summaryrefslogtreecommitdiff
path: root/gcc/sched-deps.c
diff options
context:
space:
mode:
authorbernds <bernds@138bc75d-0d04-0410-961f-82ee72b054a4>2000-12-03 16:11:45 +0000
committerbernds <bernds@138bc75d-0d04-0410-961f-82ee72b054a4>2000-12-03 16:11:45 +0000
commit6adce0fb141c20b2defcda42f2f78783b671e75b (patch)
treeba0266e2403479ce69ad386bc15adc36568cbd8b /gcc/sched-deps.c
parent10c0611466c6e2c29a7c300cdd22ed4be0217e32 (diff)
downloadgcc-6adce0fb141c20b2defcda42f2f78783b671e75b.tar.gz
Move dependency code out of haifa-sched.c
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@37975 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/sched-deps.c')
-rw-r--r--gcc/sched-deps.c1399
1 files changed, 1399 insertions, 0 deletions
diff --git a/gcc/sched-deps.c b/gcc/sched-deps.c
new file mode 100644
index 00000000000..7f9914cdd82
--- /dev/null
+++ b/gcc/sched-deps.c
@@ -0,0 +1,1399 @@
+/* Instruction scheduling pass. This file computes dependencies between
+ instructions.
+ Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
+ 1999, 2000 Free Software Foundation, Inc.
+ Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
+ and currently maintained by, Jim Wilson (wilson@cygnus.com)
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+GNU CC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to the Free
+the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "toplev.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "regs.h"
+#include "function.h"
+#include "flags.h"
+#include "insn-config.h"
+#include "insn-attr.h"
+#include "except.h"
+#include "toplev.h"
+#include "recog.h"
+#include "sched-int.h"
+
+extern char *reg_known_equiv_p;
+extern rtx *reg_known_value;
+
+static regset_head reg_pending_sets_head;
+static regset_head reg_pending_clobbers_head;
+
+static regset reg_pending_sets;
+static regset reg_pending_clobbers;
+static int reg_pending_sets_all;
+
+/* To speed up the test for duplicate dependency links we keep a
+ record of dependencies created by add_dependence when the average
+ number of instructions in a basic block is very large.
+
+ Studies have shown that there is typically around 5 instructions between
+ branches for typical C code. So we can make a guess that the average
+ basic block is approximately 5 instructions long; we will choose 100X
+ the average size as a very large basic block.
+
+ Each insn has associated bitmaps for its dependencies. Each bitmap
+ has enough entries to represent a dependency on any other insn in
+ the insn chain. All bitmap for true dependencies cache is
+ allocated then the rest two ones are also allocated. */
+static sbitmap *true_dependency_cache;
+static sbitmap *anti_dependency_cache;
+static sbitmap *output_dependency_cache;
+
+/* To speed up checking consistency of formed forward insn
+ dependencies we use the following cache. Another possible solution
+ could be switching off checking duplication of insns in forward
+ dependencies. */
+#ifdef ENABLE_CHECKING
+static sbitmap *forward_dependency_cache;
+#endif
+
+static void remove_dependence PARAMS ((rtx, rtx));
+static void set_sched_group_p PARAMS ((rtx));
+
+static void flush_pending_lists PARAMS ((struct deps *, rtx, int));
+static void sched_analyze_1 PARAMS ((struct deps *, rtx, rtx));
+static void sched_analyze_2 PARAMS ((struct deps *, rtx, rtx));
+static void sched_analyze_insn PARAMS ((struct deps *, rtx, rtx, rtx));
+static rtx group_leader PARAMS ((rtx));
+
+/* Return the INSN_LIST containing INSN in LIST, or NULL
+ if LIST does not contain INSN. */
+
+HAIFA_INLINE rtx
+find_insn_list (insn, list)
+ rtx insn;
+ rtx list;
+{
+ while (list)
+ {
+ if (XEXP (list, 0) == insn)
+ return list;
+ list = XEXP (list, 1);
+ }
+ return 0;
+}
+
+/* Return 1 if the pair (insn, x) is found in (LIST, LIST1), or 0
+ otherwise. */
+
+HAIFA_INLINE int
+find_insn_mem_list (insn, x, list, list1)
+ rtx insn, x;
+ rtx list, list1;
+{
+ while (list)
+ {
+ if (XEXP (list, 0) == insn
+ && XEXP (list1, 0) == x)
+ return 1;
+ list = XEXP (list, 1);
+ list1 = XEXP (list1, 1);
+ }
+ return 0;
+}
+
+/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
+ LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
+ of dependence that this link represents. */
+
+void
+add_dependence (insn, elem, dep_type)
+ rtx insn;
+ rtx elem;
+ enum reg_note dep_type;
+{
+ rtx link, next;
+ int present_p;
+ enum reg_note present_dep_type;
+
+ /* Don't depend an insn on itself. */
+ if (insn == elem)
+ return;
+
+ /* We can get a dependency on deleted insns due to optimizations in
+ the register allocation and reloading or due to splitting. Any
+ such dependency is useless and can be ignored. */
+ if (GET_CODE (elem) == NOTE)
+ return;
+
+ /* If elem is part of a sequence that must be scheduled together, then
+ make the dependence point to the last insn of the sequence.
+ When HAVE_cc0, it is possible for NOTEs to exist between users and
+ setters of the condition codes, so we must skip past notes here.
+ Otherwise, NOTEs are impossible here. */
+ next = next_nonnote_insn (elem);
+ if (next && SCHED_GROUP_P (next)
+ && GET_CODE (next) != CODE_LABEL)
+ {
+ /* Notes will never intervene here though, so don't bother checking
+ for them. */
+ /* Hah! Wrong. */
+ /* We must reject CODE_LABELs, so that we don't get confused by one
+ that has LABEL_PRESERVE_P set, which is represented by the same
+ bit in the rtl as SCHED_GROUP_P. A CODE_LABEL can never be
+ SCHED_GROUP_P. */
+
+ rtx nnext;
+ while ((nnext = next_nonnote_insn (next)) != NULL
+ && SCHED_GROUP_P (nnext)
+ && GET_CODE (nnext) != CODE_LABEL)
+ next = nnext;
+
+ /* Again, don't depend an insn on itself. */
+ if (insn == next)
+ return;
+
+ /* Make the dependence to NEXT, the last insn of the group, instead
+ of the original ELEM. */
+ elem = next;
+ }
+
+ present_p = 1;
+#ifdef INSN_SCHEDULING
+ /* ??? No good way to tell from here whether we're doing interblock
+ scheduling. Possibly add another callback. */
+#if 0
+ /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
+ No need for interblock dependences with calls, since
+ calls are not moved between blocks. Note: the edge where
+ elem is a CALL is still required. */
+ if (GET_CODE (insn) == CALL_INSN
+ && (INSN_BB (elem) != INSN_BB (insn)))
+ return;
+#endif
+
+ /* If we already have a dependency for ELEM, then we do not need to
+ do anything. Avoiding the list walk below can cut compile times
+ dramatically for some code. */
+ if (true_dependency_cache != NULL)
+ {
+ if (anti_dependency_cache == NULL || output_dependency_cache == NULL)
+ abort ();
+ if (TEST_BIT (true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)))
+ present_dep_type = 0;
+ else if (TEST_BIT (anti_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem)))
+ present_dep_type = REG_DEP_ANTI;
+ else if (TEST_BIT (output_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem)))
+ present_dep_type = REG_DEP_OUTPUT;
+ else
+ present_p = 0;
+ if (present_p && (int) dep_type >= (int) present_dep_type)
+ return;
+ }
+#endif
+
+ /* Check that we don't already have this dependence. */
+ if (present_p)
+ for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
+ if (XEXP (link, 0) == elem)
+ {
+#ifdef INSN_SCHEDULING
+ /* Clear corresponding cache entry because type of the link
+ may be changed. */
+ if (true_dependency_cache != NULL)
+ {
+ if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
+ RESET_BIT (anti_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem));
+ else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
+ && output_dependency_cache)
+ RESET_BIT (output_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem));
+ else
+ abort ();
+ }
+#endif
+
+ /* If this is a more restrictive type of dependence than the existing
+ one, then change the existing dependence to this type. */
+ if ((int) dep_type < (int) REG_NOTE_KIND (link))
+ PUT_REG_NOTE_KIND (link, dep_type);
+
+#ifdef INSN_SCHEDULING
+ /* If we are adding a dependency to INSN's LOG_LINKs, then
+ note that in the bitmap caches of dependency information. */
+ if (true_dependency_cache != NULL)
+ {
+ if ((int)REG_NOTE_KIND (link) == 0)
+ SET_BIT (true_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem));
+ else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
+ SET_BIT (anti_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem));
+ else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
+ SET_BIT (output_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem));
+ }
+#endif
+ return;
+ }
+ /* Might want to check one level of transitivity to save conses. */
+
+ link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
+ LOG_LINKS (insn) = link;
+
+ /* Insn dependency, not data dependency. */
+ PUT_REG_NOTE_KIND (link, dep_type);
+
+#ifdef INSN_SCHEDULING
+ /* If we are adding a dependency to INSN's LOG_LINKs, then note that
+ in the bitmap caches of dependency information. */
+ if (true_dependency_cache != NULL)
+ {
+ if ((int)dep_type == 0)
+ SET_BIT (true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
+ else if (dep_type == REG_DEP_ANTI)
+ SET_BIT (anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
+ else if (dep_type == REG_DEP_OUTPUT)
+ SET_BIT (output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
+ }
+#endif
+}
+
+/* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
+ of INSN. Abort if not found. */
+
+static void
+remove_dependence (insn, elem)
+ rtx insn;
+ rtx elem;
+{
+ rtx prev, link, next;
+ int found = 0;
+
+ for (prev = 0, link = LOG_LINKS (insn); link; link = next)
+ {
+ next = XEXP (link, 1);
+ if (XEXP (link, 0) == elem)
+ {
+ if (prev)
+ XEXP (prev, 1) = next;
+ else
+ LOG_LINKS (insn) = next;
+
+#ifdef INSN_SCHEDULING
+ /* If we are removing a dependency from the LOG_LINKS list,
+ make sure to remove it from the cache too. */
+ if (true_dependency_cache != NULL)
+ {
+ if (REG_NOTE_KIND (link) == 0)
+ RESET_BIT (true_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem));
+ else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
+ RESET_BIT (anti_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem));
+ else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
+ RESET_BIT (output_dependency_cache[INSN_LUID (insn)],
+ INSN_LUID (elem));
+ }
+#endif
+
+ free_INSN_LIST_node (link);
+
+ found = 1;
+ }
+ else
+ prev = link;
+ }
+
+ if (!found)
+ abort ();
+ return;
+}
+
+/* Return an insn which represents a SCHED_GROUP, which is
+ the last insn in the group. */
+
+static rtx
+group_leader (insn)
+ rtx insn;
+{
+ rtx prev;
+
+ do
+ {
+ prev = insn;
+ insn = next_nonnote_insn (insn);
+ }
+ while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL));
+
+ return prev;
+}
+
+/* Set SCHED_GROUP_P and care for the rest of the bookkeeping that
+ goes along with that. */
+
+static void
+set_sched_group_p (insn)
+ rtx insn;
+{
+ rtx link, prev;
+
+ SCHED_GROUP_P (insn) = 1;
+
+ /* There may be a note before this insn now, but all notes will
+ be removed before we actually try to schedule the insns, so
+ it won't cause a problem later. We must avoid it here though. */
+ prev = prev_nonnote_insn (insn);
+
+ /* Make a copy of all dependencies on the immediately previous insn,
+ and add to this insn. This is so that all the dependencies will
+ apply to the group. Remove an explicit dependence on this insn
+ as SCHED_GROUP_P now represents it. */
+
+ if (find_insn_list (prev, LOG_LINKS (insn)))
+ remove_dependence (insn, prev);
+
+ for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
+ add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
+}
+
+/* Process an insn's memory dependencies. There are four kinds of
+ dependencies:
+
+ (0) read dependence: read follows read
+ (1) true dependence: read follows write
+ (2) anti dependence: write follows read
+ (3) output dependence: write follows write
+
+ We are careful to build only dependencies which actually exist, and
+ use transitivity to avoid building too many links. */
+
+/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
+ The MEM is a memory reference contained within INSN, which we are saving
+ so that we can do memory aliasing on it. */
+
+void
+add_insn_mem_dependence (deps, insn_list, mem_list, insn, mem)
+ struct deps *deps;
+ rtx *insn_list, *mem_list, insn, mem;
+{
+ register rtx link;
+
+ link = alloc_INSN_LIST (insn, *insn_list);
+ *insn_list = link;
+
+ link = alloc_EXPR_LIST (VOIDmode, mem, *mem_list);
+ *mem_list = link;
+
+ deps->pending_lists_length++;
+}
+
+/* Make a dependency between every memory reference on the pending lists
+ and INSN, thus flushing the pending lists. If ONLY_WRITE, don't flush
+ the read list. */
+
+static void
+flush_pending_lists (deps, insn, only_write)
+ struct deps *deps;
+ rtx insn;
+ int only_write;
+{
+ rtx u;
+ rtx link;
+
+ while (deps->pending_read_insns && ! only_write)
+ {
+ add_dependence (insn, XEXP (deps->pending_read_insns, 0),
+ REG_DEP_ANTI);
+
+ link = deps->pending_read_insns;
+ deps->pending_read_insns = XEXP (deps->pending_read_insns, 1);
+ free_INSN_LIST_node (link);
+
+ link = deps->pending_read_mems;
+ deps->pending_read_mems = XEXP (deps->pending_read_mems, 1);
+ free_EXPR_LIST_node (link);
+ }
+ while (deps->pending_write_insns)
+ {
+ add_dependence (insn, XEXP (deps->pending_write_insns, 0),
+ REG_DEP_ANTI);
+
+ link = deps->pending_write_insns;
+ deps->pending_write_insns = XEXP (deps->pending_write_insns, 1);
+ free_INSN_LIST_node (link);
+
+ link = deps->pending_write_mems;
+ deps->pending_write_mems = XEXP (deps->pending_write_mems, 1);
+ free_EXPR_LIST_node (link);
+ }
+ deps->pending_lists_length = 0;
+
+ /* last_pending_memory_flush is now a list of insns. */
+ for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+
+ free_INSN_LIST_list (&deps->last_pending_memory_flush);
+ deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
+}
+
+/* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
+ rtx, X, creating all dependencies generated by the write to the
+ destination of X, and reads of everything mentioned. */
+
+static void
+sched_analyze_1 (deps, x, insn)
+ struct deps *deps;
+ rtx x;
+ rtx insn;
+{
+ register int regno;
+ register rtx dest = XEXP (x, 0);
+ enum rtx_code code = GET_CODE (x);
+
+ if (dest == 0)
+ return;
+
+ if (GET_CODE (dest) == PARALLEL
+ && GET_MODE (dest) == BLKmode)
+ {
+ register int i;
+ for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
+ sched_analyze_1 (deps, XVECEXP (dest, 0, i), insn);
+ if (GET_CODE (x) == SET)
+ sched_analyze_2 (deps, SET_SRC (x), insn);
+ return;
+ }
+
+ while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
+ || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
+ {
+ if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
+ {
+ /* The second and third arguments are values read by this insn. */
+ sched_analyze_2 (deps, XEXP (dest, 1), insn);
+ sched_analyze_2 (deps, XEXP (dest, 2), insn);
+ }
+ dest = XEXP (dest, 0);
+ }
+
+ if (GET_CODE (dest) == REG)
+ {
+ register int i;
+
+ regno = REGNO (dest);
+
+ /* A hard reg in a wide mode may really be multiple registers.
+ If so, mark all of them just like the first. */
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
+ while (--i >= 0)
+ {
+ int r = regno + i;
+ rtx u;
+
+ for (u = deps->reg_last_uses[r]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+
+ for (u = deps->reg_last_sets[r]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
+
+ /* Clobbers need not be ordered with respect to one
+ another, but sets must be ordered with respect to a
+ pending clobber. */
+ if (code == SET)
+ {
+ free_INSN_LIST_list (&deps->reg_last_uses[r]);
+ for (u = deps->reg_last_clobbers[r]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
+ SET_REGNO_REG_SET (reg_pending_sets, r);
+ }
+ else
+ SET_REGNO_REG_SET (reg_pending_clobbers, r);
+
+ /* Function calls clobber all call_used regs. */
+ if (global_regs[r] || (code == SET && call_used_regs[r]))
+ for (u = deps->last_function_call; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+ }
+ }
+ else
+ {
+ rtx u;
+
+ for (u = deps->reg_last_uses[regno]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+
+ for (u = deps->reg_last_sets[regno]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
+
+ if (code == SET)
+ {
+ free_INSN_LIST_list (&deps->reg_last_uses[regno]);
+ for (u = deps->reg_last_clobbers[regno]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
+ SET_REGNO_REG_SET (reg_pending_sets, regno);
+ }
+ else
+ SET_REGNO_REG_SET (reg_pending_clobbers, regno);
+
+ /* Pseudos that are REG_EQUIV to something may be replaced
+ by that during reloading. We need only add dependencies for
+ the address in the REG_EQUIV note. */
+ if (!reload_completed
+ && reg_known_equiv_p[regno]
+ && GET_CODE (reg_known_value[regno]) == MEM)
+ sched_analyze_2 (deps, XEXP (reg_known_value[regno], 0), insn);
+
+ /* Don't let it cross a call after scheduling if it doesn't
+ already cross one. */
+
+ if (REG_N_CALLS_CROSSED (regno) == 0)
+ for (u = deps->last_function_call; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+ }
+ }
+ else if (GET_CODE (dest) == MEM)
+ {
+ /* Writing memory. */
+
+ if (deps->pending_lists_length > 32)
+ {
+ /* Flush all pending reads and writes to prevent the pending lists
+ from getting any larger. Insn scheduling runs too slowly when
+ these lists get long. The number 32 was chosen because it
+ seems like a reasonable number. When compiling GCC with itself,
+ this flush occurs 8 times for sparc, and 10 times for m88k using
+ the number 32. */
+ flush_pending_lists (deps, insn, 0);
+ }
+ else
+ {
+ rtx u;
+ rtx pending, pending_mem;
+
+ pending = deps->pending_read_insns;
+ pending_mem = deps->pending_read_mems;
+ while (pending)
+ {
+ if (anti_dependence (XEXP (pending_mem, 0), dest))
+ add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
+
+ pending = XEXP (pending, 1);
+ pending_mem = XEXP (pending_mem, 1);
+ }
+
+ pending = deps->pending_write_insns;
+ pending_mem = deps->pending_write_mems;
+ while (pending)
+ {
+ if (output_dependence (XEXP (pending_mem, 0), dest))
+ add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
+
+ pending = XEXP (pending, 1);
+ pending_mem = XEXP (pending_mem, 1);
+ }
+
+ for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+
+ add_insn_mem_dependence (deps, &deps->pending_write_insns,
+ &deps->pending_write_mems, insn, dest);
+ }
+ sched_analyze_2 (deps, XEXP (dest, 0), insn);
+ }
+
+ /* Analyze reads. */
+ if (GET_CODE (x) == SET)
+ sched_analyze_2 (deps, SET_SRC (x), insn);
+}
+
+/* Analyze the uses of memory and registers in rtx X in INSN. */
+
+static void
+sched_analyze_2 (deps, x, insn)
+ struct deps *deps;
+ rtx x;
+ rtx insn;
+{
+ register int i;
+ register int j;
+ register enum rtx_code code;
+ register const char *fmt;
+
+ if (x == 0)
+ return;
+
+ code = GET_CODE (x);
+
+ switch (code)
+ {
+ case CONST_INT:
+ case CONST_DOUBLE:
+ case SYMBOL_REF:
+ case CONST:
+ case LABEL_REF:
+ /* Ignore constants. Note that we must handle CONST_DOUBLE here
+ because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
+ this does not mean that this insn is using cc0. */
+ return;
+
+#ifdef HAVE_cc0
+ case CC0:
+ /* User of CC0 depends on immediately preceding insn. */
+ set_sched_group_p (insn);
+ return;
+#endif
+
+ case REG:
+ {
+ rtx u;
+ int regno = REGNO (x);
+ if (regno < FIRST_PSEUDO_REGISTER)
+ {
+ int i;
+
+ i = HARD_REGNO_NREGS (regno, GET_MODE (x));
+ while (--i >= 0)
+ {
+ int r = regno + i;
+ deps->reg_last_uses[r]
+ = alloc_INSN_LIST (insn, deps->reg_last_uses[r]);
+
+ for (u = deps->reg_last_sets[r]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+
+ /* ??? This should never happen. */
+ for (u = deps->reg_last_clobbers[r]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+
+ if (call_used_regs[r] || global_regs[r])
+ /* Function calls clobber all call_used regs. */
+ for (u = deps->last_function_call; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+ }
+ }
+ else
+ {
+ deps->reg_last_uses[regno]
+ = alloc_INSN_LIST (insn, deps->reg_last_uses[regno]);
+
+ for (u = deps->reg_last_sets[regno]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+
+ /* ??? This should never happen. */
+ for (u = deps->reg_last_clobbers[regno]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+
+ /* Pseudos that are REG_EQUIV to something may be replaced
+ by that during reloading. We need only add dependencies for
+ the address in the REG_EQUIV note. */
+ if (!reload_completed
+ && reg_known_equiv_p[regno]
+ && GET_CODE (reg_known_value[regno]) == MEM)
+ sched_analyze_2 (deps, XEXP (reg_known_value[regno], 0), insn);
+
+ /* If the register does not already cross any calls, then add this
+ insn to the sched_before_next_call list so that it will still
+ not cross calls after scheduling. */
+ if (REG_N_CALLS_CROSSED (regno) == 0)
+ add_dependence (deps->sched_before_next_call, insn,
+ REG_DEP_ANTI);
+ }
+ return;
+ }
+
+ case MEM:
+ {
+ /* Reading memory. */
+ rtx u;
+ rtx pending, pending_mem;
+
+ pending = deps->pending_read_insns;
+ pending_mem = deps->pending_read_mems;
+ while (pending)
+ {
+ if (read_dependence (XEXP (pending_mem, 0), x))
+ add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
+
+ pending = XEXP (pending, 1);
+ pending_mem = XEXP (pending_mem, 1);
+ }
+
+ pending = deps->pending_write_insns;
+ pending_mem = deps->pending_write_mems;
+ while (pending)
+ {
+ if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
+ x, rtx_varies_p))
+ add_dependence (insn, XEXP (pending, 0), 0);
+
+ pending = XEXP (pending, 1);
+ pending_mem = XEXP (pending_mem, 1);
+ }
+
+ for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+
+ /* Always add these dependencies to pending_reads, since
+ this insn may be followed by a write. */
+ add_insn_mem_dependence (deps, &deps->pending_read_insns,
+ &deps->pending_read_mems, insn, x);
+
+ /* Take advantage of tail recursion here. */
+ sched_analyze_2 (deps, XEXP (x, 0), insn);
+ return;
+ }
+
+ /* Force pending stores to memory in case a trap handler needs them. */
+ case TRAP_IF:
+ flush_pending_lists (deps, insn, 1);
+ break;
+
+ case ASM_OPERANDS:
+ case ASM_INPUT:
+ case UNSPEC_VOLATILE:
+ {
+ rtx u;
+
+ /* Traditional and volatile asm instructions must be considered to use
+ and clobber all hard registers, all pseudo-registers and all of
+ memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
+
+ Consider for instance a volatile asm that changes the fpu rounding
+ mode. An insn should not be moved across this even if it only uses
+ pseudo-regs because it might give an incorrectly rounded result. */
+ if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
+ {
+ int max_reg = max_reg_num ();
+ for (i = 0; i < max_reg; i++)
+ {
+ for (u = deps->reg_last_uses[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+ free_INSN_LIST_list (&deps->reg_last_uses[i]);
+
+ for (u = deps->reg_last_sets[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+
+ for (u = deps->reg_last_clobbers[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+ }
+ reg_pending_sets_all = 1;
+
+ flush_pending_lists (deps, insn, 0);
+ }
+
+ /* For all ASM_OPERANDS, we must traverse the vector of input operands.
+ We can not just fall through here since then we would be confused
+ by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
+ traditional asms unlike their normal usage. */
+
+ if (code == ASM_OPERANDS)
+ {
+ for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
+ sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
+ return;
+ }
+ break;
+ }
+
+ case PRE_DEC:
+ case POST_DEC:
+ case PRE_INC:
+ case POST_INC:
+ /* These both read and modify the result. We must handle them as writes
+ to get proper dependencies for following instructions. We must handle
+ them as reads to get proper dependencies from this to previous
+ instructions. Thus we need to pass them to both sched_analyze_1
+ and sched_analyze_2. We must call sched_analyze_2 first in order
+ to get the proper antecedent for the read. */
+ sched_analyze_2 (deps, XEXP (x, 0), insn);
+ sched_analyze_1 (deps, x, insn);
+ return;
+
+ case POST_MODIFY:
+ case PRE_MODIFY:
+ /* op0 = op0 + op1 */
+ sched_analyze_2 (deps, XEXP (x, 0), insn);
+ sched_analyze_2 (deps, XEXP (x, 1), insn);
+ sched_analyze_1 (deps, x, insn);
+ return;
+
+ default:
+ break;
+ }
+
+ /* Other cases: walk the insn. */
+ fmt = GET_RTX_FORMAT (code);
+ for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+ {
+ if (fmt[i] == 'e')
+ sched_analyze_2 (deps, XEXP (x, i), insn);
+ else if (fmt[i] == 'E')
+ for (j = 0; j < XVECLEN (x, i); j++)
+ sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
+ }
+}
+
+/* Analyze an INSN with pattern X to find all dependencies. */
+
+static void
+sched_analyze_insn (deps, x, insn, loop_notes)
+ struct deps *deps;
+ rtx x, insn;
+ rtx loop_notes;
+{
+ register RTX_CODE code = GET_CODE (x);
+ rtx link;
+ int maxreg = max_reg_num ();
+ int i;
+
+ if (code == COND_EXEC)
+ {
+ sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
+
+ /* ??? Should be recording conditions so we reduce the number of
+ false dependancies. */
+ x = COND_EXEC_CODE (x);
+ code = GET_CODE (x);
+ }
+ if (code == SET || code == CLOBBER)
+ sched_analyze_1 (deps, x, insn);
+ else if (code == PARALLEL)
+ {
+ register int i;
+ for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
+ {
+ rtx sub = XVECEXP (x, 0, i);
+ code = GET_CODE (sub);
+
+ if (code == COND_EXEC)
+ {
+ sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
+ sub = COND_EXEC_CODE (sub);
+ code = GET_CODE (sub);
+ }
+ if (code == SET || code == CLOBBER)
+ sched_analyze_1 (deps, sub, insn);
+ else
+ sched_analyze_2 (deps, sub, insn);
+ }
+ }
+ else
+ sched_analyze_2 (deps, x, insn);
+
+ /* Mark registers CLOBBERED or used by called function. */
+ if (GET_CODE (insn) == CALL_INSN)
+ for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
+ {
+ if (GET_CODE (XEXP (link, 0)) == CLOBBER)
+ sched_analyze_1 (deps, XEXP (link, 0), insn);
+ else
+ sched_analyze_2 (deps, XEXP (link, 0), insn);
+ }
+
+ /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic
+ block, then we must be sure that no instructions are scheduled across it.
+ Otherwise, the reg_n_refs info (which depends on loop_depth) would
+ become incorrect. */
+
+ if (loop_notes)
+ {
+ int max_reg = max_reg_num ();
+ int schedule_barrier_found = 0;
+ rtx link;
+
+ /* Update loop_notes with any notes from this insn. Also determine
+ if any of the notes on the list correspond to instruction scheduling
+ barriers (loop, eh & setjmp notes, but not range notes. */
+ link = loop_notes;
+ while (XEXP (link, 1))
+ {
+ if (INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_BEG
+ || INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_END
+ || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_BEG
+ || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_END
+ || INTVAL (XEXP (link, 0)) == NOTE_INSN_SETJMP)
+ schedule_barrier_found = 1;
+
+ link = XEXP (link, 1);
+ }
+ XEXP (link, 1) = REG_NOTES (insn);
+ REG_NOTES (insn) = loop_notes;
+
+ /* Add dependencies if a scheduling barrier was found. */
+ if (schedule_barrier_found)
+ {
+ for (i = 0; i < max_reg; i++)
+ {
+ rtx u;
+ for (u = deps->reg_last_uses[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+ free_INSN_LIST_list (&deps->reg_last_uses[i]);
+
+ for (u = deps->reg_last_sets[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+
+ for (u = deps->reg_last_clobbers[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+ }
+ reg_pending_sets_all = 1;
+
+ flush_pending_lists (deps, insn, 0);
+ }
+
+ }
+
+ /* Accumulate clobbers until the next set so that it will be output dependent
+ on all of them. At the next set we can clear the clobber list, since
+ subsequent sets will be output dependent on it. */
+ EXECUTE_IF_SET_IN_REG_SET
+ (reg_pending_sets, 0, i,
+ {
+ free_INSN_LIST_list (&deps->reg_last_sets[i]);
+ free_INSN_LIST_list (&deps->reg_last_clobbers[i]);
+ deps->reg_last_sets[i] = alloc_INSN_LIST (insn, NULL_RTX);
+ });
+ EXECUTE_IF_SET_IN_REG_SET
+ (reg_pending_clobbers, 0, i,
+ {
+ deps->reg_last_clobbers[i]
+ = alloc_INSN_LIST (insn, deps->reg_last_clobbers[i]);
+ });
+ CLEAR_REG_SET (reg_pending_sets);
+ CLEAR_REG_SET (reg_pending_clobbers);
+
+ if (reg_pending_sets_all)
+ {
+ for (i = 0; i < maxreg; i++)
+ {
+ free_INSN_LIST_list (&deps->reg_last_sets[i]);
+ free_INSN_LIST_list (&deps->reg_last_clobbers[i]);
+ deps->reg_last_sets[i] = alloc_INSN_LIST (insn, NULL_RTX);
+ }
+
+ reg_pending_sets_all = 0;
+ }
+
+ /* If a post-call group is still open, see if it should remain so.
+ This insn must be a simple move of a hard reg to a pseudo or
+ vice-versa.
+
+ We must avoid moving these insns for correctness on
+ SMALL_REGISTER_CLASS machines, and for special registers like
+ PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
+ hard regs for all targets. */
+
+ if (deps->in_post_call_group_p)
+ {
+ rtx tmp, set = single_set (insn);
+ int src_regno, dest_regno;
+
+ if (set == NULL)
+ goto end_call_group;
+
+ tmp = SET_DEST (set);
+ if (GET_CODE (tmp) == SUBREG)
+ tmp = SUBREG_REG (tmp);
+ if (GET_CODE (tmp) == REG)
+ dest_regno = REGNO (tmp);
+ else
+ goto end_call_group;
+
+ tmp = SET_SRC (set);
+ if (GET_CODE (tmp) == SUBREG)
+ tmp = SUBREG_REG (tmp);
+ if (GET_CODE (tmp) == REG)
+ src_regno = REGNO (tmp);
+ else
+ goto end_call_group;
+
+ if (src_regno < FIRST_PSEUDO_REGISTER
+ || dest_regno < FIRST_PSEUDO_REGISTER)
+ {
+ set_sched_group_p (insn);
+ CANT_MOVE (insn) = 1;
+ }
+ else
+ {
+ end_call_group:
+ deps->in_post_call_group_p = 0;
+ }
+ }
+}
+
+/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
+ for every dependency. */
+
+void
+sched_analyze (deps, head, tail)
+ struct deps *deps;
+ rtx head, tail;
+{
+ register rtx insn;
+ register rtx u;
+ rtx loop_notes = 0;
+
+ for (insn = head;; insn = NEXT_INSN (insn))
+ {
+ if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
+ {
+ /* Clear out the stale LOG_LINKS from flow. */
+ free_INSN_LIST_list (&LOG_LINKS (insn));
+
+ /* Clear out stale SCHED_GROUP_P. */
+ SCHED_GROUP_P (insn) = 0;
+
+ /* Make each JUMP_INSN a scheduling barrier for memory
+ references. */
+ if (GET_CODE (insn) == JUMP_INSN)
+ deps->last_pending_memory_flush
+ = alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
+ sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
+ loop_notes = 0;
+ }
+ else if (GET_CODE (insn) == CALL_INSN)
+ {
+ rtx x;
+ register int i;
+
+ /* Clear out stale SCHED_GROUP_P. */
+ SCHED_GROUP_P (insn) = 0;
+
+ CANT_MOVE (insn) = 1;
+
+ /* Clear out the stale LOG_LINKS from flow. */
+ free_INSN_LIST_list (&LOG_LINKS (insn));
+
+ /* Any instruction using a hard register which may get clobbered
+ by a call needs to be marked as dependent on this call.
+ This prevents a use of a hard return reg from being moved
+ past a void call (i.e. it does not explicitly set the hard
+ return reg). */
+
+ /* If this call is followed by a NOTE_INSN_SETJMP, then assume that
+ all registers, not just hard registers, may be clobbered by this
+ call. */
+
+ /* Insn, being a CALL_INSN, magically depends on
+ `last_function_call' already. */
+
+ if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE
+ && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
+ {
+ int max_reg = max_reg_num ();
+ for (i = 0; i < max_reg; i++)
+ {
+ for (u = deps->reg_last_uses[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+ free_INSN_LIST_list (&deps->reg_last_uses[i]);
+
+ for (u = deps->reg_last_sets[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+
+ for (u = deps->reg_last_clobbers[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), 0);
+ }
+ reg_pending_sets_all = 1;
+
+ /* Add a pair of REG_SAVE_NOTEs which we will later
+ convert back into a NOTE_INSN_SETJMP note. See
+ reemit_notes for why we use a pair of NOTEs. */
+ REG_NOTES (insn) = alloc_EXPR_LIST (REG_SAVE_NOTE,
+ GEN_INT (0),
+ REG_NOTES (insn));
+ REG_NOTES (insn) = alloc_EXPR_LIST (REG_SAVE_NOTE,
+ GEN_INT (NOTE_INSN_SETJMP),
+ REG_NOTES (insn));
+ }
+ else
+ {
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (call_used_regs[i] || global_regs[i])
+ {
+ for (u = deps->reg_last_uses[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+
+ for (u = deps->reg_last_sets[i]; u; u = XEXP (u, 1))
+ add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
+
+ SET_REGNO_REG_SET (reg_pending_clobbers, i);
+ }
+ }
+
+ /* For each insn which shouldn't cross a call, add a dependence
+ between that insn and this call insn. */
+ x = LOG_LINKS (deps->sched_before_next_call);
+ while (x)
+ {
+ add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
+ x = XEXP (x, 1);
+ }
+ free_INSN_LIST_list (&LOG_LINKS (deps->sched_before_next_call));
+
+ sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
+ loop_notes = 0;
+
+ /* In the absence of interprocedural alias analysis, we must flush
+ all pending reads and writes, and start new dependencies starting
+ from here. But only flush writes for constant calls (which may
+ be passed a pointer to something we haven't written yet). */
+ flush_pending_lists (deps, insn, CONST_CALL_P (insn));
+
+ /* Depend this function call (actually, the user of this
+ function call) on all hard register clobberage. */
+
+ /* last_function_call is now a list of insns. */
+ free_INSN_LIST_list (&deps->last_function_call);
+ deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
+
+ /* Before reload, begin a post-call group, so as to keep the
+ lifetimes of hard registers correct. */
+ if (! reload_completed)
+ deps->in_post_call_group_p = 1;
+ }
+
+ /* See comments on reemit_notes as to why we do this.
+ ??? Actually, the reemit_notes just say what is done, not why. */
+
+ else if (GET_CODE (insn) == NOTE
+ && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_BEG
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_END))
+ {
+ loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE, NOTE_RANGE_INFO (insn),
+ loop_notes);
+ loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
+ GEN_INT (NOTE_LINE_NUMBER (insn)),
+ loop_notes);
+ }
+ else if (GET_CODE (insn) == NOTE
+ && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
+ || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP
+ && GET_CODE (PREV_INSN (insn)) != CALL_INSN)))
+ {
+ rtx rtx_region;
+
+ if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
+ || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
+ rtx_region = GEN_INT (NOTE_EH_HANDLER (insn));
+ else
+ rtx_region = GEN_INT (0);
+
+ loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
+ rtx_region,
+ loop_notes);
+ loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
+ GEN_INT (NOTE_LINE_NUMBER (insn)),
+ loop_notes);
+ CONST_CALL_P (loop_notes) = CONST_CALL_P (insn);
+ }
+
+ if (insn == tail)
+ return;
+ }
+ abort ();
+}
+
+/* Examine insns in the range [ HEAD, TAIL ] and Use the backward
+ dependences from LOG_LINKS to build forward dependences in
+ INSN_DEPEND. */
+
+void
+compute_forward_dependences (head, tail)
+ rtx head, tail;
+{
+ rtx insn, link;
+ rtx next_tail;
+ enum reg_note dep_type;
+
+ next_tail = NEXT_INSN (tail);
+ for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
+ {
+ if (! INSN_P (insn))
+ continue;
+
+ insn = group_leader (insn);
+
+ for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
+ {
+ rtx x = group_leader (XEXP (link, 0));
+ rtx new_link;
+
+ if (x != XEXP (link, 0))
+ continue;
+
+#ifdef ENABLE_CHECKING
+ /* If add_dependence is working properly there should never
+ be notes, deleted insns or duplicates in the backward
+ links. Thus we need not check for them here.
+
+ However, if we have enabled checking we might as well go
+ ahead and verify that add_dependence worked properly. */
+ if (GET_CODE (x) == NOTE
+ || INSN_DELETED_P (x)
+ || (forward_dependency_cache != NULL
+ && TEST_BIT (forward_dependency_cache[INSN_LUID (x)],
+ INSN_LUID (insn)))
+ || (forward_dependency_cache == NULL
+ && find_insn_list (insn, INSN_DEPEND (x))))
+ abort ();
+ if (forward_dependency_cache != NULL)
+ SET_BIT (forward_dependency_cache[INSN_LUID (x)],
+ INSN_LUID (insn));
+#endif
+
+ new_link = alloc_INSN_LIST (insn, INSN_DEPEND (x));
+
+ dep_type = REG_NOTE_KIND (link);
+ PUT_REG_NOTE_KIND (new_link, dep_type);
+
+ INSN_DEPEND (x) = new_link;
+ INSN_DEP_COUNT (insn) += 1;
+ }
+ }
+}
+
+/* Initialize variables for region data dependence analysis.
+ n_bbs is the number of region blocks. */
+
+void
+init_deps (deps)
+ struct deps *deps;
+{
+ int maxreg = max_reg_num ();
+ deps->reg_last_uses = (rtx *) xcalloc (maxreg, sizeof (rtx));
+ deps->reg_last_sets = (rtx *) xcalloc (maxreg, sizeof (rtx));
+ deps->reg_last_clobbers = (rtx *) xcalloc (maxreg, sizeof (rtx));
+
+ deps->pending_read_insns = 0;
+ deps->pending_read_mems = 0;
+ deps->pending_write_insns = 0;
+ deps->pending_write_mems = 0;
+ deps->pending_lists_length = 0;
+ deps->last_pending_memory_flush = 0;
+ deps->last_function_call = 0;
+ deps->in_post_call_group_p = 0;
+
+ deps->sched_before_next_call
+ = gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
+ NULL_RTX, 0, NULL_RTX, NULL_RTX);
+ LOG_LINKS (deps->sched_before_next_call) = 0;
+}
+
+/* Free insn lists found in DEPS. */
+
+void
+free_deps (deps)
+ struct deps *deps;
+{
+ int max_reg = max_reg_num ();
+ int i;
+
+ /* Note this loop is executed max_reg * nr_regions times. It's first
+ implementation accounted for over 90% of the calls to free_INSN_LIST_list.
+ The list was empty for the vast majority of those calls. On the PA, not
+ calling free_INSN_LIST_list in those cases improves -O2 compile times by
+ 3-5% on average. */
+ for (i = 0; i < max_reg; ++i)
+ {
+ if (deps->reg_last_clobbers[i])
+ free_INSN_LIST_list (&deps->reg_last_clobbers[i]);
+ if (deps->reg_last_sets[i])
+ free_INSN_LIST_list (&deps->reg_last_sets[i]);
+ if (deps->reg_last_uses[i])
+ free_INSN_LIST_list (&deps->reg_last_uses[i]);
+ }
+}
+
+/* If it is profitable to use them, initialize caches for tracking
+ dependency informatino. LUID is the number of insns to be scheduled,
+ it is used in the estimate of profitability. */
+
+void
+init_dependency_caches (luid)
+ int luid;
+{
+ /* ?!? We could save some memory by computing a per-region luid mapping
+ which could reduce both the number of vectors in the cache and the size
+ of each vector. Instead we just avoid the cache entirely unless the
+ average number of instructions in a basic block is very high. See
+ the comment before the declaration of true_dependency_cache for
+ what we consider "very high". */
+ if (luid / n_basic_blocks > 100 * 5)
+ {
+ true_dependency_cache = sbitmap_vector_alloc (luid, luid);
+ sbitmap_vector_zero (true_dependency_cache, luid);
+ anti_dependency_cache = sbitmap_vector_alloc (luid, luid);
+ sbitmap_vector_zero (anti_dependency_cache, luid);
+ output_dependency_cache = sbitmap_vector_alloc (luid, luid);
+ sbitmap_vector_zero (output_dependency_cache, luid);
+#ifdef ENABLE_CHECKING
+ forward_dependency_cache = sbitmap_vector_alloc (luid, luid);
+ sbitmap_vector_zero (forward_dependency_cache, luid);
+#endif
+ }
+}
+
+/* Free the caches allocated in init_dependency_caches. */
+
+void
+free_dependency_caches ()
+{
+ if (true_dependency_cache)
+ {
+ free (true_dependency_cache);
+ true_dependency_cache = NULL;
+ free (anti_dependency_cache);
+ anti_dependency_cache = NULL;
+ free (output_dependency_cache);
+ output_dependency_cache = NULL;
+#ifdef ENABLE_CHECKING
+ free (forward_dependency_cache);
+ forward_dependency_cache = NULL;
+#endif
+ }
+}
+
+/* Initialize some global variables needed by the dependency analysis
+ code. */
+
+void
+init_deps_global ()
+{
+ reg_pending_sets = INITIALIZE_REG_SET (reg_pending_sets_head);
+ reg_pending_clobbers = INITIALIZE_REG_SET (reg_pending_clobbers_head);
+ reg_pending_sets_all = 0;
+}
+
+/* Free everything used by the dependency analysis code. */
+
+void
+finish_deps_global ()
+{
+ FREE_REG_SET (reg_pending_sets);
+ FREE_REG_SET (reg_pending_clobbers);
+}