summaryrefslogtreecommitdiff
path: root/gcc/tree-vectorizer.c
diff options
context:
space:
mode:
authorirar <irar@138bc75d-0d04-0410-961f-82ee72b054a4>2009-03-30 07:22:04 +0000
committerirar <irar@138bc75d-0d04-0410-961f-82ee72b054a4>2009-03-30 07:22:04 +0000
commitfb85abff92ed1f8489e517192319b5394c0ee529 (patch)
treeeb1de264e27b52e72961ef1403214ca950263b68 /gcc/tree-vectorizer.c
parent0863a8f446cdaaa7c9b39b216c278f739a1920c8 (diff)
downloadgcc-fb85abff92ed1f8489e517192319b5394c0ee529.tar.gz
* tree-vect-loop-manip.c: New file.
* tree-vectorizer.c: Update documentation and included files. (vect_loop_location): Make extern. (rename_use_op): Move to tree-vect-loop-manip.c (rename_variables_in_bb, rename_variables_in_loop, slpeel_update_phis_for_duplicate_loop, slpeel_update_phi_nodes_for_guard1, slpeel_update_phi_nodes_for_guard2, slpeel_make_loop_iterate_ntimes, slpeel_tree_duplicate_loop_to_edge_cfg, slpeel_add_loop_guard, slpeel_can_duplicate_loop_p, slpeel_verify_cfg_after_peeling, set_prologue_iterations, slpeel_tree_peel_loop_to_edge, find_loop_location): Likewise. (new_stmt_vec_info): Move to tree-vect-stmts.c. (init_stmt_vec_info_vec, free_stmt_vec_info_vec, free_stmt_vec_info, get_vectype_for_scalar_type, vect_is_simple_use, supportable_widening_operation, supportable_narrowing_operation): Likewise. (bb_in_loop_p): Move to tree-vect-loop.c. (new_loop_vec_info, destroy_loop_vec_info, reduction_code_for_scalar_code, report_vect_op, vect_is_simple_reduction, vect_is_simple_iv_evolution): Likewise. (vect_can_force_dr_alignment_p): Move to tree-vect-data-refs.c. (vect_supportable_dr_alignment): Likewise. * tree-vectorizer.h (tree-data-ref.h): Include. (vect_loop_location): Declare. Reorganize function declarations according to the new file structure. * tree-vect-loop.c: New file. * tree-vect-analyze.c: Remove. Move functions to tree-vect-data-refs.c, tree-vect-stmts.c, tree-vect-slp.c, tree-vect-loop.c. * tree-vect-data-refs.c: New file. * tree-vect-patterns.c (timevar.h): Don't include. * tree-vect-stmts.c: New file. * tree-vect-transform.c: Remove. Move functions to tree-vect-stmts.c, tree-vect-slp.c, tree-vect-loop.c. * Makefile.in (OBJS-common): Remove tree-vect-analyze.o and tree-vect-transform.o. Add tree-vect-data-refs.o, tree-vect-stmts.o, tree-vect-loop.o, tree-vect-loop-manip.o, tree-vect-slp.o. (tree-vect-analyze.o): Remove. (tree-vect-transform.o): Likewise. (tree-vect-data-refs.o): Add rule. (tree-vect-stmts.o, tree-vect-loop.o, tree-vect-loop-manip.o, tree-vect-slp.o): Likewise. (tree-vect-patterns.o): Remove redundant dependencies. (tree-vectorizer.o): Likewise. * tree-vect-slp.c: New file. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@145280 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/tree-vectorizer.c')
-rw-r--r--gcc/tree-vectorizer.c2738
1 files changed, 68 insertions, 2670 deletions
diff --git a/gcc/tree-vectorizer.c b/gcc/tree-vectorizer.c
index 2c5d9cca136..0636c6adbc6 100644
--- a/gcc/tree-vectorizer.c
+++ b/gcc/tree-vectorizer.c
@@ -1,7 +1,7 @@
-/* Loop Vectorization
- Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
+/* Vectorizer
+ Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software
Foundation, Inc.
- Contributed by Dorit Naishlos <dorit@il.ibm.com>
+ Contributed by Dorit Naishlos <dorit@il.ibm.com>
This file is part of GCC.
@@ -19,105 +19,40 @@ You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
-/* Loop Vectorization Pass.
-
- This pass tries to vectorize loops. This first implementation focuses on
- simple inner-most loops, with no conditional control flow, and a set of
- simple operations which vector form can be expressed using existing
- tree codes (PLUS, MULT etc).
-
- For example, the vectorizer transforms the following simple loop:
-
- short a[N]; short b[N]; short c[N]; int i;
-
- for (i=0; i<N; i++){
- a[i] = b[i] + c[i];
- }
-
- as if it was manually vectorized by rewriting the source code into:
-
- typedef int __attribute__((mode(V8HI))) v8hi;
- short a[N]; short b[N]; short c[N]; int i;
- v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
- v8hi va, vb, vc;
-
- for (i=0; i<N/8; i++){
- vb = pb[i];
- vc = pc[i];
- va = vb + vc;
- pa[i] = va;
- }
-
- The main entry to this pass is vectorize_loops(), in which
- the vectorizer applies a set of analyses on a given set of loops,
- followed by the actual vectorization transformation for the loops that
- had successfully passed the analysis phase.
-
- Throughout this pass we make a distinction between two types of
- data: scalars (which are represented by SSA_NAMES), and memory references
- ("data-refs"). These two types of data require different handling both
- during analysis and transformation. The types of data-refs that the
- vectorizer currently supports are ARRAY_REFS which base is an array DECL
- (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
- accesses are required to have a simple (consecutive) access pattern.
-
- Analysis phase:
- ===============
- The driver for the analysis phase is vect_analyze_loop_nest().
- It applies a set of analyses, some of which rely on the scalar evolution
- analyzer (scev) developed by Sebastian Pop.
-
- During the analysis phase the vectorizer records some information
- per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
- loop, as well as general information about the loop as a whole, which is
- recorded in a "loop_vec_info" struct attached to each loop.
-
- Transformation phase:
- =====================
- The loop transformation phase scans all the stmts in the loop, and
- creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
- the loop that needs to be vectorized. It insert the vector code sequence
- just before the scalar stmt S, and records a pointer to the vector code
- in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
- attached to S). This pointer will be used for the vectorization of following
- stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
- otherwise, we rely on dead code elimination for removing it.
-
- For example, say stmt S1 was vectorized into stmt VS1:
-
- VS1: vb = px[i];
- S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
- S2: a = b;
-
- To vectorize stmt S2, the vectorizer first finds the stmt that defines
- the operand 'b' (S1), and gets the relevant vector def 'vb' from the
- vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
- resulting sequence would be:
-
- VS1: vb = px[i];
- S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
- VS2: va = vb;
- S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
-
- Operands that are not SSA_NAMEs, are data-refs that appear in
- load/store operations (like 'x[i]' in S1), and are handled differently.
-
- Target modeling:
- =================
- Currently the only target specific information that is used is the
- size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
- support different sizes of vectors, for now will need to specify one value
- for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
-
- Since we only vectorize operations which vector form can be
- expressed using existing tree codes, to verify that an operation is
- supported, the vectorizer checks the relevant optab at the relevant
- machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
- the value found is CODE_FOR_nothing, then there's no target support, and
- we can't vectorize the stmt.
-
- For additional information on this project see:
- http://gcc.gnu.org/projects/tree-ssa/vectorization.html
+/* Loop and basic block vectorizer.
+
+ This file contains drivers for the three vectorizers:
+ (1) loop vectorizer (inter-iteration parallelism),
+ (2) loop-aware SLP (intra-iteration parallelism) (invoked by the loop
+ vectorizer)
+ (3) BB vectorizer (out-of-loops), aka SLP
+
+ The rest of the vectorizer's code is organized as follows:
+ - tree-vect-loop.c - loop specific parts such as reductions, etc. These are
+ used by drivers (1) and (2).
+ - tree-vect-loop-manip.c - vectorizer's loop control-flow utilities, used by
+ drivers (1) and (2).
+ - tree-vect-slp.c - BB vectorization specific analysis and transformation,
+ used by drivers (2) and (3).
+ - tree-vect-stmts.c - statements analysis and transformation (used by all).
+ - tree-vect-data-refs.c - vectorizer specific data-refs analysis and
+ manipulations (used by all).
+ - tree-vect-patterns.c - vectorizable code patterns detector (used by all)
+
+ Here's a poor attempt at illustrating that:
+
+ tree-vectorizer.c:
+ loop_vect() loop_aware_slp() slp_vect()
+ | / \ /
+ | / \ /
+ tree-vect-loop.c tree-vect-slp.c
+ | \ \ / / |
+ | \ \/ / |
+ | \ /\ / |
+ | \ / \ / |
+ tree-vect-stmts.c tree-vect-data-refs.c
+ \ /
+ tree-vect-patterns.c
*/
#include "config.h"
@@ -126,32 +61,13 @@ along with GCC; see the file COPYING3. If not see
#include "tm.h"
#include "ggc.h"
#include "tree.h"
-#include "target.h"
-#include "rtl.h"
-#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
-#include "timevar.h"
#include "cfgloop.h"
#include "cfglayout.h"
-#include "expr.h"
-#include "recog.h"
-#include "optabs.h"
-#include "params.h"
-#include "toplev.h"
-#include "tree-chrec.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "input.h"
-#include "hashtab.h"
#include "tree-vectorizer.h"
#include "tree-pass.h"
-#include "langhooks.h"
-
-/*************************************************************************
- General Vectorization Utilities
- *************************************************************************/
/* vect_dump will be set to stderr or dump_file if exist. */
FILE *vect_dump;
@@ -161,7 +77,7 @@ FILE *vect_dump;
enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
/* Loop location. */
-static LOC vect_loop_location;
+LOC vect_loop_location;
/* Bitmap of virtual variables to be renamed. */
bitmap vect_memsyms_to_rename;
@@ -170,1273 +86,6 @@ bitmap vect_memsyms_to_rename;
VEC(vec_void_p,heap) *stmt_vec_info_vec;
-/*************************************************************************
- Simple Loop Peeling Utilities
-
- Utilities to support loop peeling for vectorization purposes.
- *************************************************************************/
-
-
-/* Renames the use *OP_P. */
-
-static void
-rename_use_op (use_operand_p op_p)
-{
- tree new_name;
-
- if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
- return;
-
- new_name = get_current_def (USE_FROM_PTR (op_p));
-
- /* Something defined outside of the loop. */
- if (!new_name)
- return;
-
- /* An ordinary ssa name defined in the loop. */
-
- SET_USE (op_p, new_name);
-}
-
-
-/* Renames the variables in basic block BB. */
-
-void
-rename_variables_in_bb (basic_block bb)
-{
- gimple_stmt_iterator gsi;
- gimple stmt;
- use_operand_p use_p;
- ssa_op_iter iter;
- edge e;
- edge_iterator ei;
- struct loop *loop = bb->loop_father;
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- stmt = gsi_stmt (gsi);
- FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
- rename_use_op (use_p);
- }
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (!flow_bb_inside_loop_p (loop, e->dest))
- continue;
- for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
- rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
- }
-}
-
-
-/* Renames variables in new generated LOOP. */
-
-void
-rename_variables_in_loop (struct loop *loop)
-{
- unsigned i;
- basic_block *bbs;
-
- bbs = get_loop_body (loop);
-
- for (i = 0; i < loop->num_nodes; i++)
- rename_variables_in_bb (bbs[i]);
-
- free (bbs);
-}
-
-
-/* Update the PHI nodes of NEW_LOOP.
-
- NEW_LOOP is a duplicate of ORIG_LOOP.
- AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
- AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
- executes before it. */
-
-static void
-slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
- struct loop *new_loop, bool after)
-{
- tree new_ssa_name;
- gimple phi_new, phi_orig;
- tree def;
- edge orig_loop_latch = loop_latch_edge (orig_loop);
- edge orig_entry_e = loop_preheader_edge (orig_loop);
- edge new_loop_exit_e = single_exit (new_loop);
- edge new_loop_entry_e = loop_preheader_edge (new_loop);
- edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
- gimple_stmt_iterator gsi_new, gsi_orig;
-
- /*
- step 1. For each loop-header-phi:
- Add the first phi argument for the phi in NEW_LOOP
- (the one associated with the entry of NEW_LOOP)
-
- step 2. For each loop-header-phi:
- Add the second phi argument for the phi in NEW_LOOP
- (the one associated with the latch of NEW_LOOP)
-
- step 3. Update the phis in the successor block of NEW_LOOP.
-
- case 1: NEW_LOOP was placed before ORIG_LOOP:
- The successor block of NEW_LOOP is the header of ORIG_LOOP.
- Updating the phis in the successor block can therefore be done
- along with the scanning of the loop header phis, because the
- header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
- phi nodes, organized in the same order.
-
- case 2: NEW_LOOP was placed after ORIG_LOOP:
- The successor block of NEW_LOOP is the original exit block of
- ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
- We postpone updating these phis to a later stage (when
- loop guards are added).
- */
-
-
- /* Scan the phis in the headers of the old and new loops
- (they are organized in exactly the same order). */
-
- for (gsi_new = gsi_start_phis (new_loop->header),
- gsi_orig = gsi_start_phis (orig_loop->header);
- !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
- gsi_next (&gsi_new), gsi_next (&gsi_orig))
- {
- phi_new = gsi_stmt (gsi_new);
- phi_orig = gsi_stmt (gsi_orig);
-
- /* step 1. */
- def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
- add_phi_arg (phi_new, def, new_loop_entry_e);
-
- /* step 2. */
- def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
- if (TREE_CODE (def) != SSA_NAME)
- continue;
-
- new_ssa_name = get_current_def (def);
- if (!new_ssa_name)
- {
- /* This only happens if there are no definitions
- inside the loop. use the phi_result in this case. */
- new_ssa_name = PHI_RESULT (phi_new);
- }
-
- /* An ordinary ssa name defined in the loop. */
- add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
-
- /* step 3 (case 1). */
- if (!after)
- {
- gcc_assert (new_loop_exit_e == orig_entry_e);
- SET_PHI_ARG_DEF (phi_orig,
- new_loop_exit_e->dest_idx,
- new_ssa_name);
- }
- }
-}
-
-
-/* Update PHI nodes for a guard of the LOOP.
-
- Input:
- - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
- controls whether LOOP is to be executed. GUARD_EDGE is the edge that
- originates from the guard-bb, skips LOOP and reaches the (unique) exit
- bb of LOOP. This loop-exit-bb is an empty bb with one successor.
- We denote this bb NEW_MERGE_BB because before the guard code was added
- it had a single predecessor (the LOOP header), and now it became a merge
- point of two paths - the path that ends with the LOOP exit-edge, and
- the path that ends with GUARD_EDGE.
- - NEW_EXIT_BB: New basic block that is added by this function between LOOP
- and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
-
- ===> The CFG before the guard-code was added:
- LOOP_header_bb:
- loop_body
- if (exit_loop) goto update_bb
- else goto LOOP_header_bb
- update_bb:
-
- ==> The CFG after the guard-code was added:
- guard_bb:
- if (LOOP_guard_condition) goto new_merge_bb
- else goto LOOP_header_bb
- LOOP_header_bb:
- loop_body
- if (exit_loop_condition) goto new_merge_bb
- else goto LOOP_header_bb
- new_merge_bb:
- goto update_bb
- update_bb:
-
- ==> The CFG after this function:
- guard_bb:
- if (LOOP_guard_condition) goto new_merge_bb
- else goto LOOP_header_bb
- LOOP_header_bb:
- loop_body
- if (exit_loop_condition) goto new_exit_bb
- else goto LOOP_header_bb
- new_exit_bb:
- new_merge_bb:
- goto update_bb
- update_bb:
-
- This function:
- 1. creates and updates the relevant phi nodes to account for the new
- incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
- 1.1. Create phi nodes at NEW_MERGE_BB.
- 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
- UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
- 2. preserves loop-closed-ssa-form by creating the required phi nodes
- at the exit of LOOP (i.e, in NEW_EXIT_BB).
-
- There are two flavors to this function:
-
- slpeel_update_phi_nodes_for_guard1:
- Here the guard controls whether we enter or skip LOOP, where LOOP is a
- prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
- for variables that have phis in the loop header.
-
- slpeel_update_phi_nodes_for_guard2:
- Here the guard controls whether we enter or skip LOOP, where LOOP is an
- epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
- for variables that have phis in the loop exit.
-
- I.E., the overall structure is:
-
- loop1_preheader_bb:
- guard1 (goto loop1/merge1_bb)
- loop1
- loop1_exit_bb:
- guard2 (goto merge1_bb/merge2_bb)
- merge1_bb
- loop2
- loop2_exit_bb
- merge2_bb
- next_bb
-
- slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
- loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
- that have phis in loop1->header).
-
- slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
- loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
- that have phis in next_bb). It also adds some of these phis to
- loop1_exit_bb.
-
- slpeel_update_phi_nodes_for_guard1 is always called before
- slpeel_update_phi_nodes_for_guard2. They are both needed in order
- to create correct data-flow and loop-closed-ssa-form.
-
- Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
- that change between iterations of a loop (and therefore have a phi-node
- at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
- phis for variables that are used out of the loop (and therefore have
- loop-closed exit phis). Some variables may be both updated between
- iterations and used after the loop. This is why in loop1_exit_bb we
- may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
- and exit phis (created by slpeel_update_phi_nodes_for_guard2).
-
- - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
- an original loop. i.e., we have:
-
- orig_loop
- guard_bb (goto LOOP/new_merge)
- new_loop <-- LOOP
- new_exit
- new_merge
- next_bb
-
- If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
- have:
-
- new_loop
- guard_bb (goto LOOP/new_merge)
- orig_loop <-- LOOP
- new_exit
- new_merge
- next_bb
-
- The SSA names defined in the original loop have a current
- reaching definition that that records the corresponding new
- ssa-name used in the new duplicated loop copy.
- */
-
-/* Function slpeel_update_phi_nodes_for_guard1
-
- Input:
- - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
- - DEFS - a bitmap of ssa names to mark new names for which we recorded
- information.
-
- In the context of the overall structure, we have:
-
- loop1_preheader_bb:
- guard1 (goto loop1/merge1_bb)
-LOOP-> loop1
- loop1_exit_bb:
- guard2 (goto merge1_bb/merge2_bb)
- merge1_bb
- loop2
- loop2_exit_bb
- merge2_bb
- next_bb
-
- For each name updated between loop iterations (i.e - for each name that has
- an entry (loop-header) phi in LOOP) we create a new phi in:
- 1. merge1_bb (to account for the edge from guard1)
- 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
-*/
-
-static void
-slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
- bool is_new_loop, basic_block *new_exit_bb,
- bitmap *defs)
-{
- gimple orig_phi, new_phi;
- gimple update_phi, update_phi2;
- tree guard_arg, loop_arg;
- basic_block new_merge_bb = guard_edge->dest;
- edge e = EDGE_SUCC (new_merge_bb, 0);
- basic_block update_bb = e->dest;
- basic_block orig_bb = loop->header;
- edge new_exit_e;
- tree current_new_name;
- tree name;
- gimple_stmt_iterator gsi_orig, gsi_update;
-
- /* Create new bb between loop and new_merge_bb. */
- *new_exit_bb = split_edge (single_exit (loop));
-
- new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
-
- for (gsi_orig = gsi_start_phis (orig_bb),
- gsi_update = gsi_start_phis (update_bb);
- !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
- gsi_next (&gsi_orig), gsi_next (&gsi_update))
- {
- orig_phi = gsi_stmt (gsi_orig);
- update_phi = gsi_stmt (gsi_update);
-
- /* Virtual phi; Mark it for renaming. We actually want to call
- mar_sym_for_renaming, but since all ssa renaming datastructures
- are going to be freed before we get to call ssa_update, we just
- record this name for now in a bitmap, and will mark it for
- renaming later. */
- name = PHI_RESULT (orig_phi);
- if (!is_gimple_reg (SSA_NAME_VAR (name)))
- bitmap_set_bit (vect_memsyms_to_rename, DECL_UID (SSA_NAME_VAR (name)));
-
- /** 1. Handle new-merge-point phis **/
-
- /* 1.1. Generate new phi node in NEW_MERGE_BB: */
- new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
- new_merge_bb);
-
- /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
- of LOOP. Set the two phi args in NEW_PHI for these edges: */
- loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
- guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
-
- add_phi_arg (new_phi, loop_arg, new_exit_e);
- add_phi_arg (new_phi, guard_arg, guard_edge);
-
- /* 1.3. Update phi in successor block. */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
- || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
- SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
- update_phi2 = new_phi;
-
-
- /** 2. Handle loop-closed-ssa-form phis **/
-
- if (!is_gimple_reg (PHI_RESULT (orig_phi)))
- continue;
-
- /* 2.1. Generate new phi node in NEW_EXIT_BB: */
- new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
- *new_exit_bb);
-
- /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
- add_phi_arg (new_phi, loop_arg, single_exit (loop));
-
- /* 2.3. Update phi in successor of NEW_EXIT_BB: */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
- SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
-
- /* 2.4. Record the newly created name with set_current_def.
- We want to find a name such that
- name = get_current_def (orig_loop_name)
- and to set its current definition as follows:
- set_current_def (name, new_phi_name)
-
- If LOOP is a new loop then loop_arg is already the name we're
- looking for. If LOOP is the original loop, then loop_arg is
- the orig_loop_name and the relevant name is recorded in its
- current reaching definition. */
- if (is_new_loop)
- current_new_name = loop_arg;
- else
- {
- current_new_name = get_current_def (loop_arg);
- /* current_def is not available only if the variable does not
- change inside the loop, in which case we also don't care
- about recording a current_def for it because we won't be
- trying to create loop-exit-phis for it. */
- if (!current_new_name)
- continue;
- }
- gcc_assert (get_current_def (current_new_name) == NULL_TREE);
-
- set_current_def (current_new_name, PHI_RESULT (new_phi));
- bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
- }
-}
-
-
-/* Function slpeel_update_phi_nodes_for_guard2
-
- Input:
- - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
-
- In the context of the overall structure, we have:
-
- loop1_preheader_bb:
- guard1 (goto loop1/merge1_bb)
- loop1
- loop1_exit_bb:
- guard2 (goto merge1_bb/merge2_bb)
- merge1_bb
-LOOP-> loop2
- loop2_exit_bb
- merge2_bb
- next_bb
-
- For each name used out side the loop (i.e - for each name that has an exit
- phi in next_bb) we create a new phi in:
- 1. merge2_bb (to account for the edge from guard_bb)
- 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
- 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
- if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
-*/
-
-static void
-slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
- bool is_new_loop, basic_block *new_exit_bb)
-{
- gimple orig_phi, new_phi;
- gimple update_phi, update_phi2;
- tree guard_arg, loop_arg;
- basic_block new_merge_bb = guard_edge->dest;
- edge e = EDGE_SUCC (new_merge_bb, 0);
- basic_block update_bb = e->dest;
- edge new_exit_e;
- tree orig_def, orig_def_new_name;
- tree new_name, new_name2;
- tree arg;
- gimple_stmt_iterator gsi;
-
- /* Create new bb between loop and new_merge_bb. */
- *new_exit_bb = split_edge (single_exit (loop));
-
- new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
-
- for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- update_phi = gsi_stmt (gsi);
- orig_phi = update_phi;
- orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
- /* This loop-closed-phi actually doesn't represent a use
- out of the loop - the phi arg is a constant. */
- if (TREE_CODE (orig_def) != SSA_NAME)
- continue;
- orig_def_new_name = get_current_def (orig_def);
- arg = NULL_TREE;
-
- /** 1. Handle new-merge-point phis **/
-
- /* 1.1. Generate new phi node in NEW_MERGE_BB: */
- new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
- new_merge_bb);
-
- /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
- of LOOP. Set the two PHI args in NEW_PHI for these edges: */
- new_name = orig_def;
- new_name2 = NULL_TREE;
- if (orig_def_new_name)
- {
- new_name = orig_def_new_name;
- /* Some variables have both loop-entry-phis and loop-exit-phis.
- Such variables were given yet newer names by phis placed in
- guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
- new_name2 = get_current_def (get_current_def (orig_name)). */
- new_name2 = get_current_def (new_name);
- }
-
- if (is_new_loop)
- {
- guard_arg = orig_def;
- loop_arg = new_name;
- }
- else
- {
- guard_arg = new_name;
- loop_arg = orig_def;
- }
- if (new_name2)
- guard_arg = new_name2;
-
- add_phi_arg (new_phi, loop_arg, new_exit_e);
- add_phi_arg (new_phi, guard_arg, guard_edge);
-
- /* 1.3. Update phi in successor block. */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
- SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
- update_phi2 = new_phi;
-
-
- /** 2. Handle loop-closed-ssa-form phis **/
-
- /* 2.1. Generate new phi node in NEW_EXIT_BB: */
- new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
- *new_exit_bb);
-
- /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
- add_phi_arg (new_phi, loop_arg, single_exit (loop));
-
- /* 2.3. Update phi in successor of NEW_EXIT_BB: */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
- SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
-
-
- /** 3. Handle loop-closed-ssa-form phis for first loop **/
-
- /* 3.1. Find the relevant names that need an exit-phi in
- GUARD_BB, i.e. names for which
- slpeel_update_phi_nodes_for_guard1 had not already created a
- phi node. This is the case for names that are used outside
- the loop (and therefore need an exit phi) but are not updated
- across loop iterations (and therefore don't have a
- loop-header-phi).
-
- slpeel_update_phi_nodes_for_guard1 is responsible for
- creating loop-exit phis in GUARD_BB for names that have a
- loop-header-phi. When such a phi is created we also record
- the new name in its current definition. If this new name
- exists, then guard_arg was set to this new name (see 1.2
- above). Therefore, if guard_arg is not this new name, this
- is an indication that an exit-phi in GUARD_BB was not yet
- created, so we take care of it here. */
- if (guard_arg == new_name2)
- continue;
- arg = guard_arg;
-
- /* 3.2. Generate new phi node in GUARD_BB: */
- new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
- guard_edge->src);
-
- /* 3.3. GUARD_BB has one incoming edge: */
- gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
- add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));
-
- /* 3.4. Update phi in successor of GUARD_BB: */
- gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
- == guard_arg);
- SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
- }
-}
-
-
-/* Make the LOOP iterate NITERS times. This is done by adding a new IV
- that starts at zero, increases by one and its limit is NITERS.
-
- Assumption: the exit-condition of LOOP is the last stmt in the loop. */
-
-void
-slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
-{
- tree indx_before_incr, indx_after_incr;
- gimple cond_stmt;
- gimple orig_cond;
- edge exit_edge = single_exit (loop);
- gimple_stmt_iterator loop_cond_gsi;
- gimple_stmt_iterator incr_gsi;
- bool insert_after;
- tree init = build_int_cst (TREE_TYPE (niters), 0);
- tree step = build_int_cst (TREE_TYPE (niters), 1);
- LOC loop_loc;
- enum tree_code code;
-
- orig_cond = get_loop_exit_condition (loop);
- gcc_assert (orig_cond);
- loop_cond_gsi = gsi_for_stmt (orig_cond);
-
- standard_iv_increment_position (loop, &incr_gsi, &insert_after);
- create_iv (init, step, NULL_TREE, loop,
- &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
-
- indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
- true, NULL_TREE, true,
- GSI_SAME_STMT);
- niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
- true, GSI_SAME_STMT);
-
- code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
- cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
- NULL_TREE);
-
- gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
-
- /* Remove old loop exit test: */
- gsi_remove (&loop_cond_gsi, true);
-
- loop_loc = find_loop_location (loop);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- if (loop_loc != UNKNOWN_LOC)
- fprintf (dump_file, "\nloop at %s:%d: ",
- LOC_FILE (loop_loc), LOC_LINE (loop_loc));
- print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
- }
-
- loop->nb_iterations = niters;
-}
-
-
-/* Given LOOP this function generates a new copy of it and puts it
- on E which is either the entry or exit of LOOP. */
-
-struct loop *
-slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
-{
- struct loop *new_loop;
- basic_block *new_bbs, *bbs;
- bool at_exit;
- bool was_imm_dom;
- basic_block exit_dest;
- gimple phi;
- tree phi_arg;
- edge exit, new_exit;
- gimple_stmt_iterator gsi;
-
- at_exit = (e == single_exit (loop));
- if (!at_exit && e != loop_preheader_edge (loop))
- return NULL;
-
- bbs = get_loop_body (loop);
-
- /* Check whether duplication is possible. */
- if (!can_copy_bbs_p (bbs, loop->num_nodes))
- {
- free (bbs);
- return NULL;
- }
-
- /* Generate new loop structure. */
- new_loop = duplicate_loop (loop, loop_outer (loop));
- if (!new_loop)
- {
- free (bbs);
- return NULL;
- }
-
- exit_dest = single_exit (loop)->dest;
- was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
- exit_dest) == loop->header ?
- true : false);
-
- new_bbs = XNEWVEC (basic_block, loop->num_nodes);
-
- exit = single_exit (loop);
- copy_bbs (bbs, loop->num_nodes, new_bbs,
- &exit, 1, &new_exit, NULL,
- e->src);
-
- /* Duplicating phi args at exit bbs as coming
- also from exit of duplicated loop. */
- for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- phi = gsi_stmt (gsi);
- phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
- if (phi_arg)
- {
- edge new_loop_exit_edge;
-
- if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
- new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
- else
- new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
-
- add_phi_arg (phi, phi_arg, new_loop_exit_edge);
- }
- }
-
- if (at_exit) /* Add the loop copy at exit. */
- {
- redirect_edge_and_branch_force (e, new_loop->header);
- PENDING_STMT (e) = NULL;
- set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
- if (was_imm_dom)
- set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
- }
- else /* Add the copy at entry. */
- {
- edge new_exit_e;
- edge entry_e = loop_preheader_edge (loop);
- basic_block preheader = entry_e->src;
-
- if (!flow_bb_inside_loop_p (new_loop,
- EDGE_SUCC (new_loop->header, 0)->dest))
- new_exit_e = EDGE_SUCC (new_loop->header, 0);
- else
- new_exit_e = EDGE_SUCC (new_loop->header, 1);
-
- redirect_edge_and_branch_force (new_exit_e, loop->header);
- PENDING_STMT (new_exit_e) = NULL;
- set_immediate_dominator (CDI_DOMINATORS, loop->header,
- new_exit_e->src);
-
- /* We have to add phi args to the loop->header here as coming
- from new_exit_e edge. */
- for (gsi = gsi_start_phis (loop->header);
- !gsi_end_p (gsi);
- gsi_next (&gsi))
- {
- phi = gsi_stmt (gsi);
- phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
- if (phi_arg)
- add_phi_arg (phi, phi_arg, new_exit_e);
- }
-
- redirect_edge_and_branch_force (entry_e, new_loop->header);
- PENDING_STMT (entry_e) = NULL;
- set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
- }
-
- free (new_bbs);
- free (bbs);
-
- return new_loop;
-}
-
-
-/* Given the condition statement COND, put it as the last statement
- of GUARD_BB; EXIT_BB is the basic block to skip the loop;
- Assumes that this is the single exit of the guarded loop.
- Returns the skip edge. */
-
-static edge
-slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
- basic_block dom_bb)
-{
- gimple_stmt_iterator gsi;
- edge new_e, enter_e;
- gimple cond_stmt;
- gimple_seq gimplify_stmt_list = NULL;
-
- enter_e = EDGE_SUCC (guard_bb, 0);
- enter_e->flags &= ~EDGE_FALLTHRU;
- enter_e->flags |= EDGE_FALSE_VALUE;
- gsi = gsi_last_bb (guard_bb);
-
- cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
- cond_stmt = gimple_build_cond (NE_EXPR,
- cond, build_int_cst (TREE_TYPE (cond), 0),
- NULL_TREE, NULL_TREE);
- if (gimplify_stmt_list)
- gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
-
- gsi = gsi_last_bb (guard_bb);
- gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
-
- /* Add new edge to connect guard block to the merge/loop-exit block. */
- new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
- set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
- return new_e;
-}
-
-
-/* This function verifies that the following restrictions apply to LOOP:
- (1) it is innermost
- (2) it consists of exactly 2 basic blocks - header, and an empty latch.
- (3) it is single entry, single exit
- (4) its exit condition is the last stmt in the header
- (5) E is the entry/exit edge of LOOP.
- */
-
-bool
-slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
-{
- edge exit_e = single_exit (loop);
- edge entry_e = loop_preheader_edge (loop);
- gimple orig_cond = get_loop_exit_condition (loop);
- gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
-
- if (need_ssa_update_p ())
- return false;
-
- if (loop->inner
- /* All loops have an outer scope; the only case loop->outer is NULL is for
- the function itself. */
- || !loop_outer (loop)
- || loop->num_nodes != 2
- || !empty_block_p (loop->latch)
- || !single_exit (loop)
- /* Verify that new loop exit condition can be trivially modified. */
- || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
- || (e != exit_e && e != entry_e))
- return false;
-
- return true;
-}
-
-#ifdef ENABLE_CHECKING
-void
-slpeel_verify_cfg_after_peeling (struct loop *first_loop,
- struct loop *second_loop)
-{
- basic_block loop1_exit_bb = single_exit (first_loop)->dest;
- basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
- basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
-
- /* A guard that controls whether the second_loop is to be executed or skipped
- is placed in first_loop->exit. first_loop->exit therefore has two
- successors - one is the preheader of second_loop, and the other is a bb
- after second_loop.
- */
- gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
-
- /* 1. Verify that one of the successors of first_loop->exit is the preheader
- of second_loop. */
-
- /* The preheader of new_loop is expected to have two predecessors:
- first_loop->exit and the block that precedes first_loop. */
-
- gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
- && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
- && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
- || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
- && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
-
- /* Verify that the other successor of first_loop->exit is after the
- second_loop. */
- /* TODO */
-}
-#endif
-
-/* If the run time cost model check determines that vectorization is
- not profitable and hence scalar loop should be generated then set
- FIRST_NITERS to prologue peeled iterations. This will allow all the
- iterations to be executed in the prologue peeled scalar loop. */
-
-void
-set_prologue_iterations (basic_block bb_before_first_loop,
- tree first_niters,
- struct loop *loop,
- unsigned int th)
-{
- edge e;
- basic_block cond_bb, then_bb;
- tree var, prologue_after_cost_adjust_name;
- gimple_stmt_iterator gsi;
- gimple newphi;
- edge e_true, e_false, e_fallthru;
- gimple cond_stmt;
- gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
- tree cost_pre_condition = NULL_TREE;
- tree scalar_loop_iters =
- unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
-
- e = single_pred_edge (bb_before_first_loop);
- cond_bb = split_edge(e);
-
- e = single_pred_edge (bb_before_first_loop);
- then_bb = split_edge(e);
- set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
-
- e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
- EDGE_FALSE_VALUE);
- set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
-
- e_true = EDGE_PRED (then_bb, 0);
- e_true->flags &= ~EDGE_FALLTHRU;
- e_true->flags |= EDGE_TRUE_VALUE;
-
- e_fallthru = EDGE_SUCC (then_bb, 0);
-
- cost_pre_condition =
- fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
- build_int_cst (TREE_TYPE (scalar_loop_iters), th));
- cost_pre_condition =
- force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
- true, NULL_TREE);
- cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
- build_int_cst (TREE_TYPE (cost_pre_condition),
- 0), NULL_TREE, NULL_TREE);
-
- gsi = gsi_last_bb (cond_bb);
- if (gimplify_stmt_list)
- gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
-
- gsi = gsi_last_bb (cond_bb);
- gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
-
- var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
- "prologue_after_cost_adjust");
- add_referenced_var (var);
- prologue_after_cost_adjust_name =
- force_gimple_operand (scalar_loop_iters, &stmts, false, var);
-
- gsi = gsi_last_bb (then_bb);
- if (stmts)
- gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
-
- newphi = create_phi_node (var, bb_before_first_loop);
- add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru);
- add_phi_arg (newphi, first_niters, e_false);
-
- first_niters = PHI_RESULT (newphi);
-}
-
-
-/* Function slpeel_tree_peel_loop_to_edge.
-
- Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
- that is placed on the entry (exit) edge E of LOOP. After this transformation
- we have two loops one after the other - first-loop iterates FIRST_NITERS
- times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
- If the cost model indicates that it is profitable to emit a scalar
- loop instead of the vector one, then the prolog (epilog) loop will iterate
- for the entire unchanged scalar iterations of the loop.
-
- Input:
- - LOOP: the loop to be peeled.
- - E: the exit or entry edge of LOOP.
- If it is the entry edge, we peel the first iterations of LOOP. In this
- case first-loop is LOOP, and second-loop is the newly created loop.
- If it is the exit edge, we peel the last iterations of LOOP. In this
- case, first-loop is the newly created loop, and second-loop is LOOP.
- - NITERS: the number of iterations that LOOP iterates.
- - FIRST_NITERS: the number of iterations that the first-loop should iterate.
- - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
- for updating the loop bound of the first-loop to FIRST_NITERS. If it
- is false, the caller of this function may want to take care of this
- (this can be useful if we don't want new stmts added to first-loop).
- - TH: cost model profitability threshold of iterations for vectorization.
- - CHECK_PROFITABILITY: specify whether cost model check has not occurred
- during versioning and hence needs to occur during
- prologue generation or whether cost model check
- has not occurred during prologue generation and hence
- needs to occur during epilogue generation.
-
-
- Output:
- The function returns a pointer to the new loop-copy, or NULL if it failed
- to perform the transformation.
-
- The function generates two if-then-else guards: one before the first loop,
- and the other before the second loop:
- The first guard is:
- if (FIRST_NITERS == 0) then skip the first loop,
- and go directly to the second loop.
- The second guard is:
- if (FIRST_NITERS == NITERS) then skip the second loop.
-
- FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
- FORNOW the resulting code will not be in loop-closed-ssa form.
-*/
-
-struct loop*
-slpeel_tree_peel_loop_to_edge (struct loop *loop,
- edge e, tree first_niters,
- tree niters, bool update_first_loop_count,
- unsigned int th, bool check_profitability)
-{
- struct loop *new_loop = NULL, *first_loop, *second_loop;
- edge skip_e;
- tree pre_condition = NULL_TREE;
- bitmap definitions;
- basic_block bb_before_second_loop, bb_after_second_loop;
- basic_block bb_before_first_loop;
- basic_block bb_between_loops;
- basic_block new_exit_bb;
- edge exit_e = single_exit (loop);
- LOC loop_loc;
- tree cost_pre_condition = NULL_TREE;
-
- if (!slpeel_can_duplicate_loop_p (loop, e))
- return NULL;
-
- /* We have to initialize cfg_hooks. Then, when calling
- cfg_hooks->split_edge, the function tree_split_edge
- is actually called and, when calling cfg_hooks->duplicate_block,
- the function tree_duplicate_bb is called. */
- gimple_register_cfg_hooks ();
-
-
- /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
- Resulting CFG would be:
-
- first_loop:
- do {
- } while ...
-
- second_loop:
- do {
- } while ...
-
- orig_exit_bb:
- */
-
- if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
- {
- loop_loc = find_loop_location (loop);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- if (loop_loc != UNKNOWN_LOC)
- fprintf (dump_file, "\n%s:%d: note: ",
- LOC_FILE (loop_loc), LOC_LINE (loop_loc));
- fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
- }
- return NULL;
- }
-
- if (e == exit_e)
- {
- /* NEW_LOOP was placed after LOOP. */
- first_loop = loop;
- second_loop = new_loop;
- }
- else
- {
- /* NEW_LOOP was placed before LOOP. */
- first_loop = new_loop;
- second_loop = loop;
- }
-
- definitions = ssa_names_to_replace ();
- slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
- rename_variables_in_loop (new_loop);
-
-
- /* 2. Add the guard code in one of the following ways:
-
- 2.a Add the guard that controls whether the first loop is executed.
- This occurs when this function is invoked for prologue or epilogue
- generation and when the cost model check can be done at compile time.
-
- Resulting CFG would be:
-
- bb_before_first_loop:
- if (FIRST_NITERS == 0) GOTO bb_before_second_loop
- GOTO first-loop
-
- first_loop:
- do {
- } while ...
-
- bb_before_second_loop:
-
- second_loop:
- do {
- } while ...
-
- orig_exit_bb:
-
- 2.b Add the cost model check that allows the prologue
- to iterate for the entire unchanged scalar
- iterations of the loop in the event that the cost
- model indicates that the scalar loop is more
- profitable than the vector one. This occurs when
- this function is invoked for prologue generation
- and the cost model check needs to be done at run
- time.
-
- Resulting CFG after prologue peeling would be:
-
- if (scalar_loop_iterations <= th)
- FIRST_NITERS = scalar_loop_iterations
-
- bb_before_first_loop:
- if (FIRST_NITERS == 0) GOTO bb_before_second_loop
- GOTO first-loop
-
- first_loop:
- do {
- } while ...
-
- bb_before_second_loop:
-
- second_loop:
- do {
- } while ...
-
- orig_exit_bb:
-
- 2.c Add the cost model check that allows the epilogue
- to iterate for the entire unchanged scalar
- iterations of the loop in the event that the cost
- model indicates that the scalar loop is more
- profitable than the vector one. This occurs when
- this function is invoked for epilogue generation
- and the cost model check needs to be done at run
- time.
-
- Resulting CFG after prologue peeling would be:
-
- bb_before_first_loop:
- if ((scalar_loop_iterations <= th)
- ||
- FIRST_NITERS == 0) GOTO bb_before_second_loop
- GOTO first-loop
-
- first_loop:
- do {
- } while ...
-
- bb_before_second_loop:
-
- second_loop:
- do {
- } while ...
-
- orig_exit_bb:
- */
-
- bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
- bb_before_second_loop = split_edge (single_exit (first_loop));
-
- /* Epilogue peeling. */
- if (!update_first_loop_count)
- {
- pre_condition =
- fold_build2 (LE_EXPR, boolean_type_node, first_niters,
- build_int_cst (TREE_TYPE (first_niters), 0));
- if (check_profitability)
- {
- tree scalar_loop_iters
- = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
- (loop_vec_info_for_loop (loop)));
- cost_pre_condition =
- fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
- build_int_cst (TREE_TYPE (scalar_loop_iters), th));
-
- pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
- cost_pre_condition, pre_condition);
- }
- }
-
- /* Prologue peeling. */
- else
- {
- if (check_profitability)
- set_prologue_iterations (bb_before_first_loop, first_niters,
- loop, th);
-
- pre_condition =
- fold_build2 (LE_EXPR, boolean_type_node, first_niters,
- build_int_cst (TREE_TYPE (first_niters), 0));
- }
-
- skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
- bb_before_second_loop, bb_before_first_loop);
- slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
- first_loop == new_loop,
- &new_exit_bb, &definitions);
-
-
- /* 3. Add the guard that controls whether the second loop is executed.
- Resulting CFG would be:
-
- bb_before_first_loop:
- if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
- GOTO first-loop
-
- first_loop:
- do {
- } while ...
-
- bb_between_loops:
- if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
- GOTO bb_before_second_loop
-
- bb_before_second_loop:
-
- second_loop:
- do {
- } while ...
-
- bb_after_second_loop:
-
- orig_exit_bb:
- */
-
- bb_between_loops = new_exit_bb;
- bb_after_second_loop = split_edge (single_exit (second_loop));
-
- pre_condition =
- fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
- skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
- bb_after_second_loop, bb_before_first_loop);
- slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
- second_loop == new_loop, &new_exit_bb);
-
- /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
- */
- if (update_first_loop_count)
- slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
-
- BITMAP_FREE (definitions);
- delete_update_ssa ();
-
- return new_loop;
-}
-
-/* Function vect_get_loop_location.
-
- Extract the location of the loop in the source code.
- If the loop is not well formed for vectorization, an estimated
- location is calculated.
- Return the loop location if succeed and NULL if not. */
-
-LOC
-find_loop_location (struct loop *loop)
-{
- gimple stmt = NULL;
- basic_block bb;
- gimple_stmt_iterator si;
-
- if (!loop)
- return UNKNOWN_LOC;
-
- stmt = get_loop_exit_condition (loop);
-
- if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
- return gimple_location (stmt);
-
- /* If we got here the loop is probably not "well formed",
- try to estimate the loop location */
-
- if (!loop->header)
- return UNKNOWN_LOC;
-
- bb = loop->header;
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- stmt = gsi_stmt (si);
- if (gimple_location (stmt) != UNKNOWN_LOC)
- return gimple_location (stmt);
- }
-
- return UNKNOWN_LOC;
-}
-
-
-/*************************************************************************
- Vectorization Debug Information.
- *************************************************************************/
/* Function vect_set_verbosity_level.
@@ -1516,1262 +165,6 @@ vect_print_dump_info (enum verbosity_levels vl)
}
-/*************************************************************************
- Vectorization Utilities.
- *************************************************************************/
-
-/* Function new_stmt_vec_info.
-
- Create and initialize a new stmt_vec_info struct for STMT. */
-
-stmt_vec_info
-new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo)
-{
- stmt_vec_info res;
- res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
-
- STMT_VINFO_TYPE (res) = undef_vec_info_type;
- STMT_VINFO_STMT (res) = stmt;
- STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
- STMT_VINFO_RELEVANT (res) = 0;
- STMT_VINFO_LIVE_P (res) = false;
- STMT_VINFO_VECTYPE (res) = NULL;
- STMT_VINFO_VEC_STMT (res) = NULL;
- STMT_VINFO_IN_PATTERN_P (res) = false;
- STMT_VINFO_RELATED_STMT (res) = NULL;
- STMT_VINFO_DATA_REF (res) = NULL;
-
- STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
- STMT_VINFO_DR_OFFSET (res) = NULL;
- STMT_VINFO_DR_INIT (res) = NULL;
- STMT_VINFO_DR_STEP (res) = NULL;
- STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
-
- if (gimple_code (stmt) == GIMPLE_PHI
- && is_loop_header_bb_p (gimple_bb (stmt)))
- STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
- else
- STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
- STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
- STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
- STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
- STMT_SLP_TYPE (res) = 0;
- DR_GROUP_FIRST_DR (res) = NULL;
- DR_GROUP_NEXT_DR (res) = NULL;
- DR_GROUP_SIZE (res) = 0;
- DR_GROUP_STORE_COUNT (res) = 0;
- DR_GROUP_GAP (res) = 0;
- DR_GROUP_SAME_DR_STMT (res) = NULL;
- DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;
-
- return res;
-}
-
-/* Create a hash table for stmt_vec_info. */
-
-void
-init_stmt_vec_info_vec (void)
-{
- gcc_assert (!stmt_vec_info_vec);
- stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
-}
-
-/* Free hash table for stmt_vec_info. */
-
-void
-free_stmt_vec_info_vec (void)
-{
- gcc_assert (stmt_vec_info_vec);
- VEC_free (vec_void_p, heap, stmt_vec_info_vec);
-}
-
-/* Free stmt vectorization related info. */
-
-void
-free_stmt_vec_info (gimple stmt)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-
- if (!stmt_info)
- return;
-
- VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
- set_vinfo_for_stmt (stmt, NULL);
- free (stmt_info);
-}
-
-
-/* Function bb_in_loop_p
-
- Used as predicate for dfs order traversal of the loop bbs. */
-
-static bool
-bb_in_loop_p (const_basic_block bb, const void *data)
-{
- const struct loop *const loop = (const struct loop *)data;
- if (flow_bb_inside_loop_p (loop, bb))
- return true;
- return false;
-}
-
-
-/* Function new_loop_vec_info.
-
- Create and initialize a new loop_vec_info struct for LOOP, as well as
- stmt_vec_info structs for all the stmts in LOOP. */
-
-loop_vec_info
-new_loop_vec_info (struct loop *loop)
-{
- loop_vec_info res;
- basic_block *bbs;
- gimple_stmt_iterator si;
- unsigned int i, nbbs;
-
- res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
- LOOP_VINFO_LOOP (res) = loop;
-
- bbs = get_loop_body (loop);
-
- /* Create/Update stmt_info for all stmts in the loop. */
- for (i = 0; i < loop->num_nodes; i++)
- {
- basic_block bb = bbs[i];
-
- /* BBs in a nested inner-loop will have been already processed (because
- we will have called vect_analyze_loop_form for any nested inner-loop).
- Therefore, for stmts in an inner-loop we just want to update the
- STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
- loop_info of the outer-loop we are currently considering to vectorize
- (instead of the loop_info of the inner-loop).
- For stmts in other BBs we need to create a stmt_info from scratch. */
- if (bb->loop_father != loop)
- {
- /* Inner-loop bb. */
- gcc_assert (loop->inner && bb->loop_father == loop->inner);
- for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple phi = gsi_stmt (si);
- stmt_vec_info stmt_info = vinfo_for_stmt (phi);
- loop_vec_info inner_loop_vinfo =
- STMT_VINFO_LOOP_VINFO (stmt_info);
- gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
- STMT_VINFO_LOOP_VINFO (stmt_info) = res;
- }
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info inner_loop_vinfo =
- STMT_VINFO_LOOP_VINFO (stmt_info);
- gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
- STMT_VINFO_LOOP_VINFO (stmt_info) = res;
- }
- }
- else
- {
- /* bb in current nest. */
- for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple phi = gsi_stmt (si);
- gimple_set_uid (phi, 0);
- set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
- }
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- gimple_set_uid (stmt, 0);
- set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
- }
- }
- }
-
- /* CHECKME: We want to visit all BBs before their successors (except for
- latch blocks, for which this assertion wouldn't hold). In the simple
- case of the loop forms we allow, a dfs order of the BBs would the same
- as reversed postorder traversal, so we are safe. */
-
- free (bbs);
- bbs = XCNEWVEC (basic_block, loop->num_nodes);
- nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
- bbs, loop->num_nodes, loop);
- gcc_assert (nbbs == loop->num_nodes);
-
- LOOP_VINFO_BBS (res) = bbs;
- LOOP_VINFO_NITERS (res) = NULL;
- LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
- LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
- LOOP_VINFO_VECTORIZABLE_P (res) = 0;
- LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
- LOOP_VINFO_VECT_FACTOR (res) = 0;
- LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
- LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
- LOOP_VINFO_UNALIGNED_DR (res) = NULL;
- LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
- VEC_alloc (gimple, heap,
- PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
- LOOP_VINFO_MAY_ALIAS_DDRS (res) =
- VEC_alloc (ddr_p, heap,
- PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
- LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
- LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
- LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
-
- return res;
-}
-
-
-/* Function destroy_loop_vec_info.
-
- Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
- stmts in the loop. */
-
-void
-destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
-{
- struct loop *loop;
- basic_block *bbs;
- int nbbs;
- gimple_stmt_iterator si;
- int j;
- VEC (slp_instance, heap) *slp_instances;
- slp_instance instance;
-
- if (!loop_vinfo)
- return;
-
- loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- bbs = LOOP_VINFO_BBS (loop_vinfo);
- nbbs = loop->num_nodes;
-
- if (!clean_stmts)
- {
- free (LOOP_VINFO_BBS (loop_vinfo));
- free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
- free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
- VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
-
- free (loop_vinfo);
- loop->aux = NULL;
- return;
- }
-
- for (j = 0; j < nbbs; j++)
- {
- basic_block bb = bbs[j];
-
- for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
- free_stmt_vec_info (gsi_stmt (si));
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); )
- {
- gimple stmt = gsi_stmt (si);
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-
- if (stmt_info)
- {
- /* Check if this is a "pattern stmt" (introduced by the
- vectorizer during the pattern recognition pass). */
- bool remove_stmt_p = false;
- gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
- if (orig_stmt)
- {
- stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
- if (orig_stmt_info
- && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
- remove_stmt_p = true;
- }
-
- /* Free stmt_vec_info. */
- free_stmt_vec_info (stmt);
-
- /* Remove dead "pattern stmts". */
- if (remove_stmt_p)
- gsi_remove (&si, true);
- }
- gsi_next (&si);
- }
- }
-
- free (LOOP_VINFO_BBS (loop_vinfo));
- free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
- free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
- VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
- VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
- slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
- for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++)
- vect_free_slp_instance (instance);
-
- VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
- VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
-
- free (loop_vinfo);
- loop->aux = NULL;
-}
-
-
-/* Function vect_force_dr_alignment_p.
-
- Returns whether the alignment of a DECL can be forced to be aligned
- on ALIGNMENT bit boundary. */
-
-bool
-vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
-{
- if (TREE_CODE (decl) != VAR_DECL)
- return false;
-
- if (DECL_EXTERNAL (decl))
- return false;
-
- if (TREE_ASM_WRITTEN (decl))
- return false;
-
- if (TREE_STATIC (decl))
- return (alignment <= MAX_OFILE_ALIGNMENT);
- else
- return (alignment <= MAX_STACK_ALIGNMENT);
-}
-
-
-/* Function get_vectype_for_scalar_type.
-
- Returns the vector type corresponding to SCALAR_TYPE as supported
- by the target. */
-
-tree
-get_vectype_for_scalar_type (tree scalar_type)
-{
- enum machine_mode inner_mode = TYPE_MODE (scalar_type);
- int nbytes = GET_MODE_SIZE (inner_mode);
- int nunits;
- tree vectype;
-
- if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD (inner_mode))
- return NULL_TREE;
-
- /* FORNOW: Only a single vector size per mode (UNITS_PER_SIMD_WORD)
- is expected. */
- nunits = UNITS_PER_SIMD_WORD (inner_mode) / nbytes;
-
- vectype = build_vector_type (scalar_type, nunits);
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "get vectype with %d units of type ", nunits);
- print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
- }
-
- if (!vectype)
- return NULL_TREE;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "vectype: ");
- print_generic_expr (vect_dump, vectype, TDF_SLIM);
- }
-
- if (!VECTOR_MODE_P (TYPE_MODE (vectype))
- && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "mode not supported by target.");
- return NULL_TREE;
- }
-
- return vectype;
-}
-
-
-/* Function vect_supportable_dr_alignment
-
- Return whether the data reference DR is supported with respect to its
- alignment. */
-
-enum dr_alignment_support
-vect_supportable_dr_alignment (struct data_reference *dr)
-{
- gimple stmt = DR_STMT (dr);
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- enum machine_mode mode = (int) TYPE_MODE (vectype);
- struct loop *vect_loop = LOOP_VINFO_LOOP (STMT_VINFO_LOOP_VINFO (stmt_info));
- bool nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
- bool invariant_in_outerloop = false;
-
- if (aligned_access_p (dr))
- return dr_aligned;
-
- if (nested_in_vect_loop)
- {
- tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
- invariant_in_outerloop =
- (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
- }
-
- /* Possibly unaligned access. */
-
- /* We can choose between using the implicit realignment scheme (generating
- a misaligned_move stmt) and the explicit realignment scheme (generating
- aligned loads with a REALIGN_LOAD). There are two variants to the explicit
- realignment scheme: optimized, and unoptimized.
- We can optimize the realignment only if the step between consecutive
- vector loads is equal to the vector size. Since the vector memory
- accesses advance in steps of VS (Vector Size) in the vectorized loop, it
- is guaranteed that the misalignment amount remains the same throughout the
- execution of the vectorized loop. Therefore, we can create the
- "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
- at the loop preheader.
-
- However, in the case of outer-loop vectorization, when vectorizing a
- memory access in the inner-loop nested within the LOOP that is now being
- vectorized, while it is guaranteed that the misalignment of the
- vectorized memory access will remain the same in different outer-loop
- iterations, it is *not* guaranteed that is will remain the same throughout
- the execution of the inner-loop. This is because the inner-loop advances
- with the original scalar step (and not in steps of VS). If the inner-loop
- step happens to be a multiple of VS, then the misalignment remains fixed
- and we can use the optimized realignment scheme. For example:
-
- for (i=0; i<N; i++)
- for (j=0; j<M; j++)
- s += a[i+j];
-
- When vectorizing the i-loop in the above example, the step between
- consecutive vector loads is 1, and so the misalignment does not remain
- fixed across the execution of the inner-loop, and the realignment cannot
- be optimized (as illustrated in the following pseudo vectorized loop):
-
- for (i=0; i<N; i+=4)
- for (j=0; j<M; j++){
- vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
- // when j is {0,1,2,3,4,5,6,7,...} respectively.
- // (assuming that we start from an aligned address).
- }
-
- We therefore have to use the unoptimized realignment scheme:
-
- for (i=0; i<N; i+=4)
- for (j=k; j<M; j+=4)
- vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
- // that the misalignment of the initial address is
- // 0).
-
- The loop can then be vectorized as follows:
-
- for (k=0; k<4; k++){
- rt = get_realignment_token (&vp[k]);
- for (i=0; i<N; i+=4){
- v1 = vp[i+k];
- for (j=k; j<M; j+=4){
- v2 = vp[i+j+VS-1];
- va = REALIGN_LOAD <v1,v2,rt>;
- vs += va;
- v1 = v2;
- }
- }
- } */
-
- if (DR_IS_READ (dr))
- {
- if (optab_handler (vec_realign_load_optab, mode)->insn_code !=
- CODE_FOR_nothing
- && (!targetm.vectorize.builtin_mask_for_load
- || targetm.vectorize.builtin_mask_for_load ()))
- {
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- if (nested_in_vect_loop
- && (TREE_INT_CST_LOW (DR_STEP (dr))
- != GET_MODE_SIZE (TYPE_MODE (vectype))))
- return dr_explicit_realign;
- else
- return dr_explicit_realign_optimized;
- }
-
- if (optab_handler (movmisalign_optab, mode)->insn_code !=
- CODE_FOR_nothing)
- /* Can't software pipeline the loads, but can at least do them. */
- return dr_unaligned_supported;
- }
-
- /* Unsupported. */
- return dr_unaligned_unsupported;
-}
-
-
-/* Function vect_is_simple_use.
-
- Input:
- LOOP - the loop that is being vectorized.
- OPERAND - operand of a stmt in LOOP.
- DEF - the defining stmt in case OPERAND is an SSA_NAME.
-
- Returns whether a stmt with OPERAND can be vectorized.
- Supportable operands are constants, loop invariants, and operands that are
- defined by the current iteration of the loop. Unsupportable operands are
- those that are defined by a previous iteration of the loop (as is the case
- in reduction/induction computations). */
-
-bool
-vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, gimple *def_stmt,
- tree *def, enum vect_def_type *dt)
-{
- basic_block bb;
- stmt_vec_info stmt_vinfo;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- *def_stmt = NULL;
- *def = NULL_TREE;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "vect_is_simple_use: operand ");
- print_generic_expr (vect_dump, operand, TDF_SLIM);
- }
-
- if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
- {
- *dt = vect_constant_def;
- return true;
- }
- if (is_gimple_min_invariant (operand))
- {
- *def = operand;
- *dt = vect_invariant_def;
- return true;
- }
-
- if (TREE_CODE (operand) == PAREN_EXPR)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "non-associatable copy.");
- operand = TREE_OPERAND (operand, 0);
- }
- if (TREE_CODE (operand) != SSA_NAME)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "not ssa-name.");
- return false;
- }
-
- *def_stmt = SSA_NAME_DEF_STMT (operand);
- if (*def_stmt == NULL)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no def_stmt.");
- return false;
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "def_stmt: ");
- print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
- }
-
- /* empty stmt is expected only in case of a function argument.
- (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
- if (gimple_nop_p (*def_stmt))
- {
- *def = operand;
- *dt = vect_invariant_def;
- return true;
- }
-
- bb = gimple_bb (*def_stmt);
- if (!flow_bb_inside_loop_p (loop, bb))
- *dt = vect_invariant_def;
- else
- {
- stmt_vinfo = vinfo_for_stmt (*def_stmt);
- *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
- }
-
- if (*dt == vect_unknown_def_type)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Unsupported pattern.");
- return false;
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "type of def: %d.",*dt);
-
- switch (gimple_code (*def_stmt))
- {
- case GIMPLE_PHI:
- *def = gimple_phi_result (*def_stmt);
- break;
-
- case GIMPLE_ASSIGN:
- *def = gimple_assign_lhs (*def_stmt);
- break;
-
- case GIMPLE_CALL:
- *def = gimple_call_lhs (*def_stmt);
- if (*def != NULL)
- break;
- /* FALLTHRU */
- default:
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "unsupported defining stmt: ");
- return false;
- }
-
- return true;
-}
-
-
-/* Function supportable_widening_operation
-
- Check whether an operation represented by the code CODE is a
- widening operation that is supported by the target platform in
- vector form (i.e., when operating on arguments of type VECTYPE).
-
- Widening operations we currently support are NOP (CONVERT), FLOAT
- and WIDEN_MULT. This function checks if these operations are supported
- by the target platform either directly (via vector tree-codes), or via
- target builtins.
-
- Output:
- - CODE1 and CODE2 are codes of vector operations to be used when
- vectorizing the operation, if available.
- - DECL1 and DECL2 are decls of target builtin functions to be used
- when vectorizing the operation, if available. In this case,
- CODE1 and CODE2 are CALL_EXPR.
- - MULTI_STEP_CVT determines the number of required intermediate steps in
- case of multi-step conversion (like char->short->int - in that case
- MULTI_STEP_CVT will be 1).
- - INTERM_TYPES contains the intermediate type required to perform the
- widening operation (short in the above example). */
-
-bool
-supportable_widening_operation (enum tree_code code, gimple stmt, tree vectype,
- tree *decl1, tree *decl2,
- enum tree_code *code1, enum tree_code *code2,
- int *multi_step_cvt,
- VEC (tree, heap) **interm_types)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
- bool ordered_p;
- enum machine_mode vec_mode;
- enum insn_code icode1 = 0, icode2 = 0;
- optab optab1, optab2;
- tree type = gimple_expr_type (stmt);
- tree wide_vectype = get_vectype_for_scalar_type (type);
- enum tree_code c1, c2;
-
- /* The result of a vectorized widening operation usually requires two vectors
- (because the widened results do not fit int one vector). The generated
- vector results would normally be expected to be generated in the same
- order as in the original scalar computation, i.e. if 8 results are
- generated in each vector iteration, they are to be organized as follows:
- vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
-
- However, in the special case that the result of the widening operation is
- used in a reduction computation only, the order doesn't matter (because
- when vectorizing a reduction we change the order of the computation).
- Some targets can take advantage of this and generate more efficient code.
- For example, targets like Altivec, that support widen_mult using a sequence
- of {mult_even,mult_odd} generate the following vectors:
- vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
-
- When vectorizing outer-loops, we execute the inner-loop sequentially
- (each vectorized inner-loop iteration contributes to VF outer-loop
- iterations in parallel). We therefore don't allow to change the order
- of the computation in the inner-loop during outer-loop vectorization. */
-
- if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
- && !nested_in_vect_loop_p (vect_loop, stmt))
- ordered_p = false;
- else
- ordered_p = true;
-
- if (!ordered_p
- && code == WIDEN_MULT_EXPR
- && targetm.vectorize.builtin_mul_widen_even
- && targetm.vectorize.builtin_mul_widen_even (vectype)
- && targetm.vectorize.builtin_mul_widen_odd
- && targetm.vectorize.builtin_mul_widen_odd (vectype))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Unordered widening operation detected.");
-
- *code1 = *code2 = CALL_EXPR;
- *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
- *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
- return true;
- }
-
- switch (code)
- {
- case WIDEN_MULT_EXPR:
- if (BYTES_BIG_ENDIAN)
- {
- c1 = VEC_WIDEN_MULT_HI_EXPR;
- c2 = VEC_WIDEN_MULT_LO_EXPR;
- }
- else
- {
- c2 = VEC_WIDEN_MULT_HI_EXPR;
- c1 = VEC_WIDEN_MULT_LO_EXPR;
- }
- break;
-
- CASE_CONVERT:
- if (BYTES_BIG_ENDIAN)
- {
- c1 = VEC_UNPACK_HI_EXPR;
- c2 = VEC_UNPACK_LO_EXPR;
- }
- else
- {
- c2 = VEC_UNPACK_HI_EXPR;
- c1 = VEC_UNPACK_LO_EXPR;
- }
- break;
-
- case FLOAT_EXPR:
- if (BYTES_BIG_ENDIAN)
- {
- c1 = VEC_UNPACK_FLOAT_HI_EXPR;
- c2 = VEC_UNPACK_FLOAT_LO_EXPR;
- }
- else
- {
- c2 = VEC_UNPACK_FLOAT_HI_EXPR;
- c1 = VEC_UNPACK_FLOAT_LO_EXPR;
- }
- break;
-
- case FIX_TRUNC_EXPR:
- /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
- VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
- computing the operation. */
- return false;
-
- default:
- gcc_unreachable ();
- }
-
- if (code == FIX_TRUNC_EXPR)
- {
- /* The signedness is determined from output operand. */
- optab1 = optab_for_tree_code (c1, type, optab_default);
- optab2 = optab_for_tree_code (c2, type, optab_default);
- }
- else
- {
- optab1 = optab_for_tree_code (c1, vectype, optab_default);
- optab2 = optab_for_tree_code (c2, vectype, optab_default);
- }
-
- if (!optab1 || !optab2)
- return false;
-
- vec_mode = TYPE_MODE (vectype);
- if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
- || (icode2 = optab_handler (optab2, vec_mode)->insn_code)
- == CODE_FOR_nothing)
- return false;
-
- /* Check if it's a multi-step conversion that can be done using intermediate
- types. */
- if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
- || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
- {
- int i;
- tree prev_type = vectype, intermediate_type;
- enum machine_mode intermediate_mode, prev_mode = vec_mode;
- optab optab3, optab4;
-
- if (!CONVERT_EXPR_CODE_P (code))
- return false;
-
- *code1 = c1;
- *code2 = c2;
-
- /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
- intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
- to get to NARROW_VECTYPE, and fail if we do not. */
- *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
- for (i = 0; i < 3; i++)
- {
- intermediate_mode = insn_data[icode1].operand[0].mode;
- intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
- TYPE_UNSIGNED (prev_type));
- optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
- optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
-
- if (!optab3 || !optab4
- || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
- == CODE_FOR_nothing
- || insn_data[icode1].operand[0].mode != intermediate_mode
- || (icode2 = optab2->handlers[(int) prev_mode].insn_code)
- == CODE_FOR_nothing
- || insn_data[icode2].operand[0].mode != intermediate_mode
- || (icode1 = optab3->handlers[(int) intermediate_mode].insn_code)
- == CODE_FOR_nothing
- || (icode2 = optab4->handlers[(int) intermediate_mode].insn_code)
- == CODE_FOR_nothing)
- return false;
-
- VEC_quick_push (tree, *interm_types, intermediate_type);
- (*multi_step_cvt)++;
-
- if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
- && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
- return true;
-
- prev_type = intermediate_type;
- prev_mode = intermediate_mode;
- }
-
- return false;
- }
-
- *code1 = c1;
- *code2 = c2;
- return true;
-}
-
-
-/* Function supportable_narrowing_operation
-
- Check whether an operation represented by the code CODE is a
- narrowing operation that is supported by the target platform in
- vector form (i.e., when operating on arguments of type VECTYPE).
-
- Narrowing operations we currently support are NOP (CONVERT) and
- FIX_TRUNC. This function checks if these operations are supported by
- the target platform directly via vector tree-codes.
-
- Output:
- - CODE1 is the code of a vector operation to be used when
- vectorizing the operation, if available.
- - MULTI_STEP_CVT determines the number of required intermediate steps in
- case of multi-step conversion (like int->short->char - in that case
- MULTI_STEP_CVT will be 1).
- - INTERM_TYPES contains the intermediate type required to perform the
- narrowing operation (short in the above example). */
-
-bool
-supportable_narrowing_operation (enum tree_code code,
- const_gimple stmt, tree vectype,
- enum tree_code *code1, int *multi_step_cvt,
- VEC (tree, heap) **interm_types)
-{
- enum machine_mode vec_mode;
- enum insn_code icode1;
- optab optab1, interm_optab;
- tree type = gimple_expr_type (stmt);
- tree narrow_vectype = get_vectype_for_scalar_type (type);
- enum tree_code c1;
- tree intermediate_type, prev_type;
- int i;
-
- switch (code)
- {
- CASE_CONVERT:
- c1 = VEC_PACK_TRUNC_EXPR;
- break;
-
- case FIX_TRUNC_EXPR:
- c1 = VEC_PACK_FIX_TRUNC_EXPR;
- break;
-
- case FLOAT_EXPR:
- /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
- tree code and optabs used for computing the operation. */
- return false;
-
- default:
- gcc_unreachable ();
- }
-
- if (code == FIX_TRUNC_EXPR)
- /* The signedness is determined from output operand. */
- optab1 = optab_for_tree_code (c1, type, optab_default);
- else
- optab1 = optab_for_tree_code (c1, vectype, optab_default);
-
- if (!optab1)
- return false;
-
- vec_mode = TYPE_MODE (vectype);
- if ((icode1 = optab_handler (optab1, vec_mode)->insn_code)
- == CODE_FOR_nothing)
- return false;
-
- /* Check if it's a multi-step conversion that can be done using intermediate
- types. */
- if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
- {
- enum machine_mode intermediate_mode, prev_mode = vec_mode;
-
- *code1 = c1;
- prev_type = vectype;
- /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
- intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
- to get to NARROW_VECTYPE, and fail if we do not. */
- *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
- for (i = 0; i < 3; i++)
- {
- intermediate_mode = insn_data[icode1].operand[0].mode;
- intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
- TYPE_UNSIGNED (prev_type));
- interm_optab = optab_for_tree_code (c1, intermediate_type,
- optab_default);
- if (!interm_optab
- || (icode1 = optab1->handlers[(int) prev_mode].insn_code)
- == CODE_FOR_nothing
- || insn_data[icode1].operand[0].mode != intermediate_mode
- || (icode1
- = interm_optab->handlers[(int) intermediate_mode].insn_code)
- == CODE_FOR_nothing)
- return false;
-
- VEC_quick_push (tree, *interm_types, intermediate_type);
- (*multi_step_cvt)++;
-
- if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
- return true;
-
- prev_type = intermediate_type;
- prev_mode = intermediate_mode;
- }
-
- return false;
- }
-
- *code1 = c1;
- return true;
-}
-
-
-/* Function reduction_code_for_scalar_code
-
- Input:
- CODE - tree_code of a reduction operations.
-
- Output:
- REDUC_CODE - the corresponding tree-code to be used to reduce the
- vector of partial results into a single scalar result (which
- will also reside in a vector).
-
- Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */
-
-bool
-reduction_code_for_scalar_code (enum tree_code code,
- enum tree_code *reduc_code)
-{
- switch (code)
- {
- case MAX_EXPR:
- *reduc_code = REDUC_MAX_EXPR;
- return true;
-
- case MIN_EXPR:
- *reduc_code = REDUC_MIN_EXPR;
- return true;
-
- case PLUS_EXPR:
- *reduc_code = REDUC_PLUS_EXPR;
- return true;
-
- default:
- return false;
- }
-}
-
-/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
- STMT is printed with a message MSG. */
-
-static void
-report_vect_op (gimple stmt, const char *msg)
-{
- fprintf (vect_dump, "%s", msg);
- print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
-}
-
-/* Function vect_is_simple_reduction
-
- Detect a cross-iteration def-use cycle that represents a simple
- reduction computation. We look for the following pattern:
-
- loop_header:
- a1 = phi < a0, a2 >
- a3 = ...
- a2 = operation (a3, a1)
-
- such that:
- 1. operation is commutative and associative and it is safe to
- change the order of the computation.
- 2. no uses for a2 in the loop (a2 is used out of the loop)
- 3. no uses of a1 in the loop besides the reduction operation.
-
- Condition 1 is tested here.
- Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */
-
-gimple
-vect_is_simple_reduction (loop_vec_info loop_info, gimple phi)
-{
- struct loop *loop = (gimple_bb (phi))->loop_father;
- struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
- edge latch_e = loop_latch_edge (loop);
- tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
- gimple def_stmt, def1, def2;
- enum tree_code code;
- tree op1, op2;
- tree type;
- int nloop_uses;
- tree name;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
-
- gcc_assert (loop == vect_loop || flow_loop_nested_p (vect_loop, loop));
-
- name = PHI_RESULT (phi);
- nloop_uses = 0;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
- {
- gimple use_stmt = USE_STMT (use_p);
- if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
- && vinfo_for_stmt (use_stmt)
- && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
- nloop_uses++;
- if (nloop_uses > 1)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "reduction used in loop.");
- return NULL;
- }
- }
-
- if (TREE_CODE (loop_arg) != SSA_NAME)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "reduction: not ssa_name: ");
- print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
- }
- return NULL;
- }
-
- def_stmt = SSA_NAME_DEF_STMT (loop_arg);
- if (!def_stmt)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "reduction: no def_stmt.");
- return NULL;
- }
-
- if (!is_gimple_assign (def_stmt))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
- return NULL;
- }
-
- name = gimple_assign_lhs (def_stmt);
- nloop_uses = 0;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
- {
- gimple use_stmt = USE_STMT (use_p);
- if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
- && vinfo_for_stmt (use_stmt)
- && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
- nloop_uses++;
- if (nloop_uses > 1)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "reduction used in loop.");
- return NULL;
- }
- }
-
- code = gimple_assign_rhs_code (def_stmt);
-
- if (!commutative_tree_code (code) || !associative_tree_code (code))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt, "reduction: not commutative/associative: ");
- return NULL;
- }
-
- if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt, "reduction: not binary operation: ");
- return NULL;
- }
-
- op1 = gimple_assign_rhs1 (def_stmt);
- op2 = gimple_assign_rhs2 (def_stmt);
- if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
- return NULL;
- }
-
- /* Check that it's ok to change the order of the computation. */
- type = TREE_TYPE (gimple_assign_lhs (def_stmt));
- if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
- || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "reduction: multiple types: operation type: ");
- print_generic_expr (vect_dump, type, TDF_SLIM);
- fprintf (vect_dump, ", operands types: ");
- print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
- fprintf (vect_dump, ",");
- print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
- }
- return NULL;
- }
-
- /* Generally, when vectorizing a reduction we change the order of the
- computation. This may change the behavior of the program in some
- cases, so we need to check that this is ok. One exception is when
- vectorizing an outer-loop: the inner-loop is executed sequentially,
- and therefore vectorizing reductions in the inner-loop during
- outer-loop vectorization is safe. */
-
- /* CHECKME: check for !flag_finite_math_only too? */
- if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
- && !nested_in_vect_loop_p (vect_loop, def_stmt))
- {
- /* Changing the order of operations changes the semantics. */
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
- return NULL;
- }
- else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
- && !nested_in_vect_loop_p (vect_loop, def_stmt))
- {
- /* Changing the order of operations changes the semantics. */
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
- return NULL;
- }
- else if (SAT_FIXED_POINT_TYPE_P (type))
- {
- /* Changing the order of operations changes the semantics. */
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt,
- "reduction: unsafe fixed-point math optimization: ");
- return NULL;
- }
-
- /* reduction is safe. we're dealing with one of the following:
- 1) integer arithmetic and no trapv
- 2) floating point arithmetic, and special flags permit this optimization.
- */
- def1 = SSA_NAME_DEF_STMT (op1);
- def2 = SSA_NAME_DEF_STMT (op2);
- if (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt, "reduction: no defs for operands: ");
- return NULL;
- }
-
-
- /* Check that one def is the reduction def, defined by PHI,
- the other def is either defined in the loop ("vect_loop_def"),
- or it's an induction (defined by a loop-header phi-node). */
-
- if (def2 == phi
- && flow_bb_inside_loop_p (loop, gimple_bb (def1))
- && (is_gimple_assign (def1)
- || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_induction_def
- || (gimple_code (def1) == GIMPLE_PHI
- && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_loop_def
- && !is_loop_header_bb_p (gimple_bb (def1)))))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt, "detected reduction:");
- return def_stmt;
- }
- else if (def1 == phi
- && flow_bb_inside_loop_p (loop, gimple_bb (def2))
- && (is_gimple_assign (def2)
- || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_induction_def
- || (gimple_code (def2) == GIMPLE_PHI
- && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_loop_def
- && !is_loop_header_bb_p (gimple_bb (def2)))))
- {
- /* Swap operands (just for simplicity - so that the rest of the code
- can assume that the reduction variable is always the last (second)
- argument). */
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt ,
- "detected reduction: need to swap operands:");
- swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
- gimple_assign_rhs2_ptr (def_stmt));
- return def_stmt;
- }
- else
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- report_vect_op (def_stmt, "reduction: unknown pattern.");
- return NULL;
- }
-}
-
-
-/* Function vect_is_simple_iv_evolution.
-
- FORNOW: A simple evolution of an induction variables in the loop is
- considered a polynomial evolution with constant step. */
-
-bool
-vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
- tree * step)
-{
- tree init_expr;
- tree step_expr;
- tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
-
- /* When there is no evolution in this loop, the evolution function
- is not "simple". */
- if (evolution_part == NULL_TREE)
- return false;
-
- /* When the evolution is a polynomial of degree >= 2
- the evolution function is not "simple". */
- if (tree_is_chrec (evolution_part))
- return false;
-
- step_expr = evolution_part;
- init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "step: ");
- print_generic_expr (vect_dump, step_expr, TDF_SLIM);
- fprintf (vect_dump, ", init: ");
- print_generic_expr (vect_dump, init_expr, TDF_SLIM);
- }
-
- *init = init_expr;
- *step = step_expr;
-
- if (TREE_CODE (step_expr) != INTEGER_CST)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "step unknown.");
- return false;
- }
-
- return true;
-}
-
-
/* Function vectorize_loops.
Entry Point to loop vectorization phase. */
@@ -2849,6 +242,7 @@ vectorize_loops (void)
return num_vectorized_loops > 0 ? TODO_cleanup_cfg : 0;
}
+
/* Increase alignment of global arrays to improve vectorization potential.
TODO:
@@ -2871,49 +265,53 @@ increase_alignment (void)
unsigned int alignment;
if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
- continue;
+ continue;
vectype = get_vectype_for_scalar_type (TREE_TYPE (TREE_TYPE (decl)));
if (!vectype)
- continue;
+ continue;
alignment = TYPE_ALIGN (vectype);
if (DECL_ALIGN (decl) >= alignment)
- continue;
+ continue;
if (vect_can_force_dr_alignment_p (decl, alignment))
- {
- DECL_ALIGN (decl) = TYPE_ALIGN (vectype);
- DECL_USER_ALIGN (decl) = 1;
- if (dump_file)
- {
- fprintf (dump_file, "Increasing alignment of decl: ");
- print_generic_expr (dump_file, decl, TDF_SLIM);
- }
- }
+ {
+ DECL_ALIGN (decl) = TYPE_ALIGN (vectype);
+ DECL_USER_ALIGN (decl) = 1;
+ if (dump_file)
+ {
+ fprintf (dump_file, "Increasing alignment of decl: ");
+ print_generic_expr (dump_file, decl, TDF_SLIM);
+ }
+ }
}
return 0;
}
+
static bool
gate_increase_alignment (void)
{
return flag_section_anchors && flag_tree_vectorize;
}
-struct simple_ipa_opt_pass pass_ipa_increase_alignment =
+
+struct simple_ipa_opt_pass pass_ipa_increase_alignment =
{
{
SIMPLE_IPA_PASS,
- "increase_alignment", /* name */
- gate_increase_alignment, /* gate */
- increase_alignment, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- 0, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- 0 /* todo_flags_finish */
+ "increase_alignment", /* name */
+ gate_increase_alignment, /* gate */
+ increase_alignment, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ 0, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0 /* todo_flags_finish */
}
};
+
+