* */ /* result gets the result of (dfl*dfr)+dff with a single rounding */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ -/* dff is the final decFloat (fhs) */ +/* dff is the final decFloat (fhs) */ /* set is the context */ /* returns result */ /* */ @@ -2011,23 +1906,21 @@ decFloat * decFloatDivideInteger(decFloat *result, decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, const decFloat *dfr, const decFloat *dff, decContext *set) { - /* The accumulator has the bytes needed for FiniteMultiply, plus */ /* one byte to the left in case of carry, plus DECPMAX+2 to the */ /* right for the final addition (up to full fhs + round & sticky) */ - #define FMALEN (ROUNDUP4(1+ (DECPMAX9*18+1) +DECPMAX+2)) - uByte acc[FMALEN]; /* for multiplied coefficient in BCD */ + #define FMALEN (1+ (DECPMAX9*18) +DECPMAX+2) + uByte acc[FMALEN]; /* for multiplied coefficient in BCD */ /* .. and for final result */ bcdnum mul; /* for multiplication result */ bcdnum fin; /* for final operand, expanded */ - uByte coe[ROUNDUP4(DECPMAX)]; /* dff coefficient in BCD */ + uByte coe[DECPMAX]; /* dff coefficient in BCD */ bcdnum *hi, *lo; /* bcdnum with higher/lower exponent */ uInt diffsign; /* non-zero if signs differ */ - uInt hipad; /* pad digit for hi if needed */ + uInt hipad; /* pad digit for hi if needed */ Int padding; /* excess exponent */ - uInt carry; /* +1 for ten's complement and during add */ - uByte *ub, *uh, *ul; /* work */ - uInt uiwork; /* for macros */ + uInt carry; /* +1 for ten's complement and during add */ + uByte *ub, *uh, *ul; /* work */ /* handle all the special values [any special operand leads to a */ /* special result] */ @@ -2078,8 +1971,8 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, GETCOEFF(dff, coe); /* extract the coefficient */ /* now set hi and lo so that hi points to whichever of mul and fin */ - /* has the higher exponent and lo points to the other [don't care, */ - /* if the same]. One coefficient will be in acc, the other in coe. */ + /* has the higher exponent and lo point to the other [don't care if */ + /* the same] */ if (mul.exponent>=fin.exponent) { hi=&mul; lo=&fin; @@ -2090,23 +1983,22 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, } /* remove leading zeros on both operands; this will save time later */ - /* and make testing for zero trivial (tests are safe because acc */ - /* and coe are rounded up to uInts) */ - for (; UBTOUI(hi->msd)==0 && hi->msd+3<hi->lsd;) hi->msd+=4; + /* and make testing for zero trivial */ + for (; UINTAT(hi->msd)==0 && hi->msd+3<hi->lsd;) hi->msd+=4; for (; *hi->msd==0 && hi->msd<hi->lsd;) hi->msd++; - for (; UBTOUI(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4; + for (; UINTAT(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4; for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++; /* if hi is zero then result will be lo (which has the smaller */ /* exponent), which also may need to be tested for zero for the */ /* weird IEEE 754 sign rules */ - if (*hi->msd==0) { /* hi is zero */ + if (*hi->msd==0 && hi->msd==hi->lsd) { /* hi is zero */ /* "When the sum of two operands with opposite signs is */ /* exactly zero, the sign of that sum shall be '+' in all */ /* rounding modes except round toward -Infinity, in which */ /* mode that sign shall be '-'." */ if (diffsign) { - if (*lo->msd==0) { /* lo is zero */ + if (*lo->msd==0 && lo->msd==lo->lsd) { /* lo is zero */ lo->sign=0; if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign; } /* diffsign && lo=0 */ @@ -2114,11 +2006,10 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, return decFinalize(result, lo, set); /* may need clamping */ } /* numfl is zero */ /* [here, both are minimal length and hi is non-zero] */ - /* (if lo is zero then padding with zeros may be needed, below) */ /* if signs differ, take the ten's complement of hi (zeros to the */ - /* right do not matter because the complement of zero is zero); the */ - /* +1 is done later, as part of the addition, inserted at the */ + /* right do not matter because the complement of zero is zero); */ + /* the +1 is done later, as part of the addition, inserted at the */ /* correct digit */ hipad=0; carry=0; @@ -2126,7 +2017,7 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, hipad=9; carry=1; /* exactly the correct number of digits must be inverted */ - for (uh=hi->msd; uh<hi->lsd-3; uh+=4) UBFROMUI(uh, 0x09090909-UBTOUI(uh)); + for (uh=hi->msd; uh<hi->lsd-3; uh+=4) UINTAT(uh)=0x09090909-UINTAT(uh); for (; uh<=hi->lsd; uh++) *uh=(uByte)(0x09-*uh); } @@ -2141,8 +2032,7 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, /* printf("FMA pad %ld\n", (LI)padding); */ /* the result of the addition will be built into the accumulator, */ - /* starting from the far right; this could be either hi or lo, and */ - /* will be aligned */ + /* starting from the far right; this could be either hi or lo */ ub=acc+FMALEN-1; /* where lsd of result will go */ ul=lo->lsd; /* lsd of rhs */ @@ -2152,43 +2042,45 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, /* digit at the right place, as it stays clear of hi digits */ /* [it must be DECPMAX+2 because during a subtraction the msd */ /* could become 0 after a borrow from 1.000 to 0.9999...] */ - - Int hilen=(Int)(hi->lsd-hi->msd+1); /* length of hi */ - Int lolen=(Int)(lo->lsd-lo->msd+1); /* and of lo */ - - if (hilen+padding-lolen > DECPMAX+2) { /* can reduce lo to single */ - /* make sure it is virtually at least DECPMAX from hi->msd, at */ - /* least to right of hi->lsd (in case of destructive subtract), */ - /* and separated by at least two digits from either of those */ - /* (the tricky DOUBLE case is when hi is a 1 that will become a */ - /* 0.9999... by subtraction: */ - /* hi: 1 E+16 */ - /* lo: .................1000000000000000 E-16 */ - /* which for the addition pads to: */ - /* hi: 1000000000000000000 E-16 */ - /* lo: .................1000000000000000 E-16 */ - Int newexp=MINI(hi->exponent, hi->exponent+hilen-DECPMAX)-3; - + Int hilen=(Int)(hi->lsd-hi->msd+1); /* lengths */ + Int lolen=(Int)(lo->lsd-lo->msd+1); /* .. */ + Int newexp=MINI(hi->exponent, hi->exponent+hilen-DECPMAX)-3; + Int reduce=newexp-lo->exponent; + if (reduce>0) { /* [= case gives reduce=0 nop] */ /* printf("FMA reduce: %ld\n", (LI)reduce); */ - lo->lsd=lo->msd; /* to single digit [maybe 0] */ - lo->exponent=newexp; /* new lowest exponent */ - padding=hi->exponent-lo->exponent; /* recalculate */ - ul=lo->lsd; /* .. and repoint */ - } - - /* padding is still > 0, but will fit in acc (less leading carry slot) */ + if (reduce>=lolen) { /* eating all */ + lo->lsd=lo->msd; /* reduce to single digit */ + lo->exponent=newexp; /* [known to be non-zero] */ + } + else { /* < */ + uByte *up=lo->lsd; + lo->lsd=lo->lsd-reduce; + if (*lo->lsd==0) /* could need sticky bit */ + for (; up>lo->lsd; up--) { /* search discarded digits */ + if (*up!=0) { /* found one... */ + *lo->lsd=1; /* set sticky bit */ + break; + } + } + lo->exponent+=reduce; + } + padding=hi->exponent-lo->exponent; /* recalculate */ + ul=lo->lsd; /* .. */ + } /* maybe reduce */ + /* padding is now <= DECPMAX+2 but still > 0; tricky DOUBLE case */ + /* is when hi is a 1 that will become a 0.9999... by subtraction: */ + /* hi: 1 E+16 */ + /* lo: .................1000000000000000 E-16 */ + /* which for the addition pads and reduces to: */ + /* hi: 1000000000000000000 E-2 */ + /* lo: .................1 E-2 */ #if DECCHECK + if (padding>DECPMAX+2) printf("FMA excess padding: %ld\n", (LI)padding); if (padding<=0) printf("FMA low padding: %ld\n", (LI)padding); - if (hilen+padding+1>FMALEN) - printf("FMA excess hilen+padding: %ld+%ld \n", (LI)hilen, (LI)padding); /* printf("FMA padding: %ld\n", (LI)padding); */ #endif - /* padding digits can now be set in the result; one or more of */ /* these will come from lo; others will be zeros in the gap */ - for (; ul-3>=lo->msd && padding>3; padding-=4, ul-=4, ub-=4) { - UBFROMUI(ub-3, UBTOUI(ul-3)); /* [cannot overlap] */ - } for (; ul>=lo->msd && padding>0; padding--, ul--, ub--) *ub=*ul; for (;padding>0; padding--, ub--) *ub=0; /* mind the gap */ } @@ -2196,39 +2088,23 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, /* addition now complete to the right of the rightmost digit of hi */ uh=hi->lsd; - /* dow do the add from hi->lsd to the left */ - /* [bytewise, because either operand can run out at any time] */ - /* carry was set up depending on ten's complement above */ - /* first assume both operands have some digits */ + /* carry was set up depending on ten's complement above; do the add... */ for (;; ub--) { - if (uh<hi->msd || ul<lo->msd) break; - *ub=(uByte)(carry+(*uh--)+(*ul--)); - carry=0; - if (*ub<10) continue; - *ub-=10; - carry=1; - } /* both loop */ - - if (ul<lo->msd) { /* to left of lo */ - for (;; ub--) { - if (uh<hi->msd) break; - *ub=(uByte)(carry+(*uh--)); /* [+0] */ - carry=0; - if (*ub<10) continue; - *ub-=10; - carry=1; - } /* hi loop */ - } - else { /* to left of hi */ - for (;; ub--) { + uInt hid, lod; + if (uh<hi->msd) { if (ul<lo->msd) break; - *ub=(uByte)(carry+hipad+(*ul--)); - carry=0; - if (*ub<10) continue; + hid=hipad; + } + else hid=*uh--; + if (ul<lo->msd) lod=0; + else lod=*ul--; + *ub=(uByte)(carry+hid+lod); + if (*ub<10) carry=0; + else { *ub-=10; carry=1; - } /* lo loop */ - } + } + } /* addition loop */ /* addition complete -- now handle carry, borrow, etc. */ /* use lo to set up the num (its exponent is already correct, and */ @@ -2246,7 +2122,7 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, if (!carry) { /* no carry out means hi<lo */ /* borrowed -- take ten's complement of the right digits */ lo->sign=hi->sign; /* sign is lhs sign */ - for (ul=lo->msd; ul<lo->lsd-3; ul+=4) UBFROMUI(ul, 0x09090909-UBTOUI(ul)); + for (ul=lo->msd; ul<lo->lsd-3; ul+=4) UINTAT(ul)=0x09090909-UINTAT(ul); for (; ul<=lo->lsd; ul++) *ul=(uByte)(0x09-*ul); /* [leaves ul at lsd+1] */ /* complete the ten's complement by adding 1 [cannot overrun] */ for (ul--; *ul==9; ul--) *ul=0; @@ -2257,7 +2133,7 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, /* all done except for the special IEEE 754 exact-zero-result */ /* rule (see above); while testing for zero, strip leading */ /* zeros (which will save decFinalize doing it) */ - for (; UBTOUI(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4; + for (; UINTAT(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4; for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++; if (*lo->msd==0) { /* must be true zero (and diffsign) */ lo->sign=0; /* assume + */ @@ -2267,18 +2143,11 @@ decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, } /* subtraction gave positive result */ } /* diffsign */ - #if DECCHECK - /* assert no left underrun */ - if (lo->msd<acc) { - printf("FMA underrun by %ld \n", (LI)(acc-lo->msd)); - } - #endif - return decFinalize(result, lo, set); /* round, check, and lay out */ } /* decFloatFMA */ /* ------------------------------------------------------------------ */ -/* decFloatFromInt -- initialise a decFloat from an Int */ +/* decFloatFromInt -- initialise a decFloat from an Int */ /* */ /* result gets the converted Int */ /* n is the Int to convert */ @@ -2344,7 +2213,7 @@ decFloat * decFloatFromUInt32(decFloat *result, uInt u) { /* decFloatInvert -- logical digitwise INVERT of a decFloat */ /* */ /* result gets the result of INVERTing df */ -/* df is the decFloat to invert */ +/* df is the decFloat to invert */ /* set is the context */ /* returns result, which will be canonical with sign=0 */ /* */ @@ -2372,12 +2241,12 @@ decFloat * decFloatInvert(decFloat *result, const decFloat *df, /* ------------------------------------------------------------------ */ /* decFloatIs -- decFloat tests (IsSigned, etc.) */ /* */ -/* df is the decFloat to test */ -/* returns 0 or 1 in a uInt */ +/* df is the decFloat to test */ +/* returns 0 or 1 in an int32_t */ /* */ /* Many of these could be macros, but having them as real functions */ -/* is a little cleaner (and they can be referred to here by the */ -/* generic names) */ +/* is a bit cleaner (and they can be referred to here by the generic */ +/* names) */ /* ------------------------------------------------------------------ */ uInt decFloatIsCanonical(const decFloat *df) { if (DFISSPECIAL(df)) { @@ -2464,10 +2333,10 @@ uInt decFloatIsZero(const decFloat *df) { } /* decFloatIs... */ /* ------------------------------------------------------------------ */ -/* decFloatLogB -- return adjusted exponent, by 754 rules */ +/* decFloatLogB -- return adjusted exponent, by 754r rules */ /* */ /* result gets the adjusted exponent as an integer, or a NaN etc. */ -/* df is the decFloat to be examined */ +/* df is the decFloat to be examined */ /* set is the context */ /* returns result */ /* */ @@ -2484,12 +2353,12 @@ decFloat * decFloatLogB(decFloat *result, const decFloat *df, if (DFISNAN(df)) return decNaNs(result, df, NULL, set); if (DFISINF(df)) { DFWORD(result, 0)=0; /* need +ve */ - return decInfinity(result, result); /* canonical +Infinity */ + return decInfinity(result, result); /* canonical +Infinity */ } if (DFISZERO(df)) { - set->status|=DEC_Division_by_zero; /* as per 754 */ + set->status|=DEC_Division_by_zero; /* as per 754r */ DFWORD(result, 0)=DECFLOAT_Sign; /* make negative */ - return decInfinity(result, result); /* canonical -Infinity */ + return decInfinity(result, result); /* canonical -Infinity */ } ae=GETEXPUN(df) /* get unbiased exponent .. */ +decFloatDigits(df)-1; /* .. and make adjusted exponent */ @@ -2512,10 +2381,10 @@ decFloat * decFloatLogB(decFloat *result, const decFloat *df, } /* decFloatLogB */ /* ------------------------------------------------------------------ */ -/* decFloatMax -- return maxnum of two operands */ +/* decFloatMax -- return maxnum of two operands */ /* */ /* result gets the chosen decFloat */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -2547,7 +2416,7 @@ decFloat * decFloatMax(decFloat *result, /* decFloatMaxMag -- return maxnummag of two operands */ /* */ /* result gets the chosen decFloat */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -2571,10 +2440,10 @@ decFloat * decFloatMaxMag(decFloat *result, } /* decFloatMaxMag */ /* ------------------------------------------------------------------ */ -/* decFloatMin -- return minnum of two operands */ +/* decFloatMin -- return minnum of two operands */ /* */ /* result gets the chosen decFloat */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -2606,7 +2475,7 @@ decFloat * decFloatMin(decFloat *result, /* decFloatMinMag -- return minnummag of two operands */ /* */ /* result gets the chosen decFloat */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -2632,8 +2501,8 @@ decFloat * decFloatMinMag(decFloat *result, /* ------------------------------------------------------------------ */ /* decFloatMinus -- negate value, heeding NaNs, etc. */ /* */ -/* result gets the canonicalized 0-df */ -/* df is the decFloat to minus */ +/* result gets the canonicalized 0-df */ +/* df is the decFloat to minus */ /* set is the context */ /* returns result */ /* */ @@ -2655,8 +2524,8 @@ decFloat * decFloatMinus(decFloat *result, const decFloat *df, /* ------------------------------------------------------------------ */ /* decFloatMultiply -- multiply two decFloats */ /* */ -/* result gets the result of multiplying dfl and dfr: */ -/* dfl is the first decFloat (lhs) */ +/* result gets the result of multiplying dfl and dfr: */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -2666,7 +2535,7 @@ decFloat * decFloatMultiply(decFloat *result, const decFloat *dfl, const decFloat *dfr, decContext *set) { bcdnum num; /* for final conversion */ - uByte bcdacc[DECPMAX9*18+1]; /* for coefficent in BCD */ + uByte bcdacc[DECPMAX9*18+1]; /* for coefficent in BCD */ if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { /* either is special? */ /* NaNs are handled as usual */ @@ -2692,7 +2561,7 @@ decFloat * decFloatMultiply(decFloat *result, /* set is the context */ /* returns result */ /* */ -/* This is 754 nextdown; Invalid is the only status possible (from */ +/* This is 754r nextdown; Invalid is the only status possible (from */ /* an sNaN). */ /* ------------------------------------------------------------------ */ decFloat * decFloatNextMinus(decFloat *result, const decFloat *dfl, @@ -2711,19 +2580,19 @@ decFloat * decFloatNextMinus(decFloat *result, const decFloat *dfl, /* here (but can be done with normal add if the sign of zero is */ /* treated carefully, because no Inexactitude is interesting); */ /* rounding to -Infinity then pushes the result to next below */ - decFloatZero(&delta); /* set up tiny delta */ - DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */ + decFloatZero(&delta); /* set up tiny delta */ + DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */ DFWORD(&delta, 0)=DECFLOAT_Sign; /* Sign=1 + biased exponent=0 */ /* set up for the directional round */ - saveround=set->round; /* save mode */ + saveround=set->round; /* save mode */ set->round=DEC_ROUND_FLOOR; /* .. round towards -Infinity */ - savestat=set->status; /* save status */ + savestat=set->status; /* save status */ decFloatAdd(result, dfl, &delta, set); /* Add rules mess up the sign when going from +Ntiny to 0 */ if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; /* correct */ set->status&=DEC_Invalid_operation; /* preserve only sNaN status */ set->status|=savestat; /* restore pending flags */ - set->round=saveround; /* .. and mode */ + set->round=saveround; /* .. and mode */ return result; } /* decFloatNextMinus */ @@ -2735,7 +2604,7 @@ decFloat * decFloatNextMinus(decFloat *result, const decFloat *dfl, /* set is the context */ /* returns result */ /* */ -/* This is 754 nextup; Invalid is the only status possible (from */ +/* This is 754r nextup; Invalid is the only status possible (from */ /* an sNaN). */ /* ------------------------------------------------------------------ */ decFloat * decFloatNextPlus(decFloat *result, const decFloat *dfl, @@ -2755,19 +2624,19 @@ decFloat * decFloatNextPlus(decFloat *result, const decFloat *dfl, /* here (but can be done with normal add if the sign of zero is */ /* treated carefully, because no Inexactitude is interesting); */ /* rounding to +Infinity then pushes the result to next above */ - decFloatZero(&delta); /* set up tiny delta */ - DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */ + decFloatZero(&delta); /* set up tiny delta */ + DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */ DFWORD(&delta, 0)=0; /* Sign=0 + biased exponent=0 */ /* set up for the directional round */ - saveround=set->round; /* save mode */ - set->round=DEC_ROUND_CEILING; /* .. round towards +Infinity */ - savestat=set->status; /* save status */ + saveround=set->round; /* save mode */ + set->round=DEC_ROUND_CEILING; /* .. round towards +Infinity */ + savestat=set->status; /* save status */ decFloatAdd(result, dfl, &delta, set); /* Add rules mess up the sign when going from -Ntiny to -0 */ if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; /* correct */ set->status&=DEC_Invalid_operation; /* preserve only sNaN status */ set->status|=savestat; /* restore pending flags */ - set->round=saveround; /* .. and mode */ + set->round=saveround; /* .. and mode */ return result; } /* decFloatNextPlus */ @@ -2780,9 +2649,8 @@ decFloat * decFloatNextPlus(decFloat *result, const decFloat *dfl, /* set is the context */ /* returns result */ /* */ -/* This is 754-1985 nextafter, as modified during revision (dropped */ -/* from 754-2008); status may be set unless the result is a normal */ -/* number. */ +/* This is 754r nextafter; status may be set unless the result is a */ +/* normal number. */ /* ------------------------------------------------------------------ */ decFloat * decFloatNextToward(decFloat *result, const decFloat *dfl, const decFloat *dfr, @@ -2808,7 +2676,7 @@ decFloat * decFloatNextToward(decFloat *result, } saveround=set->round; /* save mode */ set->round=DEC_ROUND_CEILING; /* .. round towards +Infinity */ - deltatop=0; /* positive delta */ + deltatop=0; /* positive delta */ } else { /* lhs>rhs, do NextMinus, see above for commentary */ if (DFISINF(dfl) && !DFISSIGNED(dfl)) { /* +Infinity special case */ @@ -2816,23 +2684,23 @@ decFloat * decFloatNextToward(decFloat *result, return result; } saveround=set->round; /* save mode */ - set->round=DEC_ROUND_FLOOR; /* .. round towards -Infinity */ + set->round=DEC_ROUND_FLOOR; /* .. round towards -Infinity */ deltatop=DECFLOAT_Sign; /* negative delta */ } - savestat=set->status; /* save status */ + savestat=set->status; /* save status */ /* Here, Inexact is needed where appropriate (and hence Underflow, */ /* etc.). Therefore the tiny delta which is otherwise */ /* unrepresentable (see NextPlus and NextMinus) is constructed */ /* using the multiplication of FMA. */ - decFloatZero(&delta); /* set up tiny delta */ - DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */ + decFloatZero(&delta); /* set up tiny delta */ + DFWORD(&delta, DECWORDS-1)=1; /* coefficient=1 */ DFWORD(&delta, 0)=deltatop; /* Sign + biased exponent=0 */ decFloatFromString(&pointone, "1E-1", set); /* set up multiplier */ decFloatFMA(result, &delta, &pointone, dfl, set); /* [Delta is truly tiny, so no need to correct sign of zero] */ /* use new status unless the result is normal */ if (decFloatIsNormal(result)) set->status=savestat; /* else goes forward */ - set->round=saveround; /* restore mode */ + set->round=saveround; /* restore mode */ return result; } /* decFloatNextToward */ @@ -2840,12 +2708,12 @@ decFloat * decFloatNextToward(decFloat *result, /* decFloatOr -- logical digitwise OR of two decFloats */ /* */ /* result gets the result of ORing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result, which will be canonical with sign=0 */ /* */ -/* The operands must be positive, finite with exponent q=0, and */ +/* The operands must be positive, finite with exponent q=0, and */ /* comprise just zeros and ones; if not, Invalid operation results. */ /* ------------------------------------------------------------------ */ decFloat * decFloatOr(decFloat *result, @@ -2871,14 +2739,14 @@ decFloat * decFloatOr(decFloat *result, /* ------------------------------------------------------------------ */ /* decFloatPlus -- add value to 0, heeding NaNs, etc. */ /* */ -/* result gets the canonicalized 0+df */ -/* df is the decFloat to plus */ +/* result gets the canonicalized 0+df */ +/* df is the decFloat to plus */ /* set is the context */ /* returns result */ /* */ /* This has the same effect as 0+df where the exponent of the zero is */ /* the same as that of df (if df is finite). */ -/* The effect is also the same as decFloatCopy except that NaNs */ +/* The effect is also the same as decFloatCopy except that NaNs */ /* are handled normally (the sign of a NaN is not affected, and an */ /* sNaN will signal), the result is canonical, and zero gets sign 0. */ /* ------------------------------------------------------------------ */ @@ -2894,7 +2762,7 @@ decFloat * decFloatPlus(decFloat *result, const decFloat *df, /* decFloatQuantize -- quantize a decFloat */ /* */ /* result gets the result of quantizing dfl to match dfr */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs), which sets the exponent */ /* set is the context */ /* returns result */ @@ -2907,19 +2775,16 @@ decFloat * decFloatQuantize(decFloat *result, decContext *set) { Int explb, exprb; /* left and right biased exponents */ uByte *ulsd; /* local LSD pointer */ - uByte *ub, *uc; /* work */ + uInt *ui; /* work */ + uByte *ub; /* .. */ Int drop; /* .. */ uInt dpd; /* .. */ - uInt encode; /* encoding accumulator */ + uInt encode; /* encoding accumulator */ uInt sourhil, sourhir; /* top words from source decFloats */ - uInt uiwork; /* for macros */ - #if QUAD - uShort uswork; /* .. */ - #endif /* the following buffer holds the coefficient for manipulation */ - uByte buf[4+DECPMAX*3+2*QUAD]; /* + space for zeros to left or right */ + uByte buf[4+DECPMAX*3]; /* + space for zeros to left or right */ #if DECTRACE - bcdnum num; /* for trace displays */ + bcdnum num; /* for trace displays */ #endif /* Start decoding the arguments */ @@ -2962,7 +2827,7 @@ decFloat * decFloatQuantize(decFloat *result, decShowNum(&num, "dfl"); #endif - if (drop>0) { /* [most common case] */ + if (drop>0) { /* [most common case] */ /* (this code is very similar to that in decFloatFinalize, but */ /* has many differences so is duplicated here -- so any changes */ /* may need to be made there, too) */ @@ -2973,7 +2838,7 @@ decFloat * decFloatQuantize(decFloat *result, /* there is at least one zero needed to the left, in all but one */ /* exceptional (all-nines) case, so place four zeros now; this is */ /* needed almost always and makes rounding all-nines by fours safe */ - UBFROMUI(BUFOFF-4, 0); + UINTAT(BUFOFF-4)=0; /* Three cases here: */ /* 1. new LSD is in coefficient (almost always) */ @@ -2984,7 +2849,7 @@ decFloat * decFloatQuantize(decFloat *result, /* [duplicate check-stickies code to save a test] */ /* [by-digit check for stickies as runs of zeros are rare] */ - if (drop<DECPMAX) { /* NB lengths not addresses */ + if (drop<DECPMAX) { /* NB lengths not addresses */ roundat=BUFOFF+DECPMAX-drop; reround=*roundat; for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) { @@ -3067,7 +2932,7 @@ decFloat * decFloatQuantize(decFloat *result, /* increment the coefficient; this could give 1000... (after */ /* the all nines case) */ ub=ulsd; - for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0); + for (; UINTAT(ub-3)==0x09090909; ub-=4) UINTAT(ub-3)=0; /* now at most 3 digits left to non-9 (usually just the one) */ for (; *ub==9; ub--) *ub=0; *ub+=1; @@ -3080,8 +2945,8 @@ decFloat * decFloatQuantize(decFloat *result, /* available in the coefficent -- the first word to the left was */ /* cleared earlier for safe carry; now add any more needed */ if (drop>4) { - UBFROMUI(BUFOFF-8, 0); /* must be at least 5 */ - for (uc=BUFOFF-12; uc>ulsd-DECPMAX-3; uc-=4) UBFROMUI(uc, 0); + UINTAT(BUFOFF-8)=0; /* must be at least 5 */ + for (ui=&UINTAT(BUFOFF-12); ui>&UINTAT(ulsd-DECPMAX-3); ui--) *ui=0; } } /* need round (drop>0) */ @@ -3102,21 +2967,18 @@ decFloat * decFloatQuantize(decFloat *result, #else static const uInt dmask[]={0, 0xff000000, 0xffff0000, 0xffffff00}; #endif - /* note that here zeros to the right are added by fours, so in */ - /* the Quad case this could write 36 zeros if the coefficient has */ - /* fewer than three significant digits (hence the +2*QUAD for buf) */ - for (uc=BUFOFF+DECPMAX;; uc+=4) { - UBFROMUI(uc, 0); - if (UBTOUI(uc-DECPMAX)!=0) { /* could be bad */ + for (ui=&UINTAT(BUFOFF+DECPMAX);; ui++) { + *ui=0; + if (UINTAT(&UBYTEAT(ui)-DECPMAX)!=0) { /* could be bad */ /* if all four digits should be zero, definitely bad */ - if (uc<=BUFOFF+DECPMAX+(-drop)-4) + if (ui<=&UINTAT(BUFOFF+DECPMAX+(-drop)-4)) return decInvalid(result, set); /* must be a 1- to 3-digit sequence; check more carefully */ - if ((UBTOUI(uc-DECPMAX)&dmask[(-drop)%4])!=0) + if ((UINTAT(&UBYTEAT(ui)-DECPMAX)&dmask[(-drop)%4])!=0) return decInvalid(result, set); break; /* no need for loop end test */ } - if (uc>=BUFOFF+DECPMAX+(-drop)-4) break; /* done */ + if (ui>=&UINTAT(BUFOFF+DECPMAX+(-drop)-4)) break; /* done */ } ulsd=BUFOFF+DECPMAX+(-drop)-1; } /* pad and check leading zeros */ @@ -3183,7 +3045,7 @@ decFloat * decFloatQuantize(decFloat *result, /* decFloatReduce -- reduce finite coefficient to minimum length */ /* */ /* result gets the reduced decFloat */ -/* df is the source decFloat */ +/* df is the source decFloat */ /* set is the context */ /* returns result, which will be canonical */ /* */ @@ -3223,7 +3085,7 @@ decFloat * decFloatReduce(decFloat *result, const decFloat *df, /* decFloatRemainder -- integer divide and return remainder */ /* */ /* result gets the remainder of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -3239,7 +3101,7 @@ decFloat * decFloatRemainder(decFloat *result, /* decFloatRemainderNear -- integer divide to nearest and remainder */ /* */ /* result gets the remainder of dividing dfl by dfr: */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -3283,7 +3145,7 @@ decFloat * decFloatRotate(decFloat *result, if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); if (!DFISINT(dfr)) return decInvalid(result, set); digits=decFloatDigits(dfr); /* calculate digits */ - if (digits>2) return decInvalid(result, set); /* definitely out of range */ + if (digits>2) return decInvalid(result, set); /* definitely out of range */ rotate=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; /* is in bottom declet */ if (rotate>DECPMAX) return decInvalid(result, set); /* too big */ /* [from here on no error or status change is possible] */ @@ -3316,16 +3178,16 @@ decFloat * decFloatRotate(decFloat *result, num.lsd=num.msd+DECPMAX-1; num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; num.exponent=GETEXPUN(dfl); - savestat=set->status; /* record */ + savestat=set->status; /* record */ decFinalize(result, &num, set); - set->status=savestat; /* restore */ + set->status=savestat; /* restore */ return result; } /* decFloatRotate */ /* ------------------------------------------------------------------ */ /* decFloatSameQuantum -- test decFloats for same quantum */ /* */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* returns 1 if the operands have the same quantum, 0 otherwise */ /* */ @@ -3342,11 +3204,11 @@ uInt decFloatSameQuantum(const decFloat *dfl, const decFloat *dfr) { } /* decFloatSameQuantum */ /* ------------------------------------------------------------------ */ -/* decFloatScaleB -- multiply by a power of 10, as per 754 */ +/* decFloatScaleB -- multiply by a power of 10, as per 754r */ /* */ /* result gets the result of the operation */ -/* dfl is the first decFloat (lhs) */ -/* dfr is the second decFloat (rhs), am integer (with q=0) */ +/* dfl is the first decFloat (lhs) */ +/* dfr is the second decFloat (rhs), am integer (with q=0) */ /* set is the context */ /* returns result */ /* */ @@ -3367,10 +3229,10 @@ decFloat * decFloatScaleB(decFloat *result, digits=decFloatDigits(dfr); /* calculate digits */ #if DOUBLE - if (digits>3) return decInvalid(result, set); /* definitely out of range */ + if (digits>3) return decInvalid(result, set); /* definitely out of range */ expr=DPD2BIN[DFWORD(dfr, 1)&0x3ff]; /* must be in bottom declet */ #elif QUAD - if (digits>5) return decInvalid(result, set); /* definitely out of range */ + if (digits>5) return decInvalid(result, set); /* definitely out of range */ expr=DPD2BIN[DFWORD(dfr, 3)&0x3ff] /* in bottom 2 declets .. */ +DPD2BIN[(DFWORD(dfr, 3)>>10)&0x3ff]*1000; /* .. */ #endif @@ -3379,7 +3241,7 @@ decFloat * decFloatScaleB(decFloat *result, if (DFISINF(dfl)) return decInfinity(result, dfl); /* canonical */ if (DFISSIGNED(dfr)) expr=-expr; /* dfl is finite and expr is valid */ - *result=*dfl; /* copy to target */ + *result=*dfl; /* copy to target */ return decFloatSetExponent(result, set, GETEXPUN(result)+expr); } /* decFloatScaleB */ @@ -3404,24 +3266,23 @@ decFloat * decFloatScaleB(decFloat *result, decFloat * decFloatShift(decFloat *result, const decFloat *dfl, const decFloat *dfr, decContext *set) { - Int shift; /* dfr as an Int */ - uByte buf[DECPMAX*2]; /* coefficient + padding */ - uInt digits, savestat; /* work */ + Int shift; /* dfr as an Int */ + uByte buf[DECPMAX*2]; /* coefficient + padding */ + uInt digits, savestat; /* work */ bcdnum num; /* .. */ - uInt uiwork; /* for macros */ if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); if (!DFISINT(dfr)) return decInvalid(result, set); digits=decFloatDigits(dfr); /* calculate digits */ - if (digits>2) return decInvalid(result, set); /* definitely out of range */ - shift=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; /* is in bottom declet */ + if (digits>2) return decInvalid(result, set); /* definitely out of range */ + shift=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; /* is in bottom declet */ if (shift>DECPMAX) return decInvalid(result, set); /* too big */ /* [from here on no error or status change is possible] */ if (DFISINF(dfl)) return decInfinity(result, dfl); /* canonical */ /* handle no-shift and all-shift (clear to zero) cases */ if (shift==0) return decCanonical(result, dfl); - if (shift==DECPMAX) { /* zero with sign */ + if (shift==DECPMAX) { /* zero with sign */ uByte sign=(uByte)(DFBYTE(dfl, 0)&0x80); /* save sign bit */ decFloatZero(result); /* make +0 */ DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); /* and set sign */ @@ -3438,23 +3299,23 @@ decFloat * decFloatShift(decFloat *result, num.lsd=buf+DECPMAX-shift-1; } else { /* shift left -- zero padding needed to right */ - UBFROMUI(buf+DECPMAX, 0); /* 8 will handle most cases */ - UBFROMUI(buf+DECPMAX+4, 0); /* .. */ + UINTAT(buf+DECPMAX)=0; /* 8 will handle most cases */ + UINTAT(buf+DECPMAX+4)=0; /* .. */ if (shift>8) memset(buf+DECPMAX+8, 0, 8+QUAD*18); /* all other cases */ num.msd+=shift; num.lsd=num.msd+DECPMAX-1; } - savestat=set->status; /* record */ + savestat=set->status; /* record */ decFinalize(result, &num, set); - set->status=savestat; /* restore */ + set->status=savestat; /* restore */ return result; } /* decFloatShift */ /* ------------------------------------------------------------------ */ -/* decFloatSubtract -- subtract a decFloat from another */ +/* decFloatSubtract -- subtract a decFloat from another */ /* */ /* result gets the result of subtracting dfr from dfl: */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result */ @@ -3472,9 +3333,9 @@ decFloat * decFloatSubtract(decFloat *result, } /* decFloatSubtract */ /* ------------------------------------------------------------------ */ -/* decFloatToInt -- round to 32-bit binary integer (4 flavours) */ +/* decFloatToInt -- round to 32-bit binary integer (4 flavours) */ /* */ -/* df is the decFloat to round */ +/* df is the decFloat to round */ /* set is the context */ /* round is the rounding mode to use */ /* returns a uInt or an Int, rounded according to the name */ @@ -3500,12 +3361,12 @@ Int decFloatToInt32Exact(const decFloat *df, decContext *set, return (Int)decToInt32(df, set, round, 1, 0);} /* ------------------------------------------------------------------ */ -/* decFloatToIntegral -- round to integral value (two flavours) */ +/* decFloatToIntegral -- round to integral value (two flavours) */ /* */ /* result gets the result */ -/* df is the decFloat to round */ +/* df is the decFloat to round */ /* set is the context */ -/* round is the rounding mode to use */ +/* round is the rounding mode to use */ /* returns result */ /* */ /* No exceptions, even Inexact, are raised except for sNaN input, or */ @@ -3523,12 +3384,12 @@ decFloat * decFloatToIntegralExact(decFloat *result, const decFloat *df, /* decFloatXor -- logical digitwise XOR of two decFloats */ /* */ /* result gets the result of XORing dfl and dfr */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) */ /* set is the context */ /* returns result, which will be canonical with sign=0 */ /* */ -/* The operands must be positive, finite with exponent q=0, and */ +/* The operands must be positive, finite with exponent q=0, and */ /* comprise just zeros and ones; if not, Invalid operation results. */ /* ------------------------------------------------------------------ */ decFloat * decFloatXor(decFloat *result, @@ -3571,14 +3432,14 @@ static decFloat *decInvalid(decFloat *result, decContext *set) { /* decInfinity -- set canonical Infinity with sign from a decFloat */ /* */ /* result gets a canonical Infinity */ -/* df is source decFloat (only the sign is used) */ +/* df is source decFloat (only the sign is used) */ /* returns result */ /* */ -/* df may be the same as result */ +/* df may be the same as result */ /* ------------------------------------------------------------------ */ static decFloat *decInfinity(decFloat *result, const decFloat *df) { uInt sign=DFWORD(df, 0); /* save source signword */ - decFloatZero(result); /* clear everything */ + decFloatZero(result); /* clear everything */ DFWORD(result, 0)=DECFLOAT_Inf | (sign & DECFLOAT_Sign); return result; } /* decInfinity */ @@ -3588,7 +3449,7 @@ static decFloat *decInfinity(decFloat *result, const decFloat *df) { /* */ /* result gets the result of handling dfl and dfr, one or both of */ /* which is a NaN */ -/* dfl is the first decFloat (lhs) */ +/* dfl is the first decFloat (lhs) */ /* dfr is the second decFloat (rhs) -- may be NULL for a single- */ /* operand operation */ /* set is the context */ @@ -3615,20 +3476,19 @@ static decFloat *decNaNs(decFloat *result, } /* decNaNs */ /* ------------------------------------------------------------------ */ -/* decNumCompare -- numeric comparison of two decFloats */ +/* decNumCompare -- numeric comparison of two decFloats */ /* */ /* dfl is the left-hand decFloat, which is not a NaN */ /* dfr is the right-hand decFloat, which is not a NaN */ /* tot is 1 for total order compare, 0 for simple numeric */ -/* returns -1, 0, or +1 for dfl<dfr, dfl=dfr, dfl>dfr */ +/* returns -1, 0, or +1 for dfl<dfr, dfl=dfr, dfl>dfr */ /* */ -/* No error is possible; status and mode are unchanged. */ +/* No error is possible; status and mode are unchanged. */ /* ------------------------------------------------------------------ */ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { Int sigl, sigr; /* LHS and RHS non-0 signums */ Int shift; /* shift needed to align operands */ uByte *ub, *uc; /* work */ - uInt uiwork; /* for macros */ /* buffers +2 if Quad (36 digits), need double plus 4 for safe padding */ uByte bufl[DECPMAX*2+QUAD*2+4]; /* for LHS coefficient + padding */ uByte bufr[DECPMAX*2+QUAD*2+4]; /* for RHS coefficient + padding */ @@ -3652,7 +3512,7 @@ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { sigr=-sigl; /* sign to return if abs(RHS) wins */ if (DFISINF(dfl)) { - if (DFISINF(dfr)) return 0; /* both infinite & same sign */ + if (DFISINF(dfr)) return 0; /* both infinite & same sign */ return sigl; /* inf > n */ } if (DFISINF(dfr)) return sigr; /* n < inf [dfl is finite] */ @@ -3684,16 +3544,17 @@ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { /* decode the coefficients */ /* (shift both right two if Quad to make a multiple of four) */ #if QUAD - UBFROMUI(bufl, 0); - UBFROMUI(bufr, 0); + ub=bufl; /* avoid type-pun violation */ + UINTAT(ub)=0; + uc=bufr; /* avoid type-pun violation */ + UINTAT(uc)=0; #endif GETCOEFF(dfl, bufl+QUAD*2); /* decode from decFloat */ GETCOEFF(dfr, bufr+QUAD*2); /* .. */ if (shift==0) { /* aligned; common and easy */ /* all multiples of four, here */ for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) { - uInt ui=UBTOUI(ub); - if (ui==UBTOUI(uc)) continue; /* so far so same */ + if (UINTAT(ub)==UINTAT(uc)) continue; /* so far so same */ /* about to find a winner; go by bytes in case little-endian */ for (;; ub++, uc++) { if (*ub>*uc) return sigl; /* difference found */ @@ -3704,17 +3565,17 @@ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { else if (shift>0) { /* lhs to left */ ub=bufl; /* RHS pointer */ /* pad bufl so right-aligned; most shifts will fit in 8 */ - UBFROMUI(bufl+DECPMAX+QUAD*2, 0); /* add eight zeros */ - UBFROMUI(bufl+DECPMAX+QUAD*2+4, 0); /* .. */ + UINTAT(bufl+DECPMAX+QUAD*2)=0; /* add eight zeros */ + UINTAT(bufl+DECPMAX+QUAD*2+4)=0; /* .. */ if (shift>8) { /* more than eight; fill the rest, and also worth doing the */ /* lead-in by fours */ - uByte *up; /* work */ + uByte *up; /* work */ uByte *upend=bufl+DECPMAX+QUAD*2+shift; - for (up=bufl+DECPMAX+QUAD*2+8; up<upend; up+=4) UBFROMUI(up, 0); + for (up=bufl+DECPMAX+QUAD*2+8; up<upend; up+=4) UINTAT(up)=0; /* [pads up to 36 in all for Quad] */ for (;; ub+=4) { - if (UBTOUI(ub)!=0) return sigl; + if (UINTAT(ub)!=0) return sigl; if (ub+4>bufl+shift-4) break; } } @@ -3724,8 +3585,7 @@ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { /* comparison can go for the full length of bufr, which is a */ /* multiple of 4 bytes */ for (uc=bufr; ; uc+=4, ub+=4) { - uInt ui=UBTOUI(ub); - if (ui!=UBTOUI(uc)) { /* mismatch found */ + if (UINTAT(uc)!=UINTAT(ub)) { /* mismatch found */ for (;; uc++, ub++) { /* check from left [little-endian?] */ if (*ub>*uc) return sigl; /* difference found */ if (*ub<*uc) return sigr; /* .. */ @@ -3738,17 +3598,17 @@ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { else { /* shift<0) .. RHS is to left of LHS; mirror shift>0 */ uc=bufr; /* RHS pointer */ /* pad bufr so right-aligned; most shifts will fit in 8 */ - UBFROMUI(bufr+DECPMAX+QUAD*2, 0); /* add eight zeros */ - UBFROMUI(bufr+DECPMAX+QUAD*2+4, 0); /* .. */ + UINTAT(bufr+DECPMAX+QUAD*2)=0; /* add eight zeros */ + UINTAT(bufr+DECPMAX+QUAD*2+4)=0; /* .. */ if (shift<-8) { /* more than eight; fill the rest, and also worth doing the */ /* lead-in by fours */ - uByte *up; /* work */ + uByte *up; /* work */ uByte *upend=bufr+DECPMAX+QUAD*2-shift; - for (up=bufr+DECPMAX+QUAD*2+8; up<upend; up+=4) UBFROMUI(up, 0); + for (up=bufr+DECPMAX+QUAD*2+8; up<upend; up+=4) UINTAT(up)=0; /* [pads up to 36 in all for Quad] */ for (;; uc+=4) { - if (UBTOUI(uc)!=0) return sigr; + if (UINTAT(uc)!=0) return sigr; if (uc+4>bufr-shift-4) break; } } @@ -3758,8 +3618,7 @@ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { /* comparison can go for the full length of bufl, which is a */ /* multiple of 4 bytes */ for (ub=bufl; ; ub+=4, uc+=4) { - uInt ui=UBTOUI(ub); - if (ui!=UBTOUI(uc)) { /* mismatch found */ + if (UINTAT(ub)!=UINTAT(uc)) { /* mismatch found */ for (;; ub++, uc++) { /* check from left [little-endian?] */ if (*ub>*uc) return sigl; /* difference found */ if (*ub<*uc) return sigr; /* .. */ @@ -3780,10 +3639,10 @@ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { /* ------------------------------------------------------------------ */ /* decToInt32 -- local routine to effect ToInteger conversions */ /* */ -/* df is the decFloat to convert */ +/* df is the decFloat to convert */ /* set is the context */ -/* rmode is the rounding mode to use */ -/* exact is 1 if Inexact should be signalled */ +/* rmode is the rounding mode to use */ +/* exact is 1 if Inexact should be signalled */ /* unsign is 1 if the result a uInt, 0 if an Int (cast to uInt) */ /* returns 32-bit result as a uInt */ /* */ @@ -3793,13 +3652,13 @@ static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { static uInt decToInt32(const decFloat *df, decContext *set, enum rounding rmode, Flag exact, Flag unsign) { Int exp; /* exponent */ - uInt sourhi, sourpen, sourlo; /* top word from source decFloat .. */ + uInt sourhi, sourpen, sourlo; /* top word from source decFloat .. */ uInt hi, lo; /* .. penultimate, least, etc. */ decFloat zero, result; /* work */ Int i; /* .. */ /* Start decoding the argument */ - sourhi=DFWORD(df, 0); /* top word */ + sourhi=DFWORD(df, 0); /* top word */ exp=DECCOMBEXP[sourhi>>26]; /* get exponent high bits (in place) */ if (EXPISSPECIAL(exp)) { /* is special? */ set->status|=DEC_Invalid_operation; /* signal */ @@ -3871,10 +3730,10 @@ static uInt decToInt32(const decFloat *df, decContext *set, /* decToIntegral -- local routine to effect ToIntegral value */ /* */ /* result gets the result */ -/* df is the decFloat to round */ +/* df is the decFloat to round */ /* set is the context */ -/* rmode is the rounding mode to use */ -/* exact is 1 if Inexact should be signalled */ +/* rmode is the rounding mode to use */ +/* exact is 1 if Inexact should be signalled */ /* returns result */ /* ------------------------------------------------------------------ */ static decFloat * decToIntegral(decFloat *result, const decFloat *df, @@ -3887,7 +3746,7 @@ static decFloat * decToIntegral(decFloat *result, const decFloat *df, decFloat zero; /* work */ /* Start decoding the argument */ - sourhi=DFWORD(df, 0); /* top word */ + sourhi=DFWORD(df, 0); /* top word */ exp=DECCOMBEXP[sourhi>>26]; /* get exponent high bits (in place) */ if (EXPISSPECIAL(exp)) { /* is special? */ @@ -3903,12 +3762,12 @@ static decFloat * decToIntegral(decFloat *result, const decFloat *df, if (exp>=0) return decCanonical(result, df); /* already integral */ - saveround=set->round; /* save rounding mode .. */ + saveround=set->round; /* save rounding mode .. */ savestatus=set->status; /* .. and status */ set->round=rmode; /* set mode */ decFloatZero(&zero); /* make 0E+0 */ decFloatQuantize(result, df, &zero, set); /* 'integrate'; cannot fail */ - set->round=saveround; /* restore rounding mode .. */ + set->round=saveround; /* restore rounding mode .. */ if (!exact) set->status=savestatus; /* .. and status, unless exact */ return result; } /* decToIntegral */ |