diff options
author | sayle <sayle@138bc75d-0d04-0410-961f-82ee72b054a4> | 2003-05-06 03:14:10 +0000 |
---|---|---|
committer | sayle <sayle@138bc75d-0d04-0410-961f-82ee72b054a4> | 2003-05-06 03:14:10 +0000 |
commit | 3be04962d3662d6b88db202a9d510f546d2b976a (patch) | |
tree | 2a99b03c08d036a34af9b1b5c844c11e3d67a3af /gcc/real.c | |
parent | e3b5d27718aabc0b1addfc17fe0e95cbb5c9c161 (diff) | |
download | gcc-3be04962d3662d6b88db202a9d510f546d2b976a.tar.gz |
* real.c (real_powi): New function to calculate the value of
a real raised to an integer power, i.e. pow(x,n) for int n.
(real_sqrt): Convert to using the faster do_add, do_multiply
and do_divide API for consistency with the rest of real.c.
* real.h (real_powi): Prototype here.
* builtins.c (fold_builtin): Avoid local variable mode when
evaluating sqrt at compile time. Attempt to evaluate pow at
compile-time, by checking for an integral exponent.
* gcc.dg/builtins-14.c: New test case.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@66515 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/real.c')
-rw-r--r-- | gcc/real.c | 80 |
1 files changed, 68 insertions, 12 deletions
diff --git a/gcc/real.c b/gcc/real.c index db658fdcb95..16cd02acb7f 100644 --- a/gcc/real.c +++ b/gcc/real.c @@ -4606,7 +4606,7 @@ real_sqrt (r, mode, x) if (!init) { - real_arithmetic (&halfthree, PLUS_EXPR, &dconst1, &dconsthalf); + do_add (&halfthree, &dconst1, &dconsthalf, 0); init = true; } @@ -4618,11 +4618,11 @@ real_sqrt (r, mode, x) for (iter = 0; iter < 16; iter++) { /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */ - real_arithmetic (&t, MULT_EXPR, x, &i); - real_arithmetic (&h, MULT_EXPR, &t, &i); - real_arithmetic (&t, MULT_EXPR, &h, &dconsthalf); - real_arithmetic (&h, MINUS_EXPR, &halfthree, &t); - real_arithmetic (&t, MULT_EXPR, &i, &h); + do_multiply (&t, x, &i); + do_multiply (&h, &t, &i); + do_multiply (&t, &h, &dconsthalf); + do_add (&h, &halfthree, &t, 1); + do_multiply (&t, &i, &h); /* Check for early convergence. */ if (iter >= 6 && real_identical (&i, &t)) @@ -4633,12 +4633,12 @@ real_sqrt (r, mode, x) } /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */ - real_arithmetic (&t, MULT_EXPR, x, &i); - real_arithmetic (&h, MULT_EXPR, &t, &i); - real_arithmetic (&i, MINUS_EXPR, &dconst1, &h); - real_arithmetic (&h, MULT_EXPR, &t, &i); - real_arithmetic (&i, MULT_EXPR, &dconsthalf, &h); - real_arithmetic (&h, PLUS_EXPR, &t, &i); + do_multiply (&t, x, &i); + do_multiply (&h, &t, &i); + do_add (&i, &dconst1, &h, 1); + do_multiply (&h, &t, &i); + do_multiply (&i, &dconsthalf, &h); + do_add (&h, &t, &i, 0); /* ??? We need a Tuckerman test to get the last bit. */ @@ -4646,3 +4646,59 @@ real_sqrt (r, mode, x) return true; } +/* Calculate X raised to the integer exponent N in mode MODE and store + the result in R. Return true if the result may be inexact due to + loss of precision. The algorithm is the classic "left-to-right binary + method" described in section 4.6.3 of Donald Knuth's "Seminumerical + Algorithms", "The Art of Computer Programming", Volume 2. */ + +bool +real_powi (r, mode, x, n) + REAL_VALUE_TYPE *r; + enum machine_mode mode; + const REAL_VALUE_TYPE *x; + HOST_WIDE_INT n; +{ + unsigned HOST_WIDE_INT bit; + REAL_VALUE_TYPE t; + bool inexact = false; + bool init = false; + bool neg; + int i; + + if (n == 0) + { + *r = dconst1; + return false; + } + else if (n < 0) + { + /* Don't worry about overflow, from now on n is unsigned. */ + neg = true; + n = -n; + } + else + neg = false; + + t = *x; + bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1); + for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++) + { + if (init) + { + inexact |= do_multiply (&t, &t, &t); + if (n & bit) + inexact |= do_multiply (&t, &t, x); + } + else if (n & bit) + init = true; + bit >>= 1; + } + + if (neg) + inexact |= do_divide (&t, &dconst1, &t); + + real_convert (r, mode, &t); + return inexact; +} + |