diff options
author | crux <crux@138bc75d-0d04-0410-961f-82ee72b054a4> | 2000-03-14 18:36:18 +0000 |
---|---|---|
committer | crux <crux@138bc75d-0d04-0410-961f-82ee72b054a4> | 2000-03-14 18:36:18 +0000 |
commit | 1617c2760b30669bfd9368d928b5a082a99fb649 (patch) | |
tree | 096b43f896f53dc9a7da616fc0b4de3800ddcee1 /gcc/simplify-rtx.c | |
parent | 166163adcbf7469c56e662765fd24054e4ab1511 (diff) | |
download | gcc-1617c2760b30669bfd9368d928b5a082a99fb649.tar.gz |
Add cselib; use it in loop and reload_cse_regs
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@32538 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/simplify-rtx.c')
-rw-r--r-- | gcc/simplify-rtx.c | 1230 |
1 files changed, 1230 insertions, 0 deletions
diff --git a/gcc/simplify-rtx.c b/gcc/simplify-rtx.c index 8f1aa9628d8..f9ed9318080 100644 --- a/gcc/simplify-rtx.c +++ b/gcc/simplify-rtx.c @@ -37,6 +37,10 @@ Boston, MA 02111-1307, USA. */ #include "expr.h" #include "toplev.h" #include "output.h" +#include "ggc.h" +#include "obstack.h" +#include "hashtab.h" +#include "cselib.h" /* Simplification and canonicalization of RTL. */ @@ -1957,3 +1961,1229 @@ simplify_rtx (x) return NULL; } } + +static int entry_and_rtx_equal_p PARAMS ((const void *, const void *)); +static unsigned int get_value_hash PARAMS ((const void *)); +static struct elt_list *new_elt_list PARAMS ((struct elt_list *, cselib_val *)); +static struct elt_loc_list *new_elt_loc_list PARAMS ((struct elt_loc_list *, rtx)); +static void unchain_one_value PARAMS ((cselib_val *)); +static void unchain_one_elt_list PARAMS ((struct elt_list **)); +static void unchain_one_elt_loc_list PARAMS ((struct elt_loc_list **)); +static void clear_table PARAMS ((void)); +static int check_value_useless PARAMS ((cselib_val *)); +static int discard_useless_locs PARAMS ((void **, void *)); +static int discard_useless_values PARAMS ((void **, void *)); +static void remove_useless_values PARAMS ((void)); +static unsigned int hash_rtx PARAMS ((rtx, enum machine_mode, int)); +static cselib_val *new_cselib_val PARAMS ((unsigned int, enum machine_mode)); +static void add_mem_for_addr PARAMS ((cselib_val *, cselib_val *, rtx)); +static cselib_val *cselib_lookup_mem PARAMS ((rtx, int)); +static rtx cselib_subst_to_values PARAMS ((rtx)); +static void cselib_invalidate_regno PARAMS ((int, enum machine_mode)); +static int cselib_mem_conflict_p PARAMS ((rtx, rtx)); +static int cselib_invalidate_mem_1 PARAMS ((void **, void *)); +static void cselib_invalidate_mem PARAMS ((rtx)); +static void cselib_invalidate_rtx PARAMS ((rtx, rtx, void *)); +static void cselib_record_set PARAMS ((rtx, cselib_val *, cselib_val *)); +static void cselib_record_sets PARAMS ((rtx)); + +/* There are three ways in which cselib can look up an rtx: + - for a REG, the reg_values table (which is indexed by regno) is used + - for a MEM, we recursively look up its address and then follow the + addr_list of that value + - for everything else, we compute a hash value and go through the hash + table. Since different rtx's can still have the same hash value, + this involves walking the table entries for a given value and comparing + the locations of the entries with the rtx we are looking up. */ + +/* A table that enables us to look up elts by their value. */ +static htab_t hash_table; + +/* This is a global so we don't have to pass this through every function. + It is used in new_elt_loc_list to set SETTING_INSN. */ +static rtx cselib_current_insn; + +/* Every new unknown value gets a unique number. */ +static unsigned int next_unknown_value; + +/* The number of registers we had when the varrays were last resized. */ +static int cselib_nregs; + +/* Count values without known locations. Whenever this grows too big, we + remove these useless values from the table. */ +static int n_useless_values; + +/* Number of useless values before we remove them from the hash table. */ +#define MAX_USELESS_VALUES 32 + +/* This table maps from register number to values. It does not contain + pointers to cselib_val structures, but rather elt_lists. The purpose is + to be able to refer to the same register in different modes. */ +static varray_type reg_values; +#define REG_VALUES(I) VARRAY_ELT_LIST (reg_values, (I)) + +/* We pass this to cselib_invalidate_mem to invalidate all of + memory for a non-const call instruction. */ +static rtx callmem; + +/* Memory for our structures is allocated from this obstack. */ +static struct obstack cselib_obstack; + +/* Used to quickly free all memory. */ +static char *cselib_startobj; + +/* Caches for unused structures. */ +static cselib_val *empty_vals; +static struct elt_list *empty_elt_lists; +static struct elt_loc_list *empty_elt_loc_lists; + +/* Allocate a struct elt_list and fill in its two elements with the + arguments. */ +static struct elt_list * +new_elt_list (next, elt) + struct elt_list *next; + cselib_val *elt; +{ + struct elt_list *el = empty_elt_lists; + if (el) + empty_elt_lists = el->next; + else + el = (struct elt_list *) obstack_alloc (&cselib_obstack, + sizeof (struct elt_list)); + el->next = next; + el->elt = elt; + return el; +} + +/* Allocate a struct elt_loc_list and fill in its two elements with the + arguments. */ +static struct elt_loc_list * +new_elt_loc_list (next, loc) + struct elt_loc_list *next; + rtx loc; +{ + struct elt_loc_list *el = empty_elt_loc_lists; + if (el) + empty_elt_loc_lists = el->next; + else + el = (struct elt_loc_list *) obstack_alloc (&cselib_obstack, + sizeof (struct elt_loc_list)); + el->next = next; + el->loc = loc; + el->setting_insn = cselib_current_insn; + return el; +} + +/* The elt_list at *PL is no longer needed. Unchain it and free its + storage. */ +static void +unchain_one_elt_list (pl) + struct elt_list **pl; +{ + struct elt_list *l = *pl; + *pl = l->next; + l->next = empty_elt_lists; + empty_elt_lists = l; +} + +/* Likewise for elt_loc_lists. */ +static void +unchain_one_elt_loc_list (pl) + struct elt_loc_list **pl; +{ + struct elt_loc_list *l = *pl; + *pl = l->next; + l->next = empty_elt_loc_lists; + empty_elt_loc_lists = l; +} + +/* Likewise for cselib_vals. This also frees the addr_list associated with + V. */ +static void +unchain_one_value (v) + cselib_val *v; +{ + while (v->addr_list) + unchain_one_elt_list (&v->addr_list); + + v->u.next_free = empty_vals; + empty_vals = v; +} + +/* Remove all entries from the hash table. Also used during + initialization. */ +static void +clear_table () +{ + int i; + for (i = 0; i < cselib_nregs; i++) + REG_VALUES (i) = 0; + + htab_empty (hash_table); + obstack_free (&cselib_obstack, cselib_startobj); + + empty_vals = 0; + empty_elt_lists = 0; + empty_elt_loc_lists = 0; + n_useless_values = 0; + + next_unknown_value = 0; +} + +/* The equality test for our hash table. The first argument ENTRY is a table + element (i.e. a cselib_val), while the second arg X is an rtx. */ +static int +entry_and_rtx_equal_p (entry, x_arg) + const void *entry, *x_arg; +{ + struct elt_loc_list *l; + cselib_val *v = (cselib_val *)entry; + rtx x = (rtx)x_arg; + + /* We don't guarantee that distinct rtx's have different hash values, + so we need to do a comparison. */ + for (l = v->locs; l; l = l->next) + if (rtx_equal_for_cselib_p (l->loc, x)) + return 1; + return 0; +} + +/* The hash function for our hash table. The value is always computed with + hash_rtx when adding an element; this function just extracts the hash + value from a cselib_val structure. */ +static unsigned int +get_value_hash (entry) + const void *entry; +{ + cselib_val *v = (cselib_val *) entry; + return v->value; +} + +/* If there are no more locations that hold a value, the value has become + useless. See whether that is the case for V. Return 1 if this has + just become useless. */ +static int +check_value_useless (v) + cselib_val *v; +{ + if (v->locs != 0) + return 0; + + if (v->value == 0) + return 0; + + /* This is a marker to indicate that the value will be reclaimed. */ + v->value = 0; + n_useless_values++; + return 1; +} + +/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we + only return true for values which point to a cselib_val whose value + element has been set to zero, which implies the cselib_val will be + removed. */ +int +references_value_p (x, only_useless) + rtx x; + int only_useless; +{ + enum rtx_code code = GET_CODE (x); + const char *fmt = GET_RTX_FORMAT (code); + int i; + + if (GET_CODE (x) == VALUE + && (! only_useless || CSELIB_VAL_PTR (x)->value == 0)) + return 1; + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + { + if (references_value_p (XEXP (x, i), only_useless)) + return 1; + } + else if (fmt[i] == 'E') + { + int j; + + for (j = 0; j < XVECLEN (x, i); j++) + if (references_value_p (XVECEXP (x, i, j), only_useless)) + return 1; + } + } + + return 0; +} + +/* Set by discard_useless_locs if it deleted the last location of any + value. */ +static int values_became_useless; + +/* For all locations found in X, delete locations that reference useless + values (i.e. values without any location). Called through + htab_traverse. */ +static int +discard_useless_locs (x, info) + void **x; + void *info ATTRIBUTE_UNUSED; +{ + cselib_val *v = (cselib_val *)*x; + struct elt_loc_list **p = &v->locs; + + while (*p) + { + if (references_value_p ((*p)->loc, 1)) + unchain_one_elt_loc_list (p); + else + p = &(*p)->next; + } + if (check_value_useless (v)) + values_became_useless = 1; + + return 1; +} + +/* If X is a value with no locations, remove it from the hashtable. */ + +static int +discard_useless_values (x, info) + void **x; + void *info ATTRIBUTE_UNUSED; +{ + cselib_val *v = (cselib_val *)*x; + + if (v->value == 0) + { + htab_clear_slot (hash_table, x); + unchain_one_value (v); + n_useless_values--; + } + return 1; +} + +/* Clean out useless values (i.e. those which no longer have locations + associated with them) from the hash table. */ +static void +remove_useless_values () +{ + /* First pass: eliminate locations that reference the value. That in + turn can make more values useless. */ + do + { + values_became_useless = 0; + htab_traverse (hash_table, discard_useless_locs, 0); + } + while (values_became_useless); + + /* Second pass: actually remove the values. */ + htab_traverse (hash_table, discard_useless_values, 0); + + if (n_useless_values != 0) + abort (); +} + +/* Return nonzero if we can prove that X and Y contain the same value, taking + our gathered information into account. */ +int +rtx_equal_for_cselib_p (x, y) + rtx x, y; +{ + enum rtx_code code; + const char *fmt; + int i; + + if (GET_CODE (x) == REG || GET_CODE (x) == MEM) + { + cselib_val *e = cselib_lookup (x, VOIDmode, 0); + if (e) + x = e->u.val_rtx; + } + if (GET_CODE (y) == REG || GET_CODE (y) == MEM) + { + cselib_val *e = cselib_lookup (y, VOIDmode, 0); + if (e) + y = e->u.val_rtx; + } + + if (x == y) + return 1; + + if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE) + return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y); + + if (GET_CODE (x) == VALUE) + { + cselib_val *e = CSELIB_VAL_PTR (x); + struct elt_loc_list *l; + + for (l = e->locs; l; l = l->next) + { + rtx t = l->loc; + + /* Avoid infinite recursion. */ + if (GET_CODE (t) == REG || GET_CODE (t) == MEM) + continue; + + if (rtx_equal_for_cselib_p (t, y)) + return 1; + } + + return 0; + } + + if (GET_CODE (y) == VALUE) + { + cselib_val *e = CSELIB_VAL_PTR (y); + struct elt_loc_list *l; + + for (l = e->locs; l; l = l->next) + { + rtx t = l->loc; + + if (GET_CODE (t) == REG || GET_CODE (t) == MEM) + continue; + + if (rtx_equal_for_cselib_p (x, t)) + return 1; + } + + return 0; + } + + if (GET_CODE (x) != GET_CODE (y) + || GET_MODE (x) != GET_MODE (y)) + return 0; + + /* This won't be handled correctly by the code below. */ + if (GET_CODE (x) == LABEL_REF) + return XEXP (x, 0) == XEXP (y, 0); + + code = GET_CODE (x); + fmt = GET_RTX_FORMAT (code); + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + int j; + switch (fmt[i]) + { + case 'w': + if (XWINT (x, i) != XWINT (y, i)) + return 0; + break; + + case 'n': + case 'i': + if (XINT (x, i) != XINT (y, i)) + return 0; + break; + + case 'V': + case 'E': + /* Two vectors must have the same length. */ + if (XVECLEN (x, i) != XVECLEN (y, i)) + return 0; + + /* And the corresponding elements must match. */ + for (j = 0; j < XVECLEN (x, i); j++) + if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j), + XVECEXP (y, i, j))) + return 0; + break; + + case 'e': + if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i))) + return 0; + break; + + case 'S': + case 's': + if (strcmp (XSTR (x, i), XSTR (y, i))) + return 0; + break; + + case 'u': + /* These are just backpointers, so they don't matter. */ + break; + + case '0': + case 't': + break; + + /* It is believed that rtx's at this level will never + contain anything but integers and other rtx's, + except for within LABEL_REFs and SYMBOL_REFs. */ + default: + abort (); + } + } + return 1; +} + +/* Hash an rtx. Return 0 if we couldn't hash the rtx. + For registers and memory locations, we look up their cselib_val structure + and return its VALUE element. + Possible reasons for return 0 are: the object is volatile, or we couldn't + find a register or memory location in the table and CREATE is zero. If + CREATE is nonzero, table elts are created for regs and mem. + MODE is used in hashing for CONST_INTs only; + otherwise the mode of X is used. */ +static unsigned int +hash_rtx (x, mode, create) + rtx x; + enum machine_mode mode; + int create; +{ + cselib_val *e; + int i, j; + unsigned int hash = 0; + enum rtx_code code = GET_CODE (x); + const char *fmt = GET_RTX_FORMAT (code); + + /* repeat is used to turn tail-recursion into iteration. */ + repeat: + + code = GET_CODE (x); + switch (code) + { + case MEM: + case REG: + e = cselib_lookup (x, GET_MODE (x), create); + if (! e) + return 0; + return e->value; + + case CONST_INT: + { + unsigned HOST_WIDE_INT tem = INTVAL (x); + hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem; + return hash ? hash : CONST_INT; + } + + case CONST_DOUBLE: + /* This is like the general case, except that it only counts + the integers representing the constant. */ + hash += (unsigned) code + (unsigned) GET_MODE (x); + if (GET_MODE (x) != VOIDmode) + for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++) + { + unsigned HOST_WIDE_INT tem = XWINT (x, i); + hash += tem; + } + else + hash += ((unsigned) CONST_DOUBLE_LOW (x) + + (unsigned) CONST_DOUBLE_HIGH (x)); + return hash ? hash : CONST_DOUBLE; + + /* Assume there is only one rtx object for any given label. */ + case LABEL_REF: + hash + += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0); + return hash ? hash : LABEL_REF; + + case SYMBOL_REF: + hash + += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0); + return hash ? hash : SYMBOL_REF; + + case PRE_DEC: + case PRE_INC: + case POST_DEC: + case POST_INC: + case PC: + case CC0: + case CALL: + case UNSPEC_VOLATILE: + return 0; + + case ASM_OPERANDS: + if (MEM_VOLATILE_P (x)) + return 0; + + break; + + default: + break; + } + + i = GET_RTX_LENGTH (code) - 1; + hash += (unsigned) code + (unsigned) GET_MODE (x); + fmt = GET_RTX_FORMAT (code); + for (; i >= 0; i--) + { + if (fmt[i] == 'e') + { + unsigned int tem_hash; + rtx tem = XEXP (x, i); + + /* If we are about to do the last recursive call + needed at this level, change it into iteration. + This function is called enough to be worth it. */ + if (i == 0) + { + x = tem; + goto repeat; + } + tem_hash = hash_rtx (tem, 0, create); + if (tem_hash == 0) + return 0; + hash += tem_hash; + } + else if (fmt[i] == 'E') + for (j = 0; j < XVECLEN (x, i); j++) + { + unsigned int tem_hash = hash_rtx (XVECEXP (x, i, j), 0, create); + if (tem_hash == 0) + return 0; + hash += tem_hash; + } + else if (fmt[i] == 's') + { + unsigned char *p = (unsigned char *) XSTR (x, i); + if (p) + while (*p) + hash += *p++; + } + else if (fmt[i] == 'i') + { + unsigned int tem = XINT (x, i); + hash += tem; + } + else if (fmt[i] == '0' || fmt[i] == 't') + /* unused */; + else + abort (); + } + return hash ? hash : 1 + GET_CODE (x); +} + +/* Create a new value structure for VALUE and initialize it. The mode of the + value is MODE. */ +static cselib_val * +new_cselib_val (value, mode) + unsigned int value; + enum machine_mode mode; +{ + cselib_val *e = empty_vals; + if (e) + empty_vals = e->u.next_free; + else + e = (cselib_val *) obstack_alloc (&cselib_obstack, sizeof (cselib_val)); + if (value == 0) + abort (); + e->value = value; + e->u.val_rtx = gen_rtx_VALUE (mode); + CSELIB_VAL_PTR (e->u.val_rtx) = e; + + e->addr_list = 0; + e->locs = 0; + return e; +} + +/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that + contains the data at this address. X is a MEM that represents the + value. Update the two value structures to represent this situation. */ +static void +add_mem_for_addr (addr_elt, mem_elt, x) + cselib_val *addr_elt, *mem_elt; + rtx x; +{ + rtx new; + struct elt_loc_list *l; + + /* Avoid duplicates. */ + for (l = mem_elt->locs; l; l = l->next) + if (GET_CODE (l->loc) == MEM + && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt) + return; + + new = gen_rtx_MEM (GET_MODE (x), addr_elt->u.val_rtx); + addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt); + + RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x); + MEM_COPY_ATTRIBUTES (new, x); + + mem_elt->locs = new_elt_loc_list (mem_elt->locs, new); +} + +/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx. + If CREATE, make a new one if we haven't seen it before. */ +static cselib_val * +cselib_lookup_mem (x, create) + rtx x; + int create; +{ + void **slot; + cselib_val *addr; + cselib_val *mem_elt; + struct elt_list *l; + + if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode) + return 0; + if (FLOAT_MODE_P (GET_MODE (x)) && flag_float_store) + return 0; + + /* Look up the value for the address. */ + addr = cselib_lookup (XEXP (x, 0), GET_MODE (x), create); + if (! addr) + return 0; + + /* Find a value that describes a value of our mode at that address. */ + for (l = addr->addr_list; l; l = l->next) + if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x)) + return l->elt; + if (! create) + return 0; + mem_elt = new_cselib_val (++next_unknown_value, GET_MODE (x)); + add_mem_for_addr (addr, mem_elt, x); + slot = htab_find_slot_with_hash (hash_table, x, mem_elt->value, 1); + *slot = mem_elt; + return mem_elt; +} + +/* Walk rtx X and replace all occurrences of REG and MEM subexpressions + with VALUE expressions. This way, it becomes independent of changes + to registers and memory. + X isn't actually modified; if modifications are needed, new rtl is + allocated. However, the return value can share rtl with X. */ +static rtx +cselib_subst_to_values (x) + rtx x; +{ + enum rtx_code code = GET_CODE (x); + const char *fmt = GET_RTX_FORMAT (code); + cselib_val *e; + struct elt_list *l; + rtx copy = x; + int i; + + switch (code) + { + case REG: + i = REGNO (x); + for (l = REG_VALUES (i); l; l = l->next) + if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x)) + return l->elt->u.val_rtx; + abort (); + + case MEM: + e = cselib_lookup_mem (x, 0); + if (! e) + abort (); + return e->u.val_rtx; + + /* CONST_DOUBLEs must be special-cased here so that we won't try to + look up the CONST_DOUBLE_MEM inside. */ + case CONST_DOUBLE: + case CONST_INT: + return x; + + default: + break; + } + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + { + rtx t = cselib_subst_to_values (XEXP (x, i)); + if (t != XEXP (x, i) && x == copy) + copy = shallow_copy_rtx (x); + XEXP (copy, i) = t; + } + else if (fmt[i] == 'E') + { + int j, k; + + for (j = 0; j < XVECLEN (x, i); j++) + { + rtx t = cselib_subst_to_values (XVECEXP (x, i, j)); + if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i)) + { + if (x == copy) + copy = shallow_copy_rtx (x); + XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i)); + for (k = 0; k < j; k++) + XVECEXP (copy, i, k) = XVECEXP (x, i, k); + } + XVECEXP (copy, i, j) = t; + } + } + } + return copy; +} + +/* Look up the rtl expression X in our tables and return the value it has. + If CREATE is zero, we return NULL if we don't know the value. Otherwise, + we create a new one if possible, using mode MODE if X doesn't have a mode + (i.e. because it's a constant). */ +cselib_val * +cselib_lookup (x, mode, create) + rtx x; + enum machine_mode mode; + int create; +{ + void **slot; + cselib_val *e; + unsigned int hashval; + + if (GET_MODE (x) != VOIDmode) + mode = GET_MODE (x); + + if (GET_CODE (x) == VALUE) + return CSELIB_VAL_PTR (x); + + if (GET_CODE (x) == REG) + { + struct elt_list *l; + int i = REGNO (x); + for (l = REG_VALUES (i); l; l = l->next) + if (mode == GET_MODE (l->elt->u.val_rtx)) + return l->elt; + if (! create) + return 0; + e = new_cselib_val (++next_unknown_value, GET_MODE (x)); + e->locs = new_elt_loc_list (e->locs, x); + REG_VALUES (i) = new_elt_list (REG_VALUES (i), e); + slot = htab_find_slot_with_hash (hash_table, x, e->value, 1); + *slot = e; + return e; + } + + if (GET_CODE (x) == MEM) + return cselib_lookup_mem (x, create); + + hashval = hash_rtx (x, mode, create); + /* Can't even create if hashing is not possible. */ + if (! hashval) + return 0; + + slot = htab_find_slot_with_hash (hash_table, x, hashval, create); + if (slot == 0) + return 0; + e = (cselib_val *) *slot; + if (e) + return e; + + e = new_cselib_val (hashval, mode); + e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x)); + *slot = (void *) e; + return e; +} + +/* Invalidate any entries in reg_values that overlap REGNO. This is called + if REGNO is changing. MODE is the mode of the assignment to REGNO, which + is used to determine how many hard registers are being changed. If MODE + is VOIDmode, then only REGNO is being changed; this is used when + invalidating call clobbered registers across a call. */ +static void +cselib_invalidate_regno (regno, mode) + int regno; + enum machine_mode mode; +{ + int endregno; + int i; + + /* If we see pseudos after reload, something is _wrong_. */ + if (reload_completed && regno >= FIRST_PSEUDO_REGISTER + && reg_renumber[regno] >= 0) + abort (); + + /* Determine the range of registers that must be invalidated. For + pseudos, only REGNO is affected. For hard regs, we must take MODE + into account, and we must also invalidate lower register numbers + if they contain values that overlap REGNO. */ + endregno = regno + 1; + if (regno < FIRST_PSEUDO_REGISTER && mode != VOIDmode) + endregno = regno + HARD_REGNO_NREGS (regno, mode); + + for (i = 0; i < endregno; i++) + { + struct elt_list **l = ®_VALUES (i); + + /* Go through all known values for this reg; if it overlaps the range + we're invalidating, remove the value. */ + while (*l) + { + cselib_val *v = (*l)->elt; + struct elt_loc_list **p; + int this_last = i; + + if (i < FIRST_PSEUDO_REGISTER) + this_last += HARD_REGNO_NREGS (i, GET_MODE (v->u.val_rtx)) - 1; + if (this_last < regno) + { + l = &(*l)->next; + continue; + } + /* We have an overlap. */ + unchain_one_elt_list (l); + + /* Now, we clear the mapping from value to reg. It must exist, so + this code will crash intentionally if it doesn't. */ + for (p = &v->locs; ; p = &(*p)->next) + { + rtx x = (*p)->loc; + if (GET_CODE (x) == REG && REGNO (x) == i) + { + unchain_one_elt_loc_list (p); + break; + } + } + check_value_useless (v); + } + } +} + +/* The memory at address MEM_BASE is being changed. + Return whether this change will invalidate VAL. */ +static int +cselib_mem_conflict_p (mem_base, val) + rtx mem_base; + rtx val; +{ + enum rtx_code code; + const char *fmt; + int i; + + code = GET_CODE (val); + switch (code) + { + /* Get rid of a few simple cases quickly. */ + case REG: + case PC: + case CC0: + case SCRATCH: + case CONST: + case CONST_INT: + case CONST_DOUBLE: + case SYMBOL_REF: + case LABEL_REF: + return 0; + + case MEM: + if (GET_MODE (mem_base) == BLKmode + || GET_MODE (val) == BLKmode) + return 1; + if (anti_dependence (val, mem_base)) + return 1; + /* The address may contain nested MEMs. */ + break; + + default: + break; + } + + fmt = GET_RTX_FORMAT (code); + + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + { + if (cselib_mem_conflict_p (mem_base, XEXP (val, i))) + return 1; + } + else if (fmt[i] == 'E') + { + int j; + + for (j = 0; j < XVECLEN (val, i); j++) + if (cselib_mem_conflict_p (mem_base, XVECEXP (val, i, j))) + return 1; + } + } + + return 0; +} + +/* For the value found in SLOT, walk its locations to determine if any overlap + INFO (which is a MEM rtx). */ +static int +cselib_invalidate_mem_1 (slot, info) + void **slot; + void *info; +{ + cselib_val *v = (cselib_val *) *slot; + rtx mem_rtx = (rtx) info; + struct elt_loc_list **p = &v->locs; + + while (*p) + { + cselib_val *addr; + struct elt_list **mem_chain; + rtx x = (*p)->loc; + + /* MEMs may occur in locations only at the top level; below + that every MEM or REG is substituted by its VALUE. */ + if (GET_CODE (x) != MEM + || ! cselib_mem_conflict_p (mem_rtx, x)) + { + p = &(*p)->next; + continue; + } + + /* This one overlaps. */ + /* We must have a mapping from this MEM's address to the + value (E). Remove that, too. */ + addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0); + mem_chain = &addr->addr_list; + for (;;) + { + if ((*mem_chain)->elt == v) + { + unchain_one_elt_list (mem_chain); + break; + } + mem_chain = &(*mem_chain)->next; + } + unchain_one_elt_loc_list (p); + } + check_value_useless (v); + return 1; +} + +/* Invalidate any locations in the table which are changed because of a + store to MEM_RTX. If this is called because of a non-const call + instruction, MEM_RTX is (mem:BLK const0_rtx). */ +static void +cselib_invalidate_mem (mem_rtx) + rtx mem_rtx; +{ + htab_traverse (hash_table, cselib_invalidate_mem_1, mem_rtx); +} + +/* Invalidate DEST, which is being assigned to or clobbered. The second and + the third parameter exist so that this function can be passed to + note_stores; they are ignored. */ +static void +cselib_invalidate_rtx (dest, ignore, data) + rtx dest; + rtx ignore ATTRIBUTE_UNUSED; + void *data ATTRIBUTE_UNUSED; +{ + while (GET_CODE (dest) == STRICT_LOW_PART + || GET_CODE (dest) == SIGN_EXTRACT + || GET_CODE (dest) == ZERO_EXTRACT + || GET_CODE (dest) == SUBREG) + dest = XEXP (dest, 0); + + if (GET_CODE (dest) == REG) + cselib_invalidate_regno (REGNO (dest), GET_MODE (dest)); + else if (GET_CODE (dest) == MEM) + cselib_invalidate_mem (dest); + + /* Some machines don't define AUTO_INC_DEC, but they still use push + instructions. We need to catch that case here in order to + invalidate the stack pointer correctly. Note that invalidating + the stack pointer is different from invalidating DEST. */ + if (push_operand (dest, GET_MODE (dest))) + cselib_invalidate_rtx (stack_pointer_rtx, NULL_RTX, NULL); +} + +/* Record the result of a SET instruction. DEST is being set; the source + contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT + describes its address. */ +static void +cselib_record_set (dest, src_elt, dest_addr_elt) + rtx dest; + cselib_val *src_elt, *dest_addr_elt; +{ + int dreg = GET_CODE (dest) == REG ? REGNO (dest) : -1; + + if (src_elt == 0 || side_effects_p (dest)) + return; + + if (dreg >= 0) + { + REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt); + src_elt->locs = new_elt_loc_list (src_elt->locs, dest); + } + else if (GET_CODE (dest) == MEM && dest_addr_elt != 0) + add_mem_for_addr (dest_addr_elt, src_elt, dest); +} + +/* Describe a single set that is part of an insn. */ +struct set +{ + rtx src; + rtx dest; + cselib_val *src_elt; + cselib_val *dest_addr_elt; +}; + +/* There is no good way to determine how many elements there can be + in a PARALLEL. Since it's fairly cheap, use a really large number. */ +#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2) + +/* Record the effects of any sets in INSN. */ +static void +cselib_record_sets (insn) + rtx insn; +{ + int n_sets = 0; + int i; + struct set sets[MAX_SETS]; + rtx body = PATTERN (insn); + + body = PATTERN (insn); + /* Find all sets. */ + if (GET_CODE (body) == SET) + { + sets[0].src = SET_SRC (body); + sets[0].dest = SET_DEST (body); + n_sets = 1; + } + else if (GET_CODE (body) == PARALLEL) + { + /* Look through the PARALLEL and record the values being + set, if possible. Also handle any CLOBBERs. */ + for (i = XVECLEN (body, 0) - 1; i >= 0; --i) + { + rtx x = XVECEXP (body, 0, i); + + if (GET_CODE (x) == SET) + { + sets[n_sets].src = SET_SRC (x); + sets[n_sets].dest = SET_DEST (x); + n_sets++; + } + } + } + + /* Look up the values that are read. Do this before invalidating the + locations that are written. */ + for (i = 0; i < n_sets; i++) + { + sets[i].src_elt = cselib_lookup (sets[i].src, GET_MODE (sets[i].dest), + 1); + if (GET_CODE (sets[i].dest) == MEM) + sets[i].dest_addr_elt = cselib_lookup (XEXP (sets[i].dest, 0), Pmode, + 1); + else + sets[i].dest_addr_elt = 0; + } + + /* Invalidate all locations written by this insn. Note that the elts we + looked up in the previous loop aren't affected, just some of their + locations may go away. */ + note_stores (body, cselib_invalidate_rtx, NULL); + + /* Now enter the equivalences in our tables. */ + for (i = 0; i < n_sets; i++) + cselib_record_set (sets[i].dest, sets[i].src_elt, sets[i].dest_addr_elt); +} + +/* Record the effects of INSN. */ +void +cselib_process_insn (insn) + rtx insn; +{ + int i; + + cselib_current_insn = insn; + + /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */ + if (GET_CODE (insn) == CODE_LABEL + || (GET_CODE (insn) == NOTE + && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) + || (GET_CODE (insn) == INSN + && GET_CODE (PATTERN (insn)) == ASM_OPERANDS + && MEM_VOLATILE_P (PATTERN (insn)))) + { + clear_table (); + return; + } + + if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') + { + cselib_current_insn = 0; + return; + } + /* If this is a call instruction, forget anything stored in a + call clobbered register, or, if this is not a const call, in + memory. */ + if (GET_CODE (insn) == CALL_INSN) + { + for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) + if (call_used_regs[i]) + cselib_invalidate_regno (i, VOIDmode); + + if (! CONST_CALL_P (insn)) + cselib_invalidate_mem (callmem); + } + + cselib_record_sets (insn); + +#ifdef AUTO_INC_DEC + /* Clobber any registers which appear in REG_INC notes. We + could keep track of the changes to their values, but it is + unlikely to help. */ + { + rtx x; + + for (x = REG_NOTES (insn); x; x = XEXP (x, 1)) + if (REG_NOTE_KIND (x) == REG_INC) + cselib_invalidate_rtx (XEXP (x, 0), NULL_RTX, NULL); + } +#endif + + /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only + after we have processed the insn. */ + if (GET_CODE (insn) == CALL_INSN) + { + rtx x; + + for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1)) + if (GET_CODE (XEXP (x, 0)) == CLOBBER) + cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX, + NULL); + } + + cselib_current_insn = 0; + + if (n_useless_values > MAX_USELESS_VALUES) + remove_useless_values (); +} + +/* Make sure our varrays are big enough. Not called from any cselib routines; + it must be called by the user if it allocated new registers. */ +void +cselib_update_varray_sizes () +{ + int nregs = max_reg_num (); + if (nregs == cselib_nregs) + return; + cselib_nregs = nregs; + VARRAY_GROW (reg_values, nregs); +} + +/* Initialize cselib for one pass. The caller must also call + init_alias_analysis. */ +void +cselib_init () +{ + /* These are only created once. */ + if (! callmem) + { + extern struct obstack permanent_obstack; + gcc_obstack_init (&cselib_obstack); + cselib_startobj = obstack_alloc (&cselib_obstack, 0); + + push_obstacks (&permanent_obstack, &permanent_obstack); + callmem = gen_rtx_MEM (BLKmode, const0_rtx); + pop_obstacks (); + ggc_add_rtx_root (&callmem, 1); + } + + cselib_nregs = max_reg_num (); + VARRAY_ELT_LIST_INIT (reg_values, cselib_nregs, "reg_values"); + hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL); + clear_table (); +} + +/* Called when the current user is done with cselib. */ +void +cselib_finish () +{ + clear_table (); + htab_delete (hash_table); +} |