summaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-phiopt.c
diff options
context:
space:
mode:
authorrguenth <rguenth@138bc75d-0d04-0410-961f-82ee72b054a4>2010-07-01 08:49:19 +0000
committerrguenth <rguenth@138bc75d-0d04-0410-961f-82ee72b054a4>2010-07-01 08:49:19 +0000
commit182cf5a9a415f31df0f9a10e46faed1221484a35 (patch)
tree4cc8d9c35ed3127dbf885a1f08a83776819bed41 /gcc/tree-ssa-phiopt.c
parentc681e76ffbc527d325e07622ddf4a905aba5324d (diff)
downloadgcc-182cf5a9a415f31df0f9a10e46faed1221484a35.tar.gz
2010-07-01 Richard Guenther <rguenther@suse.de>
PR middle-end/42834 PR middle-end/44468 * doc/gimple.texi (is_gimple_mem_ref_addr): Document. * doc/generic.texi (References to storage): Document MEM_REF. * tree-pretty-print.c (dump_generic_node): Handle MEM_REF. (print_call_name): Likewise. * tree.c (recompute_tree_invariant_for_addr_expr): Handle MEM_REF. (build_simple_mem_ref_loc): New function. (mem_ref_offset): Likewise. * tree.h (build_simple_mem_ref_loc): Declare. (build_simple_mem_ref): Define. (mem_ref_offset): Declare. * fold-const.c: Include tree-flow.h. (operand_equal_p): Handle MEM_REF. (build_fold_addr_expr_with_type_loc): Likewise. (fold_comparison): Likewise. (fold_unary_loc): Fold VIEW_CONVERT_EXPR <T1, MEM_REF <T2, ...>> to MEM_REF <T1, ...>. (fold_binary_loc): Fold MEM[&MEM[p, CST1], CST2] to MEM[p, CST1 + CST2], fold MEM[&a.b, CST2] to MEM[&a, offsetof (a, b) + CST2]. * tree-ssa-alias.c (ptr_deref_may_alias_decl_p): Handle MEM_REF. (ptr_deref_may_alias_ref_p_1): Likewise. (ao_ref_base_alias_set): Properly differentiate base object for offset and TBAA. (ao_ref_init_from_ptr_and_size): Use MEM_REF. (indirect_ref_may_alias_decl_p): Handle MEM_REFs properly. (indirect_refs_may_alias_p): Likewise. (refs_may_alias_p_1): Likewise. Remove pointer SSA name def chasing code. (ref_maybe_used_by_call_p_1): Handle MEM_REF. (call_may_clobber_ref_p_1): Likewise. * dwarf2out.c (loc_list_from_tree): Handle MEM_REF. * expr.c (expand_assignment): Handle MEM_REF. (store_expr): Handle MEM_REFs from STRING_CSTs. (store_field): If expanding a MEM_REF of a non-addressable decl use bitfield operations. (get_inner_reference): Handle MEM_REF. (expand_expr_addr_expr_1): Likewise. (expand_expr_real_1): Likewise. * tree-eh.c (tree_could_trap_p): Handle MEM_REF. * alias.c (ao_ref_from_mem): Handle MEM_REF. (get_alias_set): Likewise. Properly handle VIEW_CONVERT_EXPRs. * tree-data-ref.c (dr_analyze_innermost): Handle MEM_REF. (dr_analyze_indices): Likewise. (dr_analyze_alias): Likewise. (object_address_invariant_in_loop_p): Likewise. * gimplify.c (mark_addressable): Handle MEM_REF. (gimplify_cond_expr): Build MEM_REFs. (gimplify_modify_expr_to_memcpy): Likewise. (gimplify_init_ctor_preeval_1): Handle MEM_REF. (gimple_fold_indirect_ref): Adjust. (gimplify_expr): Handle MEM_REF. Gimplify INDIRECT_REF to MEM_REF. * tree.def (MEM_REF): New tree code. * tree-dfa.c: Include toplev.h. (get_ref_base_and_extent): Handle MEM_REF. (get_addr_base_and_unit_offset): New function. * emit-rtl.c (set_mem_attributes_minus_bitpos): Handle MEM_REF. * gimple-fold.c (may_propagate_address_into_dereference): Handle MEM_REF. (maybe_fold_offset_to_array_ref): Allow possibly out-of bounds accesses if the array has just one dimension. Remove always true parameter. Do not require type compatibility here. (maybe_fold_offset_to_component_ref): Remove. (maybe_fold_stmt_indirect): Remove. (maybe_fold_reference): Remove INDIRECT_REF handling. Fold back to non-MEM_REF. (maybe_fold_offset_to_address): Simplify. Deal with type mismatches here. (maybe_fold_reference): Likewise. (maybe_fold_stmt_addition): Likewise. Also handle &ARRAY + I in addition to &ARRAY[0] + I. (fold_gimple_assign): Handle ADDR_EXPR of MEM_REFs. (gimple_get_relevant_ref_binfo): Handle MEM_REF. * cfgexpand.c (expand_debug_expr): Handle MEM_REF. * tree-ssa.c (useless_type_conversion_p): Make most pointer conversions useless. (warn_uninitialized_var): Handle MEM_REF. (maybe_rewrite_mem_ref_base): New function. (execute_update_addresses_taken): Implement re-writing of MEM_REFs to SSA form. * tree-inline.c (remap_gimple_op_r): Handle MEM_REF, remove INDIRECT_REF handling. (copy_tree_body_r): Handle MEM_REF. * gimple.c (is_gimple_addressable): Adjust. (is_gimple_address): Likewise. (is_gimple_invariant_address): ADDR_EXPRs of MEM_REFs with invariant base are invariant. (is_gimple_min_lval): Adjust. (is_gimple_mem_ref_addr): New function. (get_base_address): Handle MEM_REF. (count_ptr_derefs): Likewise. (get_base_loadstore): Likewise. * gimple.h (is_gimple_mem_ref_addr): Declare. (gimple_call_fndecl): Handle invariant MEM_REF addresses. * tree-cfg.c (verify_address): New function, split out from ... (verify_expr): ... here. Use for verifying ADDR_EXPRs and the address operand of MEM_REFs. Verify MEM_REFs. Reject INDIRECT_REFs. (verify_types_in_gimple_min_lval): Handle MEM_REF. Disallow INDIRECT_REF. Allow conversions. (verify_types_in_gimple_reference): Verify VIEW_CONVERT_EXPR of a register does not change its size. (verify_types_in_gimple_reference): Verify MEM_REF. (verify_gimple_assign_single): Disallow INDIRECT_REF. Handle MEM_REF. * tree-ssa-operands.c (opf_non_addressable, opf_not_non_addressable): New. (mark_address_taken): Handle MEM_REF. (get_indirect_ref_operands): Pass through opf_not_non_addressable. (get_asm_expr_operands): Pass opf_not_non_addressable. (get_expr_operands): Handle opf_[not_]non_addressable. Handle MEM_REF. Remove INDIRECT_REF handling. * tree-vrp.c: (check_array_ref): Handle MEM_REF. (search_for_addr_array): Likewise. (check_array_bounds): Likewise. (vrp_stmt_computes_nonzero): Adjust for MEM_REF. * tree-ssa-loop-im.c (for_each_index): Handle MEM_REF. (ref_always_accessed_p): Likewise. (gen_lsm_tmp_name): Likewise. Handle ADDR_EXPR. * tree-complex.c (extract_component): Do not handle INDIRECT_REF. Handle MEM_REF. * cgraphbuild.c (mark_load): Properly check for NULL result from get_base_address. (mark_store): Likewise. * tree-ssa-loop-niter.c (array_at_struct_end_p): Handle MEM_REF. * tree-loop-distribution.c (generate_builtin): Exchange INDIRECT_REF handling for MEM_REF. * tree-scalar-evolution.c (follow_ssa_edge_expr): Handle &MEM[ptr + CST] similar to POINTER_PLUS_EXPR. * builtins.c (stabilize_va_list_loc): Use the function ABI valist type if we couldn't canonicalize the argument type. Always dereference with the canonical va-list type. (maybe_emit_free_warning): Handle MEM_REF. (fold_builtin_memory_op): Simplify and handle MEM_REFs in folding memmove to memcpy. * builtins.c (fold_builtin_memory_op): Use ref-all types for all memcpy foldings. * omp-low.c (build_receiver_ref): Adjust for MEM_REF. (build_outer_var_ref): Likewise. (scan_omp_1_op): Likewise. (lower_rec_input_clauses): Likewise. (lower_lastprivate_clauses): Likewise. (lower_reduction_clauses): Likewise. (lower_copyprivate_clauses): Likewise. (expand_omp_atomic_pipeline): Likewise. (expand_omp_atomic_mutex): Likewise. (create_task_copyfn): Likewise. * tree-ssa-sccvn.c (copy_reference_ops_from_ref): Handle MEM_REF. Remove old union trick. Initialize constant offsets. (ao_ref_init_from_vn_reference): Likewise. Do not handle INDIRECT_REF. Init base_alias_set properly. (vn_reference_lookup_3): Replace INDIRECT_REF handling with MEM_REF. (vn_reference_fold_indirect): Adjust for MEM_REFs. (valueize_refs): Fold MEM_REFs. Re-evaluate constant offset for ARRAY_REFs. (may_insert): Remove. (visit_reference_op_load): Do not test may_insert. (run_scc_vn): Remove parameter, do not fiddle with may_insert. * tree-ssa-sccvn.h (struct vn_reference_op_struct): Add a field to store the constant offset this op applies. (run_scc_vn): Adjust prototype. * cgraphunit.c (thunk_adjust): Adjust for MEM_REF. * tree-ssa-ccp.c (ccp_fold): Replace INDIRECT_REF folding with MEM_REF. Propagate &foo + CST as &MEM[&foo, CST]. Do not bother about volatile qualifiers on pointers. (fold_const_aggregate_ref): Handle MEM_REF, do not handle INDIRECT_REF. * tree-ssa-loop-ivopts.c * tree-ssa-loop-ivopts.c (determine_base_object): Adjust for MEM_REF. (strip_offset_1): Likewise. (find_interesting_uses_address): Replace INDIRECT_REF handling with MEM_REF handling. (get_computation_cost_at): Likewise. * ipa-pure-const.c (check_op): Handle MEM_REF. * tree-stdarg.c (check_all_va_list_escapes): Adjust for MEM_REF. * tree-ssa-sink.c (is_hidden_global_store): Handle MEM_REF and constants. * ipa-inline.c (likely_eliminated_by_inlining_p): Handle MEM_REF. * tree-parloops.c (take_address_of): Adjust for MEM_REF. (eliminate_local_variables_1): Likewise. (create_call_for_reduction_1): Likewise. (create_loads_for_reductions): Likewise. (create_loads_and_stores_for_name): Likewise. * matrix-reorg.c (may_flatten_matrices_1): Sanitize. (ssa_accessed_in_tree): Handle MEM_REF. (ssa_accessed_in_assign_rhs): Likewise. (update_type_size): Likewise. (analyze_accesses_for_call_stmt): Likewise. (analyze_accesses_for_assign_stmt): Likewise. (transform_access_sites): Likewise. (transform_allocation_sites): Likewise. * tree-affine.c (tree_to_aff_combination): Handle MEM_REF. * tree-vect-data-refs.c (vect_create_addr_base_for_vector_ref): Do not handle INDIRECT_REF. * tree-ssa-phiopt.c (add_or_mark_expr): Handle MEM_REF. (cond_store_replacement): Likewise. * tree-ssa-pre.c (create_component_ref_by_pieces_1): Handle MEM_REF, no not handle INDIRECT_REFs. (insert_into_preds_of_block): Properly initialize avail. (phi_translate_1): Fold MEM_REFs. Re-evaluate constant offset for ARRAY_REFs. Properly handle reference lookups that require a bit re-interpretation. (can_PRE_operation): Do not handle INDIRECT_REF. Handle MEM_REF. * tree-sra.c * tree-sra.c (build_access_from_expr_1): Handle MEM_REF. (build_ref_for_offset_1): Remove. (build_ref_for_offset): Build MEM_REFs. (gate_intra_sra): Disable for now. (sra_ipa_modify_expr): Handle MEM_REF. (ipa_early_sra_gate): Disable for now. * tree-sra.c (create_access): Swap INDIRECT_REF handling for MEM_REF handling. (disqualify_base_of_expr): Likewise. (ptr_parm_has_direct_uses): Swap INDIRECT_REF handling for MEM_REF handling. (sra_ipa_modify_expr): Remove INDIRECT_REF handling. Use mem_ref_offset. Remove bogus folding. (build_access_from_expr_1): Properly handle MEM_REF for non IPA-SRA. (make_fancy_name_1): Add support for MEM_REF. * tree-predcom.c (ref_at_iteration): Handle MEM_REFs. * tree-mudflap.c (mf_xform_derefs_1): Adjust for MEM_REF. * ipa-prop.c (compute_complex_assign_jump_func): Handle MEM_REF. (compute_complex_ancestor_jump_func): Likewise. (ipa_analyze_virtual_call_uses): Likewise. * tree-ssa-forwprop.c (forward_propagate_addr_expr_1): Replace INDIRECT_REF folding with more generalized MEM_REF folding. (tree_ssa_forward_propagate_single_use_vars): Adjust accordingly. (forward_propagate_addr_into_variable_array_index): Also handle &ARRAY + I in addition to &ARRAY[0] + I. * tree-ssa-dce.c (ref_may_be_aliased): Handle MEM_REF. * tree-ssa-ter.c (find_replaceable_in_bb): Avoid TER if that creates assignments with overlap. * tree-nested.c (get_static_chain): Adjust for MEM_REF. (get_frame_field): Likewise. (get_nonlocal_debug_decl): Likewise. (convert_nonlocal_reference_op): Likewise. (struct nesting_info): Add mem_refs pointer-set. (create_nesting_tree): Allocate it. (convert_local_reference_op): Insert to be folded mem-refs. (fold_mem_refs): New function. (finalize_nesting_tree_1): Perform defered folding of mem-refs (free_nesting_tree): Free the pointer-set. * tree-vect-stmts.c (vectorizable_store): Adjust for MEM_REF. (vectorizable_load): Likewise. * tree-ssa-phiprop.c (phiprop_insert_phi): Adjust for MEM_REF. (propagate_with_phi): Likewise. * tree-object-size.c (addr_object_size): Handle MEM_REFs instead of INDIRECT_REFs. (compute_object_offset): Handle MEM_REF. (plus_stmt_object_size): Handle MEM_REF. (collect_object_sizes_for): Dispatch to plus_stmt_object_size for &MEM_REF. * tree-flow.h (get_addr_base_and_unit_offset): Declare. (symbol_marked_for_renaming): Likewise. * Makefile.in (tree-dfa.o): Add $(TOPLEV_H). (fold-const.o): Add $(TREE_FLOW_H). * tree-ssa-structalias.c (get_constraint_for_1): Handle MEM_REF. (find_func_clobbers): Likewise. * ipa-struct-reorg.c (decompose_indirect_ref_acc): Handle MEM_REF. (decompose_access): Likewise. (replace_field_acc): Likewise. (replace_field_access_stmt): Likewise. (insert_new_var_in_stmt): Likewise. (get_stmt_accesses): Likewise. (reorg_structs_drive): Disable. * config/i386/i386.c (ix86_va_start): Adjust for MEM_REF. (ix86_canonical_va_list_type): Likewise. cp/ * cp-gimplify.c (cp_gimplify_expr): Open-code the rhs predicate we are looking for, allow non-gimplified INDIRECT_REFs. testsuite/ * gcc.c-torture/execute/20100316-1.c: New testcase. * gcc.c-torture/execute/pr44468.c: Likewise. * gcc.c-torture/compile/20100609-1.c: Likewise. * gcc.dg/volatile2.c: Adjust. * gcc.dg/plugin/selfassign.c: Likewise. * gcc.dg/pr36902.c: Likewise. * gcc.dg/tree-ssa/foldaddr-2.c: Remove. * gcc.dg/tree-ssa/foldaddr-3.c: Likewise. * gcc.dg/tree-ssa/forwprop-8.c: Adjust. * gcc.dg/tree-ssa/pr17141-1.c: Likewise. * gcc.dg/tree-ssa/ssa-fre-13.c: Likewise. * gcc.dg/tree-ssa/ssa-fre-14.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-21.c: Likewise. * gcc.dg/tree-ssa/pta-ptrarith-1.c: Likewise. * gcc.dg/tree-ssa/20030807-7.c: Likewise. * gcc.dg/tree-ssa/forwprop-10.c: Likewise. * gcc.dg/tree-ssa/ssa-fre-1.c: Likewise. * gcc.dg/tree-ssa/pta-ptrarith-2.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-23.c: Likewise. * gcc.dg/tree-ssa/forwprop-1.c: Likewise. * gcc.dg/tree-ssa/forwprop-2.c: Likewise. * gcc.dg/tree-ssa/struct-aliasing-1.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-25.c: Likewise. * gcc.dg/tree-ssa/ssa-pre-26.c: Likewise. * gcc.dg/tree-ssa/struct-aliasing-2.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-26.c: Likewise. * gcc.dg/tree-ssa/ssa-sccvn-4.c: Likewise. * gcc.dg/tree-ssa/ssa-pre-7.c: Likewise. * gcc.dg/tree-ssa/forwprop-5.c: Likewise. * gcc.dg/struct/w_prof_two_strs.c: XFAIL. * gcc.dg/struct/wo_prof_escape_arg_to_local.c: Likewise. * gcc.dg/struct/wo_prof_global_var.c: Likewise. * gcc.dg/struct/wo_prof_malloc_size_var.c: Likewise. * gcc.dg/struct/w_prof_local_array.c: Likewise. * gcc.dg/struct/w_prof_single_str_global.c: Likewise. * gcc.dg/struct/wo_prof_escape_str_init.c: Likewise. * gcc.dg/struct/wo_prof_array_through_pointer.c: Likewise. * gcc.dg/struct/w_prof_global_array.c: Likewise. * gcc.dg/struct/wo_prof_array_field.c: Likewise. * gcc.dg/struct/wo_prof_single_str_local.c: Likewise. * gcc.dg/struct/w_prof_local_var.c: Likewise. * gcc.dg/struct/wo_prof_two_strs.c: Likewise. * gcc.dg/struct/wo_prof_empty_str.c: Likewise. * gcc.dg/struct/wo_prof_local_array.c: Likewise. * gcc.dg/struct/w_prof_global_var.c: Likewise. * gcc.dg/struct/wo_prof_single_str_global.c: Likewise. * gcc.dg/struct/wo_prof_escape_substr_value.c: Likewise. * gcc.dg/struct/wo_prof_global_array.c: Likewise. * gcc.dg/struct/wo_prof_escape_return.c: Likewise. * gcc.dg/struct/wo_prof_escape_substr_array.c: Likewise. * gcc.dg/struct/wo_prof_double_malloc.c: Likewise. * gcc.dg/struct/w_ratio_cold_str.c: Likewise. * gcc.dg/struct/wo_prof_escape_substr_pointer.c: Likewise. * gcc.dg/struct/wo_prof_local_var.c: Likewise. * gcc.dg/tree-prof/stringop-1.c: Adjust. * g++.dg/tree-ssa/pr31146.C: Likewise. * g++.dg/tree-ssa/copyprop-1.C: Likewise. * g++.dg/tree-ssa/pr33604.C: Likewise. * g++.dg/plugin/selfassign.c: Likewise. * gfortran.dg/array_memcpy_3.f90: Likewise. * gfortran.dg/array_memcpy_4.f90: Likewise. * c-c++-common/torture/pr42834.c: New testcase. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@161655 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/tree-ssa-phiopt.c')
-rw-r--r--gcc/tree-ssa-phiopt.c21
1 files changed, 11 insertions, 10 deletions
diff --git a/gcc/tree-ssa-phiopt.c b/gcc/tree-ssa-phiopt.c
index 53ab31a15df..482f267a648 100644
--- a/gcc/tree-ssa-phiopt.c
+++ b/gcc/tree-ssa-phiopt.c
@@ -994,10 +994,10 @@ abs_replacement (basic_block cond_bb, basic_block middle_bb,
/* Auxiliary functions to determine the set of memory accesses which
can't trap because they are preceded by accesses to the same memory
- portion. We do that for INDIRECT_REFs, so we only need to track
+ portion. We do that for MEM_REFs, so we only need to track
the SSA_NAME of the pointer indirectly referenced. The algorithm
simply is a walk over all instructions in dominator order. When
- we see an INDIRECT_REF we determine if we've already seen a same
+ we see an MEM_REF we determine if we've already seen a same
ref anywhere up to the root of the dominator tree. If we do the
current access can't trap. If we don't see any dominating access
the current access might trap, but might also make later accesses
@@ -1011,7 +1011,7 @@ abs_replacement (basic_block cond_bb, basic_block middle_bb,
trap even if a store doesn't (write-only memory). This probably is
overly conservative. */
-/* A hash-table of SSA_NAMEs, and in which basic block an INDIRECT_REF
+/* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
through it was seen, which would constitute a no-trap region for
same accesses. */
struct name_to_bb
@@ -1024,7 +1024,7 @@ struct name_to_bb
/* The hash table for remembering what we've seen. */
static htab_t seen_ssa_names;
-/* The set of INDIRECT_REFs which can't trap. */
+/* The set of MEM_REFs which can't trap. */
static struct pointer_set_t *nontrap_set;
/* The hash function, based on the pointer to the pointer SSA_NAME. */
@@ -1047,7 +1047,7 @@ name_to_bb_eq (const void *p1, const void *p2)
}
/* We see the expression EXP in basic block BB. If it's an interesting
- expression (an INDIRECT_REF through an SSA_NAME) possibly insert the
+ expression (an MEM_REF through an SSA_NAME) possibly insert the
expression into the set NONTRAP or the hash table of seen expressions.
STORE is true if this expression is on the LHS, otherwise it's on
the RHS. */
@@ -1055,7 +1055,7 @@ static void
add_or_mark_expr (basic_block bb, tree exp,
struct pointer_set_t *nontrap, bool store)
{
- if (INDIRECT_REF_P (exp)
+ if (TREE_CODE (exp) == MEM_REF
&& TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME)
{
tree name = TREE_OPERAND (exp, 0);
@@ -1064,7 +1064,7 @@ add_or_mark_expr (basic_block bb, tree exp,
struct name_to_bb *n2bb;
basic_block found_bb = 0;
- /* Try to find the last seen INDIRECT_REF through the same
+ /* Try to find the last seen MEM_REF through the same
SSA_NAME, which can trap. */
map.ssa_name = name;
map.bb = 0;
@@ -1074,7 +1074,7 @@ add_or_mark_expr (basic_block bb, tree exp,
if (n2bb)
found_bb = n2bb->bb;
- /* If we've found a trapping INDIRECT_REF, _and_ it dominates EXP
+ /* If we've found a trapping MEM_REF, _and_ it dominates EXP
(it's in a basic block on the path from us to the dominator root)
then we can't trap. */
if (found_bb && found_bb->aux == (void *)1)
@@ -1135,7 +1135,7 @@ nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
/* This is the entry point of gathering non trapping memory accesses.
It will do a dominator walk over the whole function, and it will
make use of the bb->aux pointers. It returns a set of trees
- (the INDIRECT_REFs itself) which can't trap. */
+ (the MEM_REFs itself) which can't trap. */
static struct pointer_set_t *
get_non_trapping (void)
{
@@ -1200,7 +1200,8 @@ cond_store_replacement (basic_block middle_bb, basic_block join_bb,
locus = gimple_location (assign);
lhs = gimple_assign_lhs (assign);
rhs = gimple_assign_rhs1 (assign);
- if (!INDIRECT_REF_P (lhs))
+ if (TREE_CODE (lhs) != MEM_REF
+ || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME)
return false;
/* RHS is either a single SSA_NAME or a constant. */